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Abstract. Recent experimental achievements in controlling ultracold gases in
optical lattices open a new perspective on quantum many-body physics. In these
experimental setups, it is possible to study coherent time evolution of isolated
quantum systems. These dynamics reveal new physics beyond the low-energy
properties that are usually relevant in solid-state many-body systems. In this
paper, we study the time evolution of antiferromagnetic order in the Heisenberg
chain after a sudden change of the anisotropy parameter, using various numerical
and analytical methods. As a generic result, we find that the order parameter,
which can show oscillatory or non-oscillatory dynamics, decays exponentially
except for the effectively non-interacting case of the XX limit. For weakly
ordered initial states, we also find evidence for an algebraic correction to the
exponential law. The study is based on numerical simulations using a numerical
matrix product method for infinite system sizes (iMPS), for which we provide a
detailed description and an error analysis. Additionally, we investigate in detail

6 Author to whom any correspondence should be addressed.

Published in "�������	
��������������������������������"
which should be cited to refer to this work.

ht
tp
://
do
c.
re
ro
.c
h

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by RERO DOC Digital Library

https://core.ac.uk/display/20651372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the exactly solvable XX limit. These results are compared to approximative
analytical approaches including an effective description by the XZ model as well
as by mean-field, Luttinger-liquid and sine-Gordon theories. The comparison
reveals which aspects of non-equilibrium dynamics can, as in equilibrium, be
described by low-energy theories and which are the novel phenomena specific
to quantum quench dynamics. The relevance of the energetically high part of
the spectrum is illustrated by means of a full numerical diagonalization of the
Hamiltonian.
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1. Introduction

1.1. Motivation

Developing a profound understanding of interacting quantum many-body systems is one of
the important challenges in modern physics. Potential applications of correlated quantum
systems have driven decades of theoretical and experimental investigation. There are very
well understood classes of many-body systems which essentially behave as ensembles of
non-interacting particles, with Landau’s Fermi liquid theory as the most prominent example.
This picture can, however, break down in the presence of strong correlations or in reduced
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dimensions. For high-temperature superconductivity [1], in the quantum-Hall effect or for
transport in semiconductor nanodevices, interactions lead to intricate quantum many-body
phenomena for which the theoretical basis is still incomplete.

A variety of analytical and numerical techniques have been developed in order to study
models of correlated systems. However, the degrees of freedom in quantum mechanics grow,
in general, exponentially with the number of particles—a fundamental problem that can make
the analytical approach highly complex and restricts the applicability of computer simulations.
An alternative to the analytical and numerical treatment of the quantum many-body problem
has been proposed by Feynman [2], who introduced the idea of quantum simulation: instead of
solving the highly complex theory on a computer, the model can be tested directly by means
of an artificially engineered quantum system. Over the last decade, remarkable experimental
setups have been developed to produce and control dilute ultracold atomic gases in optical
lattices [3]. These systems are very promising candidates for the realization of Feynman’s idea
of quantum simulation. The key to reach collective quantum states of atomic gases was achieved
through the development of laser and evaporative cooling techniques, which allow one to go
down to temperatures in the nanokelvin range and led to the first realizations of Bose–Einstein
condensation in 1995 [4]–[6]. Subsequently, using optical lattices, it became possible to drive
ultracold gases into bosonic [7, 8] and fermionic [9]–[11] correlated states.

A peculiarity of ultracold atomic systems is the controllability of internal parameters,
which relies on the development of magnetic and optical traps of various geometries [3] and
the tuning of atom–atom interactions by means of Feshbach resonance in an external magnetic
field [12, 13]. These parameters can be changed quickly, producing a so-called quantum quench,
which allows us to generate various types of non-equilibrium situations [14]–[20]. Unlike
solids, where the electronic system suffers from dissipation due to the coupling to lattice
phonons, atomic gases are almost perfectly isolated quantum systems and exhibit coherent
dynamics over large periods of time. Since the coherent dynamical processes are determined
exclusively by the intrinsic properties of the system, this allows us to investigate specifically
the nonlinear interaction effects. This is a unique situation that is not available in usual solid-
state experiments, where dynamical effects beyond linear response are, in general, intricate. The
theoretical study of the non-perturbative many-body aspects of non-equilibrium dynamics is the
main topic of this paper. We mainly focus on quantum spin chains, for which corresponding
experiments are currently under development [19, 21].

Due to weak dissipation in ultracold atomic gases, non-equilibrium properties are
important even if equilibrium aspects of these systems shall be investigated. When attempting
to use ultracold gases as quantum simulators for a certain equilibrium problem, one usually
prepares the system in an uncorrelated initial state, e.g. a Bose–Einstein condensate, and drives
it into a correlated state by a slow change of parameters [7, 22]. However, it has been found that
in the vicinity of a phase transition, the time scales needed for a correlated state to equilibrate
can become exceedingly large [23]–[28]. It is therefore mandatory to establish the relations
between equilibrium and non-equilibrium systems to overcome this problem.

The relevance of non-equilibrium dynamics of cold atoms goes beyond the investigation
of fundamental questions of quantum statistical mechanics. There are possible practical
applications in quantum metrology [29] and quantum information processing [30]–[33] and
relations to open questions in cosmology [34, 35]. However, before the ultracold quantum gases
can be routinely applied in the context of such problems, a number of open experimental
challenges need to be solved. By providing exact results for realistic experimental setups,
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in this paper we intend to support ongoing efforts at improving the control of ultracold
atomic gases.

We will study the emerging dynamics of the order parameter of an XXZ Heisenberg chain
prepared in the classical (uncorrelated) Néel state, which can be realized in experiment, but in
order to get a deeper insight into the problem, general antiferromagnetic initial states are also
considered. Our special interest concerns the effect of the quantum phase transition that can be
triggered by tuning the magnetic anisotropy parameter.

Exact results based on numerical calculations are presented. Furthermore, alternative
approximative approaches are applied. The applicability of the analytical tools, which have been
very successful in the description of equilibrium phenomena, turns out to be strongly restricted
for the non-equilibrium problem under consideration. We identify the apparent problems in the
standard approximations and point out in which direction these approaches should be extended
in order to capture the main features of the quantum quench dynamics.

1.2. Brief review of quantum quenches in extended systems

In relation to transport phenomena (e.g. [36]) and impurity problems such as quantum dots [37]
and spins in a dissipative environment [38], non-equilibrium dynamics have been subjected to
intensive theoretical investigations over many years. However, non-equilibrium transport can
be seen as a result of perturbations (voltage biases) at the edges of the system and quantum
dots are zero-dimensional systems. This is fundamentally different from quench dynamics in
translation-invariant systems considered here, where the parameter change is global and the
energy scales involved in the dynamics scale with the system size. More closely related to
a quantum quench are highly excited electronic states in solids, generated in femtosecond
pump–probe spectroscopy [39]–[41]. Nevertheless, in these systems, decoherence times are
short and the dissipative processes strongly contribute to the emerging dynamics. Consequently,
concepts developed for transport phenomena and dynamics in condensed matter systems are not
necessarily appropriate for quenches in ultracold atomic systems. Except for pioneering works
on quench dynamics in the 1970s [42]–[45], specific theoretical research on quench dynamics
started only recently, stimulated by the experimental developments in ultracold atomic physics.
In these works, which shall be briefly summarized in this section, two main lines have been
followed. A first aspect is the study of the nature of the quasi-stationary states in the long-time
limit. As demonstrated by an experiment of Kinoshita et al [16], these non-equilibrium states
can exhibit striking properties for specific types of interactions. Another approach explicitly
focuses on the characteristics of the time evolution after the quench—experimental examples
are the oscillations [14] or the dephasing [17] of the superfluid phase. It turns out to be an
ambitious challenge to establish relations between dynamical phenomena and the details of the
microscopic model, such as integrability and dimensionality. Although numerous remarkable
theoretical efforts revealed a number of interesting phenomena, many aspects of relaxation
dynamics and equilibration, which shall be discussed in detail in this work, remain unclear.

The effective description of many-body systems by means of low-energy theories, captured
within the renormalization group framework [46], has proven sufficient for the theoretical
understanding of a broad range of equilibrium phenomena. Therefore the application of
renormalization group ideas to non-equilibrium dynamics seems to be a promising approach.
Along this way, diagrammatic techniques [47]–[50] and the solutions of the dynamics of
field-theoretical models at the renormalization group fixed point [51]–[59] were developed.
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The flow-equation method as a unitary perturbative approach has been applied to Fermi
gases [60, 61] and the sine-Gordon model [59]. Providing a generic view on the quench
problem for critical theories, the work of Calabrese and Cardy [54, 55] based on conformal
field theory has to be highlighted. Although, for continuum systems, field-theoretical models
were successfully applied to generic quantum quenches [17, 56], it has to be clarified under
what conditions they all provide an accurate description of lattice systems. The range of
applicability of semiclassical theories is also unclear [62]–[64]. For a restricted class of
problems the time evolution can be calculated exactly, e.g. for the Jordan–Wigner diagonalizable
XY chains [65, 66], where the relaxation of order parameters [43, 67] and correlation
functions [44], [68]–[70] has been investigated for various quench scenarios with ferromagnetic
interactions. Also the quench in the 1

r -Hubbard-chain [71] allows for an exact solution. A major
drawback of these exactly solvable models is that the possibility of their representation in
terms of non-interacting particles apparently leads to very specific relaxation phenomena,
which are not generic, not only for non-integrable but also for more complicated integrable
models. For instance, it is questionable whether the generalized Gibbs ensemble, which has
been proposed for the description of quasi-stationary states of integrable models [69], is a useful
concept beyond the simple Jordan–Wigner diagonalizable cases [70, 72]. For the more general
Bethe-ansatz solvable models, it has not yet been possible to extract dynamics, except for the
Richardson [73] and the Lieb–Liniger models [74].

In view of the high complexity of the quench dynamics, efficient unbiased numerical
approaches are crucial to gain deeper insight. Using exact diagonalization [75]–[77] it is
possible to calculate the dynamics of small systems over exceedingly long times. For larger (but
one-dimensional (1D)) systems the density matrix renormalization group (DMRG) [78]–[81]
can be applied. Although only for finite times, the dynamics of spin-chain (respectively spinless
fermions) [82]–[88] and bosonic [76], [89]–[92] and fermionic [93] lattice models have been
evaluated. Recently, the dynamical mean field theory has been applied to fermionic models in
the limit of infinite dimensions [94]–[96].

1.3. Basic setup and general discussion

The Heisenberg model is a paradigm in the theory of magnetism and strongly correlated
systems in general. In appendix A, we derive how the model can be realized with ultracold
two-level atoms in various geometries of optical lattices. For instance, it is possible to generate
a one-dimensional XXZ Heisenberg model,

H = J
∑

j

{
Sx

j Sx
j+1 + Sy

j Sy
j+1 + �Sz

j S
z
j+1

}
, (1)

where the sign and the strength of the exchange coupling J and � can be tuned dynamically.
The XXZ model is integrable and its eigenstates can be constructed by the Bethe ansatz. In
the case of antiferromagnetic couplings J > 0, the anisotropy parameter triggers a quantum
phase transition from a gapless ‘Luttinger liquid’ phase (0�� < 1) to a gapped, Ising-ordered
antiferromagnetic phase (� > 1). The main features of the model at equilibrium and its field-
theoretical formulation are given in appendix B.

The non-equilibrium dynamics (1) shall be investigated in the following quantum quench:
at time t < 0, the system is prepared in a ground state |ψ0〉 with long-range antiferromagnetic
order. The corresponding anisotropy parameter is denoted by �0, �0 > 1. Among the
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antiferromagnetic equilibrium states the Néel state,

|ψ〉Néel = |↑↓↑ . . .↓↑↓〉, (2)

which corresponds to the limit �0 → ∞, has already been realized in experiment [19] and will
attract our special attention. At t = 0, the system is pushed out of equilibrium by changing the
strength of the interaction, � < �0, and the dynamics emerging at t > 0 are studied.

In the context of optical lattices, where the system is well isolated and no phonons are
present, dissipation can be neglected in a first approximation. Also, being interested in quantum
effects, we set T = 0. Finite temperature may become relevant for weak magnetic exchange
interactions in the ultracold atomic setup, but how to investigate efficiently the non-equilibrium
problem at T > 0 is still an unsolved problem. Under these assumptions, the dynamics is
formally described by the solution of the Schrödinger equation,

|ψ(t)〉 = e−iHt |ψ0〉. (3)

We set h̄ = 1 throughout this paper. Involving a priori all the energy scales of the many-
body Hamiltonian, the calculation of the time evolution of the wave function (3) is highly
complex. When approaching the problem analytically, one is forced to introduce an appropriate
approximation—the advantages and drawbacks of various approaches will be investigated in
this work. When using numerics, the dynamics (3) can be solved by fully diagonalizing the
Hamiltonian H . In section 8, we apply the full numerical diagonalization approach. Highly
efficient routines have been developed for this purpose [97], which can nevertheless be used
only for small system sizes (up to 20 lattice sites). More efficient and applicable directly in the
thermodynamic limit are matrix product states (MPS), which will be used for the simulation of
the general quench dynamics of the XXZ model. For a detailed description of the MPS method,
see appendix C.

To describe the dynamics of the state |ψ(t)〉, we mainly focus on the antiferromagnetic
order parameter,

ms(t) = 1

N

∑
j

(−1) j〈Sz
j(t)〉. (4)

Since the state |ψ0〉 is invariant under translation and subsequent spin inversion, ±ms(t)
corresponds to the local magnetization at any site of the lattice. It will also be useful to look
at the frequency distribution fms(ε), which resolves the contributions to the dynamics in energy
space,

ms(t) =
∫

dε e−iεt fms(ε). (5)

The staggered magnetization is not only the natural observable characterizing the ordering
of antiferromagnetic states, but also reflects the properties of the local density matrix of a
single site. For describing non-local properties, we choose the equal-time connected spin–spin
correlation function,

Gzz
c (�, t) = 1

N

∑
i

〈Sz
i+�(t)Sz

i (t)〉− 〈Sz
i+�(t)〉〈Sz

i (t)〉. (6)

Before going into the study of the many-body dynamics of the Hamiltonian (1), it is
worthwhile considering the case of only two spins. A corresponding experiment has been
carried out by Trotzky et al [19] by loading 87Rb atoms in the hyperfine states |↓〉 = |F = 1,
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m F = −1〉, |↑〉 = |F = 1, m F = 1〉, into an array of double-well potentials. The initial Néel state
was generated using a magnetic field gradient transferring the effective spins in each double well
from a triplet-bond state into an antiferromagnetic one, |ψ0〉 = |↑↓〉. The dynamics are in this
special case independent of � and can be described as Rabi oscillations between |↑↓〉 and |↓↑〉
states,

|ψ(t)〉 = cos(J t/2)|↑↓〉 + i sin(J t/2)|↓↑〉 . (7)

Hence, the antiferromagnetic order parameter describes oscillatory behavior, ms(t) = 1
2 cos(J t),

where the Rabi frequency is set by the exchange coupling J , which was indeed observed in the
experiment [19].

Although, as we shall see in section 2, in a many-body system such Rabi-like oscillations
may survive, the dynamics become much more intricate when going to large system sizes. On
a heuristic level, the initial state may be regarded as a bunch of excitations of the Hamiltonian
H , whose dynamics gives rise to the propagation of correlations throughout the system. For
spin models with sufficiently local interactions, Lieb and Robinson [98] have proven that this
propagation takes place within a light cone—the deviation of a correlation function from its
initial value becomes exponentially small for distances � > 2ut , where u is the maximum
velocity of excitations in the system. For an isolated but arbitrarily large system, this means that
relaxation to a stationary state can only be observed for subsystems of size � < 2ut . This light-
cone effect has been more precisely described in the framework of boundary conformal field
theory [99], which predicts an exponential decay of the correlations in the long-time limit. These
short-range correlations are in contrast with the entanglement properties of the non-equilibrium
problem. It has been shown [99] that the entanglement entropy of a subsystem of size � grows
linearly with time if 2ut < � and saturates to a value proportional to � if 2ut > �.

It is an open question under what conditions the stationary state in the long-time limit
can be described by a statistical ensemble at a finite temperature, meaning that thermalization
occurs. There are several examples for which this is not the case [69, 77, 84, 85, 89], and the
extended Gibbs ensemble [69], which takes into account the constraints of the non-dissipative
dynamics, and the micro-canonical ensemble [72, 75, 92, 93, 100] are possible candidates for
describing steady states. Whether the integrability is a necessary condition for the absence of
thermalization remains unclear. It has been suggested that the absence of thermalization could
be associated with non-perturbative behavior, which is not related to the integrability of the
underlying Hamiltonian [77].

Here, it will be shown that in the long-time limit the antiferromagnetic order vanishes in all
cases; hence, at least for this local quantity, thermalization is observed—in a one-dimensional
system, no long-range order is possible at finite temperatures. This does not necessarily imply
thermalization for correlation functions. Indeed, in section 3, we present results that indicate the
absence of thermalization in the spin–spin correlations (6). However, the correlation functions
exhibit somewhat slow relaxation dynamics and it is difficult to extract steady-state properties
from the rather short accessible times that can be achieved numerically.

Nevertheless, interesting dynamical effects are present also at short times. Their
characterization as a function of the initial state and the interaction parameter will be
investigated. The magnetic order parameter turns out to be a good observable for the quantitative
extraction of nontrivial time scales. Here, where the initial state can be characterized by the gap
parameter �s (more precisely, the inverse correlation length), one expects that the typical time
scale of the relaxation dynamics is given by �−1

s and the length scales, which depend on the
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momentum distributions in the initial states, should be of the order of u/�s, where u is given
by the velocity of quasi-particles (spin waves).

In the solution of the quench dynamics for conformally invariant theories [101] of
Calabrese and Cardy [54, 55], these qualitative arguments were put on a solid ground: the
initial state enters into the framework of quantum field theory as a finite slab width, τe, the
extrapolation length that stands for the renormalization-group distance of the initial state from
the fixed point of the gapped theory [102]. To first order, this is given by the inverse gap, here
τe ∼ �−1

s . Using a conformal transformation, the slab geometry is mapped onto the semi-infinite
plane, for which, by means of boundary conformal field theory [103], the properties of the
correlation functions can be extracted.

The results of Calabrese and Cardy [55] do apply to the quench in the XXZ model if the
discussion is restricted to the low-energy modes in the gapless regime |�|� 1, here captured
by the Luttinger model (see appendix B, equation (B.9)). For the staggered magnetization as a
local observable, the outcome is

ms(t) ∼ e−π K t/2τe, (8)

where τe ∼ �−1
s .

However, several remarks concerning the applicability of the conformal field theory results
to the quench in the XXZ chain are in place. Firstly, the initial state is treated on a perturbative
level in terms of a renormalization-group distance from the fixed point and simply characterized
by the gap parameter. It is questionable whether in this framework it is possible to correctly take
into account the physics of the antiferromagnetic states, especially those close to the critical
point (i.e. far from the antiferromagnetic fixed point), described by the sine-Gordon model.
Secondly, within the field theory it is impossible to treat lattice effects, which are expected
to emerge if the energy of the quasi-particles forming the initial state is of the order of the
bandwidth �—a situation that is realized for instance by the Néel state (2). As a simple
example of a lattice effect we presented the Rabi oscillations in the two-spin system (7), with the
frequency set by the magnetic exchange J . Macroscopic order parameter oscillations following
a quantum quench have been predicted to appear in a variety of systems [62, 67], [104]–[106].
In this work, we will characterize Rabi-like oscillations and investigate origins of dephasing
in the presence of many-body correlations. A particular property of the quench in the XXZ
chain illustrates the novel aspect of the non-equilibrium dynamics in many-body lattice models:
the time evolution of ms(t) is invariant under the change of sign � → −�. Ferro- and
antiferromagnetic Hamiltonians exhibit identical dynamics despite their completely different
elementary excitations. As a third point restricting the applicability of the conformal field theory
result, we mention that a conformal theory does not capture the case of a parameter quench into
the gapped phase, � > 1. Here this regime will be addressed using a sine-Gordon description
of the XXZ model.

1.4. Summary of the results

The further content of the paper is organized as follows: the non-equilibrium dynamics in the
XX limit of the Heisenberg model, which can be solved in a simple way by means of the
Jordan–Wigner transformation, is analyzed in section 2. Numerical results for the general case
are given in section 3 and approximative approaches in sections 4–6. In section 8, an exact
diagonalization analysis of the spectrum of the XXZ model is carried out before presenting
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Table 1. Exact analytical and numerical results for the quench in the XXZ model.
See sections 2–6 for details.

Relaxation times
Initial state Coupling Asymptotic law (if applicable)

Section 2: Exact analytical calculation in the XX limit
Néel � = 0 t−1/2 cos(2J t − π

4 ) τ1 ≈ 0 , τ2 → ∞
SDW � = 0

√
�s
J t−1/2e−2�st + �s

J t−1/2 cos(2J t − π
4 ) τ1 = 1

2�s
, τ2 → ∞

Section 3: Numerical iMPS calculation of the XXZ model
Néel �� 0 e−t/τ 2 cos(ωt + φ) a τ1 ≈ 0 , τ2 ∼ log�

Néel � 
 1 e−t/τ 1 τ1 ∼ �2

�0 � 1 � = 0 C1t−1/2e−t/τ 1 + C2t−1/2cos(ωt + φ)a τ1 ∼ 1
2�s

b
, τ2 → ∞

�0 � 1 �� 0 C1t−1/2e−t/τ 1 + C2 e−t/τ 2 cos(ωt + φ)a τ1 ∼ 1
K�s

b
, τ2 ∼ log �

�0 
 1 �0 > � 
 1 e−t/τ 1 τ1 ∼ | 1
�

− 1
�0

|−2

Section 4: Mean field theory
Néel 1 > � > 0 t−2/3{C1cos(ω1t + φ1) + C2cos(ω2t + φ2)} τ1 ≈ 0 , τ2 → ∞
Néel � > 1 const

Section 5: The XZ model
Néel �� 1 e−t/τ 1 τ1 ∼ �2

Néel � < 1 e−t/τ 2(cos2(ωt) − const) τ2 ∼ �−1

Section 6: The Luttinger model
KG �� 0 e−t/τ 1 τ1 = 2

Kπ�s

aValid in an intermediate time regime (see section 3). bOnly rough correspondence, deviations of the order of 30%
are possible.

the conclusions. In appendix A, we describe the experimental realization of quantum magnetic
systems in optical lattices. The well-established properties of antiferromagnetic states and
equilibrium phase transitions in the context of the Heisenberg model in one dimension are
reviewed in appendix B. The description and an error analysis of the matrix product algorithm
is provided in appendix C.

Our results for the non-equilibrium dynamics of the staggered magnetization are
summarized in table 1. We find essentially two types of relaxation dynamics: non-oscillatory
dynamics, characterized by a relaxation time τ1, and oscillatory dynamics with a frequency
ω and an associated relaxation time τ2. An important result is that for nonzero �, we find a
fundamentally new mode of many-body dynamics, which always leads to exponential decay of
the staggered moment regardless of whether the short-time dynamics is oscillatory or not. In
contrast with the oscillation frequency, which is set by the exchange interaction, the relaxation
time is an emergent scale generated by the highly correlated dynamics and, hence, cannot be
simply related to the microscopic parameters. We find divergent relaxation times, τ1 → ∞ in
the limit � → 0 and τ2 → ∞ if � → ∞. For the particular case of the Néel state, we find that
the relaxation times essentially vanish in the vicinity of the critical point, �� 1.

Table 1 also shows to what extent approximative methods, which take into consideration
only a particular aspect of the Hamiltonian, are applicable to the non-equilibrium problem.
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The mean-field approximation, for example, leads to contradictions with the unbiased numerical
results—an algebraic decay for �� 1 and a non-vanishing asymptotic value of the staggered
moment for � > 1 [104]. In the case of the initial Néel state, comparing the low-energy result
of conformal field theory with the numerics, the immediate relaxation τ1 ≈ 0 is, in principle,
in agreement with �s → ∞ in equation (8). However, the oscillations dominate the long-time
dynamics and are, as expounded before, not captured by the field theory. If the initial state is
close to the critical point, an exponential relaxation similar to equation (8) is found; however,
an additional algebraic prefactor appears to be present. In our treatment of the Luttinger model
this effect is also not seen, but the results from conformal field theory (8) are reproduced.

2. The XX model, � = 0

It is particularly illustrative to study the exactly solvable case of zero anisotropy (� = 0),
where the Heisenberg Hamiltonian (1) can be represented in terms of free spinless fermions
with a cosine dispersion relation (B.4). For free fermions the non-equilibrium dynamics can be
solved analytically [107]. We study two cases: firstly, the Néel state as the initial condition and,
secondly, the case of the initial spin-density-wave (SDW) state.

2.1. Initial Néel state, �0 = ∞
In the fermionic picture, the Néel state reads as a charge density wave,

|ψ0〉 =
∏

−π
2 <k�π

2

(c†
k + c†

k+π)|0〉. (9)

The fermionic operators are easily represented in the Heisenberg picture,

ck(t) = eitεkc†
k ck ck e−itεkc†

k ck = ck e−itεk . (10)

Hence, the dynamics of the XX chain prepared in the Néel state, in analogy with the two-
site model (7), takes the form of Rabi oscillations between SDW with different sublattice
magnetizations,

|ψ(t)〉 =
∏

− π
2 <k�π

2

(eiεk t c†
k + e−iεk t c†

k+π)|0〉. (11)

The relaxation of the staggered magnetization can be seen as a dephasing process, driven by
inhomogeneous Rabi frequencies in k-space,

ms(t) = 1

N

∑
− π

2 <k�π
2

ei2εk t〈ψ0|c†
kck+π |ψ0〉 = 1

N

∑
− π

2 <k�π
2

1

2
ei2εk t . (12)

In the thermodynamic limit,

ms(t) = 1

π

∫ π/2

0
dk cos(2tεk) = 1

2
J0(2J t), (13)

where J0 denotes the zeroth Bessel function of the first kind. The underlying frequency
distribution (5) ranges over a band of width 4J ,

fms(ε) = θ(2J − ε)θ(ε + 2J )
1√

4J 2 − ε2
, (14)
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Figure 1. Correlation functions in the XX limit. Comparison of the results
obtained for (a) full and (b) linearized spectra. For the linearized spectrum, we
set � = 2J as the effective bandwidth.

θ(ε) being the Heaviside function. High-energy modes with a vanishing velocity at the band
edge, |εk| = J , dominate the long-time limit of (13) and give rise to the oscillations with a
frequency set by the bandwidth,

ms(t) −→
J t
1

√
1

4π J t
cos
(

2J t − π

4

)
. (15)

The exponent of the t−1/2 decay is a consequence of the quadratic dispersion at k = 0. In the
XX limit it is also possible to express the correlation function, Gzz

c (�, t), in terms of Bessel
functions,

Gzz
c (�, t) = δ�,0 − 1

4π

[∫ π/2

−π/2
dk cos(k�) cos(2tεk)

]2

= 1

4

(
δ�,0 − J 2

� (2J t)
)

.

This results in slowly decaying, spatially oscillating correlations,

Gzz
c (�, t) −→

��J t
− 1

2π J t
cos2(2J t − �π/2 − π/4). (16)

Figure 1 shows how the correlations evolve within the light cone �� 2t . The magnitude of the
wave front decays as a power law in time. The negative sign reflects spinon characteristics [108]
of the propagating correlations.

Although it is possible to carry out the analysis of the XX model without any
approximation, it is useful to investigate the result of restriction to a particular part of the
spectrum. This provides information on the range of applicability of low-energy theories, which
are candidates for treating the more complicated case of interacting systems.
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In the case of the linearized theory (appendix B, equation (B.8)), the dynamics of the
magnetization is characterized by oscillations with a 1/t decay and cutoff-dependent period,

ms(t) = 1

�t
sin(�t) . (17)

The cutoff � gives the correct periodic behavior if it is equal to the bare bandwidth (� = 2J ).
The oscillatory behavior, a consequence of the presence of the lattice, is indeed not captured in
the continuum limit �/J → ∞, where the oscillations disappear. The power-law decay appears
in the linear approximation being independent of the cutoff, but the exponent is overestimated by
a factor of two compared to the case of the full dispersion. The energy distribution corresponding
to the magnetization (17) is simply flat,

fms(ε) = θ(2� − ε)θ(2� + ε). (18)

A seemingly (in the context of equilibrium theories) unconventional approach is the
development of the modes in the vicinity of the band edges,

HQ =
∑

Jk2��

−J (1 − k2)
{

c†
kck − c†

k+πck+π

}
. (19)

In the present case of non-equilibrium dynamics, we find, however, that the corresponding
energy distribution,

fms(ε) = θ(ε + 2J )θ(� − 2J − ε)
1√

2J + ε
+ θ(2J − ε)θ(� − 2J + ε)

1√
2J − ε

, (20)

provides the correct long-time limit if the cutoff is sufficiently large,

ms(t) ∼
J t
�−1

1√
t

cos
(

2J t − π

4

)
. (21)

We now clearly understand the mechanism behind the dephasing process in the free-
fermion models: Rabi oscillations are present if there is a sharp step at the edge of the band.
The dephasing of the oscillations is algebraic, t−α, α = 1 if the frequency distribution is
homogeneous and α = 1

2 in the case of the quadratic dispersion at the band edge. For the long-
time behavior it is sufficient to stick to the modes at the edge of the band; the low-frequency
part is effective only at short times t ∼ J −1. The reason for such behavior is best illustrated in
the analysis of the correlation functions for the linear spectrum. The result, as shown in figure 1,
is a single coherent spinon mode traveling in the light cone |2t − �| = 0. For the staggered
magnetization as a local observable, this means that it relaxes as soon as the spinon mode moves
over more than one lattice distance 2t > 1. In contrast to the case of the full dispersion, there
are no oscillations within the light cone. We note that this immediate decay is in agreement with
the result of conformal field theory (8), which predicts zero relaxation time for the Néel state
due to its vanishing correlation length (inverse gap).

2.2. Initial spin-density wave

As an introduction to our discussion of quenches from correlated antiferromagnetic states
(i.e. quenches with 1 < �0 < ∞), we consider the time evolution of weakly antiferromagnetic
SDW states under the XX Hamiltonian (see appendix B, equations (B.4) and (B.20)). This
section will provide a benchmark for the numerical results in section 3 and also discusses the
applicability of effective low-energy theories to this quench.
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The time evolution of the staggered magnetization ms(t) in the XX model starting from
an SDW state at t = 0 (|ψ0〉 =∏−π/2<k�π/2(ukc†

k + vkc†
k+π)|0〉) is determined by the coefficients

uk and vk ,

ms(t) = 1

N

π∑
k=−π

〈ψ0|c†
k+π(t)ck(t)|ψ0〉 =

∫ π

−π

dk

2π
e−i2εk tukvk, (22)

where we have taken the thermodynamic limit in the last equation. With the coefficients obeying

ukvk = �s/(2
√

ε2
k + �2

s ), the dephasing process in energy representation reads

ms(t) = 1

π

∫ 0

−J
dε

cos(2tε)√
J 2 − ε2

�s√
ε2 + �2

s

. (23)

For a weak SDW state (�s � 1) there are two main contributions to the integral in equation (23).
The first comes from the Fermi points ε = 0, whereas the second originates in the square root
singularities at ε = ±J . We write these two contributions separately,

ms(t) ≈ �s

π J
K0(2�st) +

�s

2J
J0(2J t) −→

t
�−1
s

1√
4π J t

{√
�s

J
e−2�st +

�s

J
cos(2J t − π/4)

}
. (24)

In comparison with the case of the initial Néel state, in addition to identical algebraically
decaying oscillations (13) a non-oscillatory decay stemming from the low-energy part of the
spectrum is obtained. This exponential behavior with an algebraic prefactor is characterized
by the relaxation time τ = (2�s)

−1. Hence, for t > �−1
s ln(J/�s) the oscillations on top of the

non-oscillatory decay dominate the order-parameter dynamics. Nevertheless, unlike the case of
the initial Néel state, the low-energy modes contribute to the non-equilibrium dynamics over
significant periods of time.

3. Interaction quench in the XXZ model—numerical study

In this section, we first study the quench in the XXZ model starting from the Néel state.
Subsequently, ground states of the XXZ models at finite � = �0 will be considered.

Unlike for � = 0, the problem is no longer analytically treatable and we have to resort to
numerical techniques. In the iMPS algorithm (appendix C) we use 2000 states and a second-
order Suzuki–Trotter decomposition with a time step δ ∼ 10−3 J −1 for large � and up to 7000
states with δ ∼ 10−2 J −1 for small �. An intermediate time regime J t � 16 can be reached,
which exceeds in general greatly the short transient time.

3.1. Initial Néel state, �0 = ∞
An overview of the results for the initial Néel state is presented in figure 2. For small
anisotropies, we find oscillations of the order parameter similar to those in the XX limit, but
with the decay time decreasing upon approaching the isotropic point � = 1. In the easy-axis
regime � > 1 of the XXZ model, the relaxation slows down again for increasing � and we
observe non-oscillatory behavior for � 
 1.

Figure 3 focuses on easy-plane anisotropy 0 < � < 1. The results for 0 < �� 0.4 are well
described, for accessible time scales, by exponentially decaying oscillations

ms(t) ∝ e−t/τ2 cos(ωt + φ). (25)
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Figure 2. Dynamics of the staggered magnetization ms(t) in the XXZ chain
initialized in a Néel state. Symbols correspond to numerical results and lines
represent analytical results or fits by corresponding laws (25) and (26) (see the
text).
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Figure 3. Analysis of the decay of the oscillations in the XXZ model by
plotting the absolute value of the staggered magnetization on a logarithmic
scale. Symbols represent numerical results, solid curves correspond to fits by the
function (25) and straight lines point out the exponential decay. For anisotropies
close to zero (� = 0.2, 0.4) an exponential law is obeyed for large periods
of time in the numerically accessible time window, whereas for � = 0.6, the
simulation shows an acceleration of the decay after a few oscillations.
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XXZ model (indicated by the question mark), it becomes impossible to extract a
relaxation time from the numerical results.

The oscillation frequency is almost independent of the anisotropy, while the relaxation time τ2

increases with decreasing �. Logarithmic divergence of the relaxation time in the limit � → 0
is suggested by the fit shown in figure 4. The picture is less clear closer to the isotropic point. For
the range 0.5�� < 1 there appears to be an additional time scale after which the oscillations
start to decay even faster than exponentially; simultaneously the period of the oscillations is
reduced. Therefore, the relaxation times plotted in figure 4 are only valid within an intermediate
time window, whose width shrinks upon approaching the critical point.

For intermediate easy-axis anisotropies 1��� 3, the magnetization does not reach a
stable regime within the numerically accessible time window (figure 5(a)). The complicated
behavior of ms(t) in this parameter range can be ascribed to the interplay of processes at all
energy scales. Nevertheless, the numerical data suggest that the relaxation is fastest close to the
isotropic point, in the range between � = 1 and � = 1.6. A simple generic type of behavior is
recovered for large anisotropies �� 3. The numerical data in figure 5(b) indicate exponential
relaxation of the staggered magnetization

ms(t) ∝ e−t/τ1 . (26)

The relaxation time scales roughly quadratically with � (figure 4). Oscillations do persist on
top of the exponential decay, but they fade out quickly.

We briefly describe the relaxation of the spin–spin correlation functions (6) as presented
in figure 6. A more detailed study of these has been carried out by Manmana et al [87]. For
weak interactions (e.g. � = 0.6) the dynamics of correlation functions is still dominated by the
spinon mode moving according to the light cone [98, 99] set by the spin-wave velocity u (see
appendix B, equation (B.11)), as is the case at � = 0 (equation (16), figure 1). For larger �,
this mode is smeared out; instead, antiferromagnetic correlations build up. The strength of the
short-range antiferromagnetic correlations increases as the anisotropy � is augmented. With
the numerical method, however, we are unable to reach sufficiently long times to calculate the
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Figure 5. (a) Focus on the XXZ chain close to the critical point � = 1, where a
steep decay of the initial magnetization is followed by a rather slow relaxation
on tiny magnitudes, which does not fit either of the generic types of behavior
((25) and (26)). (b) Comparison of the XXZ chain (symbols) and the XZ chain
(dashed lines) for strong anisotropies; solid lines correspond to an exponential
fit. The dynamics of the staggered magnetization of the XXZ and XZ chains
converge towards each other in the large-� limit.

quasi-stationary correlation length. It becomes, nevertheless, clear that the correlations cannot
be described in terms of a thermal ensemble. We evaluated the equilibrium correlation functions
at a temperature corresponding to the energy of the system by means of quantum Monte Carlo
simulations7. The resulting correlation functions depicted in figure 6 decay considerably faster
than the non-equilibrium ones.

3.2. Initial antiferromagnet, 1 < �0 < ∞
The Néel state is an entirely classical state with no quantum correlations. In order to generalize
our results, we first study the case of small but finite correlations starting from the ground state
for �0 = 4.0. We find that the picture gained from the initial Néel state remains qualitatively
valid—the dynamics of ms(t) is very similar to that in the case of the initial Néel state (figure 2).
The corresponding relaxation times and periods are plotted in figure 7. For � close to zero, the
behavior of τ2 is again close to a logarithmic law and the divergence of the relaxation time for
� → �0 goes like τ1 ∝ | 1

�
− 1

�0
|−2.

7 We have been using ALPS code [109] for the directed loop algorithm in the stochastic series expansion
representation [110, 111].
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Figure 6. The correlation functions obtained using iMPS for the initial Néel state.
T denotes quantum Monte Carlo results for the XXZ model at equilibrium at a
temperature fixed by the energy of the non-equilibrium system.

We expect qualitatively different behavior for a weakly ordered (more strongly correlated)
initial state. In section 2, we have seen that for an initial SDW state and the XX Hamiltonian,
in addition to the algebraically decaying oscillations, an exponential relaxation exists, whose
relaxation rate is proportional to the gap of the initial state. In figure 8, where we show the
results for the quench from an initial state with �0 = 1.5, oscillations are found on top of
non-oscillatory relaxation. At � = 0, for sufficiently large t , the dynamics is similar to the SDW
result (24),

ms(t) ∼ C1t−1/2e−t/τ1 + C2t−1/2 cos(ωt + φ), (27)

to very high accuracy, despite the fact that the SDW is a different wave function from the ground
state of the XXZ chain. The relaxation time τ1 ≈ 5.1J is slightly smaller than the one predicted
by the SDW calculations, (2�s)

−1 ≈ 5.8J . The difference may be explained by the importance
of short-range effects, which are supposed to contribute to the non-equilibrium dynamics.

ht
tp
://
do
c.
re
ro
.c
h

17



0 1 2 3 4
Δ

1

10

100

J( 
e

mi
T

1
–

)

τ
1

τ2
period T

∝[Δ–1
– Δ

0

–1
]
–2

∝
gol

Δ

t
ni

o
p l

a
citir

C

Figure 7. Relaxation times and oscillation period T = 2π/ω as a function of
anisotropy in the XXZ model for the system prepared in the ground state for
�0 = 4. Logarithmic or algebraic laws are shown by solid lines.

0 2 4 6 8 10 12
Jt

–0.1

–0.05

0

0.05

0.1

0.15

0.2

0.25

m
s

Δ=0
Δ=0.2
Δ=0.4
Δ=0.6
Δ=1

Figure 8. Dynamics of the staggered magnetization ms(t) in the XXZ chain
prepared in an antiferromagnetic ground state of the XXZ Hamiltonian with � =
�0 = 1.5. The symbols correspond to numerical results and the lines represent
analytical results or fits by the corresponding laws (27), (28) and (26) (see the
text).

As illustrated in figure B.3, the correlations decay much faster at shorter distances than in the
large distance asymptotics.

For �� 0, in correspondence with the result for the initial Néel state, we find that the
oscillations are exponentially damped, while the non-oscillatory part remains qualitatively the
same as in the XX limit,

ms(t) ∼ C1t−1/2 e−t/τ1 + C2 e−t/τ2 cos(ωt + φ). (28)
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In figure 9, we plot the fitting parameters for small � (0 < �� 0.6) where formula (28) is
well obeyed. τ1 behaves similarly to (J/K�s)—a law that is the natural extension of the
non-interacting SDW result (24) to finite anisotropies using the same scaling as derived for
the Luttinger model (see section 6, equation (48)). The logarithmic behavior of τ2, apparent
for �0 
 1, is not observed here. Oscillatory and non-oscillatory terms are superimposed.
In the non-oscillatory term of (28), absence of the algebraic prefactor, as suggested by the
field theoretical result (8), can be clearly excluded on the basis of the numerical results. Pure
exponential law (26) is, however, found for �� 1. The intermediate regime 0.6��� 1 cannot
be described by either of the laws (26) and (28).

4. Mean field

Time-dependent mean-field theory is one possible way to treat the dynamics of the XXZ model
approximately. The mean-field approximation of the Hamiltonian (B.2) at an instant of time t
is defined by expanding the interaction term to linear order in fluctuations δn j around the mean
density, n j = 〈n j〉 + δn j , and by setting 〈n j〉 = 1/2 + (−1) j ms,

HMF(t) = −J
π∑

k=−π

(
cos(k)c†

kck + 2�ms(t)c
†
k+πck

)
, (29)

where the mean-field staggered magnetization ms(t) has to be determined self-consistently. For
developing an intuition it is worthwhile to imagine the dynamics of pseudo-spins in k-space by
defining pseudo-spin operators σ z

k = c†
kck − c†

k+πck+π and σ x
k = c†

k+πck + c†
kck+π . Note that these

momentum-space pseudo-spins are different from the original spins on the chain. In pseudo-spin
representation the staggered magnetization is given by the average x-projection per pseudo-spin,
ms = 1

N

∑π/2
k=−π/2〈σ x

k 〉, and the mean-field Hamiltonian can be written as

HMF(t) = −J
π/2∑

k=−π/2

( cos(k) σ z
k + 2� ms(t) σ x

k ), (30)
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Figure 10. Numerical solution of the mean-field equations for the Hamiltonian
(30) with the initial condition ms(0) = 1

2 .

The Néel state as an initial condition corresponds to all pseudo-spins pointing in the x-direction
at t = 0. Then they start to precess due to a Zeeman field that depends on the instantaneous
average orientation of the x-projection of the spins. In these terms it is easy to understand
the evolution of the staggered magnetization ms(t) for � = 0. We simply have a collection of
independent pseudo-spins subject to constant Zeeman fields J cos k in the z-direction. Because
the field magnitude varies from spin to spin over a bandwidth, they precess at frequency 2J .
Since the band of precession frequencies is continuous, the spins gradually dephase, leading to
the 1/

√
t decay (15) of the oscillation envelope of ms(t).

The situation is more complicated in the case of � �= 0. Now there is also a field in the
x-direction, which is the same for all spins but changes in time according to the instantaneous
orientation of the spins. To lowest order in �, i.e. setting ms(t) = m0(t) = J0(2J t)/2 in the
Hamiltonian (30), the additional Zeeman field in the x-direction tilts the precession axis, giving
rise to a smaller average x-projection of the spins and thus leading to a faster decay of m(t).
The numerical results for the time evolution of the staggered magnetization according to (30)
are shown in figure 10 for different values of �. Finite � leads to accelerated dephasing of the
oscillations very much like in the unbiased calculations (section 3). However, the asymptotic
law as extracted from the numerical solution by Hastings and Levitov [104] for 0 < |�|� 1
exhibits algebraically decaying oscillations with a t−2/3 envelope,

ms(t) ∼ t−2/3 {C1 cos(ω1t + φ1) + C2 cos(ω2t + φ2)} , (31)

ω1 = 2J , ω2 = √
1 − �2. This algebraic decay, as well as the two frequencies, which lead

to a revival phenomenon [104], is in contradiction with the MPS calculations for the full
Hamiltonian (1). For � > 1, the staggered magnetization saturates to a nonzero value for
t → ∞, which is presumably also an artifact of the mean-field approach not corroborated in
the unbiased treatment. We conclude that the approach provides only a very rough picture of the
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order-parameter dynamics, which confirms the importance of collective effects, apparently not
captured by the effective non-interacting mean-field Hamiltonian (29).

5. The XZ model—effective description for � � 1

In this section, we study the time evolution of the staggered magnetization ms(t) following
a quench from the Néel state in the analytically treatable XZ model. This serves as a
complementary analytical approach to the numerical investigation of the quench dynamics in
the XXZ model in the regime of large anisotropies � 
 1 and allows for a discussion of the
long-time asymptotic behavior of ms(t). The XZ model is defined by the Hamiltonian

HXZ = J
∑

j

{
2Sx

j Sx
j+1 + �Sz

j S
z
j+1

}
. (32)

At equilibrium the XZ model exhibits a quantum phase transition at � = �c = 2 which
separates two gapped phases with antiferromagnetically ordered ground states in the z-direction
for � > �c and in the x-direction for � < �c. It differs from the XXZ model (1) by
terms violating the conservation of Sz

tot =
∑

j Sz
j , but has the advantage of being analytically

diagonalizable. In the following, we will prove that the staggered magnetization in this model
vanishes for all finite � > �c in the long-time limit after a quench from the Néel state and
calculate the exact time evolution of ms(t) semi-analytically up to times J t ≈ 100, thus going
beyond the time window accessible by the MPS calculation for the XXZ chain.

Using the Jordan–Wigner transformation for Sx
j and Sz

j and going over to momentum
representation, the Hamiltonian of the XZ model (32) takes the form

HXZ = J

2

π∑
k=−π

{
(� + 2) cos(k)a†

k ak +
i

2
(� − 2) sin(k)

(
a†

k a†
−k + aka−k

)}
, (33)

with a†
k and ak denoting, respectively, creation and annihilation operators of spinless

Jordan–Wigner fermions with quasi-momentum k. This Hamiltonian can be diagonalized by
the Bogoliubov transformation,[

a−k

a†
k

]
=
[

cos θk −i sin θk

−i sin θk cos θk

] [
α−k

α
†
k

]
= M�

[
α−k

α
†
k

]
,

tan 2θk = 2 − �

2 + �
tan k, (34)

which maps (33) to a model of free fermions,

H =
∑

k

εk

(
α

†
kαk − 1

2

)
(35)

with a dispersion εk = J
√

1 + �2/4 + � cos 2k.
Since the initial Néel state is the ground state of (33) with � = �0 → ∞, it is convenient

to express the time-dependent (Heisenberg) Jordan–Wigner fermion operators ak(t) in terms
of the Bogoliubov quasi-particle operators α0

k which diagonalize the Hamiltonian (33) for the
initial value � = �0,[

a−k(t)
a†

k (t)

]
= M�

[
e−iεk t 0

0 eiεk t

]
M−1

� M�0

[
α0

−k

α0
k

†

]
. (36)

ht
tp
://
do
c.
re
ro
.c
h

21



This reduces the computation of correlation functions at arbitrary time to the evaluation of
ground-state expectation values.

To calculate the time evolution of the staggered magnetization ms(t) following a quench in
the XZ model, we define the two-spin correlation function,

C(�, t) = (−1)�〈ψ0|Sz
0(t)Sz

�(t)|ψ0〉, (37)

from which the square of the staggered magnetization is obtained by taking the infinite-range
limit,

m2
s (t) = lim

�→∞
C(�, t). (38)

In the fermionized picture of the XZ model, the two-spin correlator takes the form

〈Sz
0 Sz

�〉 = 1
4(−1)�〈A0 B1 A1 . . . B�−1 A�−1 B�〉, (39)

with A j = a†
j + a j and Bj = a†

j − a j being the Majorana operators at lattice site j [66].
Using Wick’s theorem, this correlation function can be expressed as a Pfaffian of pairwise
contractions [44]. For the quench problem studied here, the explicit form of these contractions
follows from (36) and is given by

〈A j Ai〉 = 〈Bj Bi〉 =
∫ π

−π

dk

2π
e−ik( j−i) sin 2εkt sin 2φk, for i �= j, (40)

〈A j Bi〉 =
∫ π

−π

dk

2π
e−ik( j−i)ei2θk (cos 2φk − i sin 2φk cos 2εkt), (41)

with φk = θk − θ0
k (see also [67], where identical expressions have been derived for the

transverse-field Ising model). We have taken the thermodynamic limit and converted the sums
into integrals in the expressions above. In the limit t → ∞ for � > �c the evaluation of (38)
reduces to the computation of a Toeplitz determinant, since the contractions (40) of the A j ’s and
Bj ’s among themselves vanish. Szegö’s theorem can then be used to calculate the asymptotics
of the Toeplitz determinant, yielding the result

lim
t→∞

C(�, t)
�
1≈ 1

4

(
1 +
√

1 − 4/�2

2

)�

. (42)

Thus, after a quench from the Néel state in the XZ model, the staggered magnetization vanishes
for all finite � > �c at large times.

At finite times, when the contractions (40) do not vanish, the Pfaffian representing the
two-spin correlator (39) can be evaluated numerically at arbitrary times for a given distance. Due
to the so-called light-cone effect [55, 98], two spins at a distance � are not causally connected
at times smaller than ut < �/2, since the correlation length of the initial Néel state is zero. Here
u denotes the maximum (classical) speed of quasi-particles, which in the XZ model is given
by u = maxk(∂kεk) = 2J . Exploiting this light-cone effect, the staggered magnetization can be
calculated in terms of a finite-range correlation function,

m2
s (t)|2J t<�/2 ≈ C(�, t). (43)

This method significantly reduces the computational effort at short times. We remark, however,
that the light cone is not completely sharp in quantum-mechanical systems [55]. Nevertheless,
for practical finite-precision calculations, the infinite-range limit of the two-spin correlator is
reached for distances just a few lattice sites beyond the light cone.
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Figure 11. Dynamics of the staggered magnetization ms(t) in the XZ chain
initialized in a Néel state. The symbols correspond to numerical results and the
lines represent analytical results or fits by corresponding laws (see the text).

The results for the time evolution of the staggered magnetization following a quench from
the Néel state in the XZ model are displayed in figure 11. As is the case for the XXZ chain, an
explicit analytical expression for ms(t) in the XZ model can be derived for a quench to � = 0,
which is given by ms(t) = 0.5 cos2(J t). For � < �c, the numerical data for ms(t) at large times
fits very well exponentially decaying oscillations of the form

ms(t) ∝ e−t/τ2(cos2(ωt) − const). (44)

In this regime, the behavior of ms(t) in the XZ model is qualitatively different from that in
the XXZ model, as can be seen from the period of the magnetization oscillations. In the XZ
model the period diverges at the critical point (see figure 12), whereas it becomes smaller upon
approaching the isotropic point in the XXZ model (see figure 4). Furthermore, the critical point
exactly marks the crossover between oscillatory and non-oscillatory behavior of ms(t) in the
XZ model.

For ���c, the staggered magnetization decays exponentially in the XZ model and shows
no oscillations at large times. Interestingly, the numerical results for ms(t) in the XXZ and XZ
models are almost indistinguishable at large anisotropies � 
 1, as can be seen from figure 11.
We have extracted the relaxation times from exponential fits to the numerical data, obtaining
a clearly pronounced minimum right at the isotropic point (see figure 12). The relaxation time
scales as τ2 ∝ �−1 for ���c and as τ1 ∝ �2 for � 
 �c.

6. Gapless theory—the Luttinger model

In the analysis of the XX limit (section 2), it became evident that, if the initial gap is sufficiently
small, the non-oscillatory relaxation of the order-parameter dynamics is determined by
low-energy modes, which motivates the application of the Luttinger model to a quench to the

ht
tp
://
do
c.
re
ro
.c
h

23



0.1 1 10
Δ

1

10

100

J( 
e

mi
T

1
–

)

period T
τ

1
τ

2

t
ni

o
p l

a
citir

C

∝Δ2∝Δ−1

Figure 12. Relaxation times and oscillation period T = 2π/ω as a function of
anisotropy in the XZ model. Algebraic laws are shown by solid lines.

gapless phase � < 1 of the XXZ model. We note that our treatment is essentially equivalent to
the one of Iucci and Cazalilla [58]. The inverse scenario, a quench starting from a gapless phase,
has been studied in [53].

In appendix A, the Luttinger model,

HLL = u

2π

∫
dx

{
K (π�(x))2 +

1

K
(∂xφ(x))2

}
, (45)

has been introduced as a low-energy effective theory for the XXZ chain in the easy-plane
regime. The bosonized form of the staggered magnetization is given by ms ∼ 〈cos(2φ)〉x=0,
where we have made use of the translational invariance. The remaining problem amounts to
computing the time evolution of 〈cos(2φ)〉, starting from a state where the field φ is initially
pinned at 0 or π/2. We remark that this problem is essentially the dual of the dephasing problem
studied in [112], and thus we expect an exponential decay of ms with a characteristic time
scale τ ∼ J/(K�s). A convenient technique for solving this problem is the truncated Wigner
method [63], which is exact for quadratic Hamiltonians such as (B.9). Using this approach, the
time-dependent expectation value of the staggered magnetization can be written as a functional
integral over the Wigner transform �W(φ0, φ̇0) of the initial density matrix:

〈cos(2φ)〉 =
∫
Dφ(t)

∫
D(φ0, φ̇0) �W(φ0, φ̇0) × cos(2φ) δ(φ̈ − u2∂2

x φ)

=
∫
D(φ0, φ̇0) �W(φ0, φ̇0) cos(2φcl(x, t)). (46)

Here, the functional δ-distribution ensures that one integrates only over solutions of the classical
equations of motion and φcl(x, t) denotes the classical solution of the 1D wave equation
corresponding to the initial conditions φ0(x) and φ̇0(x). We have also used the fact that
the operator cos(φ) is diagonal in the φ-representation. The solution φcl(t) can be explicitly
constructed using d’Alembert’s formula. After switching to dual-field representation using
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K u∂xθ = φ̇, we obtain

〈cos(2φ)〉 ∼
∫
D(φ0, θ0) �W(φ0, θ0) cos[φ0(x − ut) + φ0(x + ut) + K θ0(x + ut) − K θ0(x − ut)] .

Since in the initial state φ is pinned at φ0 = 0, we factor out the φ-dependent part of the integral,
obtaining

ms(t) ∼ 〈 cos K (θ(ut) − θ(−ut))〉0, (47)

where the brackets with the index 0 denote the expectation value taken with respect to the
initial state. The rhs of equation (47) can be estimated within a semiclassical analysis, where
the ground state of the Luttinger Hamiltonian (B.9) with an additional mass term ∼ �sφ

2 is
used as the initial state. This finally leads to

ms(t) ∼ exp − K 2

2

〈
(θ(ut) − θ(−ut))2

〉
0

∼ exp −K
∫ �

0
dq

√
q2 + �2

s/u2

q2
sin2(qut)

−→
�st


exp(−π K�st/2), (48)

where �s again denotes the gap of the initial state. In contrast with the empirical rule (28)
for the XXZ model, the Luttinger model, being a continuum theory, does not reproduce
oscillations. The non-oscillatory relaxation in (48) is characterized by a relaxation time inversely
proportional to the gap and to the Luttinger parameter, τ = 2

π K�s
, behavior identical to the

conformal field theory result (8) and similarly observed in the numerical calculation for the
quench in the XXZ model. However, the algebraic prefactor present in the case of the XXZ
model (28) and the SDW initial state under the XX Hamiltonian (24) is not present in this
treatment of the Luttinger model. Since the Luttinger model includes the XX limit at K = 1,
we conclude that the missing algebraic prefactor is a shortcoming of the initial state, which
has been approximated as the ground state of the Klein–Gordon model (B.16). More accurate
results could provide a treatment using the sine-Gordon Hamiltonian, which as we shall see in
the next section strongly complicates the problem.

7. Gapped theory—the sine-Gordon model

In this section, we analyze the quench in the sine-Gordon model (see appendix B),

HSG = 1

2π

∫
dx
[
uK (π�(x))2 +

u

K
(∇φ(x))2

]
− 2J�

(2πα)2

∫
dx cos(4φ(x)), (49)

as a possible continuum approach to the quantum quench in the XXZ chain for � > 1. In
what follows, we use the boundary-state formalism as a convenient tool for describing the non-
equilibrium problem [57]. In this formalism, the initial state, which is not the eigenstate of the
Hamiltonian, can be thought of as a special superposition of pairs of eigenmodes of the quantum
Hamiltonian with opposite momenta, which sums up into a squeezed state of eigenmodes [113].
Unlike for the gapless Luttinger-liquid theory, we cannot present a full solution of the dynamics.
Possible directions to be followed in future are pointed out.
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Since the sine-Gordon model has relativistic (Lorentz) invariance, we can exchange the
time and space directions x ↔ t and consider the following boundary-in-time Hamiltonian
(using more conventional notation x again for the imaginary time direction)

H = 1

2π

∫
dx
[
uK (π�(x))2 +

u

K
(∇φ(x))2

]

− 2J

(2πα)2

∫
dx{� cos(4φ(x))θ(x) + �0 cos(2φ(x))δ(x)}, (50)

where θ(x) is a theta-function and δ(x) takes care of the initial condition. In order to implement
the Néel state as an initial condition we send �0 → ∞, which corresponds to the Dirichlet
boundary (initial) condition. This boundary (initial) condition formulation can be reformulated
in a boundary-state formalism of the boundary sine-Gordon model (bSG). The initial condition
is expressed as a squeezed state of bulk degrees of freedom. We note that for non-interacting
particles or Luttinger liquid this correspondence can be seen directly. Since for K < 1/2 there
are only solitons and antisolitons in the spectrum (repulsive regime of the sine-Gordon model),
we obtain the boundary state in the following form:

|B(t = 0)〉D =N exp

[∫
K ab

D (θ)A†
a(θ)A†

b(−θ)

]
|0〉. (51)

Here A†
a,b(θ) is an operator of creation of the soliton (a) or antisoliton (b) and K ab

D (θ) is
a reflection matrix of the soliton–antisoliton pair corresponding to the Dirichlet boundary
condition. The rapidity θ is related to the momentum P = Ms sinh θ and energy E = Ms cosh θ ,
where the soliton mass Ms is given by [114]

Ms =
⎛
⎝ J�

2πα2 �
(

1 − β2

8π

)
�(

β2

8π
)

⎞
⎠

1/[2−2(β2/8π)]

2�
(

ξ

2

)
√

π�
(

1
2 + ξ

2

) , (52)

where we define ξ = β2/(1 − β2).
The evolution is trivial in the soliton basis, because the bulk Hamiltonian is diagonal in

soliton–antisoliton operators,

|B(t > 0)〉D =N exp

(∫
K ab

D (θ, t)A†
a(θ)A†

b(−θ)

)
|0〉,

(53)

K ab
D (θ, t) = K ab

D (θ) exp(2it Ms cosh(θ)).

In the boundary state formulation the evolution of the magnetization is equivalent to the
computation of the following quantity:

ms(t) = 〈B(t)| cos(2φ(0))|B(t)〉. (54)

In general, the squeezed state represented by the boundary state |B(t)〉 should be expanded
as a series in powers of the reflection matrices. This produces multiple dynamical processes,
which include solitons and antisolitons. Multi-particle expectation values of the operators, like
cos(2φ), are called form factors. To compute the correlation functions in the massive theories
at equilibrium, only a small number of lowest form-factor contributions is necessary. However,
our evaluation of the lowest order contributions in our case provided results contradictory to
the numerical simulations. The reason for this will be found in the spectral analysis of the next
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section, which hints that not only soliton–antisoliton form factors are important (which is the
case for the spectral function of the sine-Gordon model for small energies), but also multiple
processes, which include energies well above the spectral gap (soliton mass), are necessary
to be considered. Technically, the problem of inclusion of multi-soliton form factors is rather
difficult. The θ-integrals corresponding to evaluation of different multi-particle contributions
become even more complicated because of the reflection matrices K ab

D (θ).
A possible alternative approach to this form-factor evaluation could be a resummation of

the leading divergencies of the scattering processes in the presence of a boundary state. Since the
ultraviolet (UV) energies make an important contribution, one can try to proceed by considering
the logarithm of the one- or (two-) point function and to sum the leading contributions as
proposed previously [115]–[118]. However, the complexity of the boundary reflection matrix
does not allow us to realize this program. We hope to return to this problem in future.

In view of the high complexity of the boundary-state formalism, it may be worthwhile
to establish phenomenological analogies between non-equilibrium dynamics and equilibrium
dynamics of the sine-Gordon model. This would be useful since for calculating dynamical
structure factors a powerful machinery has been developed over the last decades. Arguing
that the initial state can be described by a thermal ensemble (with some effective temperature
considered as a fitting parameter) instead of the boundary state, we can relate the dynamics of
the magnetic order parameter to the two-point function,

ms(t) ∼ 〈cos(2φ(t)) cos(2φ(0))〉, (55)

where the average is taken over some thermal ensemble characterized by temperature Teff. The
operation of cos(2φ(0)) onto the thermal state is one possible way to introduce some magnetic
order or, stated otherwise, to establish an analogy to equation (54); cos(2φ(t)) acting on the
thermal state is a way to mimic a boundary-in-time state. We note that such an approach has
been successfully applied for studying the dynamics of a non-local observable in quench in
the quantum Ising chain [119]. The dynamics of the two-point function (55) is separated into
two regimes: large temperatures Teff 
 Ms and low temperatures Teff � M . It is known that
for large energies (UV) massive models, like the sine-Gordon model, have the conformal field
theory asymptotics. Therefore, in the large-temperature regime the behavior of the correlation
functions should be the same as in the high-temperature limit of the corresponding conformal
field theory. Hence, for Teff 
 Ms, the large-time asymptotics of the correlation function is given
by an exponential decay

ms(t) ∼ exp

[
−πTeff

K

2
t

]
. (56)

This conformal field theory behavior is universal also for the gapless phase, where, at least in
some regimes of weakly magnetized initial states, setting Teff = �s this behavior is a good first
approximation of the dynamics of the order parameter in the quench problem (see table 1).
However, in the gapped phase, we cannot find a reasonable way to define Teff. For example, the
temperatures corresponding to the Boltzmann ensembles used in the following section do not
reproduce the numerical findings at all.

In the other regime, Teff � Ms, the structure of the massive theory is important. In this case,
the leading order behavior comes from the zero-momentum exchange processes and depends on
the structure of scattering matrix S(0) in this limit. Resummation of the kinematical singularities
leads again to the exponential decay for the two-point correlation function [120], in agreement
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with a quasi-classical formula from [121]. Implementing the results of [120] to our situation,
we obtain

ms ∼ exp
[−Teff e−Ms/Tefft

]
, (57)

where the proportionality coefficient depends on the power of Ms. Such behavior, however, is
in disagreement with our numerical findings, where in the limit of large Ms (large �) we find a
decay rate proportional to �−2.

We conclude that although the sine-Gordon is a valuable candidate for describing the
dynamics following a quantum quench in the XXZ model, the evaluation of the corresponding
form factors is difficult and demands further efforts. A relation of the coherent dynamics
of the order parameter to dynamical structure factors, circumventing this problem, is not
straightforward to be established.

8. Spectral analysis

For a deeper understanding of the relaxation dynamics, it is useful to consider the problem
in energy space. The idea is to associate the properties of the spectrum of the Hamiltonian to
the dynamical phenomena observed in the simulation of the time evolution and to clarify the
possibility of separating energy scales—a question that is especially important for improving
analytical descriptions of the non-equilibrium dynamics.

Using the Lehmann representation, the time evolution of an operator O takes the form of a
Fourier transform over the eigenlevels of the Hamiltonian,

〈O(t)〉 =
∑
n,m

e−it (Em−En)〈ψ0|m〉〈m|O|n〉〈n|ψ0〉.

For a more convenient continuum description, we introduce the quenched probability
distribution,

ρψ0(ε) =
∑

n

δ(ε + E0 − εn)|〈n|ψ0〉|2, (58)

which determines the properties of the stationary state at t → ∞ [84], [122]–[124] (the
frequencies ε are shifted by E0—the ground-state energy of H). It can be compared to the
thermal (Boltzmann) distribution of the grand canonical ensemble,

ρB(ε) = 1

N
∑

n

δ(ε + E0 − εn)e
−εn/T , (59)

where the temperature is set by the energy of the initial state,
∫

dεερB(ε) = 〈ψ0|H |ψ0〉. In
general, it is known that the thermal distribution can deviate strongly from the quenched
distribution [69, 84], [122]–[124], which leads to the phenomenon of absence of thermalization.
Here the thermal distributions are used only as a reference and questions in connection with
thermalization phenomena will not be investigated. While the quenched probability distribution,
ρψ0 , captures the effect of the initial state, the distribution of the expectation value,

O(ε ′, ε) =
∑
n,m

δ(ε ′ + E0 − εm)δ(ε + E0 − εn)〈m|O|n〉,

ht
tp
://
do
c.
re
ro
.c
h

28



reflects the specific spectral properties of the given observable. ρψ0 and O(ε ′, ε) provide the
contributions to the weighted expectation value,

W0(ε
′, ε) =

∑
n,m

δ(ε ′ + E0 − εm)δ(ε + E0 − εn)〈ψ0|m〉〈m|O|n〉〈n|ψ0〉, (60)

which, via the distribution function

fO(ε) =
∫

dε ′WO(ε + ε ′, ε ′), (61)

represents the dynamics of the observable in frequency space,

O(t) =
∫

dε e−iεt fO(ε). (62)

The spectral properties of the XXZ chain prepared in the Néel state, |ψ0〉 = |↑↓↑ · ·· ↓↑〉,
with the staggered magnetization as the observable, O = ms, are calculated by means of exact
diagonalizations for small system sizes. Figure 13 displays the results for a chain of length
N = 14. The small system size results in strongly peaked distributions, but we have made sure
that the qualitative features we extract in the following analysis are stable against variations
of the system size, both towards larger, N = 18, and smaller, N = 10, values. Quantitative
information cannot be extracted from this simple analysis, but this might be possible when going
to larger system sizes by means of more involved techniques, such as the Lanczos method [77].

In the non-interacting limit (� = 0), where the Hamiltonian has a free-fermion
representation as discussed in section 2, all distributions are centrosymmetric about ε = E0.
The quenched distribution ρψ0(ε) exhibits peaks at ε − E0 = ±J , which are not present
in the thermal distribution. From the discussion in section 2 and the finite size study
(figures 13(a)–(c)), we can separate two contributions to Wms(ε

′, ε):

(i) Free-fermion band edges. The distribution has maxima and sharp cutoffs at the edges
ε − ε′ = ±2J .

(ii) Low frequency. The contributions from the areas at ε − ε ′ � J are weaker than the band-
edge contributions (i).

For small but finite anisotropies, as exemplified by the results for � = 0.4 (figures 13(d)–(f)),
the main features of the � = 0 distributions are still present. However, the distributions lose
their reflection symmetry and the weight is shifted towards lower energies. In addition to
this asymmetry, the cutoff of the distribution of ms is no longer absolutely sharp at the band
edge. This can be understood as an effect of the breakdown of the free-fermion quasi-particle
description of the Hamiltonian at � �= 0.

For large anisotropies in the gapped regime (e.g. � = 3, figures 13(m)–(o)), the quenched
probability distributions have a single peak at ε = 0 and a continuum above the gap, which is
rather flat in comparison with the thermal distribution. The expectation values of the observable
ms(ε

′, ε) are spread over a large energy region; however, the relevant weighted expectation
values Wms(ε

′, ε) receive contributions of only three different types, all of which are located at
low energies:

(i) Continuum above the gap. The contributions from 〈m|ms|n〉, n �= 0, m �= 0 form a rather
continuous distribution with frequencies far below the gap ε − ε ′ � J�.
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Figure 13. Analysis of the spectrum of the XXZ chain for a system of 14 sites
with periodic boundary conditions. Dotted lines mark the position of the energy
of the system, E = 〈ψ0|H |ψ0〉. See the text for the description of the regions
marked (i)–(iv).
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Figure 14. The frequency distribution of the staggered magnetization, fms(ε),
for a system of 14 sites with periodic boundary conditions. Histograms
resolve individual peaks, and solid lines correspond to (non-unique) smoothed
distributions emphasizing separable contributions. For � = 0, the exact solution
in the thermodynamic limit (14) is drawn instead.

(ii) Off-diagonal contributions involving the ground state. Elements 〈0|ms|n〉, n �= 0, result in
frequencies equal to or larger than the gap.

(iii) Ground state. An isolated peak is located at the ground-state energy of H (ε = ε ′ = 0).

For lower � this picture remains basically valid. However, in figures 13(j)–(l), where the
results for � = 2 are shown, the width of the contribution (iv) becomes of the order of the gap.
For even lower anisotropies, e.g. � = 1, separation of the contributions is no longer possible
(figures 13(g)–(i)).

The effects of these contributions on the frequency distribution fms(ε) is shown in figure 14.
The characteristics of time evolution can now be inferred from the properties of the Fourier
transform of the distribution fms(ε). The algebraically decaying oscillations at � = 0 (13) are
a consequence of the step-like shape of fms(ε), which is a consequence of the properties of the
contribution (i). For � > 0, the smearing of the edge is the cause of the exponential decay of
the oscillations. The finite width of the edge in figure 14(b) is consistent with the relaxation
time of the oscillations (figure 4). At � > 1 there are also contributions at large frequencies
originating from contributions of type (iv), resulting in rather broad peaks in fms(ε), which lead
to the quickly decaying oscillations seen in figure 5. The low-frequency contributions (iii) are
reflected in a peak of fms(ε) around ε = 0, whose width corresponds to the relaxation time τ1 of
the non-oscillatory decay (figure 4).

The isolated peak (v) at zero energy is irrelevant for the dynamics. It would correspond to
a finite asymptotic value at t → ∞, which apparently vanishes in the thermodynamic limit.

In summary, on the basis of the analysis of the frequency distributions, we can now draw
a qualitative crossover picture from the oscillatory to the non-oscillatory behavior as � varies.
Approaching the isotropic point from small values of �, the band edges (i) are smeared out,
leading to a decreasing relaxation time τ2. Starting from large values of �, the low-frequency
peak merges into the homogeneous distribution upon approaching the isotropic point. Hence,
the characteristics of (i) and (iii) contributions, dominating at small (respectively large) values of
�, are both lost at intermediate values of �, where the interplay of all energy scales apparently
leads to a non-generic dynamical relaxation of the order parameter. We also note that, even in
the regime � 
 1, where the initial state is rather close to the ground state of the Hamiltonian,
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the relevant part of the spectrum located above the gap is a multi-particle continuum, difficult
to treat analytically.

9. Conclusions and outlook

We have analyzed the dynamics of the staggered magnetization in quantum spin chains
following a quantum quench, considering various antiferromagnetically ordered initial states by
using a number of complementary numerical and analytical approaches. In the numerical MPS
study we have essentially found three types of relaxation dynamics for the order parameter:
(i) for highly ordered initial states (�0 
 1) and sufficiently small anisotropy parameters of the
Hamiltonian at t > 0, there are Rabi oscillations, which dephase exponentially in time away
from the XX limit; (ii) for strong anisotropies (� 
 1) there is an exponential decay and the
relaxation time scales as τ ∝ �2; (iii) for initial states close to the phase transition, we found
evidence for algebraic corrections to the exponential decay. There is a crossover phenomenon
between oscillatory (small �) and non-oscillatory dynamics (large �), but no clear point of
transition can be identified. Either both types of dynamics are superimposed, as is the case for
�0 � 1, or both vanish in an extended transition regime, in which non-generic behavior is found
(the case of �0 
 1).

We have shown that a precise description of the Rabi oscillations (i) is possible only when
the full spectrum is taken into account. Therefore mean-field as well as low-energy approaches
lead to incomplete results—an analytical treatment of this type of dynamics is feasible only
by novel approaches. It has become clear that quasi-particles relevant for Rabi oscillations are
located at the band edges. In contrast to equilibrium properties, where many-body effects can
be incorporated into the relevant linearizable Fermi-level excitations within the bosonization
formalism, it is not clear how to treat interactions in combination with the quadratic dispersion
relation at the edges of the band. A treatment along the lines of previously developed concepts
dealing with non-linear effects in dynamical phenomena [52, 125] might be a possible solution
to this problem.

While the exponential decay at large anisotropies (ii) appears to be rather generic behavior
and is also reproduced in the exactly solvable XZ model, the algebraic prefactor in front of the
exponential law (iii) is a more intricate phenomenon. In the XX limit, where we approximated
the initial state by an SDW, such order-parameter dynamics are reproduced. However, standard
field-theoretical approaches, such as conformal field theory or the description by Luttinger
model adopted here, capture roughly the scaling of the corresponding relaxation time, but miss
the prefactor. Our results suggest that this is a consequence of the phenomenological description
of the initial state in terms of a simple massive theory (Klein–Gordon). A more elaborate
treatment of the initial state using the sine-Gordon model could resolve this deficiency of the
field-theoretical descriptions.

The sine-Gordon and the original XXZ model are integrable. Analyzing the quench by
using the integrability of these models amounts to evaluation of form factors of particles with
nontrivial statistics. While for two or three particles this problem can be solved [126, 127],
we have found that non-equilibrium dynamics requires the evaluation of higher order form
factors—a yet unsolved and highly complex problem. A promising approach is to use the
structure of the Bethe-ansatz solution in combination with a numerical algorithm [73].

Similarly to studies of other models [90, 96] we find as a generic feature that relaxation
times become small in the vicinity of the quantum critical point. However, the behavior is far
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too rich to be attributed to a generic dynamical phase transition [96]. In our analysis we have
shown that effective descriptions by low-energy theories belonging to the universality class of
the model cannot capture all relevant processes. A sort of dynamical phase transition occurs,
however, in the mean-field description (a finite magnetization is found in the long-time limit
for � > 1), which treats interaction terms as on an infinite-dimensional lattice. This suggests
that the existence of a sort of dynamical critical behavior may, very much like for equilibrium
phase transitions, depend on dimensionality. A first step towards understanding the role of
dimensionality is the study of non-equilibrium dynamics in infinite dimensions, for example
by using dynamical mean-field theory [94, 96]. How to treat coherent dynamics in a 2D or 3D
system is still an open question.

Finally, we have to mention that the Heisenberg chain is a simplified model, well suited for
numerical and analytical investigations, but not necessarily appropriate for a full description
of experimental systems. Although in experiments with two-level atoms in optical lattices,
behavior similar to our theoretical prediction is observed [19, 21], the model has to be adjusted
to provide an accurate description of the experimental results. For example, the effect of density
fluctuations beyond the purely magnetic model needs to be investigated. Although the matrix
product algorithm is an efficient method to study the relaxation dynamics, the numerically
reachable times are fundamentally restricted by growing entanglement. The runaway time may
become very small in models more involved than spin-1

2 chains, in particular when particle
fluctuations need to be taken into account [86]. Recently, schemes have been proposed that allow
us to go beyond what is possible within the conventional matrix product algorithms [128]–[131].
The main idea in these approaches is to calculate directly the dynamics of an observable
rather than explicitly follow the evolution of the state. Another important aspect neglected
here, but relevant in experiments, is temperature. How to efficiently include the effects of
finite temperature within a time-dependent matrix product algorithm is still an unsolved
problem [129, 132].
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Appendix A. Quantum magnetism in optical lattices

The underlying model for realizing quantum magnetism in optical lattices is a single-band
Hubbard model,

H =
∑
i jσ

{
ti jσ a†

iσ a jσ + h.c.
}

+
∑

i

U↑↓ni↑ni↓ +
∑

iσ

Uσσ

2
(niσ − 1)niσ −

∑
i

μiσ niσ . (A.1)

a†
iσ are the creation operators of a particle in a Wannier state of type σ at site i , satisfying bosonic

commutation relations. niσ = a†
iσ aiσ are the corresponding occupation numbers. The internal
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degree of freedom σ represents typically a hyperfine state and can be identified with (pseudo)
spin-1

2 , σ =↑, ↓. The hopping integral ti jσ and the interaction parameters Uσσ ′ depend on the
geometry and depth of the lattice and can be expressed in terms of overlaps of the Wannier
orbitals. If, for concreteness, we consider a periodic, spin-dependent lattice potential with an
isotropic spacing a,

Vσ (r) =
∑

μ=x,y,z

Vμσ sin2 Krμ, (A.2)

with K = 2π

a , the recoil energy needs to be much smaller than the lattice depth, Er = h̄2 K 2

2m �
Vμσ , so that the atoms are in the lowest harmonic level and single-band description (A.1) is valid.
In reality, the Gaussian shape of the laser beams introduces inhomogeneity in the lattice depth
in addition to the harmonic trapping potential μi . The superposition of polarized laser beams
generates spin-dependent potentials [31, 133]. In general, the orbitals extend only over short
distances and the hopping can be restricted to nearest neighbors, ti jσ = tμσ , if ri − r j = eμa,
where [134]

tμσ ≈ (4/
√

π
)

E1/4
r

(
Vμσ

)3/4
exp
[−2(Vμσ/Er)

1/2
]
, (A.3)

Uσσ ′ ≈ (8/π)1/2(kasσσ ′)(Er V xσσ ′ V yσσ ′ V zσσ ′)1/4. (A.4)

Here, V μσ−σ = 4Vμ↑Vμ↓/(V 1/2
μ↑ + V 1/2

μ↓ )2 is the spin-average potential in each direction, V μσσ =
Vμσ , and asσσ ′ is the s-wave scattering length between atoms of spin σ and σ ′.

In the case of strong on-site repulsion, tμσ � Uσσ ′ , and integer filling, the system is in the
Mott phase, where occupation number fluctuations are essentially suppressed. In this case,
the effective basis contains locally only singly occupied spin-up |↑〉 or -down |↓〉 states (for
the sake of simplicity we choose 〈ni↑〉 + 〈ni↓〉 = 1, although higher occupation numbers are also
possible). In this subspace, neglecting terms of order t4

i j/U 3
σσ ′ , the Hubbard model (A.1) can be

mapped onto a spin-1/2 Heisenberg model (XXZ model) [135]–[138],

HXXZ =
∑

i j

{
J i j
⊥ (Sx

i Sx
j + Sy

i Sy
j ) + J i j

z Sz
i Sz

j

}
. (A.5)

The superexchange interaction constants J i j
z and J i j

⊥ are given by

J i j
z = 2t2

i j↑ + 2t2
i j↓

U↑↓
− 4t2

i j↑
U↑↑

− 4t2
i j↓

U↓↓
, (A.6)

J i j
⊥ = −4ti j↑ti j↓

U↑↓
. (A.7)

An analogous treatment can be carried out for the fermionic Hubbard model. In the
resulting magnetic Hamiltonian (A.5), J⊥ has the opposite sign compared to equation (A.7)
and in the expression for Jz the last two terms are absent since double occupancy is forbidden
by the Fermi statistics.

For appropriately chosen lattice and interaction parameters, the anisotropy of the spin
exchange, �i j = J i j

z /J i j
⊥ , is tunable to a large extent. For example, in the bosonic case with

symmetric on-site repulsions, a ferromagnet with possible easy-axis anisotropy, �i j = 1
2(

ti j↑
ti j↓

+
ti j↓
ti j↑

)� 1, is realized. In addition, as demonstrated recently [19], double-well potentials can be
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used to change the sign of the exchange interactions from ferro- (J i j
z < 0) to antiferromagnetic

(J i j
z > 0) [86].

Although the Heisenberg Hamiltonian (A.5) is a good first approximation to strongly
interacting two-component Bose gases in optical lattices, we note that the measurements of
Trotzky et al [19] clearly show the limitations of the purely magnetic picture. The strong
repulsion leads to superexchange interaction, which reaches the order of currently realistic
temperatures, J/kB ∼ 10−9 K, and in non-equilibrium experiments the dynamics slow down,
so that the effects of inhomogeneous laser beams become strong. For larger tunnelings, density
fluctuations are important and introduce an additional higher frequency; excitations to higher
Bloch bands may also become possible. We conclude that, although the experimental progress
looks promising, further improvements in experimental setups are still needed in order to
produce a clean realization of a quantum magnet.

Appendix B. Equilibrium properties of the XXZ model in one dimension

In a spatially anisotropic optical lattice, the Heisenberg chain, a paradigm in the theory of
magnetism and strongly correlated systems in general, can be realized experimentally as
proposed in the appendix A. Here we give an overview of the equilibrium phases of the
Heisenberg chain, focusing on antiferromagnetic exchange interactions. At the same time, the
important concepts and notations to be used in the ensuing discussion of the non-equilibrium
problem are introduced.

The 1D spin-1/2 Heisenberg chain,

H = J
∑

j

{
Sx

j Sx
j+1 + Sy

j Sy
j+1 + �Sz

j S
z
j+1

}
, (B.1)

is integrable—the eigenstates and an infinite number of conserved operators can be obtained
using the Bethe ansatz [139]–[143]. A number of equilibrium properties can be exactly
computed for the Bethe wave function—examples are the energy and momentum of low-
lying states, or local observables such as the staggered magnetization [144, 145]. For some
specific cases, non-local properties can also be calculated analytically [146, 147] or by means
of a combination of the Bethe ansatz with numerical algorithms [73, 148, 149]. A simplified
insight into the physics of the Heisenberg chain can be gained from a continuum description via
the bosonization technique [108, 150]. Here, results from both approaches, Bethe ansatz and
bosonization, will be presented.

The ground-state phase diagram of the XXZ model is presented in figure B.1. Without
loss of generality the coupling J can be considered to be positive and the phases are simply
characterized by �. The long-range ordered antiferromagnetic phase for Ising-like anisotropies
� > 1 exhibits a spectral gap. In the easy-plane regime |�|� 1, a critical gapless phase is found.
The phase for � < −1 is ferromagnetically ordered.

A useful equivalent representation of (1) is a model of interacting spinless fermions,

HXXZ = J

2

∑
j

{
c†

j c j+1 + c†
j+1c j + 2�c†

j c j c
†
j+1c j+1

}
, (B.2)
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Figure B.1. The ground-state phase diagram of the XXZ model in one
dimension.

obtained from (1) by Jordan–Wigner transformation from spin operators to spinless fermion
operators [65],

S+
j = c†

j e
iπ
∑

i< j c†
i ci ,

Sz
j = c†

j c j − 1
2 .

(B.3)

In the case of a 1D Hamiltonian with nearest-neighbor interactions, particle statistics is
irrelevant, and alternatively the fermions can also be replaced by hardcore bosons [108].

The fermionic picture is especially useful in the non-interacting case (� = 0, also known
as the XX limit), where (B.2) is diagonal in Fourier space,

HXX =∑k εkc†
kck,

εk = −J cos k.
(B.4)

In the case of zero magnetization, which is of interest here, the ground state is described by the
half-filled Fermi sea,

|ψ〉XX =
∏

−π/2<k�π/2

c†
k |0〉, (B.5)

where |0〉 is the fermionic vacuum, ck|0〉 = 0. The (longitudinal) spin–spin correlation function,

Gzz(�) = 1

N

∑
i

〈Sz
i Sz

i+�〉, (B.6)

which characterizes magnetic ordering, can be calculated exactly in the XX limit
[66], [151]–[156]. The result is a superposition of quasi-long-range ferromagnetic and antiferro-
magnetic correlations, decaying by a power law,

Gzz(�) ∝ 1 − (−1)�

�2
. (B.7)

For finite �, the extraction of correlation functions from the Bethe-ansatz solution is highly
nontrivial and only possible for some special cases (e.g. [147]).

In order to obtain a continuum description of the Heisenberg chain, the spectrum of the
non-interacting model is linearized at the Fermi points and the modes are separated into left and
right movers,

HXX = J
∑

|k− π
2 |� �

2J

(
k − π

2

) {
c†

R,kcR,k − c†
L,−kcL,−k

}
. (B.8)
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Figure B.2. The Luttinger parameter K , the velocity u, the gap �s, and the
staggered magnetization ms in the XXZ model, calculated by the Bethe ansatz.

The cutoff � is of the order of the bandwidth. Starting from (B.8), interactions can be
included using the bosonization formalism [108]. At the renormalization-group fixed point,
which captures the long-distance properties, the Luttinger model,

HL L = u

2π

∫
dx

{
K (π�(x))2 +

1

K
(∂xφ(x))2

}
, (B.9)

provides an effective description for |�| < 1. �(x) and φ(x) are conjugate bosonic fields,
[�(x), φ(x ′)] = iδ(x − x ′). We note that the excitations described by the Luttinger model
correspond to linearly dispersed spin waves with velocity u. The values of both, u and the
Luttinger-liquid parameter K , can be derived from the Bethe ansatz [157],

K = 1

2β2
,

(B.10)

u = J sin(π(1 − β2))

2(1 − β2)
,

where β is determined from the relation � = −cos πβ2. The functions K (�) and u(�) in
the antiferromagnetic regime are plotted in figure B.2; K (0) = 1, K (1) = 1

2 , u(0) = J and
u(1) = Jπ

2 , and additionally K (−�) = K −1(�). The bosonic fields can be mapped back to the
spin operators,

Sz(x) = − 1

π
∇φ(x) +

(−1)x

πα
cos(2φ(x)), (B.11)

where α ∼ 1
�

. Here, the lattice spacing is set to one, so that the original sites are located at x = i ,
i = 1, . . . , N (N being the number of lattice sites).
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For the quadratic Luttinger Hamiltonian (B.9), the correlation functions can be
evaluated [108],

Gzz(�) = C1
1

�2
+ C2(−1)�

(
1

�

)2K

. (B.12)

The constants C1 and C2 have been calculated in [158]. Hence, in the whole planar phase
(|�| < 1), the correlations exhibit critical behavior and fall off algebraically.

A different situation has to be faced for �� 1. In the renormalization-group treatment,
backscattering terms become important. For �� 1, the sine-Gordon Hamiltonian,

HSG = HLL +
2J�

(2πα)2

∫
dx cos(4φ(x)), (B.13)

is the effective model. At the isotropic point, � = 1, K = 1/2, the cosine term is marginally
relevant and leads to logarithmic corrections to the correlation function (B.12). For Ising-
like anisotropies, � > 1, 0 < K < 1/2, the cosine term is relevant—a spectral gap, �s, opens
and the phase φ becomes pinned at 0 or π/2. Hence, � = 1 marks a phase transition
to an antiferromagnetically ordered phase with a finite asymptotic value of the spin–spin
correlations,

Gzz(�) =
�→∞

(−1)�ms
2. (B.14)

The two degenerate ground states, corresponding to φ = 0 or π/2, exhibit staggered
magnetization, ms, of opposite signs,

ms ≡ 1

N

∑
j

(−1) j〈Sz
j 〉 ∼ 〈cos(2φ)〉. (B.15)

The spectral gap as well as the staggered magnetization are continuous in all derivatives in
�—the phase transition is of Berezinskii–Kosterlitz–Thouless type [159, 160]. In figure B.2,
�s and ms are plotted as calculated from the Bethe ansatz [144, 145]. The energetically lowest
excitations of the sine-Gordon model (B.13) are solitons and antisolitons, which create kinks to
antiferromagnetic domains with negative (solitons) respectively positive (antisolitons) sublattice
magnetization ms.

For sufficiently large anisotropies, where a semiclassical approximation becomes valid, the
sine-Gordon model reduces essentially to the Klein–Gordon Hamiltonian,

HKG = HLL + �s

∫
dx(φ(x))2. (B.16)

As a result of the presence of the mass term in (B.16), the connected correlation function,

Gzz
c (l) = 1

N

∑
i

〈Sz
i Sz

i+�〉 − 〈Sz
i 〉〈Sz

i+�〉, (B.17)

decays exponentially for large distances,

Gzz
c (l) ∼ e−�/ξ , (B.18)

where the correlation length is given by the inverse gap,

ξ ∼ J

�s
. (B.19)
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Figure B.3. Correlation function in the ground state at � = 1.2 and 1.5. Straight
lines are exponential laws e−�/ξ . Whereas for � = 1.5 the inverse correlation
length ξ−1 = 0.0873 is very close to the value predicted by the Klein–Gordon
model (�s/J = 0.0866), for � = 1.2 it is considerably larger (ξ−1 = 0.021,
�s/J = 0.0048).

In figure B.3 the behavior (B.18) is confirmed in the gapped state of the XXZ model by
numerical simulations using imaginary-time evolution of the infinite-size matrix product state
(see [161] or appendix C for the description of this method). However, the relation (B.19) is
only valid for sufficiently large gaps.

In order to avoid dealing with the complicated structure of the antiferromagnetic states in
the XXZ model, we introduce the SDW state,

|ψ〉SDW =
∏

−π/2<k�π/2

(
ukc†

k + vkc†
k+π

)
|0〉 . (B.20)

The coefficients of the wave function are related to the gap parameter �s by

vkuk = �s

2
√

ε2
k + �2

s

,

u2
k − v2

k = εk√
ε2

k + �2
s

, (B.21)

u2
k + v2

k = 1.

The correlation function calculated with the state (B.20) reproduces the exponential
decay (B.18) with the correlation length inversely proportional to the gap (B.19)—the SDW
provides a valid phenomenological description of antiferromagnetic states. For special values
of parameters—namely at the Luther–Emery point [157]—the SDW (B.20) coincides with the
exact ground state of the sine-Gordon model (B.13). Varying the gap parameter �s from zero to
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infinity, the SDW state (B.20) links the ground state of the XXZ model at � = 0 (B.5) with the
Néel state,

|ψ〉Néel = |↑↓↑ . . .↓↑↓〉, (B.22)

the ground state in the limit � → ∞.

Appendix C. Matrix product algorithm for time-dependent problems in the

thermodynamics limit

The concept of MPS [162]–[165] as a generalization of valence-bond states [150, 166, 167]
has been developed parallel in time with the DMRG algorithm [168, 169]. DMRG established
quickly as one of the most powerful numerical approaches for solving (quasi) 1D correlated
many-body problems at equilibrium. Although DMRG was originally introduced as a real-
space renormalization group, it can be understood as a variational optimization procedure in
the space of matrix product states [171]. This identification of DMRG with MPS is especially
useful for the implementation of the ideas of DMRG in the thermodynamic limit [161, 171]
and for time-dependent problems [78]–[80], [172]. In the following, we present a formulation
of a DMRG-like algorithm, which is most suitable for both time-dependent and infinite-size
calculations. The procedure is identical to the infinite-size time-evolving block decimation
algorithm iTEBD [161], except that different matrices, introduced in the context of static
DMRG [171], are used in order to improve the stability of the algorithm. Since neither the
density matrix nor the renormalization group idea appears explicitly in this formulation, we
refer to the algorithm as MPS or iMPS if the infinite-size limit is to be emphasized. Error
analysis will be given for a specific case of a non-equilibrium problem in the thermodynamic
limit, where we find that the behavior of the error can be considered identical to the case of the
time-dependent DMRG for finite lattices [82].

C.1. MPSs

In order to construct an MPS, we consider a 1D lattice model where the Hilbert space can be
separated into left and right subspaces Li and Ri+1 (Li including i as the rightmost site, i + 1
being the leftmost site of Ri+1). Generally, a wave function can be written as

|ψ〉 =
∑
αβ

|�Li

α 〉(�i)αβ |�Ri+1

β 〉, (C.1)

where |�Li

α 〉 (|�Li+1

β 〉) are orthonormal basis vectors of the space Li (Ri+1). �i is called the
bond center matrix of bond i and constructs the density matrix of the left and right subsystems,
ρLi = �

†
i �i and ρRi+1 = �i�

†
i , respectively. If each site is described by a set of local basis

vectors |si〉 of dimension di (si = 0, . . . , di − 1), a state of the subspace can be expanded in
terms of the local basis and the remaining subspace,

|�Li

α 〉 =
∑
βsi

|�Li−1

β 〉(Asi
i )βα|si〉. (C.2)

The orthonormality of the basis imposes on As
i the left orthonormalization constraint,∑

s

As†
i As′

i = δss′ . (C.3)
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Equivalently, the state of the right subspace can be expanded by means of right orthonormalized
matrices,

|�Ri

α 〉 =
∑

β

|si〉(Bsi
i )αβ |�Ri+1

β 〉, (C.4)

∑
s

Bs
i Bs′†

i = δss′ . (C.5)

An iterative expansion of an arbitrary state |ψ〉 on a lattice of size N is possible, providing a
matrix-product expression of the state,

|ψ〉 = Tr
∑

s1s2...sN

As1
1 As2

2 . . . AsN
N |s1s2 . . . sN 〉. (C.6)

In the limit of N → ∞, in the presence of translational symmetry, an MPS can be constructed
as a periodic array of matrices. Choosing a 2-site unit cell for concreteness, i.e. Ai+2 = Ai , the
set of matrices As

1, As
2, Bs

1, Bs
2, �1 and �2 provides full information about the wave function.

For instance, it is possible to construct the major object to be manipulated in an MPS algorithm,
the two-site center matrix (index i denotes the site type, which can be either 1 or 2 for odd or
even i),

�ss′
i = As

i �i Bs′
i+1, (C.7)

which can be used to decompose the wave function into the local bases of sites i and i + 1,

|ψ〉 =
∑
αss′β

|�Li−1

α 〉|s〉(�ss′
i )αβ |s ′〉|�Ri+2

β 〉. (C.8)

Left and right orthonormalized matrices are related via the single-site center matrix,

�s
i ≡ �i−1 Bs

i = As
i �i , (C.9)

and can be formally mapped to each other,

Bs
i = �−1

i−1�
s
i and As

i = �s
i �

−1
i . (C.10)

Using the single-site center matrix, the calculation of observables for an MPS representation is
straightforward. For a local operator Oss′

i acting on site i ,

〈Oi〉 =
∑
ss′

Oss′
i

(
Tr�†s′

�s
)

. (C.11)

Similarly, introducing an iterative procedure, correlation functions can be calculated [171].

C.2. Schmidt decomposition

The preceding introduction of MPS is completely general and, if infinite-dimensional matrices
are allowed, any state can be formally expressed in terms of a matrix product. A class of
valence-bond states [150], [162]–[167] is indeed naturally formulated in terms of MPS. Also,
product states are trivially represented as MPS. MPSs are, however, especially powerful in
combination with an approximative numerical algorithm, providing the optimal reduced basis
set for replacing a large or possibly infinite Hilbert space. The Schmidt decomposition, as
described in the following, is the procedure that allows us to select the most relevant basis
states.
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If only a finite number of states m is supposed to be retained (in order to keep the dimension
of the Hilbert space manageable for the computer), it can be shown [169] that a state |ψ̃〉
approximates best the targeted state |ψ〉 in the form (C.1), if it is defined as the Schmidt
decomposition of rank m (site indices are omitted),

|ψ̃〉 =
m∑

α=1

|�̃L
α〉λα|�̃R

α〉. (C.12)

The Schmidt coefficients, λα, are the dominating eigenvalues of the singular value
decomposition,

�αβ =
∑

γ

Uαγ λγ V ∗
βγ , λ2

1 � λ2
2 � . . . , (C.13)

satisfying
∑

α λ2
α = 1. The discarded weight,

w =
∑
α>m

λ2
α, (C.14)

corresponds to the mismatch, ||ψ̃〉− |ψ〉| = w, introduced by this truncation procedure. The
new basis is given in terms of the Schmidt states,

|�̃L
γ 〉 =

∑
α

Uαγ |�L
α〉,

(C.15)

|�̃R
γ 〉 =

∑
α

V ∗
αγ |�R

α〉.

In practice, it is useful to set only an upper bound for m (rather than fixing a definite value) and
instead define a threshold ε such that only states for which λ2

α � ε are retained. The applicability
of this truncation procedure to a physical state depends on the characteristics of the Schmidt
values or, equivalently, the spectrum of the density matrix. The more slowly the values λα decay,
the larger must be the number of retained states. A generic expression for the spectrum of the
density matrix has been obtained for a critical theory [173]; for practical purposes, it is however
sufficient to consider the entanglement properties of the system to get the order of the necessary
number of retained states. For instance, one can consider the entanglement entropy,

S = Tr(ρL,R log2 ρL,R) =
∑

α

λ2
α log2 λ2

α . (C.16)

The fact that in 1D equilibrium states the entanglement entropy exhibits logarithmic dependence
on the typical length scale ξ of the state [174] (ξ corresponds to the correlation length or,
at criticality, to the size of the system) guarantees an accurate description of a large class of
wave functions using a finite number of states m ∝ ξ . Away from equilibrium, however, the
entanglement generally grows linearly in time [99] and a potentially exponential growth of m
with time restricts the applicability of an MPS to short times.

For a wave function represented at bond i by the two-site center matrix �ss′
i , the Schmidt

decomposition reads as follows: replacing in equation (C.1) the contracted two-site center
matrix with the bond center matrix,

�di s+α,di s′+β = (�ss′
i )αβ, (C.17)
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the Schmidt decomposition can be carried out as presented above. The matrices are updated
retaining m Schmidt states (C.15),

(As
i )αβ → Ud1+α,β,

(Bs
i+1)αβ → V ∗

α,d2s2+β,

(�i)αβ → δαβλα,

(C.18)

with �i+1 remaining unchanged.
For the evaluation of correlation functions, additionally Ai+1 or Bi is needed. Although

the effect of loss of orthogonality is spurious when applying the direct inverse (C.10) as in
the original iTEBD algorithm [161], especially in the case of real-time evolution, a procedure
for recovering both left and right orthonormalized representations is needed for stabilizing the
algorithm. The left (right) rotation of the matrices does the job. Starting from a single-site
center matrix, �s

i = �i−1 Bs
i , the left orthonormalized matrix and the rotated center matrix

can be extracted from the singular value decomposition (C.13) of the re-indexed matrix,
�α+ds,β = (�s)αβ ,

(As
i )αβ = Uα+ds,β, (�R

i )αβ = λαV ∗
βα . (C.19)

An iterative application of this procedure moves the center matrix through the lattice and brings
all matrices into left orthonormal form. An analogous left-moving iteration brings the matrices
into the right orthonormalized form. In the periodic iMPS a problem arises when the right-
moving center matrix reaches the edge of the unit cell. �R

i does not in general coincide with the
former �i+1 and repeating the iterations through the unit cell further changes the MPS. There
exist however schemes that solve this problem by introducing an additional transformation,
after which the transfer operator �R

i �−1
i+1 becomes equal to identity (see [171, 175] for detailed

descriptions).

C.3. The Suzuki–Trotter decomposition

In order to calculate the time evolution of an MPS, |ψ(t)〉 = e−iHt |ψ0〉, it is suitable to
approximate the evolution operator, e−iHt , by a Suzuki–Trotter decomposition. This is possible
if the global operator H contains only nearest-neighbor bond terms H =∑i Hi,i+1 (e.g. the
Heisenberg chain with Hi,i+1 = Si Si+1). H can then be decomposed into even and odd parts
H = H1 + H2,

H1 =
∑

j

H2 j,2 j+1, H2 =
∑

j

H2 j+1,2 j+2 . (C.20)

The Suzuki–Trotter decomposition can be regarded as the first-order expansion of the evolution
operator using the Baker–Hausdorff formula [176],

e−iHt = (e−iH2δe−iH1δ)n + O(δ2n), nδ = t. (C.21)

This approximation is improved in a second-order expansion,

e−iHt = (e−iH1δ/2e−iH2δe−iH1δ/2)n + O(δ3n), (C.22)

or, if higher accuracy is desired, using third- or higher-order expansions [177].
Since the components of the even (odd) part commute with each other,

[H2 j,2 j+1, H2 j ′,2 j ′+1] = [H2i+1,2i+2, H2i ′+1,2i ′+2] = 0,
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within the first-order Suzuki–Trotter decomposition, the evolution operator can be broken down
to a product of nearest-neighbor operators,

e−iHt ≈
⎛
⎝∏

i

e−iH2i+1,2i+2δ
∏

j

e−iH2 j,2 j+1δ

⎞
⎠

n

. (C.23)

Equivalent expressions hold for higher-order decompositions.
The Suzuki–Trotter decomposition can also be used for calculating the ground state |ψ〉 of

a Hamiltonian using imaginary-time evolution,

|ψ〉 =
τ→∞

e−τ H |ψ0〉
|e−τ H |ψ0〉| , (C.24)

where |ψ0〉 is some random initial state. In order to get reliable results from this procedure, the
Trotter slicing has to be reduced carefully during the imaginary-time evolution [161].

C.4. Update of an iMPS

We consider now the application of a single factor of (C.24) onto an MPS. For example, for the
odd bond operator, U = e−iH1,2δ, we have

�̃s′
1s′

2 =
∑
s1s2

Us′
1s′

2;s1s2�
s′

1s′
2

1 . (C.25)

After a subsequent singular value decomposition, retaining a finite number of states, the matrices
can be updated,

�̃ss′ = As
1�1 Bs′

2 . (C.26)

In the case of an iMPS of periodicity 2, the effect of the remaining factors of e−iH1δ on the other
odd bonds is identical. Hence, the update (C.26) corresponds to the action of the operator e−iH1δ

on the whole, infinitely extended wave function. After the update one can recalculate Bs
1, As

2 by
means of left- and right-moving iterations. More straightforward for preparing the application
of the odd bond operator e−iH2δ is the direct construction of the center matrix,

�ss′ = �1 Bs
2�

−1
2 As′

1 �1. (C.27)

Since the inverse of �2 is required, a finite threshold ε is necessary to guarantee the stability of
this operation.

C.5. Error analysis

As an application of the iMPS method to a non-equilibrium problem, we study the quench
problem in the XXZ chain, |ψ(t)〉 = e−iHt |ψ0〉, where |ψ0〉 is the ground state of the XXZ
Hamiltonian at a given value � = �0, and H is characterized by an anisotropy parameter �.
In this case, the local basis consists of a spin-up and a spin-down state {|↓〉, |↑〉}. This quench
problem is analyzed in detail in section 3.

First, we study the case where |ψ0〉 is the Néel state, which has a trivial iMPS representation
with m = 1, As

1 = Bs
1 = δs↑, As

2 = Bs
2 = δs↓. Since the z-projection of the total spin (Sz

tot) is
conserved, the MPS can be resolved by this quantum number [171, 178]. The resulting speedup
is about an order of magnitude in comparison with a simulation that exploits no symmetry.
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Figure C.1. The error in an iMPS compared to the exact solution. (a) Trotter
slicing δ = 0.01, threshold ε = 10−15. Inset: runaway times as a function of m.
(b) Comparison of errors for two different values, ε = 10−15 and 10−20, for a
smaller slicing δ = 0.002.

In the limit � = 0, the numerical results can be checked against the exact solution (see
section 2). In figure C.1 the absolute deviation from the exact result,

δms(t) = |ms(t) − J0(2J t)/2|, (C.28)

is plotted for different values of the number of retained states m, the threshold ε and the Trotter
slicing δ. The evolution of the error can be clearly divided into two regimes by introducing the
runaway time trunaway: for t < trunaway, there is a small error that does not depend on the value
of m. In this case, the error is dominated by the Trotter error, which grows at most linearly in
time. However, for t > trunaway, the error starts growing nearly exponentially. The approximately
logarithmic dependence of trunaway on m (figure C.1(a), inset) is in agreement with the linear
growth of the entanglement entropy in the non-equilibrium problem—trunaway can be understood
as the point where the chosen finite number of retained states is no longer sufficient to represent
the entanglement in the state. We note, however, that a strict relation between entanglement
entropy and trunaway cannot be rigorously established [82].

In order to reduce the Trotter error dominating at t < trunaway, one may choose smaller
values of δ. The threshold ε has to be decreased as well. Otherwise, due to the increased
number of updates, errors associated with the discarded weight at each step may accumulate.
In figure C.1(b), we plot two cases with ε = 10−15 and 10−20. In general, it is sufficient to reduce
the threshold proportional to the Trotter slicing ε ∝ δt.

If the Trotter slicing is chosen so that the resulting error is of the order of the accuracy
goal, trunaway, then sets the time window for the validity of the numerical results (in figure C.1,
the accuracy goal in the absolute error is about 10−6). We note that such behavior of the error
in this time-dependent infinite-size MPS algorithm is identical to that of the finite-size DMRG
algorithm [79].
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Figure C.2. The absolute error (C.29) in an iMPS simulation for δ = 0.005,
ε = 10−17 for different values of m. Inset: the corresponding dynamics of ms(t).

If the exact solution is not known, trunaway can nevertheless be determined by comparing
curves from calculations with slightly different m. trunaway is the point where the difference
between them starts to grow significantly. Figure C.2 illustrates this procedure with the results
for a quench in the XXZ chain from �0 = 4 to � = 2, with δ = 0.005 and ε = 10−17 (see also
section 3). Comparing the difference for various m,

δms(t) = |ms(t) − ms(t)
m=1400|, (C.29)

where ms(t)m=1400 is the result for 1400 retained states, we find behavior identical to the exactly
solvable case of the XX chain—the curves for m < 1400 overlap completely with the one for
m = 1400 up to t < trunaway and a difference can only be seen for t > trunaway. For m = 1400,
trunaway is estimated in figure C.2 by extrapolation of the values for m = 600, 800, 1000. Again,
the accuracy of the results for t < trunaway is dominated by the Suzuki–Trotter error, which has
to be estimated separately (here, it is of the order of 10−7). In practice, it is not mandatory
to abort the calculation at the runaway time—from the rough behavior of δms(t) one can
estimate that even for t � 10, the absolute error of the curve for m = 1400 is still of the
order of 10−6.

The presented error analysis has been carried out for a local parameter in a specific
setup. As far as non-equilibrium dynamics is concerned, this behavior is completely generic,
although the runaway time and the Suzuki–Trotter error have to be determined for each case.
Also, the error may depend on the observable under consideration—long-distance correlation
functions may exhibit shorter runaway times than local observables. We would like to emphasize
that error control, which imposes criteria on the wave function [179], is in general too
strict, and the presented observable-based approach can considerably extend the accessible
time window.
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