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Abstract Employing two classes of nonlinear electrody-
namics, we obtain topological black hole solutions of Gauss–
Bonnet gravity. We investigate geometric properties of the
solutions and find that there is an intrinsic singularity at the
origin. We investigate the thermodynamic properties of the
asymptotically flat black holes and also asymptotically adS
solutions. Using a suitable local transformation, we general-
ize static horizon-flat solutions to rotating ones. We discuss
their conserved and thermodynamic quantities as well as the
first law of thermodynamics. Finally, we calculate the heat
capacity of the solutions to obtain a constraint on the horizon
radius of stable solutions.

1 Introduction

Among generalizations of the Einstein action, Gauss–Bonnet
(GB) gravity has some particular interests because it is ghost-
free and emerges in the effective low-energy action of string
theory [1,2]. The effects of GB gravity on the speed of gravi-
ton propagation and appearance of potentially superluminal
modes have been investigated in [3,4] and recently the prob-
lem of its unusual causal structure has been solved [5]. In
addition, the influences of GB gravity have been investigated
as regards various physical phenomena such as supercon-
ductors [6–8], hydrodynamics [9,10], LHC black holes [11],
dark matter [12], dark energy [13,14], and shear viscosity
[15,16].

Although one may consider the (Wald) entropy effect of
GB gravity in four dimensions [17,18], it is notable that the
variation of GB Lagrangian is a total derivative in four dimen-
sion and therefore it does not affect the four-dimensional field
equations as well as black hole solutions. Thus, in order to
study the GB contributions, we may look for the five- and
higher-dimensional solutions.

a e-mail: hendi@shirazu.ac.ir

In addition to the higher derivative curvature terms, one
would also expect to analyze the higher derivative gauge field
contributions. The Born–Infeld (BI) nonlinear electrodynam-
ics (NLED) is the first nonlinear higher derivative general-
ization of the Maxwell theory [19,20] and its nonlinearity
power is characterized by an arbitrary real positive parame-
ter β. Replacing the BI NLED with linear Maxwell theory in
related topics, one can investigate the effects of nonlinearity
on the physical consequences in electrodynamics [21–31].

Motivated by the recent results mentioned above, it is
natural to investigate GB gravity in the presence of NLED
[32–36]. For the first time, spherically symmetric black hole
solutions of GB and GB–Maxwell gravity were, respectively,
obtained in 1985 [37] and 1986 [38]. Then various properties
of (charged) GB black holes were studied (for the very incom-
plete list of references, see [39–44]). Besides, coupling of the
BI theory with general relativity have been derived by Hoff-
mann [45]. He removed the Reissner–Nordström divergency,
but a conical singularity remained. Due to the complexity of
the nonlinear field equations, BI theory has long been dis-
carded. In 1984, Garcia and his colleagues could obtain a BI
black hole solution without conical singularity [46]. More-
over, black hole solutions of GB gravity in the presence of
NLED have been investigated in Refs. [32–36].

The objective of this paper is finding topological black
hole solutions of the GB gravity coupled to new classes
of NLED theory. It is worthwhile to mention that these
models help us to improve our understanding of higher-
dimensional black hole structures and also clarify some
points of AdS/CFT correspondence [9,21,47–50]. In the
present work, we discuss the thermodynamics of the asymp-
totically flat black holes with spherical horizon as well as
asymptotically adS rotating black branes with flat-horizon
and specially the role played by GB and NLED terms to sta-
bility of the solutions. Recently, one of us [51–53] considered
other kinds of BI type Lagrangians to examine the possibility
of black hole solutions. Although there are some analogies
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between the BI theory and logarithmic or exponential forms
of NLED, there exist some differences between them as well.

For the sake of simplicity, we consider five-dimensional
topological black holes and investigate the geometric as well
as thermodynamic properties of the solutions. Appendix is
devoted to the higher-dimensional generalization.

2 Equations of motion and topological black hole
solutions

We are interested in the GB gravity coupled to a nonlinear
U (1) gauge field. The action is

IG = − 1

16π

∫
M

dn+1x
√−g [R − 2�+ αLG B + L(F)]

(1)

where � is the cosmological constant and α is the GB coef-
ficient. Furthermore, LG B and L(F) are, respectively, the
Lagrangians of GB and BI type theories, which can be defined
as

LG B = Rμνγ δRμνγ δ − 4RμνRμν + R2, (2)

L(F) =
⎧⎨
⎩
β2
(

exp(− F
β2 )− 1

)
, E N E F

−8β2 ln
(

1 + F
8β2

)
, L N E F

, (3)

where β is called the nonlinearity parameter, the Maxwell
invariant F = FμνFμν in which Fμν = ∂μAν − ∂ν Aμ is
the Faraday tensor and Aμ is the gauge potential. We should
vary the action (1) with respect to gμν and Aμ to obtain the
field equations

Gμν +�gμν − αHμν = 1

2
gμνL(F)− 2FμλF λ

ν LF , (4)

∂μ
(√−gLF Fμν

) = 0, (5)

where Gμν is the Einstein tensor, LF = d L(F)
dF and Hμν is

the divergence-free symmetric tensor

Hμν = 4Rρσ Rμρνσ − 2R ρσλ
μ Rνρσλ − 2R Rμν + 4RμλRλν

+ LG B

2
gμν. (6)

Now, we desire to obtain the five-dimensional black hole
solutions of Eqs. (4) and (5) with the following line element:

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d
2

k, (7)

where d
2
k represents the metric of a three-dimensional

hypersurface at r =constant and t =constant with constant

curvature 6k and volume V3. We can write d
2
k in the fol-

lowing explicit forms:

d
2
k =

⎧⎪⎪⎨
⎪⎪⎩

dθ2 + sin2 θ
(
dφ2 + sin2 φdψ2

)
k = 1

dθ2 + sinh2 θ
(
dφ2 + sin2 φdψ2

)
k = −1

dθ2 + dφ2 + dψ2 k = 0

.

(8)

Taking into account metric (7), we should consider a consis-
tent gauge potential Aμ with the following form:

Aμ = h(r)δ0
μ. (9)

where

h(r) =
⎧⎨
⎩
∫ q

r3 exp
[−LW

2

]
dr, ENEF

2β
∫ √

�−1
�+1 dr, LNEF

, (10)

and q is an integration constant which is related to the

electric charge. In addition, � =
√

1 + q2

β2r6 and LW =
LambertW(

4q2

β2r6 ) [54,55]. We expand h(r) for large r to
obtain the asymptotical behavior of the gauge potential

h(r)|Large r = − q

2r2 + χq3

32β2r8 + O

(
q5

β4r14

)
, (11)

where χ = 8, 1 for ENEF and LNEF, respectively. Equation
(11) shows that for large values of r , the dominant (first) term
of h(r) is the same as one in five-dimensional linear Maxwell
theory.

Considering Eq. (9) with (10), we can solve the gravita-
tional field equation (4). After some cumbersome calcula-
tions, we find that the nonzero (independent) components of
the field equation (4) may be written as

e1 =
[
r2 − 4α ( f − k)

]
f ′ + 2r ( f − k)

+2�r3

3
+ 8β2r3

3χ
ϒ1 = 0, (12)

e2 =
[
r2 − 4α ( f − k)

]
f ′′ + 4

(
r − α f ′) f ′

+2 ( f − k)+ 2�r2 + β2r2ϒ2 = 0 (13)

where the prime and double primes are, respectively, the first
and second derivatives with respect to r and

ϒ1 =
⎧⎨
⎩

1 − (1 − LW ) e
LW

2 , ENEF

� − 1 − ln
(
�+1

2

)
, LNEF

, (14)

ϒ2 =
⎧⎨
⎩

1 − e
LW

2 , ENEF

− ln
(
�+1

2

)
, LNEF

. (15)
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After some calculations, we find that de1
dr = e2, so it is suffi-

cient to solve e1 for each branch, yielding

f (r) = k + r2

4α

(
1 −√�(r)) , (16)

where

�(r) = 1 + 4α

3

(
�+ 6m

r4

)
+ 4αβ2

3
ϒ, (17)

ϒ =
⎧⎨
⎩

1
2 + 4q

βr4

∫ (√
LW − 1√

LW

)
dr, ENEF

4 ln(2)− 4 + 14
r4

∫
r3 [� − ln (1 + �)] dr, LNEF

,

(18)

and m is an integration constant. In order to obtain the effect
of nonlinearity parameter, one can expand the metric func-
tion for large values of β. Calculations show that the series
expansion of �(r) for large values of β (or r ) is

�(r) = �G B M (r)+ χαq4

12β2r12 + O

(
1

β4

)
, (19)

where the metric function of GB–Maxwell gravity is

�G B M (r) = 1 + 4α
3

(
�+ 6m

r4 − 2q2

r6

)
.

As one can confirm, these solutions are asymptotically
adS; the same as those in GB–Maxwell theory. The second
term on the right hand side of Eq. (19) is the leading NLED
correction to the GB–Maxwell black hole solutions.

Now, we want to compare the GB and NLED effects.
As we know, the Maxwell theory, to a large extent in vari-
ous physical scopes, has acceptable consequences. So, in the
transition from the Maxwell theory to NLED, it is allowed
to consider the effects of small nonlinearity variations, not
strong effects.

Considering the fact that we are working in gravitational
framework and GB gravity is a natural generalization of Ein-
stein gravity (not a perturbation in general), the GB is dom-
inant over nonlinear electrodynamics which should be con-
sidered as a perturbation to Maxwell field. Another reason for
the majority of GB contributions is in the profound insight
in the metric function. GB parameter is coupled with mass,
cosmological constant and charge sector of the metric func-
tion and therefore its changing will be modified all sectors
of the metric function, whereas modification of nonlinear-
ity parameter of electrodynamics affects charge part of the
solutions. Another way to see the majority of GB or NLED
contributions is the series expansion of the metric function.
One can consider GB and nonlinearity of the electrodynam-
ics as corrections of Einstein–Maxwell black hole. Hence,
we use a series expansion of metric function for small values
of α and also weak field limit of NLED (β −→ ∞) to obtain

f (r) = fE M + 2(k − fE M )
2

r2 α − χq4

96r10β2

+χq4(k − fE M )

24r12

α

β2 + O
(
α2, β−4

)
, (20)

where the metric function of Einstein–Maxwell gravity is

fE M = k − �r2

6 − m
r2 + q2

3r4 .
In Eq. (20), the second and third terms are, respectively the

GB and NLED corrections and fourth term is the correction
of coupling between NLED and higher derivative gravity.

Before proceeding, we should discuss about real solutions.
Numerical evaluations show that depending on the metric
parameters, the function�(r)may be positive, zero or nega-
tive. In order to have real solutions we can use two methods.
First, we can restrict ourselves to the set of the metric param-
eters, which lead to non-negative �(r) for 0 ≤ r < ∞.
Second, we can focus on the r coordinate. One can define
r0 as the largest root of �(r = r0) = 0, in which �(r) is
positive for r > r0. One can use suitable coordinate transfor-
mation (r −→ r ′) to obtain real solutions for 0 ≤ r ′ < ∞
(see the last reference in [32–34] for more details). In this
paper we use the first method.

Now, we should look for the black hole interpretation. We
should make an analysis of the essential singularity(ies) and
horizon(s). Calculations show that the Kretschmann scalar is

Rαβγ δRαβγ δ = f ′′2 + 6 f ′2

r2 + 12( f − k)2

r4 . (21)

After some algebraic manipulation with numerical analysis,
we find that the Kretschmann scalar (21) with metric function
(16) diverges at r = 0 and is finite for r �= 0, and therefore
there is a curvature singularity located at r = 0. Seeking
possible black hole solutions, one may determine the real
root(s) of grr = f (r) = 0 to find the of horizon(s).

Here, we should explain the effects of the nonlinearity on
the event horizon. Taking into account the metric functions,
we find that the nonlinearity parameter, β, changes the value
of the event horizon, r+. Furthermore, there is a critical non-
linearity, βc, in which for β < βc, the horizon geometry
of nonlinear charged solutions behaves like Schwarzschild
solutions (see Ref. [51–53] for more details). In addition,
one can obtain the temperature of the black holes with the
use of surface gravity interpretation in the following form:

T = f ′(r+)
4π

= 6kr+ − 2�r3+ +ϒ ′

12π
(
r2+ + 4αk

) ,

ϒ ′ =
⎧⎨
⎩

2qβL−1/2
W+

(
1 − LW+

)− β2r3+, ENEF

8β2r3+
[
1 − �+ + ln( 1+�+

2 )
]
, LNEF

,

(22)

which shows that the nonlinearity parameter, β, and GB
parameter can change the black hole temperature. As we

123



3079 Page 4 of 11 Eur. Phys. J. C (2014) 74:3079

discussed before, the singularity may be covered with two
horizons for β > βc. Taking into account the metric (7)
with a suitable local transformation, one can obtain the
so-called Nariai spacetime [56,57]. Following the work
by Bousso–Hawking [58,59], the Nariai solution may be
found by coincidence of two horizons. In this extremal
regime, the two horizons have the same temperature and
they are in the thermal equilibrium. Using a suitable
choice of boundary conditions one may discuss about anti-
evaporation as it happens for Nariai anti-evaporating black
holes [60–63].

3 Thermodynamics of asymptotically flat black hole
solutions (� = 0, k = 1)

In this section, we set � = 0 and k = 1 to study the ther-
modynamic behavior of asymptotically flat solutions. It has
been shown that we could not use the so-called area law [64–
68] for higher derivative gravity [69,70]. For asymptotically
flat black hole solutions, one can use the Wald formula for
calculating the entropy

S = 1

4

∫
d3x

√
γ
[
1 + 2α R̃

] = V3

4

(
1 + 12α

r2+

)
r3+ (23)

where R̃ is the Ricci scalar for the induced metric γab on
the three-dimensional boundary. Equation (23) shows that,
in GB gravity, asymptotically flat black hole with spherical
horizon violates the area law. We should note that although
the (nonlinear) electromagnetic source changes the values of
inner and outer horizons of charged black objects, it does

not alter the entropy formula and area law (see Ref. [71] for
more details). In order to obtain the electric charge per unit
volume V3 of the black hole, we use the flux of the electric
field at infinity, yielding

Q = q

8π
, (24)

which shows that the total charge does not depend on the
nonlinearity of the electrodynamics. The mentioned static
spacetime has a Killing vector ∂t and therefore the electric

potential �, measured at infinity (potential reference) with
respect to the event horizon, is defined by

� = Aμχ
μ
∣∣r→∞ − Aμχ

μ
∣∣
r=r+

=

⎧⎪⎪⎨
⎪⎪⎩

βr+
√

LW+
32

[
8 + 3LW+ F

(
[1], [ 7

3 ], LW+
6

)]
, ENEF

(1−�+)β2r4+
2q − 3

2

(
qβ2

�+

)1/3
F

(
[ 1

6 ,
2
3 ], [ 7

6 ], 1
�2+

)
, LNEF

,

(25)

where

LW+ = LambertW

(
4q2

β2r6+

)
, and �+ =

√
1 + q2

β2r6+
.

The ADM (Arnowitt–Deser–Misner) mass of a black hole
can be obtained by using the behavior of the metric at large
r [72]. The mass per unit volume V3 of the black hole is

M = 3m

16π
= 3

16π

(
r2+ + 2α − β2r4+ ϒ |r=r+

6

)
. (26)

Equation (26) shows that both NLED and GB terms may be
changed the finite mass of the asymptotically flat black hole
solutions.

Now, we obtain the total mass M as a function of the
extensive quantities Q and S to check the first law of thermo-
dynamics. Using the expression for the entropy, the electric
charge and the mass given in Eqs. (23), (24), and (26), one
can obtain a Smarr-type formula:

M (S, Q) = 3

16π

[
r2+ + 2α − β2r4+�

6

]
, (27)

� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

7 (�+ − 1)+ 4 ln

(
2β2r6+

q2 (�+ − 1)

)
−

9q2F
([

1
3 ,

1
2

]
,
[

4
3

]
,− q2

β2r6+

)

2β2r6+
, LNEF

1
2 −

9q
√

L3
W+F

(
[1],
[

7
3

]
,

LW+
6

)

16βr+ − q
βr+

√
LW+

(
1 + LW+

2

)
, ENEF

.

Now, we regard the parameters Q and S as a complete set
of extensive parameters and define the intensive parameters
conjugate to them. These quantities are the temperature and
the electric potential,

T =
(
∂M

∂S

)
Q

=

(
∂M
∂r+

)
Q(

∂S
∂r+

)
Q

, (28)

� =
(
∂M

∂Q

)
S

=

(
∂M
∂q

)
r+(

∂Q
∂q

)
r+

. (29)
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Using Eqs. (23) and (24), one can show that the Eqs. (28)
and (29) are equal to Eqs. (22) (with k = 1 and � = 0) and
(25), respectively, and hence we conclude that these quanti-
ties satisfy the first law of thermodynamics

d M = T d S +�d Q. (30)

It has been shown that small Lovelock black holes (includ-
ing GB gravity) are, dynamically, unstable [73,74]. In our
case the mass M is a function of the entropy S and elec-
tric charge Q. In order to obtain thermodynamical stable
solutions, the heat capacity (CQ = T+/

(
∂2 M/∂S2

)
Q) must

be positive, a requirement usually referred to as canonical
ensemble stability criterion. The canonical ensemble insta-
bility criterion for which the charge is a fixed parameter,
is sufficiently strong to veto some gravity toy models. We
should leave out the analytical result for reasons of economy
and one cannot prove the positivity of the heat capacity, ana-
lytically. In order to investigate the effects of NLED and GB
gravity, we plot Figs. 1, 2, and 3. It is notable that we plot
the figures of CQ for different ranges and scales for more
clarifications and finding the roots of heat capacity. Figure 1
shows that there is a minimum value of the horizon radius,
r0, for the physical black holes (positive temperature black
holes). Also Figs. 2 and 3 show that small and large black
holes are unstable. It means that there are two critical val-
ues r+min and r+max in which the asymptotically flat black
hole solutions are stable for r+min < r+ < r+max. Numerical
calculations show that r0 = r+min. Figures 1 and 3 confirm
that although the GB parameter affects the value of the heat
capacity and temperature, it does not change r+min. This is
due to the fact that the GB parameter appear in the denom-
inator of T+ in Eq. (22). Also, Figs. 1 and 2 show that the
nonlinearity parameter, β, changes both r+min and r+max. In
other words, r+max decreases with increasing (decreasing)
β (α) and as the nonlinearity parameter, β, increases, r+min

decreases, too.
Furthermore, we use series expansion of the heat capacity

for large values of β and also small values of α to see the
effects of corrections. After some calculations, we find

CQ =CEinMax+αCG B + CNLED

β2 +Ccoupled
α

β2 +O

(
α2

β4

)
,

(31)

where CEinMax is the heat capacity of the Einstein–Maxwell
gravity and CG B , CNLED, and Ccoupled are, respectively, the
leading corrections of GB gravity, NLED theory and the
nonlinear gauge–gravity coupling with the following explicit
forms:

CEinMax = −3
(
q2 − 3r4

)
r3

4
(
5q2 − 3r4

) ,

CG B = −3
(
7q2 − 9r4

) (
q2 − 3r4

)
r(

5q2 − 3r4
)2 ,

CNLED = − 9χ
(
q2 − 5r4

)
q4

16r3
(
5q2 − 3r4

)2 ,

Ccoupled = −27χ
(
q2 − 5r4

) (
3q2 − 5r4

)
q4

4r5
(
5q2 − 3r4

)3 .

4 Thermodynamics of asymptotically adS rotating
black branes

In this section, we take into account zero curvature horizon
with a rotation parameter. In order to add angular momentum
to the metric (7), we perform the following boost:

t �→ t√
1 + a2

l2

− aφ, φ �→ φ√
1 + a2

l2

− a

l2 t. (32)

Applying the mentioned boost in Eq. (7) with k = 0, one
obtains five-dimensional rotating spacetime with zero cur-
vature horizon

ds2 = − f (r)

⎛
⎝ dt√

1 + a2

l2

− adφ

⎞
⎠

2

+r2

l4

⎛
⎝adt − l2dφ√

1 + a2

l2

⎞
⎠

2

+ dr2

f (r)
+ r2(dθ2 + dψ2),

(33)

where the function f (r) is presented in Eq. (16). The con-
sistent gauge potential for the rotating metric (33) is

Aμ = h(r)

⎛
⎝
√

1 + a2

l2 δ
0
μ − aδφμ

⎞
⎠ , (34)

where the function h(r) is the same as Eq. (10). Now, we want
to calculate the electric charge and potential of the solutions.
Calculations show that the electric charge per unit volume
V3 is

Q = q

8π

√
1 + a2

l2 . (35)

Considering the rotating spacetime (33), we find that the null
generator of the horizon is χ = ∂t +
∂φ . The electric poten-
tial � for the rotating solutions may be written as

� = �|asymptotically flat case√
1 + a2

l2

. (36)
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Fig. 1 Asymptotically flat solutions (ENEF): T+ versus r+ for q = 1. Left α = 1, and β = 10 (bold line), β = 0.1 (solid line) and β = 0.01
(dashed line). Right β = 1, and α = 1.2 (bold line), α = 0.8 (solid line), and α = 0.4 (dashed line)

Fig. 2 Asymptotically flat solutions (ENEF): CQ versus r+ for q = 1, α = 1, and β = 1 (solid line), β = 0.9 (dotted line), and β = 0.8 (dashed
line). “different ranges and scales”

In addition, one may use the analytic continuation of the
metric with the regularity at the horizon to obtain the tem-
perature and angular velocities in the following form:

T = f ′(r+)
4π�

= −2�r3+ + ϒ ′

12π�r2+
, (37)


 = a

�l2 . (38)

Now, we are in a position to calculate the mass and angu-
lar momentum of the solutions. We calculate the action
and conserved quantities of the black brane solutions. In
general the action and conserved quantities of the space-
time are divergent when evaluated on the solutions. One of

the systematic methods for calculating the finite conserved
charges of asymptotically adS solutions is the counterterm
method inspired by the anti-de Sitter/conformal field the-
ory (AdS/CFT) correspondence [75–77]. Considering two
Killing vectors ∂/∂t and ∂/∂φ and by using the Brown–York
method [78], one can find that the conserved quantities asso-
ciated with the mentioned Killing vectors are the mass and
angular momentum with the following relations:

M = m

16π

(
4a2

l2 + 3

)
, (39)

J = ma

4π

√
1 + a2

l2 , (40)
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Fig. 3 Asymptotically flat solutions (ENEF): CQ versus r+ for q = 1, β = 1, and α = 1.5 (solid line), α = 1 (dotted line) and α = 0.5 (dashed
line). different ranges and scales

Fig. 4 Asymptotically adS rotating solutions (ENEF): T+ versus r+ for q = 1, � = −0.1. Left � = 1.1, and β = 5 (bold line), β = 0.75 (solid
line), and β = 0.5 (dashed line). Right β = 1, and � = 1.01 (bold line), � = 2 (solid line), and � = 5 (dashed line)

where m comes from the root of the metric function with the
following form:

m = −r4+
6

(
�+ β2 ϒ |r=r+

)
. (41)

Equation (41) shows that unlike the NLED, the GB term
does not change the finite mass and angular momentum of
the black hole solutions with zero curvature horizon.

The final step is devoted to the entropy calculation. Since
the asymptotical behavior of the solutions is adS, we can use
the Gibbs–Duhem relation to calculate the entropy

S = 1

T
(M − �iCi )− I, (42)

where I is the finite action evaluated by the use of countert-
erm method, Ci and �i are the conserved charges and their
associate chemical potentials, respectively. Surprisingly, cal-
culations show that the entropy obeys the area law for our case
where the horizon curvature is zero, i.e.

S = r3+
4

√
1 + a2

l2 . (43)

Conserved and thermodynamic quantities at hand, we
can check the first law of thermodynamics. We regard the
entropy S, the electric charge Q, and the angular momen-
tum J as a complete set of extensive quantities for the mass
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Fig. 5 Asymptotically adS rotating solutions (ENEF): CQ,J and 50T+
versus r+ for q = 1, � = −0.1, and � = 1.1. Left CQ,J : β = 5 (solid
line), β = 1 (dotted line), and β = 0.8 (dashed line) and T+: β = 5

(solid-bold line), β = 1 (dotted-bold line), and β = 0.8 (dashed-bold
line) Right CQ,J : β = 0.7 (solid line), β = 0.6 (dotted line), and
β = 0.5 (dashed line) and T+ is positive definite

M(S, Q, J ), and we define the intensive quantities conju-
gate to them. These conjugate quantities are the temperature,
electric potential and angular velocities

T =
(
∂M
∂S

)
Q,J

, (44)

� =
(
∂M
∂Q

)
S,J
, (45)


 =
(
∂M
∂ J

)
S,Q

. (46)

Considering f (r = r+) = 0 with Eqs. (44), (45), and (46),
and after some straightforward calculations, we find that the
intensive quantities calculated by Eqs. (44), (45), and (46)
are consistent with Eqs. (37), (36), and (38), respectively,
and consequently one can confirm that the relevant thermo-
dynamic quantities satisfy the first law of thermodynamics

d M = T d S +�d Q +
d J. (47)

Now, our task is investigation of thermodynamic stability
with respect to small variations of the thermodynamic coor-
dinates. For rotating case the mass M is a function of the
entropy S, the angular momentum J and the electric charge
Q. As we mentioned before, in the canonical ensemble, the
positivity of the heat capacity CQ,J = T+/

(
∂2 M/∂S2

)
Q,J

is sufficient to ensure the thermodynamic stability.
As we mentioned before, we may leave out the analytical

result for reasons of economy and investigate the numerical
calculations. We also plot Figs. 5 and 6 for more clarifica-
tion. Figures 5 and 6 show that there is a critical value for

the nonlinearity parameter, βc, in which for β > βc there
is a minimum value of the horizon radius (r+min) for physi-
cal black branes and the temperature is positive definite for
β < βc (see the left figure in Fig. 4 for more details). In addi-
tion, Figs. 5 and 6 indicate that rotating physical adS black
branes are stable for β > βc. Also, for β < βc, although the
solutions are physical for all values of r+, there is a mini-
mum horizon radius for the stable adS black branes. More-
over, Fig. 5 confirms that for a fixed value of the rotation
parameter, β affects the value of the r+min. It means that for
β > βc (β < βc), decreasing the nonlinearity parameter, β,
leads to decreasing (increasing) r+min. Furthermore, Fig. 6
shows that, although for β > βc the rotation parameter does
not affect r+min, it changes the minimum value of r+min for
β < βc. In other words, for β < βc, increasing the rotation
parameter leads to decreasing the value of r+min.

One finds that although CQ,J does not depend on the GB
parameter, it depends on the nonlinearity and rotation param-
eters. In order to check the nonlinearity effect, we can use
the series expansion for large value of β to compare the men-
tioned CQ,J with that of GB–Maxwell gravity. One finds

CQ,J = CEinMax + CNLED

β2 + O

(
1

β4

)
, (48)

where the heat capacity of the Einstein–Maxwell grav-
ity, CEinMax (which is equal to the GB–Maxwell gravity
for horizon-flat solutions) and its first nonlinear correction,
CNLED, are
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Fig. 6 Asymptotically adS rotating solutions (ENEF): CQ,J and 50T+
versus r+ for q = 1, � = −0.1. Left CQ,J : β = 1, � = 1.01 (solid
line), � = 1.5 (dotted line), and � = 3 (dashed line) and T+: β = 1,

� = 1.01 (solid-bold line), � = 1.5 (dotted-bold line), and � = 3
(dashed-bold line) Right CQ,J :β = 0.5,� = 1.01 (solid line),� = 1.5
(dotted line), and � = 3 (dashed line) and T+ is positive definite

CEinMax

= −4
[
�2r12(6�2 − 5)+�q2r6

(
6�2 − 13

)+ 2q4(6�2 − 1)
]

r3(q2 +�r6)(2q2 −�r6)(2�2 + 1)�
,

CNLED

= 3χq4
[
2�3r18 −�2r12q2(6�2 + 1)+ 4q4�2

(
�r6 + q2

)]
r9(q2 +�r6)2(2q2 −�r6)2(2�2 + 1)�

5 Closing remarks

In this paper we obtained five-dimensional black hole solu-
tions of GB gravity in the presence of NLED with various
horizon topology. We considered two classes of Maxwell
modification, named logarithmic and exponential forms of
NLED as source of gravity and found that for weak field
limit (β → ∞) all relations reduce to GB–Maxwell gravity.

At first, we investigated the thermodynamic properties of
the asymptotically flat black holes. We found that although
the NLED and GB gravity change some properties of the
solutions such as entropy, mass, electric charge, and the tem-
perature, all conserved and thermodynamic quantities satisfy
the first law of thermodynamics. We analyzed the thermody-
namic stability of the solutions and found that there is a min-
imum horizon radius, r+min, in which the black holes have
positive temperature for r+ > r+min. Besides, we showed
that there is an upper limit horizon radius for the stable black
holes. It means that the asymptotically flat black hole solu-
tions are stable for r+min < r+ < r+max. In addition, we
found that although the GB parameter affects the values of the
heat capacity, the temperature and r+max, it does not change
r+min. We also showed that β changes both r+min and r+max.

Then we focused on the horizon-flat black hole solutions
and obtained rotating adS black branes by use of a suit-
able local transformation. We used Gauss’ law, the coun-
terterm method, and the Gibbs–Duhem relation to calculate
the conserved and thermodynamic quantities. We found that
these quantities satisfy the first law of thermodynamics. We
investigated the effects of various parameters and found that
although T+ and CQ,J do not depend on the GB parameter,
they depend on the β and the rotation parameter. Calcula-
tions showed that there is a critical value for the nonlinearity
parameter, βc, in which for β > βc there is a minimum value
of the horizon radius (r+min) for physically stable adS black
branes. We found that forβ < βc, although the temperature is
positive definite for all values of r+, there is a minimum hori-
zon radius for the stable adS black branes. Also, we showed
that for a fixed value of the rotation parameter and β > βc

(β < βc), decreasing the nonlinearity parameter, β, leads
to decreasing (increasing) r+min. Besides, we indicated that
although for β > βc, the rotation parameter does not affect
r+min, it changes the minimum value of r+min for β < βc.
More precisely, forβ < βc, increasing the rotation parameter
leads to decreasing the value of r+min.

In this paper, we only considered static and rotating solu-
tions. Therefore, it is worthwhile to use a suitable local trans-
formation to obtain the so-called Nariai spacetime and inves-
tigate the anti-evaporation process. One more subject of inter-
est for further study is regarding a model of time dependent
FRW spacetime and investigate the effects of considering the
NLED and fifth dimensions.
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Appendix

Here, we generalize the three-dimensional d
2
k [Eq. (8)] to

the (n − 1)-dimensional dĝ2
k to obtain (n + 1)-dimensional

solutions. The explicit form of dĝ2
k is

dĝ2
k

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dθ2
1 +

n−1∑
i=2

i−1∏
j=1

sin2 θ j dθ2
i k = 1

dθ2
1 + sinh2 θ1dθ2

2 + sinh2 θ1

n−1∑
i=3

i−1∏
j=2

sin2 θ j dθ2
i k = −1

n−1∑
i=1

dφ2
i k = 0

.

(49)

Taking into account the electromagnetic and gravitational
field equations, we find that h(r) = ∫ E(r)dr in which

E(r) = Q

rn−1 ×
{

exp
(
− LWn

2

)
, ENEF

2
�n+1 , LNEF

, (50)

with

LWn = LambertW

(
4Q2

β2r2n−2

)
,

�n =
√

1 + Q2

β2r2n−2

and

f (r) = k + r2

2(n − 2)(n − 3)α

(
1 −√�n(r)

)
, (51)

where

�n(r) = 1 + 8(n − 2)(n − 3)α�

n(n − 1)
+ 4(n − 2)(n − 3)αm

rn
+ϒn,

(52)

ϒn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4(n−2)(n−3)αβ2

n(n−1) + 8(n−2)(n−3)αβ2 Q
(n−1)rn

∫ LWn −1√
LWn

dr, ENEF

32(n−2)(n−3)αβ2

n2

[
(2n−1)�n+β2rn+1

(n−1) − n ln
(

1+�n
2

)
(n−1) + (n−1)(1−�2

n)F
(
[ 1

2 ,
n−2

2n−2 ],[ 3n−4
2n−2 ],1−�2

n

)
(n−2)

]
, LNEF

.

(53)
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