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Abstract

Collaborative filtering is one of the most successful recommendation techniques, which can

effectively predict the possible future likes of users based on their past preferences. The key

problem of this method is how to define the similarity between users. A standard approach is

using the correlation between the ratings that two users give to a set of objects, such as Cosine
index and Pearson correlation coefficient. However, the costs of computing this kind of indices
are relatively high, and thus it is impossible to be applied in the huge-size systems. To solve

this problem, in this paper, we introduce six local-structure-based similarity indices and compare

their performances with the above two benchmark indices. Experimental results on two data sets

demonstrate that the structure-based similarity indices overall outperform the Pearson correla-
tion coefficient. When the data is dense, the structure-based indices can perform competitively

good as Cosine index, while with lower computational complexity. Furthermore, when the data
is sparse, the structure-based indices give even better results than Cosine index.

Keywords: collaborative filtering, recommender system, classification, structure-based

similarity index

PACS: 89.20.Ff, 89.75.Hc, 89.70.Eg

1. Introduction

Recommender systems or recommendation engines, resulted from a specific type of infor-

mation filtering system technique, attempt to recommend informational items (films, television,

music, books, etc.) which are likely to cater to the users. Up to now, many recommendation

algorithms have been proposed, such as collaborative filtering [1, 2, 3], content-based analysis

[4], spectral analysis [5], latent semantic models [6], heat conduction [7, 8], opinion diffusion

[9, 10], and so on.
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Collaborative filtering (CF) is one of the most successful recommendation approaches which

have been widely investigated in academe and adopted in e-commerce [12, 13, 14]. The basic

assumption of CF is that people who agreed in the past tend to agree again in the future. In an-

other word, similar people will have similar preference. Thus, for a target user, his/her potential

evaluation on an object is estimated based on the evaluations of his/her similar users. Therefore,

the most important problem of CF is how to properly quantify the similarity between users. A

standard approach is using the correlation between the ratings that two users give to a set of

objects, such as the Cosine index [15] and the Pearson correlation coefficient. There are three
disadvantages of these two approaches. Firstly, since the rating information is the fundamental

ingredient for calculating these two methods, they can not be applied to the systems without

explicit ratings [16]. Secondly, their performances may decrease when data gets sparse. An evi-

dence is shown in Ref. [17], where they found that similarity based on the relevance information,

namely whether a user has voted an object, can output a better recommendation than that based

on the exact rating correlations on sparse data. Thirdly, their computational complexities are

relative high, especially for the huge-size and dense data sets.

In this paper, we employ six local-structure-based indices to quantify the similarity between

users, which have been widely used in link prediction problem [18, 19, 20] and the classification

in partially labeled networks [21]. We compare their performances with the two benchmark in-

dices, namely Cosine Index and Pearson correlation coefficient, on two data sets, namely Movie-
Lens and Netflix. Experimental results demonstrate that the structure-based similarity indices

overall outperform the Pearson correlation coefficient. Furthermore, when the data is dense,

the structure-based indices can perform competitively good as Cosine index, while with lower
computational complexity. When the data is sparse, the structure-based indices give even better

results than Cosine index.
The rest of this paper is organized as follows: we firstly introduce the framework of stan-

dard collaborative filtering and then give an introduction of the six structure-based similarity

indices. The experimental results and a detailed discussion are presented in section 3. Finally,

we conclude our results in section 4.

2. Method

2.1. Standard Collaborative Filtering

A rating system can be represented by a bipartite networkG(U,O, E), whereU = {u1, u2, ..., um},
O = {o1, o2, ..., on} and E = {e1, e2, ..., el} are the sets of users, objects and links (labeled by rat-
ings), respectively. We denote ruα the rating from user u on object α. Let Γ(u) be the set of
objects that user u has voted. Then the mean rating for u is ru =

1
|Γ(u)|
∑
α∈Γ(u) ruα. According to

the standard collaborative filtering, the predicted rating of user u on an unselected object α is

r′uα = ru + κ
∑

v∈Û
suv(rvα − rv) (1)

where Û denotes the set of users that are most similar to user u, suv denotes the similarity

between user u and user v, and κ = 1∑
v |suv | is for normalization.

In the framework of user-based collaborative filtering, the most important thing is to properly

quantify the similarity between users. Here are two benchmark indices which have been widely

used in previous works.
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(1)Cosine Index [1, 27] — Denote by −→rx the scores list rated by user x, then the Cosine
similarity index is defined as

scos
xy =

−→rx · −→ry

||−→rx || × ||−→ry || . (2)

(2)Pearson correlation coefficient (PCC) [1, 27] — This index is defined as

sPCC
xy =

∑
i∈Oxy

(rxi − rx)(ryi − ry)√∑
i∈Oxy

(rxi − rx)2
√∑

i∈Oxy
(ryi − ry)2

(3)

where Oxy is the set of common neighbors of user x and y, namely Γ(x) ∩ Γ(y).

2.2. Structure-based similarity indices

Another kind of similarity indices are defined based solely on the network structure. In

another word, they merely care whether a user has voted to an object, but not the explicit score.

In this paper we apply six local-structure-based indices and compare their performances with the

above two benchmark methods. An introduction of these six indices are shown as follows:

(1) Common Neighbors (CN) — By common sense, two users, x and y, are more similar if
they have voted many common neighbors (i.e., objects). The simplest measure of this neighbor-

hood overlap is the directed count, namely

sCN
xy = |Γ(x) ∩ Γ(y)|. (4)

where |Q| is the cardinality of the set Q.
(2) Salton index [22] — The Salton index is defined as

sS alton
xy =

|Γ(x) ∩ Γ(y)|√
k(x) × k(y)

, (5)

where k(x) is the number of objects that user x have voted, namely k(x) = |Γ(x)|.
(3) Jaccard Index [23] — This index was proposed by Jaccard over a hundred years ago, and

is defined as

sJaccard
xy =

|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)| . (6)

(4)Sørensen Index [24] — This index is used mainly for ecological community data, and is

defined as

sS ørensen
xy =

2|Γ(x) ∩ Γ(y)|
k(x) + k(y)

. (7)

(5) Adamic-Adar Index (AA) [25] — This index refines the simple counting of common

neighbors by assigning the less-connected neighbors more weight, and is defined as:

sAA
xy =

∑
z∈Oxy

1

logk(z)
. (8)

(6) Resource Allocation (RA) [19] — Consider a pair of users, x and y, the user x can send
some resource to y, with their common neighbors playing the role of transmitters. In the simplest
case, we assume that each transmitter has a unit of resource, and will equally distribute it between

3

ht
tp
://
do
c.
re
ro
.c
h



all its neighbors. The similarity between x and y can be defined as the amount of resource y
received from x, which is:

sRA
xy =

∑
z∈Oxy

1

k(z)
. (9)

Clearly, this measure is symmetric, namely sxy = syx. Note that, although resulting from different

motivations, the AA index and RA index have the very similar form. Indeed, they both depress

the contribution of the high-degree common neighbors in different ways. AA index takes the

logk(z) form while RA index takes the linear form. The difference is insignificant when the

degree, k, is small, while it is great when k is large. Therefor, RA index punishes the high-degree

common neighbors heavily.

3. Experiments

3.1. Data sets

Two data sets are used to test the algorithms: i) MovieLens 1 is a movie recommendation

website, which uses users’ ratings to generate personalized recommendations. ii) Netflix 2 is an

online DVD and Blu-ray Disc rental service in the US. The data we used is a random sample that

consists of 3000 users and 3000 movies. The basic properties of these two data sets are shown in

table 1.

Table 1: The basic properties of the tested data sets.

Data set Users Objects Links Sparsity

MovieLens 943 1682 100000 6.3 × 10−2
Netflix 3000 3000 197248 2.2 × 10−2

3.2. Metrics

To test the algorithm’s performance, the observed ratings (links), E, is randomly divided
into two parts: the training set, ET , is treated as known information, while the probe set, EP,

is used for testing and no information in this set is allowed to be used for prediction. Clearly,

E = ET ⋃ EP and ET ⋂ EP = ∅. In our experiment, for each user we randomly select q (the
ratio between the training set and the whole data set) of his/her ratings as the training set, and the

remaining (1 − q) constitute the probe set.
We employ three metrics to measure each algorithm’s performance: Precision, Diversity and

Popularity. A short introduction is shown as follow:

Precision — This metric considers only the top-L objects of the recommendation list. For a

target user i, the precision of recommendation, Pi(L), is defined as

Pi(L) =
Ri(L)

L
, (10)

1http://www.movielens.org
2http://www.netflix.com
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where Ri(L) indicates the number of relevant objects (namely the objects collected by ui in the

probe set) in the top-L places of recommendation list. Averaging over all the individual preci-

sions, we obtain the precision of the whole system, as

P(L) =
1

m

m∑
i=1

Pi(L), (11)

where m = |U | is the number of users in the system. Clearly, higher precision means higher
recommendation accuracy.

Diversity [26] — Inter-user diversity is defined by considering the uniqueness of different

user’s recommendation list. Given two users i and j, the difference between their recommenda-
tion lists can be measured by Hamming distance,

Hi j(L) = 1 − Qi j(L)

L
, (12)

where Qi j(L) is the number of common objects in the top-L places of both lists. Clearly, if user

i and j have the same list, Hi j(L) = 0, while if their lists are completely different, Hi j(L) = 1.

Averaging Hi j(L) over all pairs of users we obtain the mean distance H(L), for which greater or
lesser values mean, respectively, greater or lesser personalization of users’ recommendation lists.

Thus, a more personalized recommendation algorithm may lead to a larger diversity.

Popularity [26] — This metric quantifies the capacity of an algorithm to generate novel and

unexpected results, that is to say, to recommend less popular items unlikely to be already known

about. Denote that, higher popularity corresponds to lower novelty. The simplest way to calculate

popularity is to use the average collected times over all the recommended items, as:

N(L) =
1

mL

m∑
i=1

∑

or∈Oi
R

k(or) (13)

where Oi
R is the recommendation list of user i and k(or) denotes the degree of object or.

3.3. Results

In order to investigate the effects of different parameters on the recommendation results,

we perform the experiments for each group (q, N, L), where q denotes the density of the data,
N represents the amount of the nearest neighbors and L is the length of the recommendation

list for each user. Here we use CN, Sal, Jac, Sor, AA, RA, Cos and PCC as the abbreviations of

Common Neighbors, Salton Index, Jaccard Index, Sørensen Index, Adamic-Adar Index, Resource
Allocation, Cosine Index and Pearson correlation coefficient respectively.

The results of Precision and Diversity are shown in Fig. 1 and Fig. 2 respectively, where the
results for q = 0.2 and q = 0.8 are selected as the representative cases of sparse and dense data
respectively.

From Fig. 1, we can find that the precision rises with the increasing of N, while decreases
when L goes up. This indicates that the objects that we recommend tend to be presented in

the front of the recommendation list. Because the differences of the denominators of the six

structure-based indices, their performances are also slightly different. A detailed discussion

about correlation effect of users’ degree on personalized recommendation can be found in Ref.

[28]. Overall speaking, the Salton Index, Jaccard Index, Sørensen Index and Cosine Index per-
form better than others, and PCC performs the worst. Although the Cosine Index can indeed

5

ht
tp
://
do
c.
re
ro
.c
h



Table 2: Popularity of MovieLens data for different sets of parameters (N, q). Here we set L = 10.

N, q CN Sal Jac Sor AA RA Cos PCC

N=10, q=0.2 48 45 46 46 47 45 44 46

N=10, q=0.4 108 99 99 100 107 102 97 99

N=10, q=0.6 169 153 153 153 169 163 152 147

N=10, q=0.8 227 202 201 201 226 220 200 194

N=20, q=0.2 54 50 50 50 53 51 48 54

N=20, q=0.4 119 110 109 110 118 114 108 112

N=20, q=0.6 185 167 167 167 184 179 166 166

N=20, q=0.8 245 216 215 215 244 238 215 217

N=50, q=0.2 62 58 58 58 61 58 58 63

N=50, q=0.4 131 123 123 123 131 127 122 128

N=50, q=0.6 200 182 181 181 199 195 181 186

N=50, q=0.8 261 232 231 231 259 254 231 243

give good results, the computational complexity for this method is too high to be applied to very

huge-size systems. Table. 3 presents the computational time of one implement of six structure-

based indices as well as Cosine Index and PPC. The results show that PCC has the highest

computational time and followed by Cosine Index, and the simplest method CN consumes the

least. When the data set is very huge and dense, the computation advantage of structure-based

indices is prominent. As can be seen in Fig. 1, three of the six structure-based indices, namely

Salton Index, Jaccard Index, Sørensen Index, perform competitively good as Cosine Index, and
even better when the data is sparse. Since these three indices only involve the local information,

their computational complexities are relatively low, and thus have great applications in huge-size

systems.

Table 3: Computational time (in second) for one implement of eight methods. All computations were carried out in a

desktop computer with Pentium(R) Dual-Core CPU E5300 (2.60 GHz) and 3GB EMS memory.

MovieLens CN Sal Jac Sor AA RA Cos PCC

q=0.2 0.172 0.172 0.172 0.173 0.182 0.172 0.179 0.221

q=0.4 0.342 0.344 0.343 0.344 0.390 0.344 0.358 0.412

q=0.6 0.516 0.516 0.518 0.518 0.641 0.523 0.522 0.641

q=0.8 0.686 0.687 0.687 0.688 0.921 0.719 0.703 0.875

q=1 0.831 0.831 0.832 0.833 1.172 0.875 0.874 1.078

Netflix CN Sal Jac Sor AA RA Cos PCC

q=0.2 1.256 1.266 1.268 1.266 1.359 1.278 1.282 1.968

q=0.4 2.505 2.505 2.508 2.506 2.891 2.562 3.016 3.921

q=0.6 3.772 3.774 3.778 3.778 4.688 3.895 5.266 6.313

q=0.8 5.015 5.016 5.031 5.044 6.641 5.249 7.703 8.844

q=1 6.234 6.235 6.251 6.258 8.875 6.594 10.23 11.33

However, Salton Index, Jaccard Index, Sørensen Index and Cosine Index are not always per-
form the best. As shown in Fig. 1. II (a), CN, AA and RA have higher scores, and the PCC per-

forms the best. The reason is for the Netflix data when q = 0.2 (the sparsity is only 4.4 × 10−3)
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Figure 1: (Color online) Precision of the eight methods on MovieLens and Netflix. For both two data sets, (a), (b) and

(c) are the results of precision when q=0.2 while (d), (e) and (f) are for q=0.8. The subgraphs (a) and (d) are the results
of precision when N=10, (b) and (e) are for N=20, while (c) and (f) are for N=50.
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Figure 2: (Color online) Comparison of performances of the eight methods measured by diversity on two data sets,

MovieLens and Netflix. For both two data sets, (a), (b) and (c) are the results of diversity when q=0.2 while (d), (e) and
(f) are for q=0.8. The subgraphs (a) and (d) are the results of precision when N=10, (b) and (e) are for N=20, while (c)
and (f) are for N=50.

8

ht
tp
://
do
c.
re
ro
.c
h



and N = 10, there is too few available information (i.e., links) in the training set to generate

distinguishable values of similarity.

The comparisons of diversity on two data sets are shown in Fig. 2. Generally speaking, the

diversity decreases with the increasing of N or L. As shown in most subgraphs, the Salton Index,
Jaccard Index, Sørensen Index and Cosine Index have higher diversity scores. However, in the
subgraphs I(a), II(a) and II(b), their diversity scores are very small. In addition, comparing with

Fig. 1, we find some correlations between the results of diversity and precision. As we have

pointed out above, personalized objects tend to be ranked in the front of the recommendation list

with the supporting of the nearest neighbors. Thus when the data is too sparse and the available

nearest neighbors are too few, both the precision and diversity are striked. This might be the

reason why Salton Index, Jaccard Index, Sørensen Index and Cosine Index are so frustrated when
the training set is sparse.

The dependence of popularity on two parameters in MovieLens data is shown in Table. 2,

where we set the length of the recommendation list L = 10. We find that the CN, AA and RA

tend to give a little bit higher popularity. That is to say they would like to recommend popular

but less novel objects. However, the differences between these eight methods are not large.

Comparatively, Consine similarity gives the lowest popularity, and the Salton Index, Jaccard
Index and Sørensen Index can give almost the same popularity asCosine similarity. This indicates
that these three indices can indeed improve the precision without damaging the novelty. Since

the main findings for novelty in Netflix are almost the same, here we only show the results of

MovieLends as an example.

4. Conclusions

In this paper, under the framework of user-based collaborative filtering, we adopted six

structure-based similarity indices, namely Common Neighbors, Salton Index, Jaccard Index,
Sørensen Index, Adamic-Adar Index, Resource Allocation, to quantify the similarity between
users. We compared their performances, measured by precision, diversity and popularity, with

two benchmark methods, the Cosine Index and the Pearson correlation coefficient. Experimental
results on two data sets show that three structure-based similarity indices, including Salton Index,
Jaccard Index and Sørensen Index, always have good performances unless the available informa-
tion is too few, which may be caused by either the extremely sparse training set (i.e., small q)
or the very few number of nearest neighbors (i.e., small N). Although the Cosine similarity can
indeed give good results, the computational complexity for this method is too high to be applied

to very huge-size systems. By contrast, the Salton Index, Jaccard Index and Sørensen Index can
perform competitively good as Cosine Index, and even better when the data is sparse, while with
much lower computational complexity. Thus these three indices have great applications in online

social systems which usually contain more than ten million users or even more objects.

In recommender systems, the diversity and accuracy are usually competitive, namely they

are not easily to be improved at the same time. However, this diversity-accuracy dilemma was

challenged by a recent algorithm [8], where a hybrid diffusion-based method simultaneously

improves accuracy and diversity. Therefore, their relationship may be far more complex than our

previous understanding, yet an algorithm is undoubtedly good if it can improve both of them.

The empirical results in this paper show that the Salton Index, Jaccard Index and Sørensen Index
can give not only accurate, but also diverse and novel recommendations.
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