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Two main difficulties in the problem of classification in partially labeled networks are the
sparsity of the known labeled nodes and inconsistency of label information. To address

these two difficulties, we propose a similarity-based method, where the basic assumption
is that two nodes are more likely to be categorized into the same class if they are more

similar. In this paper, we introduce ten similarity indices defined based on the network
structure. Empirical results on the co-purchase network of political books show that the

similarity-based method can, to some extent, overcome these two difficulties and give
higher accurate classification than the relational neighbors method, especially when the

labeled nodes are sparse. Furthermore, we find that when the information of known
labeled nodes is sufficient, the indices considering only local information can perform as

good as those global indices while having much lower computational complexity.
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1. Introduction

Recently, the problem of within-network classification in partially labeled networks
has attracted much attention. Given a network with partial nodes being labeled, the
problem is to predict the labels of these unlabeled nodes based on the known labels
and the network structure. Many algorithms have been proposed. These methods
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can be widely applied to many fields, such as the hypertext categorization,1,2 dis-
tinguishing the fraud and legit users in cell phone network,3 detecting whether an
email is for a certain task4 and predicting the disease-related genes.5 Generally
speaking, the known methods can be classified into two groups. One is collective
classification, which refers to the combined classification by using three types of
correlations:

(i) between the node’s label and its attributes,
(ii) between node’s label and its neighbor’s attributes,
(iii) between node’s label and its neighbor’s label (see a brief introduction in Ref. 6).

One remarkable advantage of this method is its high ability to learn the depen-
dency structure, such as positive or negative correlation (i.e. consistency or incon-
sistency). However, when the labeled nodes are sparse, this method is difficult to
give accurate classification. The sparse problem can be solved by another group of
methods, named semi-supervised learning, which make use of both labeled and un-
labeled data for training (see Ref. 7 for more information). The latent assumption
of this method is the consistency with the label information, namely the nearby
nodes tend to have the same label. Therefore when this assumption does not hold
the performance of this method will be largely degraded. Brian et al. proposed a
method by adding ghost edges between every pair of labeled and unlabeled nodes
to the target network, which enable the flow of information from the labeled nodes
to the unlabeled nodes.3 They assigned a weight to each ghost edge based on the
score of the two endpoints obtained by the Even-step random walk with restart
(Even-step RWR) algorithm. The experimental results on real-world data showed
that their method can, to some extent, solve the sparse problem and negative
correlation problem (i.e. inconsistency), and perform well while the existing ap-
proaches, such as collective classification and semi-supervised learning, will fail.
In this paper, we compare the performances of Even-step RWR index with other
nine similarity indices which have been widely used in link prediction problem.8–10

These include five local indices, namely the Common Neighbors,11 Jaccard coeffi-
cient,12 Sørensen index,13 Adamic-Adar index 14 and Resource Allocation index,9

and four global indices, namely Katz index,15 Average Commute Time,16 cosine
based on the Pseudoinverse of the Laplacian matrix (cos+) and Random Walk with
Restart (RWR).17 In addition, we also consider a simple Relational Neighbors algo-
rithm, which claims that an unlabeled node tends to have the same label with its
neighbors.18 Empirical results on the co-purchase network of political books show
that the similarity-based methods perform better overall than the Relational Neigh-
bors algorithm. Especially when the labeled nodes are sparse, the improvement is
prominent. Furthermore, when the data is dense, the best-performing local index
can predict as good as the global indices and sometimes even better. However when
the data is sparse, the best-performing global index will predict better than the
best-performing local index.
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The rest of this paper is organized as follows. In Sec. 2 we introduce ten similarity
indices, including five indices based on local information and others based on global
information. Section 3 describes the metric to evaluate the algorithm’s accuracy.
Section 4 shows the experimental results of the ten indices on the co-purchase
network of political books. Finally, we conclude this paper in Sec. 5.

2. Similarity Indices

We consider five local similarity indices as well as five global ones. All are defined
based on the network structure. A short introduction of each index is shown as:

(1) Common Neighbors (CN ) — For a node x, let Γ(x) denote the set of neigh-
bors of x. By common sense, two nodes, x and y, are more similar if they have
more common neighbors. The simplest measure of this neighborhood overlap is the
directed count, namely

sCN
xy = |Γ(x) ∩ Γ(y)| , (1)

where |Q| is the cardinality of the set Q. It is obvious that sCN
xy = (A2)xy, where

A is the adjacency matrix, in which Axy = 1 if x and y are directly connected and
Axy = 0 otherwise. Note that, (A2)xy is also the number of different paths with
length 2 connecting x and y.

(2) Jaccard index 12 —This index was proposed by Jaccard over a hundred years
ago, and is defined as

sJaccard
xy =

|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)| . (2)

(3) Sørensen index 13 — This index is used mainly for ecological community
data, and is defined as

sSørensen
xy =

2|Γ(x) ∩ Γ(y)|
k(x) + k(y)

. (3)

(4) Adamic-Adar index (AA)14 — This index refines the simple counting of
common neighbors by assigning the less-connected neighbors more weight, and is
defined as:

sAA
xy =

∑
z∈Γ(x)∩Γ(y)

1
log k(z)

. (4)

(5) Resource Allocation (RA)9 — Consider a pair of nodes, x and y, which
are not directly connected. The node x can send some resource to y, with their
common neighbors playing the role of transmitters. In the simplest case, we assume
that each transmitter has a unit of resource, and will equally distribute it between
all its neighbors. The similarity between x and y can be defined as the amount of
resource y received, which is:

sRA
xy =

∑
z∈Γ(x)∩Γ(y)

1
k(z)

. (5)
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Clearly, this measure is symmetric, namely sxy = syx. Note that, although resulting
from different motivations, the AA index and RA index have very similar forms.
Indeed, they both depress the contribution of the high-degree common neighbors
in different ways. AA index takes the log k(z) form while RA index takes the linear
form. The difference is insignificant when the degree, k, is small, while it is great
when k is large. Therefore, RA index punishes the high-degree common neighbors
heavily.

(6) Katz index 15 — This measure is based on the ensemble of all paths, which
directly sums over the collection of paths and exponentially damped by length to
give the short paths more weights. The mathematical expression reads

sKatz
xy =

∞∑
l=1

βl · |paths〈l〉xy | = βA+ β2A2 + β3A3 + · · · , (6)

where paths〈l〉xy is the set of all paths with length l connecting x and y, and β is a
free parameter controlling the weights of the paths. Obviously, a very small β yields
a measure close to CN, because the long paths contribute very little. The similarity
matrix S, whose elements are sKatz

xy , can be written as (I − βA)−1 − I, where I is
the identity matrix. Note that β must be lower than the reciprocal of the maximum
of the eigenvalues of matrix A to ensure the convergence.

(7) Average Commute Time (ACT )16 — Denoting by m(x, y) the average num-
ber of steps required by a random walker starting from node x to reach node y,
the average commute time between x and y is n(x, y) = m(x, y) +m(y, x), which
can be computed in terms of the Pseudoinverse of the Laplacian matrix L+ (see
footnotea), as:

n(x, y) = E(l+xx + l+yy − 2l+xy) , (7)

where E is the number of links in the network, l+xy denotes the corresponding entry
in L+. Assuming two nodes are considered to be more similar if they have a small
average commute time, then the similarity between the nodes x and y can be defined
as the reciprocal of n(x, y), namely (the constant factor E is removed).

sACT
xy =

1
l+xx + l+yy − 2l+xy

. (8)

(8) Cosine based on L+(cos+)16 — This index is an inner-product-based mea-
sure, which is defined as the cosine of node vectors, namely

scos+

xy = cos(x, y)+ =
l+xy√

l+xx · l+yy

. (9)

(9) Random walk with restart (RWR)17 — This index is a direct application of
the PageRank algorithm. Consider a random walker starting from node x, who will
iteratively move to a random neighbor with probability c and return to node x with

aL = D −A, where D is the degree matrix with Dij = δij · ki.
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probability 1− c. Denote by qxy the probability this random walker locates at node
y in the steady state, then we have

qx = cP Tqx + (1− c)ex , (10)

where ex is an N × 1 vector with the xth element equal to 1 and others all equal
to 0, and P T = AD−1 where Dij = δijki. The solution is straightforward, as

qx = (1− c)(I − cP T )−1ex . (11)

Then the similarity between node x and y equals sxy = qxy + qyx.
(10) Even-step RWR3 — To avoid the immediate neighbors, we only consider

the even-length paths. Mathematically, we should replace the transition matrix with
M = (P T )2.

For comparison, we compare the above-mentioned ten indices with the simplest
method, say Relational Neighbors (RN ).18 Given an unlabeled node u, the proba-
bility that its label is li equals

p(li|u) = |V ′|
|V ′′| , (12)

where V ′ is the set constituted by u’s neighbors whose label is li, and V ′′ is the set
of u’s neighbors being labeled.

3. Method

Consider an unweighted undirected network of both labeled and unlabeled nodes:
G(V, E, L), where V is the set of nodes, E is the set of links and L = {l1, l2, . . . , lm}
is the set of labels. For the nodes without labels, we label them by 0. For each pair
of nodes, x and y, every algorithm referred in this paper assigns a score as sxy. For
an unlabeled node u, the probability that it belongs to li is

p(li|u) =
∑

{v|v �=u,label(v)=li} su,v∑
{v|v �=u,label(v) �=0} su,v

, (13)

where li ∈ L. The predicted label of node u is determined by the largest p(li|u). If
there are more than one maximum values, we randomly select one. A simple example
is shown in Fig. 1, where there are two kinds of labels (i.e. a and b) and five nodes,
four of which are labeled already. Our task is to predict the label of the node 5.
According to the common neighbors algorithm, we obtain the similarity between
node 5 and the other four labeled nodes, and then we infer that the probability
that node 5 is labeled by a equals 3/4.

To test the algorithm’s accuracy, all the labeled nodes are randomly divided into
two parts: the training set, V T , is treated as known information, while the probe
set, V P , is used for testing. We denote q the proportion of labeled nodes divided
into training set, which is considered as the density index. A smaller q indicates
a sparser labeled network. The accuracy is quantified by the probability that we
predict right. For a testing node u ∈ V P whose label is li, if p(li) > p(lj), j �= i,
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Fig. 1. (Color online) An illustration of how to predict the node’s label according to the similarity.

we predict right, and thus qu = 1. If there is n maximum values corresponding to
n different labels and the right label is one of them, we have qu = 1/n. Run over
all the testing nodes and we have the accuracy equals

Accuracy =
∑

u∈V P qu

|V P | , (14)

where |V P | is the number of nodes in the probe set. For example, if there are two
categories in the target network, namely l1 and l2, accuracy can be obtained by

Accuracy =
n′ + 0.5n′′

|V P | , (15)

where n′ is the number of nodes in probe set being predicted right and n′′ is the
number of nodes u ∈ V P having the same probability of two labels (i.e. p(l1|u) =
p(l2|u)).

4. Empirical Results

We compare the above-mentioned ten similarity indices on the co-purchases net-
work of political books.19 This network contains 105 nodes (books) and 441 edges.
All books are classified into three categories, neutral, liberal and conservative.
The topological structure and the degree distribution of this network are shown
in Figs. 2(a) and 2(b) respectively. Since the maximum degree is 25, there is no
overwhelming hub in this network. The average shortest path and clustering coef-
ficient of this network are 3.079 and 0.488 respectively. For simplicity, we start the
experiments with the sampled networks containing only two classes. Therefore, we
sample three labeled networks with three tasks as follows:

Task 1: Whether an unlabel node is neutral? For this task, we label the books
which are neutral by a and others by b (i.e. not neutral).

Task 2: Whether an unlabel node is liberal? For this task, we label the books
which are liberal by a and others by b (i.e. not liberal).

Task 3: Whether an unlabel node is conservative? We label the books which
are conservative by a and others by b (i.e. not conservative).
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Fig. 2. (Color online) The topological structure of co-purchases network of political books (a) and

its degree distribution (b). The red diamonds, blue circles and yellow squares stand for neutral,
liberal and conservative nodes respectively.

Table 1. The summary of local consistency of each label and each sampled network.
N(a) and N(b) are the number of nodes labeled by a and b respectively. E(a) and E(b)
indicate the number of edges connecting to the nodes labeled by a and b respectively.
M(a) and M(b) are the number of edges whose two endpoints have the same label a and
b respectively. C(a) and C(b) are the local consistency of the nodes labeled by a and b
respectively. C and C2 are the local consistency and two-step consistency of the sampled

network, respectively.

Net N(a) N(b) E(a) E(b) M(a) M(b) C(a) C(b) C C2

Net1 13 92 67 432 9 374 0.134 0.866 0.869 0.864
Net2 43 62 208 269 172 233 0.827 0.866 0.918 0.894
Net3 49 56 236 251 190 205 0.805 0.817 0.890 0.882

Table 1 summarizes the basic statistics of these three sampled networks corre-
sponding to tasks 1, 2 and 3, respectively. N(x) (x = a, b) is the number of nodes
labeled by x. E(x) indicates the number of edges connecting to the nodes labeled
by x. Denote by M(x) the number of edges whose two endpoints have the same
label x, then C(x) = M(x)/E(x) indicates the local consistency of the subgraph
constituted by the nodes labeled by x and the edges connecting to these nodes. C

is the local consistency of the whole network, which reads C = (M(a) +M(b))/E,
where E is the total number of edges of the whole network (here E = 441). Note
that, E < E(a) +E(b). Here, we further develop the definition of local consistency
to two-step consistency denoting by C2 which equals to the number of paths with
length 2 whose two endpoints have the same label divide by the number of the
path with length 2. Clearly, the common neighbors index will perform well in the
network with high C2. Four simple examples of calculating C(x), C and C2 are
shown in Fig. 3. One can see that in the first graph, because of C = 0, RN will
perform very bad, while CN performs very good (C2 = 1). However in the forth
graph both RN and CN can give good performance.
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Fig. 3. (Color online) Illustration of the calculation of local consistency and two-step consistency.

Table 2. The dependence of local consistency C and two-step consistency C2 on the

proportion of training set q (range from 0.1 to 0.9).

Net C(q) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Net1 0.459 0.659 0.747 0.801 0.823 0.835 0.839 0.841 0.841

Net2 0.487 0.704 0.801 0.859 0.886 0.898 0.903 0.901 0.896

Net3 0.475 0.681 0.773 0.829 0.853 0.866 0.871 0.871 0.864

Net C2(q) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Net1 0.705 0.797 0.818 0.829 0.833 0.835 0.835 0.837 0.839

Net2 0.731 0.826 0.851 0.863 0.866 0.868 0.869 0.867 0.869

Net3 0.712 0.806 0.831 0.843 0.848 0.852 0.853 0.855 0.856

Comparisons of the ten similarity indices on three sampled networks are shown
in Fig. 4. The subgraphs (a), (c) and (e) show the results of the local indices, while
(b), (d) and (f) report the results of the global indices. It is interesting that all these
five local indices give almost the same results especially when the density of labeled
nodes is small. This is because all these five indices are common-neighbor-based
and when q is small whether an unlabeled node relevant with a labeled node plays
a more important role than the exact correlation (similarity score) between them.
Furthermore, all the common-neighbor-based indices perform well and even when
the data is sparse they can give much better prediction than RN. This is because
the local consistency C, which affects the performance of RN, is very sensitive to q,
while the two-step consistency C2, which affects the performance of CN, is not. The
dependence of C and C2 on the proportion of training set q is shown in Table 2,
where one can find that when q changes from 0.2 to 0.1, C sharply decreases more
than 30%, while C2 decreases only 10%. In addition, in Fig. 4(c) RN performs
better than CN when q is large. The reason is for Net2 C is much larger than C2

when the data is dense (see Table 2).
Comparing with global indices, the best performing local index can give com-

petitively accurate or sometimes even better classification when q is large. However,
when the labeled data is sparse, for most unlabeled nodes it is too difficult to find
a labeled node nearby, and thus the global indices will be potential to give bet-
ter prediction. Actually when the data is sparse the best performing global index
will predict better than the best performing local index. Among these five global
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Fig. 4. (Color online) Comparison of ten similarity indices on three sampled networks containing
two categories. (a) and (b) are the results of the local and global indices for task 1 respectively.
(c) and (d) are the results of the local and global indices for task 2 respectively. (e) and (f) are the

results of the local and global indices for task 3 respectively. For RWR index we set c = 0.1. Each
number is obtained by averaging over 1000 implementations with independently random division
of training set and probe set. The variance of calculation has a milli order of magnitude.
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Fig. 5. (Color online) Comparison of ten similarity indices on the network taking into account
three categories. For RWR we set c = 0.1. Each number is obtained by averaging over 1000
implementations with independently random division of training set and probe set.

indices, the performance of Katz index, RWR and Even-step RWR are stable, while
the performance of ACT and cos+ are not. For example, in Net1, the ACT index
performs very well but cos+ is even worse than pure chance. However, in Net3, the
cos+ index preforms the best but the ACT index preforms even worse than the
simplest method RN.

Obviously, it will be more difficult to obtain highly accurate classification when
considering many categories together. We further carry out an experiment on the
network containing all the three categories. Our task is to detect the category of an
unlabeled book, namely is it neutral, liberal or conservative? We label the books by
n (i.e. neutral), l (i.e. liberal) and c (i.e. conservative) according to their categories.
The local consistency and two-step consistency of this network are 0.8413 and 0.8204
respectively, which are all lower than the three sampled networks containing only
two classes, and thus the accuracy is also lower, as shown in Fig. 5. One can see that
the results are similar to the one on the Net3 where the biggest class, conservative,
is considered.

5. Conclusion and Discussion

In this paper, we investigated the similarity-based classification for partially la-
beled network. The basic assumption is that two nodes are more likely to have
the same label if they are more similar to each other. We introduced ten simi-
larity indices which have been widely used to solve the link prediction problem of
complex networks, including five common-neighbor-based indices, namely Common
Neighbors (CN ), Jaccard coefficient, Sørensen index, Adamic-Adar index (AA) and
Resource Allocation index (RA), and five global indices, namely Katz index, Average
Commute Time (ACT ), cosine based on the Pseudoinverse of the Laplacian matrix
(cos+), Random Walk with Restart (RWR) and Even-step RWR. We carried out
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the experiments on the co-purchase network of political books. The results showed
that the similarity-based classification performs overall better than the Relational
Neighbors algorithm, especially when the labeled nodes are sparse. Furthermore,
we found that when the data is dense, the best-performing local index can predict
as good as the global indices and sometimes even better. However when the data
is sparse, the best-performing global index will predict much better than the local
indices. Comparing with the former proposed algorithms, the group of similarity-
based classification methods has three advantages: firstly, it can, to some extent,
solve the sparse data problem; secondly, when the network consistency assumption
is not held it can still give high accurate classification; thirdly, without any learn-
ing process this method has lower calculation complexity than other complicated
methods.

However, there are still some open problems left. For example, what is the
relation between the network structure (or the label structure) and the performance
of each similarity index? In-depth analysis on the modeled networks may be helpful,
where we can control the topological properties, the label density and the network
consistency. Anyway, we hope this work can provide a novel view for the study
of classification in partial labeled networks and we believe that there is still a
large space for further contribution. For example, in order to avoid the superfluous
information, one can only consider the top-k similar labeled nodes when calculating
the probability. In addition, one can also use negative correlation in the adjacent
matrix A directly, namely for the nonzero element in A if the nodes x and y have the
different labels, we set Axy = −1. To do this, we cannot only obtain the strength
of the correlation between the unlabeled node and the labeled one but also know
the correlation type, positive or negative.
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