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Abstract—For the first time exact analytical solutions to the eikonal equations in (1 + 1) dimensions
with a refractive index being a saturated function of intensity are constructed. It is demonstrated that
the solutions exhibit collapse; an explicit analytical expression for the self-focusing position, where
the intensity tends to infinity, is found. Based on an approximated Lie symmetry group, solutions
to the eikonal equations with arbitrary nonlinear refractive index are constructed. Comparison
between exact and approximate solutions is presented. Approximate solutions to the nonlinear
Schrödinger equation in (1 + 2) dimensions with arbitrary refractive index and initial intensity
distribution are obtained. A particular case of refractive index consisting of Kerr refraction and
multiphoton ionization is considered. It is demonstrated that the beam collapse can take place
not only at the beam axis but also in an off-axis ring region around it. An analytical condition
distinguishing these two cases is obtained and explicit formula for the self-focusing position is
presented.
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1. INTRODUCTION

The Lie symmetry analysis of differential equations finds a great number of applications in mathemat-
ical modeling of physical problems nowadays (see, e.g. Refs. [1]). Nonlinear optics certainly occupies a
particular place among these.

In 1960-ies it became evident that for an adequate mathematical description of the process of highly
intense light propagation the refractive index has to depend on the intensity of applied electric field
n = n(I). For moderate intensities achievable at that time it was sufficient to use the so-called Kerr form

of the refractive index n = n0 + n2I with n0 being of the order of unity and n2 varying from 10−19 to 10−16

in (W/cm
2)−1 depending on the material. The basic mathematical model for the propagation of intense

monochromatic light that is successfully applied for a long time (see, e.g. classical monographs [2,
Chapt. 17] and [3], or [4–7] for recent achievements) is the nonlinear Schrödinger equation (NLSE)
or its approximation in the limit of geometrical optics, the eikonal equation.

For the first time, exact analytical solutions to the eikonal equations with Kerr-type refractive index
in (1 + 1) and (1 + 2) dimensions were constructed by Akhmanov et al. in Ref. [3, 8]. The authors
demonstrated that in both cases the solutions exhibit singularities at certain points and found explicit
analytical expressions for them. Later in Ref. [9, 10] it was demonstrated that these solutions can be
derived in a regular manner using the Lie-Bäcklund symmetry group admitted by the eikonal equation
with Kerr refractive index.

Lie symmetry group analysis of NLSE has been performed by many authors (see, e.g. [1, Chap. 16]).
In particular, L. Gagnon and P. Winternitz in Ref. [11–13] found exact solutions in (1 + 2) dimensions,
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however, these solution did not correspond to localized (symmetric) intensity distributions typical for
usual experimental conditions. A set of two coupled NLSE was analyzed by means of Lie group
technique and the general Lie group of point symmetries, its Lie algebra, and a group of adjoint
representations that corresponds to the Lie algebra were identified in Ref. [14].

For the initial conditions actual for typical experiments, analytical solutions to the eikonal equation
in (1 + 1) dimensions based on the symmetry group approach were obtained in Ref. [10]. In this paper
approximate solutions for various initial intensity distributions and Kerr-type media were constructed.
Later, using the similar group analysis technique approximate solutions in (1 + 2) dimensions for
arbitrary initial intensity profile and the same form of the refractive index were found in Refs. [15, 16].
Based of the obtained solutions, the authors proceeded to investigate a global behavior of the solutions
and to get explicit analytical expressions for the nonlinear self-focusing position and the value of critical
power required for beam collapse.

On the other hand, modern experimental facilities allow one to achieve very intense laser beams
leading to highly nonlinear media response. In such situations the Kerr approximation to the refractive
index ceases to be sufficient and higher order terms with respect to power of the light intensity must be
taken into account.

In the present paper we study the problem of light propagation in media with highly nonlinear re-
sponse. Based on Lie symmetry group analysis, we constructed an exact solution to the eikonal equation
in (1 + 1) dimensions for a special higher-order form of the refractive index, and also approximate
analytical solutions to the problem in both (1 + 1) and (1 + 2) dimensions with the refractive index being
an arbitrary function of the intensity.

The paper is organized as follows. First, after describing the model equations, we consider the
problem of light propagation in (1 + 1) dimensions under an approximation of geometrical optics. Based
of the formalism of Ref. [9] we construct the Lie-Bäcklund symmetry group admitted by the eikonal
equation and consider such a superposition of the symmetry operators that yields a localized initial light
intensity distribution. The use of this combination of operators gives us an exact solution of the eikonal
equation with the refractive index being a saturated function of the intensity of the applied electric field.
The solution exhibits a singularity: the on-axial intensity asymptotically tends to infinity at a certain
propagation distance.

In the next section we construct an approximate analytical solution to the eikonal equation in
(1 + 1) dimensions with arbitrary nonlinear media response. This solution is obtained on the basis of
the approximate Lie-Bäcklund symmetry group. In order to test the applicability of used approximation
the solutions obtained on the basis of exact and approximate Lie symmetry groups under the same initial
conditions are compared.

The last section is devoted to the construction of approximate analytical solutions of the Schrödinger
equation in (1 + 2) dimensions when both the refractive index and the initial intensity distributions are
arbitrary. The final result is a system of algebraic equations which has to be resolved for every particular
initial condition and nonlinear media response. The most typical situation in modern experiments (see
e.g. [6, 7]) is the propagation of the Gaussian beam in an ionizing media, with the refractive index being a
polynomial function of the light intensity. Therefore, we consider this problem as a particular application
of the obtained results. Influence of the higher order nonlinear term in the refractive index on the beam
collapse is considered and result is compared with the previous one obtained in Refs. [15, 16].

2. MODEL EQUATIONS

Let us start from the NLSE:

iEz +
1

2k0
∇2

⊥E + k0n(|E|2)E = 0. (2.1)

Here E is the slowly-varying envelope of the electric field, z is the propagation length, k0 is the wave
number k0 = n0ω0/c, ω0 is the carrier frequency of the laser irradiation, c is the velocity of light and

n = n(|E|2) is a nonlinear refractive index in a general form (see e.g. [4, 6, 7]). Due to high intensities

of light available in modern experiments the refractive index becomes highly nonlinear n = n(|E|2). The

Laplace operator ∇2
⊥ is usually responsible for light diffraction. Explicitly, ∇2

⊥ = ∂xx or ∂xx + ∂yy for
(1 + 1) or (1 + 2) dimensional cases correspondingly.
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Let us now represent electric field E in the eikonal form: E =
√

I exp(ik0S). Then, starting from
Eq. (2.1), after some algebraic manipulations we obtain

Sz = −1
2
(Sx)2 + n(I) +

1
2k2

0

(
x1−ν

√
I

∂x(xν−1∂x

√
I)
)

, (2.2)

Iz = −∂x(ISx) − (ν − 1)
ISx

x
, (2.3)

where ν = 1 and ν = 2 correspond to the (1 + 1) and (1 + 2) dimensional cases, and x denotes the
transverse spatial variable.

Let us differentiate the first equation with respect to x and introduce a new variable v ≡ Sx. For

the sake of convenience, we introduce dimensionless variables Ĩ ≡ I/I0, x̃ ≡ x/win, z̃ ≡ z/win, where
I0 is an initial peak intensity of the light beam and win is an initial beam radius. In what follows
the dimensionless parameters shall always be used, omitting the tilde for simplicity. Moreover, let us

introduce new dimensionless variables α = n2I0, θ = (2k2
0w

2
in)

−1 in diffractive case. Thus, finally we get
the following equations:

vz + vvx − αϕIx − θ∂x

(
x1−ν

√
I

∂x

(
xν−1∂x

√
I
))

= 0, (2.4)

Iz + vIx + Ivx + (ν − 1)
vI

x
= 0, ϕ = ∂In. (2.5)

Evidently, Eqs. (2.4), (2.5) must be supplemented with a boundary conditions. In case of collimated
beam these read

v(0, x) = 0, I(0, x) = I0(x), (2.6)

In several cases the term with higher order derivatives can also be neglected Refs. [17] and equa-
tions (2.4), (2.5) acquire a rather simple form:

vz + vvx − αϕIx = 0, Iz + vIx + Ivx + (ν − 1)
Iv

x
= 0. (2.7)

Further simplification of these equations can be performed in (1 + 1) dimensions if one notices that in
this case the system (2.7) is linear with respect to the first order derivatives. Therefore, it is convenient
to use the hodograph transformation in order to transform it into a linear system of partial differential
equations. In doing so, in (1 + 1) dimensions one obtains

ατv − I

ϕ(I)
χI = 0, χv + τI = 0. (2.8)

In (1 + ν) dimensions the Eqs. (2.7) read

ατv − I

ϕ(I)
χI = 0, (2.9)

χv + τI +
(ν − 1)v
χI + τv

[
χv (IτI − τ) + ττI − τ2

I
− χ2

I

I2

ϕ(I)

]
= 0.

The boundary conditions are transformed as follows: for v = 0
τ = 0, χ = H(I), (2.10)

where H(I) is a function inverse to a smooth initial intensity distribution I0 = I0(x). Evidently, for

example, in case of a Gaussian beam we have χ =
√

ln(1/I).

3. AN EXACT SOLUTION TO THE EIKONAL EQUATIONS IN (1 + 1) DIMENSIONS

Let us now construct a new exact analytical solution to Eqs. (2.8). In the present paper, for the
first time, we consider a special form of the nonlinear media response with the refractive index being a
saturated function of intensity. Let us rewrite Eqs. (2.8) as follows:

τv − ψ(I)χI = 0, χv + τI = 0, (3.11)
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Fig. 1. Nonlinear refractive index corresponding to ψ = ebI/α as a function of the normalized intensity I .

where ψ = I/(αϕ). As a boundary condition, we take a collimated continuous wave beam with a
localized symmetric intensity distribution at the entry plane of a nonlinear media

τ(I, 0) = 0, χ(I, 0) = χ0(I). (3.12)

Our goal is now to construct an exact analytical solution to the system of equations (3.11) with
a nonlinear function ψ(I) that corresponds to a saturating dependence of the refractive index on the

intensity. For this goal, ψ is taken in the form ebI/I0/n2I0. The refractive index corresponding to this
choice of ψ is presented in Fig. 1.

Let us first sketch the broad outlines of our solution: first, we construct a Lie symmetry group
admitted by Eqs. (3.11). Second, following a formal scheme reported in Refs. [18], the obtained group
shall be restricted to the surface of boundary conditions: v = 0, τ = 0. All derivatives of τ with respect to
I have to vanish too. Third, based on the requirement of vanishing of canonical coordinates of the group
generators on the boundary, we shall construct such a linear superposition of them, which provides a
localized beam intensity distribution. Finally, the integration of the constructed superposition shall yield
a desired solution to Eqs. (3.11).

3.1. Recursion Operators and Lie-Bäcklund Symmetries of the Second Order

We start from the search for the Lie-Bäcklund symmetry group admissible by Eqs. (3.11). It is
generated by the canonical infinitesimal operators [1]

X = f s∂τ + gs∂χ, (3.13)

with coordinates f s and gs. For the Lie-Bäcklund symmetry of arbitrary order s > 1 the coordinates f s

and gs depend on v, I, τ , χ and corresponding derivatives of τ and χ up to the s-th order with respect to
I

f s = f s(v, I, τ, χ, . . . , τ s
I , χs

I), gs = gs(v, I, τ, χ, . . . , τ s
I , χs

I).

Here, the index s stands for the order of the derivatives: τ s
I ≡ ∂sτ/∂Is, etc. The coordinates f s and gs

are found from the determining equations that in the case of Eqs. (3.11) read [9]:

Dv(f s) − ψDI(gs) = 0, Dv(gs) + DI(f s) = 0, (3.14)

where DI and Dv are operators of the total differentiation with respect to I and v:

DI = ∂I +
∞∑

s=0

(
τ s+1
I ∂τs

I
+ χs+1

I ∂χs
I

)
, (3.15)
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Dv = ∂v +
∞∑

s=0

[
(ψχI)Is ∂τs

I
− τ s+1

I ∂χs
I

]
.

In order to solve the Eqs. (3.14), it appears more convenient to use a recursion operator [9]. The latter is
defined as 2 × 2 matrix operator transforming any linear solution of the determining equation (3.14) of
the order s to the solution of these equations of higher order (s + 1)

L

⎛
⎝f s

gs

⎞
⎠ =

⎛
⎝f s+1

gs+1

⎞
⎠ , L =

⎛
⎝L11 L12

L21 L22

⎞
⎠ , (3.16)

Substitution of Eq. (3.16) into the determining equation (3.14) yields the following system of
equations for the elements of L

(DvL
11 − ψDIL

21)f s + (DvL
12 − ψDIL

22)gs = 0, (3.17)

(DIL
11 + DvL

21)f s + (DIL
12 + DvL

22)gs = 0,

which should be valid for any solutions f s and gs.

Explicit formulae for the components Lij (i, j = 1 . . . 3) of recursion operators (3.16) are given in
Ref. [9]

L1 =

⎛
⎝0 − ψDI/α

DI0

⎞
⎠ , L2 =

⎛
⎝2σDI − 1 − ψ(1 − 2σI)vDI

(1 − 2σI)vDI2σDI

⎞
⎠ ,

L3 =

⎛
⎝2σvDI − (1 − σI)v − ψqDI − σ

qDI + ψ−1
I 2σvDI + vσI

⎞
⎠ ,

where σ ≡ ψ/ψI and q ≡ (1 − 2σI)v2/2 + 2
∫

ψ−1
I dI. The formula for the recursion operator L1 is valid

for arbitrary nonlinearity function ψ(I), while operators L2 and L3 arise for those functions ψ(I) that
fulfill the condition Ref. [9]: (

ψ

ψI

)
II

= 0. (3.18)

It has been just this requirement which has defined our particular choice of the function ψ(I) in initial
statement of the problem. For this form of ψ we have:

ϕ = Ie−bI , σ = b−1, q = v2/2 − 2αe−bI/b2.

In this particular case, the recursion operators read:

L1 =

⎛
⎝ 0 −ebIDI/α

DI 0

⎞
⎠ , L2 =

⎛
⎝2DI/b − 1 −ebIvDI/α

vDI 2DI/b

⎞
⎠ ,

L3 =

⎛
⎝ 2vDI/b − v −ebI

(
v2/2 − 2αe−bI/b2

)
DI/α − 1/b(

v2/2 − 2αe−bI/b2
)
DI + e−bIα/b 2vDI/b

⎞
⎠ .

Let us now proceed with constructing the Lie-point symmetry group admitted by Eqs. (3.11) on the
basis of these operators.

An evident solution of the determining equation (3.14) is

f0
0 = τ, g0

0 = χ. (3.19)

The action of three recursion operators Li, i = 1, 2, 3 on the vector with coordinates given by Eq. (3.19)
in accordance with Eq. (3.16) generates the symmetry group given by

f1
1 = −ebIχI/α, f1

2 =
2τI

b
− τ − ebIvχI

α
, (3.20)
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f1
3 =

2vτI

b
− vτ − ebI

α

(
v2

2
− 2αe−bI

b2

)
χI − χ

b
,

g1
1 = τI , g1

2 = vτI + 2χI/b, g1
3 =

(
v2

2
− 2αe−bI

b2

)
τI +

αe−bIτ

b
+

2vχI

b
.

Admissible for arbitrary nonlinearity ψ(I), the symmetries f0
0 , g0

0 describe the dilatation of τ and χ, whilst

f1
1 and g1

1 generate translations along v-axis.

As it was formulated in Refs. [9, 18], an invariant solution to the boundary value problem, in particular
the one given by Eqs. (3.11), must be found from the constructed Lie-Bäcklund symmetries under the
invariance conditions

f = 0, g = 0, (3.21)

supplemented by the original Eqs (3.11). In Eqs. (3.21) the functions f and g are arbitrary linear
combinations of coordinates f s

i and gs
i of the group generators Eqs. (3.20) and must be chosen to satisfy

the boundary conditions what in the actual case provides a localized intensity distribution.

Unfortunately, the Lie point group generators (3.20) with s = 0 and s = 1 are not sufficient in
order to determine a linear superposition able to satisfy a smooth localized (symmetric in χ) intensity
distribution at the boundary. Therefore, we shall continue using the discussed approach with operators
Li given by Eqs. (3.16) and the vectors with coordinates of Eq. (3.20) in order to find the Lie-
Bäcklund symmetries of the higher order with s > 1. However, since the further calculations are quite
cumbersome, it is convenient first to find the symmetry coordinates at the boundary where they have the
simplest form. Afterwards, we completely reconstruct only those that will be included into the chosen
linear superposition.

Thus, at the boundary τ = 0, v = 0 the recursion operators read

L1 =

⎛
⎝ 0 −ebIDI/α

DI 0

⎞
⎠ , L2 =

⎛
⎝2DI/b − 1 0

0 2DI/b

⎞
⎠ , (3.22)

L3 =

⎛
⎝ 0 2/b2DI − 1/b

−2αe−bI/b2DI + e−bIα/b 0

⎞
⎠ , (3.23)

Action of these operators on Eqs. (3.19) gives 9 symmetry operators Xi whose coordinates f s
i , gs

i are
listed in the Table 1.

Based on the operators presented in the Table 1, one can construct a linear superposition providing a
localized intensity distribution. For instance, the equation

(2 − ebI−1)χII + b(1 − ebI−1)χI = 0 (3.24)

has a particular solution χ =
√

2e−bI+1 − 1. Resolving I as a function of χ, we get a convex symmetric
on x intensity distribution

I0(χ) =
1
b

(
1 − ln

(
χ2 + 1

2

))
, (3.25)

which is represented by a red curve in Fig. 2.

From the Table 1 one can see that Eq. (3.24) corresponds to the following superposition of symmetry
operators of the first and the second order

α

e
g2
5 +

b2

2
g2
7 +

b2

2
g1
2 = 0, (3.26)

which, evidently, shall be supplemented by the equation:

α

e
f2
5 +

b2

2
f2
7 +

b2

2
f1
2 = 0. (3.27)
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Coordinates of the symmetry operators at the boundary

fi gi

i = 0 0 χ

i = 1 −ebIχI/α 0

i = 2 0 2χI/b

i = 3 2χI/b2 − χ/b 0

i = 4 −2ebIχII/αb 0

i = 5 0 −bebIχI/α − ebIχII/α

i = 6 0 2χII/b2 − χI/b

i = 7 0 4χII/b2

i = 8 −2ebIχII/αb − ebIχI/α 0

i = 9 4χII/b3 − 4χI/b2 + χ/b 0

i = 10 4χII/b3 − 2χI/b2 0

i = 11 0 2χII/b2 + χI/b

i = 12 0 −4αe−bIχII/b4 + 4αe−bIχI/b3 − αχe−bI/b2

It is easy to see that in order to find an invariant solution satisfying Eqs. (3.11) and the boundary

conditions of Eq. (3.25), we have to reconstruct a complete form of the symmetry coordinates f2
5 , g2

5

and f2
7 , g2

7 . Acting by the operator L1 on the couple f1
1 , g1

1 , we get

f2
5 = −ebIτII/α, g2

5 = −bebI(χII + bχI)/α. (3.28)

The similar procedure applied to the operator L2 and coordinates f1
2 , g1

2 yields:

f2
7 = (4α − ebIv2b2)τII/αb2 − 4τI/b − ebIvχI/α − 4ebIvχII/αb + τ, (3.29)

g2
7 = 4vτII/b − vτI − ebIbv2χI/α + (4α − ebIv2b2)χII/αb2.

These equations together with Eq. (3.20) represent the list of symmetry operators required for construc-
tion of analytical solutions.

3.2. Invariant Solutions

Let us now find the desired analytical solutions. Equations (3.26)–(3.27) with expressions substi-
tuted from Eq. (3.28), (3.29) represent a system of partial differential equations

2bvτII +
(

2 − ebI−1 − v2b2ebI

2α

)
χII + b

(
1 − ebI−1 − v2b2ebI

2α

)
χI = 0, (3.30)

−2vbebI

α
χII − vb2ebI

α
χI +

(
2 − ebI−1 − v2b2ebI

2α

)
τII − bτI = 0. (3.31)

The first integral to the equation (3.30) can be easily found:

2bvτI +
(

2 − ebI−1 − v2b2ebI

2α

)
χI + bχ = J(v). (3.32)

J(v) in the above formula should be found from the comparison with Eq. (3.31). Differentiating
Eq. (3.32) with respect to v, taking Eqs. (3.11) into account and comparing obtained expression with
Eq. (3.31), one can see that J(v) should be a constant. In view of a symmetric initial intensity distribution
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Fig. 2. Beam profile at different propagation distances. α = 3, b = 1. Red curve—z = 0, black curve—z = 0.8.

with respect to x → −x reflections we are bound to choose J = 0. Then, substituting τI = −χv into
Eq. (3.32), we arrive at the following first order partial differential equation

−2bvχv +
(

2 − ebI−1 − v2b2ebI

2α

)
χI + bχ = 0, (3.33)

which can be integrated with a standard technique.

Integration of Eq. (3.33) gives two first integrals,

J1 =
−χ2

v
, J2 =

−1
v

(
2e1−bI − 1 +

b2e

2α
v2

)
. (3.34)

Here and in what follows one has to keep in mind that a negative value of v corresponds to the focusing
beam for the positive values of x.

Now we are in a position to find a particular solution χ(v, I) for the Eqs. (3.11) satisfying the boundary
conditions Eq. (3.25). Let us first notice that from the system of equations (3.11) a linear second order
partial differential equation

αχvv + (ebIχI)I = 0, (3.35)

can be derived. Based on the result obtained in Eqs. (3.34), one can search for the solution to Eq. (3.35)
based on the following Ansatz

χ2 = −vQ2(J2), (3.36)

Substituting Eq. (3.36) into Eq. (3.35) after some calculations we get:

Qμμ − Q/4 = 0, (3.37)

where μ = arcsinh(J2/
√

2b2e/α). Equation (3.37) has an evident general solution

Q = C1e−μ/2 + C2eμ/2,

where C1 and C2 are constants which should be found from the boundary conditions.

Taking the Eq. (3.36) into account we obtain the expression for χ:

χ = (−v)1/2
[
C1e−μ/2 + C2eμ/2

]
, (3.38)

where eμ/2 is to be found from the equation:

sinhμ =
√

α

2b2e

−1
v

(
2e1−bI − 1 +

b2e

2α
v2

)
. (3.39)
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Now we can express eμ from Eq. (3.39)

eμ = K/2 ±
√

K2/4 + 1, (3.40)

where

K ≡
√

2α
b2e

−1
v

(
2e1−bI − 1 +

b2e

2α
v2

)
.

Summarizing, the following solutions to the system of equations (3.11) is obtained:

χ =
1√
2

√√√√(
2e1−bI − 1 +

b2ev2

2α

)
+

√(
2e1−bI − 1 +

b2ev2

2α

)2

+
2b2ev2

α
. (3.41)

In order to find the second function τ(I, v), we shall integrate the original equation (3.11) keeping the
result (3.41) in mind. From Eqs. (3.11) we have

τ =
1
α

v∫
0

dvebIχI . (3.42)

For the sake of convenience, let us introduce a new variable ξ:

cosh(ξ) ≡ 2e1−bI + b2ev2

2α + 1√
8e1−bI

. (3.43)

Then

χI =
b

4
√

Θ
e
1−bI
2 −√

2eξ+1−bI

sinh(ξ)
.

The expression for τ becomes:

τ =
1
b

ξ∫
ξ0

(aeξ − 1)1/2

−v
dξ =

√
e

2α
ln

⎛
⎝2eξ

a
− 1 +

√(
2eξ

a
− 1

)2

− 1

⎞
⎠
∣∣∣∣∣∣
ξ

ξ0

,

where a ≡ √
2 exp((1 − bI)/2)). Taking the boundary conditions into account, the final solution reads:

τ =

√
2e

α
ln

(
e(bI−1)/2

√
(χ2 + 1)

2
+

√
ebI−1

(χ2 + 1)
2

− 1

)
. (3.44)

After direct substitution of Eqs. (3.41), (3.44) into Eqs. (3.11) and a tedious calculation it is possible
to verify that the obtained functions χ(I, v) and τ(I, v) are indeed exact analytical solutions for the
formulated boundary value problem. In Fig. 2 we plot the intensity beam distribution at different
propagation distances calculated on the basis of the found solutions Eqs. (3.41), (3.44).

Let us now examine the obtained result a little more closely. Firstly let us find the total radius of
the beam as a function of propagation distance z. For this goal, it is necessary to determine where
the intensity implicitly given by Eqs. (3.41), (3.44) intersects the surface of x = 0. Putting I = 0 in

Eq. (3.44), we find χ|I=0 = ±√
2e − 1. Substituting this number into Eq. (3.41) one can deduce that

v = 0 and, consequently, x = ±√
2e − 1. Thus, the phase gradient at the beam edge is equal to zero, the

total radius of the beam is a constant and does not depend on the propagation length. By the numerical
integration of the solutions Eqs. (3.41), (3.44) one can verify their consistence with energy conservation,

i.e.
∫

I(x, z)dx from x =
√

2e − 1 to x = −√
2e − 1 is a constant.

The fact that the total radius of the beam for the case under consideration remains constant and does
not depend on z is a new one and completely different from all exact analytical results obtained so far.
It was demonstrated earlier [3, 10] that for the Kerr nonlinearity the total beam radius decreases upon
beam propagation. In the present case, the beam shape and peak intensity are thus the only parameters
depending on the propagation distance.
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Fig. 3. On-axial intensity distribution versus the propagation distance.

Evolution of the beam peak intensity, which for the symmetry reasons has to be situated on the beam
axis, can be easily found from Eq. (3.44). Putting x = 0, v = 0 we have

z

b

√
2α
e

=
2
bI

ln
(

(1/
√

2)e(bI−1)/2 +
√

(1/2)ebI−1 − 1
)

. (3.45)

On-axial normalized intensity distribution versus the normalized propagation distance is presented in
Fig. 3. We see that the intensity monotonically increases and tends to infinity for z approaching a critical
value denoted as a self-focusing position zsf. Its exact value can be found from direct analysis of the
Eq. (3.45). Considering Eq. (3.45) in the limit I → ∞ one obtains

zsf = b

√
e

2α
. (3.46)

A detailed investigation of the Eqs. (3.41), (3.44) shows that the solutions exhibit no singularities before
this point.

4. APPROXIMATE SOLUTIONS TO THE EIKONAL EQUATION IN (1 + 1) DIMENSIONS
WITH ARBITRARY REFRACTIVE INDEX

Because it is not possible to construct an exact analytical solution for every desired form of the re-
fractive index and the boundary conditions, let us now present here a possible way to obtain approximate
analytical solutions. We shall start from the Eqs. (2.8). Under certain conditions (see e.g. [17]), α can
be considered as a small parameter. Due to its smallness, we will search for an approximate symmetries
group operator:

X = p∂τ + q∂χ,

with coordinates in form of a power series in α:

p =
∑

αipi, q =
∑

αiqi, i = 0, . . . ,∞. (4.47)

In case of Eqs. (2.8), the determining equations read:(
D0

w + αD1
w

)
p − I

ϕ(I)
DIq = 0,

(
D0

w + αD1
w

)
q + αDIp = 0, (4.48)
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where w = v/α and

D0
w = ∂w +

∞∑
s=0

((I/ϕ)χI)Is ∂τs
I
, D1

w = −
∞∑

s=0

τ s+1
I ∂τs

I
.

Substituting Eqs. (4.47) into Eqs. (4.48) we arrive at a following system of recurrent differential
equations:

D0
wqi + (1 − δi,0)

(
D1

wqi−1 + DI(pi)
)

= 0, (4.49)

D0
wpi + (1 − δi,0)D1

wpi−1 − I

ϕ
DI(qi) = 0. (4.50)

The system (4.49)–(4.50) can be solved sequentially starting from a given g0. Thus, integration of
Eqs. (4.49)–(4.50) gives

pi =
∫

dw

{ ∞∑
s=0

(1 − δi,0)τ s+1
I ∂χs

I
pi−1 +

I

ϕ

[
∂I +

∞∑
s=0

(
τ s+1
I ∂τs

I
+ χs+1

I ∂χs
I

)]
qi

}
+ P i, (4.51)

qi = (1 − δi,0)
∫

dw

{ ∞∑
s=0

τ s+1
I ∂χs

I
qi−1 −

[
∂I +

∞∑
s=0

(
τ s+1
I ∂τs

I
+ χs+1

I ∂χs
I

)]
pi−1

}
+ Qi.

Here P i and Qi are arbitrary functions of invariants

I, χs
I , and τ̃ s

I = τ s
I − w

s∑
p=0

Cs
p(∂

p(I/ϕ)/∂Ip)χs−p+1
I , i ≥ 1,

and Cs
p is the binomial coefficient (see Ref. [10]).

Let us now put

q0 = 0, p0 = 1 + 2IχχI/ϕ. (4.52)

This choice of p0 corresponds to a special form of initial light beam

I0∫
0

(ϕ/I)dI = −x2.

For nonlinearities ϕ(I) relevant to particular physical situations, such form of initial intensity distribution
is very similar to the Gaussian profile. It should be stressed that, in general, there are no restrictions
on the initial intensity distribution I = I0(x), the present choice is made only for the sake of further
simplicity.

Substituting this function into equation for g1 we get

q1 = wDI(2IχχI/ϕ) + G1 =
ϕ(τ̃ − τ)

IχI
DI(2IχχI/ϕ) + G1 = −2(τχ)I , (4.53)

where the term with τ̃ was included into a new arbitrary function G̃1, which was later put equal to zero.

Using this result, we can calculate p1 in a similar way. We get

p1 = − I

ϕ

(
τ2 ϕ

I

)
I
. (4.54)

Finally, up to the first order of α, the coordinates of the approximate symmetries group generator read

q = −2α(τχ)I , p = 1 + 2IχχI/ϕ − α
I

ϕ

(
τ2ϕ

I

)
I

. (4.55)

Taking Eqs. (2.8) into account, we rewrite the desired symmetry group operator as follows

R =
(

1 − ατ2 (ϕ/I)I
ϕ/I

)
∂τ − 2χ∂w + 2ατ∂I . (4.56)
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Integration of the Lie equations corresponding to the point symmetry operator (4.56) gives us the three
first integrals whose particular form depends on the choice of ϕ = ϕ(I). We write these integrals by
introducing the new function φ(I), such that φI = ϕ/I:

J1 = χ, J2 = ατ2φI − φ, J3 = w +
χ√
α

∫
dφ√

φI
√

φ + J2
. (4.57)

Now, the solution is a function of these first integrals fulfilling the boundary conditions. This means that
values of Ji are taken from the boundary conditions when τ → 0 and χ → x′. Hence we rewrite (4.57) in
the following form

x′ = x − vz, φ(I0(x′)) = −αz2I2φI + φ, (4.58)

x′√α

φ(I0(x′))∫
dφ√

φI
√

φ + J2
= v + (x − vz)

√
α

φ∫
dφ√

φI
√

φ + J2
.

In the particular case of Kerr nonlinearity ϕ = 1, we arrive at the solution previously obtained in Ref. [10].

Let us now compare the approximate solutions with the exact solution constructed in the previous

section. In order to satisfy the boundary condition Eq. (3.25), p0 is taken in the form

p0 = 2be + 2IχχI/ϕ,

Then the generator (4.56) reduces to:

R = (2be + ατ2)∂τ − 2χ∂w + 2ατ∂I ,

and yields an approximate solution:(
(x − vz)2 + 1

)
ebI = αI2z2 + 2e, v = −

√
2α
e

1
b
(x − vz)arctg

(
Iz

√
α

2e

)
. (4.59)

On-axial intensity distribution is given by expression ebI − 2e = αI2z2, which exhibits no singularities.
The on-axial intensity monotonically increases upon propagation. However, the function v(x, t) can
exhibit singularities which, due to the symmetry of the problem, are expected to be on the beam axis. Let
us investigate this behavior more closely. In the vicinity of the beam axis, vx can be approximated as

vx = −
√

2α
e

1
b

arctg

(
Iz

√
α

2e

)(
1 − z

√
2α
e

1
b

arctg

(
Iz

√
α

2e

))−1

.

Then, the position of a singularity at the beam axis (what corresponds to the rays intersection) can be
found from the system of equations:

1 − zsf

√
2α
e

1
b

arctg

(
Izsf

√
α

2e

)
= 0, αz2

sf I2 = −2e + ebI . (4.60)

The numerical solution of Eqs. (4.60) yields zsf ≈ 1.03b
√

e/2α. As one sees, this result is very similar to
Eq. (3.46) obtained from the exact solution. The similar tendency has been observed in Ref. [19] for the
Kerr refractive index: an approximate solution provides a longer self-focusing distance in comparison to
exact one.

5. APPROXIMATE SOLUTION TO THE SCHRÖDINGER EQUATIONS WITH ARBITRARY
REFRACTIVE INDEX IN (1 + 2) DIMENSIONS

In this section we shall turn to the construction of approximate solutions for the NLSE (2.1) in (1 + 2)
dimensions in media with arbitrary nonlinearity. Such a mathematical model describes the propagation
of a continuum wave beam in cylindrical geometry and has great number of application to particular
physical situations (see e.g. [4, 6, 7]). Let us begin with equations (2.4), (2.5) supplemented by the
boundary condition

v(0, x) = 0, I(0, x) = N(x), (5.61)
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which corresponds to a collimated beam with arbitrary initial intensity distribution.

As usual, we start from construction of the Lie-Bäcklund symmetry operator of the form

X = κ∂v + λ∂I .

The determining equations read:

Dzκ + vDxκ + κv1 − αϕDxλ − αϕII1 − β
(
BIλ + BI1Dxλ + BI2D

2
xλ + BI3D

3
xλ
)

= 0, (5.62)

Dzλ + IDxκ + vDxλ + λv1 + κI1 +
vλ

x
+

κI

x
= 0,

where

B = Dx

(
Dx(xDx

√
I)

x
√

I

)
, vs ≡ ∂sv

∂xs
, Is ≡ ∂sI

∂xs
, Dx = ∂x +

∞∑
s=0

(vs+1∂vs + Is+1∂Is), (5.63)

and Dz we present as Dz = D0
z + D1

z , where

D0
z = ∂z −

∞∑
s=0

(
Ds

x(vv1)∂vs +
[
Ds+1

x (Iv) + Ds
x

(
Iv

x

)]
∂Is

)
, D1

z =
∞∑

s=0

[Ds
x(αϕI1 + βB)] ∂vs .

Since α and β in Eqs. (2.7) can be considered as small parameters, we will search for κ and λ in form
of a series expansion in powers of α and β

κ =
∞∑

i,j=0

αiβjκ(i,j), λ =
∞∑

i,j=0

αiβjλ(i,j). (5.64)

and restrict ourselves only to the first order corrections

κ = κ0 + κ1 + O(α2, β2, αβ), λ = λ0 + λ1 + O(α2, β2, αβ), (5.65)

where κ0 ≡ κ(0,0), λ0 ≡ λ(0,0), κ1 ≡ ακ(1,0) + βκ(0,1), and λ1 ≡ αλ(1,0) + βλ(0,1). Let us now write down
the determining equations keeping only the linear terms with respect to α and β. We get

M0κ
0 = 0, M1λ

0 + M2κ
0 = 0, (5.66)

M0κ
1 + D1

zκ
0 − αDx(ϕλ0) − β

[
BIλ

0 + BIxDxλ0 + BIxxD2
xλ0 + BIxxxD3

xλ0
]

= 0,

M1λ
1 + D1

zλ
0 + M2κ

1 = 0,

where

M0 = D0
z + vDx + v1, M1 = D0

z + vDx + v1 + v/x, M2 = IDx + I1 + I/x. (5.67)

Let us now following to Ref. [15] put

κ0 =
1
2
Dx(v2), λ0 =

1
x

Dx(Ivx). (5.68)

Evidently this choice satisfies the zero-order Eqs. (5.66) and the invariance conditions: κ0 = 0, λ0 = 0
at the boundary. Then κ1 can be found from the first of the first-order equations in Eq. (5.66) that is
rewritten as

M0

(
κ1 + αϕI1 + βDx

(
Dx(xDx

√
I)

x
√

I

))
= 0. (5.69)

The solution of this equation is expressed in terms of invariants of the operator M0,

κ1 = Dx

(
S(χ) − αΦ − β

Dx(xDx

√
I)

x
√

I

)
, (5.70)

where

ϕ = ∂IΦ, S(χ) ≡ αΦ(N(χ)) + β
(χ(

√
N(χ))χ)χ

χ
√

N(χ)
. (5.71)

13

ht
tp
://
do
c.
re
ro
.c
h



Inserting this result into the second of the first-order equations in Eq. (5.66) we get the equation for the

function q1

M1λ
1 +

Dx

x
(IzDxS(χ)) = 0.

It is easy to show by direct substitution that the formula above can be rewritten as

M0(xλ1) + Dx (IzDxS(χ)) = 0.

This equation can be integrated in a same as (5.69). Then one gets

xλ1 = −Dx(xIzSχ).

Finally, up to the first order in the small parameters, the Lie-Bäcklund symmetry operators in the
canonical form read:

κ = vv1 + Dx

(
S(χ) − αΦ − β

Dx(xDx

√
I)

x
√

I

)
, (5.72)

λ = v

(
I1 +

I

x

)
+ Ivx − z

[
I(1 − zv1)Sχχ +

(
I1 +

I

x

)
Sχ

]
. (5.73)

We notice that based on (2.4), (2.5) Eq. (5.72) can be rewritten as follows:

κ = vz − (1 − vxz)Sχ.

Together with Eq. (5.72), the equation above lead to two relations:

v = zSχ, (5.74)

vz = (1 − vxz)Sχ, (5.75)

that have to be fulfilled in order to preserve the invariance requirement κ = 0, λ = 0.

Now, keeping the relation between the canonical form of the symmetries operator and the point
symmetries group operator [1] in mind we can write down the group symmetry operator:

R =
(
1 + z2Sχχ

)
∂z + Sχ∂v + (zSχ + vz2Sχχ)∂x − Iz

((
1 +

vz

x

)
Sχχ +

1
x

Sχ

)
∂I . (5.76)

Operator Eq. (5.76) is similar to the one obtained previously in Ref. [10] for a collimated beam with the
exception that the S(χ) now contains an arbitrary function Φ. The generator (5.76) yields a system of
characteristic equations:

dz

1 + z2Sχχ
=

dv

Sχ
=

dχ

−v
=

d ln(Ix)
−zSχχ

. (5.77)

This system of equations can be easily integrated after taking into account Eq. (5.74). The second and
third equations of (5.77) give

S +
S2

χz2

2
= S(μ), (5.78)

where μ corresponds to the value of χ at the boundary. The third and the fourth of Eqs. (5.77) yield
another invariant Ix/Sχ, what can also be rewritten as

I = N(μ)
χ

x

Sχ2

Sμ2
, (5.79)

where N(χ) is an initial intensity profile.

From the first and the second of Eq. (5.77) we have vz = Sχ/(1 + z2Sχχ). Taking Eq. (5.75) and
DxS(χ) = (1 − zvx)Sχ into account and using 2χSχ = Sχ2 , we finally arrive at a relation between x
and χ:

x = χ(1 + 2z2Sχ2). (5.80)
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Summarizing, the solutions are presented by the equations:

v(x, z) =
x − χ

z
, I(x, z) = N(μ)

χ

x

Sχ2

Sμ2
, (5.81)

where χ and μ are defined as functions of z and x via relations

x = χ
(
1 + 2z2Sχ2

)
, S(μ) = S(χ) +

S2
χz2

2
, (5.82)

These solutions describe the evolution of a collimated continuous wave laser beam with arbitrary initial
intensity distribution in media with arbitrary nonlinear response. In case of Kerr refractive index, these
solutions were investigated in details in Refs. [15, 16]. obtained solutions to more complicated forms of
the refractive index. We shall consider refractive index of the form

n = n0 + n2I − σKIK . (5.83)

Here, the second term in the right hand side represents the usual Kerr response, and the last term is
responsible to the multiphoton ionization of the media in case of sufficiently strong electric field; the
K then corresponds to the number of photons required for a simultaneous ionization, and σK to the
ionization rate. If at the entry plane of the nonlinear media the Gaussian intensity distribution is fulfilled,
one obtains

S = α exp(−χ2) − αγ exp(−Kχ2)/K + β(χ2 − 2), (5.84)

where γ = KσKIK−1
0 /n2.

Let us write the first of Eq. (5.81) as follows

v =
2zSχ2

1 + 2z2Sχ2

, (5.85)

where Sχ2 = −αe−χ2
+ αγe−Kχ2

+ β. Here v is a single-valued function of x if the function x =
χ(x) can be determined from the first of equations (5.82) uniquely. In order to find the region of

multivaluedness let us investigate the function Y ≡ χ(1 + 2z2Sχ2). We find where its first and second

derivatives with respect to χ vanish.

From equation Yχ = 0 we have

1 + 2z2Sη(η) + 4z2ηSηη(η) = 0, (5.86)

where η ≡ χ2. Equation Yχχ = 0 gives

χ (3Sηη(η) + 2ηSηηη(η)) = 0. (5.87)

Evidently, this equation is fulfilled if χ = 0, or the expression in the brackets is equal to zero. In the
first case, we observe the singularity at the beam axis, in the second case, the singularity takes place at
the point η = ηcr which should be found numerically from equation 3Sηη(η) + 2ηSηηη(η) = 0 for each
particular form of S(η).

In the first case, when χ = 0, expression (5.85) becomes singular on the beam axis at the point

zsf = 1/
√

2(α(1 − γ) − β). (5.88)

The beam collapse at the beam axis occurs if α > αγ + β. This result is very similar to the case of Kerr
nonlinearity considered in Refs. [15, 16], the difference only coming from the presence of the γ term under
the square root. If α < αγ + β, the beam collapse does not take place on the beam axis.

In the second case, if χ 	= 0, position of the singularity can be found form the magnitude of ηcr

which gives us χ = ±√
ηcr and Sη(η)|η=ηcr . Starting form Eq. (5.86), we can find the coordinates of

the singularity position:

z =

√
−1

2(Sη + 2Sηη)

∣∣∣∣∣
η=ηcr

, x = ±2
√

η

(
Sηη

Sη + 2Sηη

)∣∣∣∣
η=ηcr

. (5.89)
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Let us now consider two particular choices of the parameters in the refractive index. Let α = 0.01,
β = 0.001, γ = 0.1, K = 6. At the beam axis x = 0, the formula (5.88) gives us the self-focusing
position zsf ≈ 7.9. Eq. (5.87) has one solution η 
 1.5, but the corresponding magnitude of the self-
focusing distance defined by Eqs. (5.89) is imaginary. This means that one observes only one self-
focusing position at the beam axis. The beam intensity, I(x), and the phase gradient, v(x), as a function
of x at different propagation distances are presented on Fig. 4.

Let us now assume that α = 0.01, β = 0.001, γ = 0.6, K = 8, then Eq. (5.87) gives us two solutions
η1 = 1.5 and η2 
 0.11. Similar to the previous case, the first value of η = η1 gives no singularity.
However, substituting η2 into Eqs. (5.89), we get position where the beam collapse take place x 

0.1, z 
 8. Considering behavior of the solutions at the beam axis, we see that the intensity increases,
and the solution becomes singular at the point zcr 
 13, that already behind the distance at which
the first singularity appeared. The intensity and phase gradient at different propagation distances are
presented on the Fig. 5. Summarizing this part of the work, we can notice that for the form of the
refractive index Eq. (5.83) considered as an example in the present paper, several pictures in the global
behavior of the solutions can be distinguished: i) if the solution of Eq. (5.87) provide us with only
imaginary values of zsf, there is no beam collapse at all, ii) the singularity appears at the beam axis,
ii) the singularity appears around the beam axis at the circle with radius given by Eqs. (5.89).

6. CONCLUSION

In the presented paper, making use of the Lie symmetry analysis, we constructed exact and approxi-
mate analytical solutions for the problem of light propagation in highly nonlinear media. For the first time
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exact analytical solutions (3.41), (3.44) to the eikonal equations in (1 + 1) dimensions were found with
nonlinear refractive index being a saturated function of intensity. It was shown that at a certain point at
the beam axis Eq. (3.46) the solution becomes singular: intensity tends to infinity asymptotically when

the light propagation distance approaches zsf = b
√

e/2α.

In case of the eikonal equations with arbitrary nonlinear refractive index we constructed approximate
analytical solutions. For the case of initial intensity distribution given by equation (3.25), the approx-
imate solution was compared with the exact one (3.41), (3.44). It was shown that a value of the self-
focusing position provided by an approximate solution was very close to the magnitude obtained from
the exact formula (3.46).

In the last section we considered a nonlinear Schrödinger equation in (1 + 2) dimensions with
arbitrary refractive index. An approximate symmetry group admitted by both this equation and boundary
conditions corresponding to collimated beam with arbitrary initial intensity distribution was constructed.
The solution was presented in the form of algebraic equations (5.81) which must be analyzed for each
particular form of the refractive index and the initial intensity distribution. As an example, the case of
two-term nonlinear refractive index Eq. (5.83) was examined in details. We obtained an explicit formula
for the self-focusing position Eq. (5.88) and demonstrated that, for this form of the refractive index, the
beam collapse can also take place outside the beam axis.
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