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Quality of the Solution Sets of Parameter-Dependent Interval
Linear Systems

Consider linear systems whose matrix and right-hand side vector depend affine-linearly on parameters varying
within prescribed bounds We present some sufficient conditions under which the interval hull (or some bounds)
of the solution set of a parametrised interval linear system coincides with the interval hull (or bounds) of the
non-parametric interval linear system corresponding to the parametric one.
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1 Introduction

By R
n, Rn×m denote the set of real vectors with n components, resp. the set of real n×m matrices. The set of all

real compact intervals [a] := [a, a] := {a ∈ R | a ≤ a ≤ a} is denoted by IR. We assume the reader is familiar with
interval arithmetic [1]. By IR

n, IRn×m denote the sets of interval n-vectors, resp. n × m matrices.
Consider the linear system

A(p) · x = b(p), (1)

where A(p) ∈ R
n×n and b(p) ∈ R

n depend affine-linearly on a parameter vector p ∈ R
k. When p varies within a

range [p] ∈ IR
k, the set of solutions to all A(p) · x = b(p), p ∈ [p], called parametric solution set, is

Σp := Σ (A(p), b(p), [p]) := {x ∈ R
n | A(p) · x = b(p) for some p ∈ [p]} .

Denote by [A] = [A, A] := A([p]) ∈ IR
n×n, resp. [b] = [b, b] := b([p]) ∈ IR

n the interval matrix, resp. the
interval vector, obtained from A(p), resp. b(p), substituting p by [p] and performing the corresponding interval
operations. Hence the interval linear system

[A] · x = [b], that is A([p]) · x = b([p])

is a general non-parametric interval linear system corresponding to the parametric one. The solution set to the
general system is Σg := Σ([A], [b]) := {x ∈ R

n | ∃A ∈ [A], ∃b ∈ [b] : Ax = b} . In general, Σp ⊆ Σg.
The hull of a nonempty bounded subset S of R

n is the interval vector �S := [inf S, sup S]. We say that
the parametric solution set Σ(A(p), b(p), [p]) has the same quality as the corresponding non-parametric solution set
Σ(A([p]), b([p])), if �Σp = �Σg. We shall look for this quality of the parametric solution set at least at some of
its components or some of their bounds. In case that the parametric solution set (some of its components or some
of their bounds) possesses the quality of the general solution set, we can give exact finite characterization of the
parametric solution set (some of its components or some of their bounds).

A square matrix [A] ∈ IR
n×n is called regular if all A ∈ [A] are nonsingular. By A ≥ 0 we denote a

nonnegative n×m matrix, i.e., aij ≥ 0 for i = 1, ..., n, j = 1, ..., m. A regular matrix [A] ∈ IR
n×n is called inverse

nonnegative if A−1 ≥ 0 for all A ∈ [A]. We shall use the mid-point matrix Am = 1
2 (A+A) of [A] ∈ IR

n×n, the unit
vector e = (1, ..., 1)�, and the unit matrix E = (e, ..., e) ∈ R

n×n. For a ∈ R, define sign(a) = {−1 if a < 0; 0 if a =
0; 1 if a > 0}, sgn(a) = {1 if a ≥ 0, −1 otherwise} and apply these functions to real vectors componentwise. We
define a reflexive and symmetric relation ∼= on the set {0,−1, 1} to itself by the following table.

∼= −1 0 1
−1 True True False
1 False True True

2 Results

Following the notations, introduced by Rohn [6], denote by U(k) := {u ∈ R
k | |u| = (1, ..., 1)�}. For [a] = [a, a] ∈

IR
n and u ∈ U(n), {au}i = {ai if ui = −1; ai if ui = 1}, i = 1, ..., n. The following Theorem is well-known.
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Theorem 1. Let A(p) be regular for p ∈ [p] and let the functions x(p) = A(p)−1 · b(p) be monotone on the
interval box [p] with respect to each parameter pi, i = 1, ..., k. Then

�Σp = [ min
u∈U(k)

A(pu)−1 · b(pu), max
u∈U(k)

A(pu)−1 · b(pu)].

If the monotonicity conditions are proven, then the interval hull of the parametric solution set Σp can be
found by solving at most 2k point linear systems. However, verifying the monotonicity condition of Theorem 1 is
difficult for problems of big dimensions or problems involving many parameters. Monotonicity can also be used
even when the function is not monotonic in a given interval provided the behavior of the function is sufficiently well
known. If the parametric solution set has the same quality as the corresponding non-parametric solution set, then
we know the behavior of the parametric solution sufficiently well to get the exact bounds of the parametric solution
set. In what follows we present some more general and simple sufficient conditions (not based on the monotonicity
property of the parametric solution) for verifying the quality of the parametric solution set.

We begin with considering some special kinds of linear systems the interval hull of whose general solution
set can be given explicit representation. For a parametrised linear system (1) and an u ∈ U(k) we introduce the
following relations

b(pu) = b and A(pu) = A; (2)
b(pu) = b and A(pu) = A. (3)

Since the components of A(p) depend affine-linearly on p, the following assertion is valid: There exists u ∈ U(k)
such that minp∈[p] A(p) = A(p−u), resp. maxp∈[p] A(p) = A(pu), iff sign

(
∂A(p)
∂pm

) ∼= E ∨ (−E) for all m = 1, ..., k,

and u ∈ U(k) is defined by ui =

⎧⎨
⎩

1 if sign
(

∂A(p)
∂pm

) ∼= E,

−1 if sign
(

∂A(p)
∂pm

) ∼= −E.
A similar assertion is valid for b(p). It is obvious

that if A and b are “dependent”1, then only one of the relations (2), (3) may hold true (see Example 2 below). If
A and b are independent, there may exist u, v ∈ U(k), u 	= v, such that (2) holds true for u and (3) holds true for
v (e.g. Example 1 below).

Theorem 2. Let [A] ∈ IR
n×n be an inverse nonnegative matrix and [b] ∈ IR

n be such that either b ≥ 0,
0 ∈ [b], or b ≤ 0. Then we have

�Σp = [A(pu)−1 · b(pu), A(p−u)−1 · b(p−u)] = �Σg =

{
[A

−1 · b, A−1 · b] if b ≥ 0, ∃u ∈ U(k) satisfying (2),
[A−1 · b, A

−1 · b] if b ≤ 0, ∃u ∈ U(k) satisfying (3);

inf Σp = A(pu)−1 · b(pu) = inf Σg = A−1 · b if 0 ∈ [b], ∃u ∈ U(k) satisfying (3);
sup Σp = A(p−v)−1 · b(p−v) = sup Σg = A−1 · b if 0 ∈ [b], ∃v ∈ U(k) satisfying (2).

Proof: Let [A] be inverse nonnegative, b ≥ 0, and let there exist u ∈ U(k) such that (2) holds. Since
the individual components of A(p) and b(p) depend linearly on p, relation (2) implies b(p−u) = b, A(p−u) =

A. According to [4, Satz 2], �Σg = [A
−1 · b, A−1 · b]

(2)
= [A(pu)−1 · b(pu), A(p−u)−1 · b(p−u)]. However,

A(pu)−1 · b(pu), A(p−u)−1 · b(p−u) ∈ Σp, which implies �Σp = �Σg. The rest of the theorem follows analogously.

The corresponding result for the special case of symmetric M-matrix and independent right-hand side is
presented in [2].

Example 1. Let p1 ∈ [1, 2], p2 ∈ [−1, 0], p3 ∈ [−2, 3], and A(p) =
( −1 p1

p1 + 1 p2

)
.

Consider the parametrised linear system (1) with
a) b(p) = (p3, p3)�;
b) b′(p) = (−p1 − 4p2, −p1 − 4p2)�.
The interval matrix A([p]) is inverse nonnegative and 0 ∈ b([p]) = b′([p]).

a) For u = (−1,−1,−1)�, pu = (1,−1,−2)�, A(pu) =
( −1 1

2 −1

)
= A, b(pu) = (−2,−2)� = b (that

is the relation (3)) which implies inf Σp = inf Σg. Relation (2) is satisfied for v = (1, 1,−1)�. Hence, according
to Theorem 2, sup Σp = A(p−v)−1 · b(p−v), p−v = (1,−1, 3)�, A(p−v) = A, b(p−v) = (3, 3)� = b, and �Σp =
([−4, 6], [−6, 9])�. The parametric solution set (the gray region) and the corresponding general solution set (dashed
line) are presented on Figure 1.A.

1We say that A(p) and b(p), p ∈ R
k, are “independent” if there exists partitioning p = (p′, p′′) with p′ = (p1, ..., pk1) ∈ R

k1 ,

p′′ = (pk1 , ..., pk) ∈ R
k−k1 such that A(p) = A(p′), b(p) = b(p′′). A and b are “dependent” if they are not independent.
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b) Relation (2) holds for v = (1, 1)�. Since A(p) and b′(p) are dependent, only the upper bounds of Σp have
the quality of the corresponding bounds of Σg. The region, filled in black, on Figure 1.A represents the parametric
solution set.

The next Theorem follows from [6, Theorems 3.2, 4.5] and generalizes a Theorem by Beeck [5, Satz 3].

Theorem 3. Let [A] ∈ IR
n×n be inverse stable2. Then for each i, 1 ≤ i ≤ n

{inf Σg}i = {A−1 · b−y(i)}i if sgn(A−1
m · b−y(i)) = −y(i),

{sup Σg}i = {A−1 · by(i)}i if sgn(A−1
m · by(i)) = y(i),

wherein y(i) ∈ U(n) is defined by {y(i)}j =
{

1 if A−1
ij ≥ 0 for each A ∈ [A]

−1 otherwise
(j = 1, ..., n).

Theorem 4. Let A([p]) ∈ IR
n×n be inverse stable. Then for each i, 1 ≤ i ≤ n we have

{inf Σp}i = {inf Σg}i if sgn(A−1
m · b−y(i)) = −y(i), ∃u ∈ U(k) : A(pu) = A, b(pu) = b−y(i),

{sup Σp}i = {supΣg}i if sgn(A−1
m · by(i)) = y(i), ∃v ∈ U(k) : A(pv) = A, b(pv) = by(i).

y(i) ∈ U(n) is defined as in Theorem 3.

Proof: The proof, based on Theorem 3, is similar to the proof of Theorem 2.

Example 2. Consider the parametrised linear system (1), wherein

A(p) =
(

p1 2p2

p2 p1

)
, b(p) =

(
1
2p1

p3

)
, p =

⎛
⎝ p1

p2

p3

⎞
⎠ ∈

⎛
⎝ [2, 4]

[ − 1, 0]
[ − 4, 2]

⎞
⎠ .

The interval matrix A([p]) is inverse nonnegative. The right-hand side does not satisfy the conditions of Theorem
2. However, we can apply Theorem 3 since y = e for i = 1, 2, and sgn(A−1

m · b) = −e, sgn(A−1
m · b) = e.

Thus we have explicit representation for the interval hull of the general solution set �Σg = [A−1 · b, A−1 · b] =
([ − 3, 4], [ − 7/2, 3])�. Since A(pu) = A, b(pu) = b for u = (1, 1, 1)� we have according to Theorem 4 that
inf Σp = inf Σg = (−3,−7/2)�. Due to the dependency of the matrix and the right-hand side vector, the relation
(2) does not hold for any v ∈ U(3). The solution set of the parametrised linear system (gray region) and the
solution set of the corresponding general interval linear system (dashed line) are presented on Figure 1.B.

The black curve within the gray region on Fig. 1.B represents the parametric solution set to the linear system
defined by the same matrix A(p) and right-hand side vector b′(p) = (1

2p1, 6p2+p1)�. The above considerations can
be applied to this new parametric system which has the same quality as the previous one. Note that b([p]) = b′([p]).

In order to generalize further the above results we recall some results from [6]. For y, z ∈ U(n) denote

{Ay,z}ij =
{

aij if yizj = 1,
aij if yizj = −1,

{by}i =
{

bi if yi = 1,
bi if yi = −1.

Theorem 5. (Rohn [6], Theorem 2.2) Let [A] be regular. Then for each y ∈ U(n), the problem

Ay,z · x = by,

diag(z) · x ≥ 0, z ∈ U(n) (4)

has exactly one solution xy ∈ Σg and �Σg = [miny∈U(n) xy , maxy∈U(n) xy].

Theorem 5 implies that for each component i = 1, ..., n and each bound j ∈ {inf, sup} of �Σg there exist y ∈ U(n)
and z ∈ U(n) so that j({�Σg}i) = xy,z, wherein xy,z is a solution of problem (4).

The special kind of the interval matrix and the sign-conditions in Theorems 2–4 provide that the corresponding
bound of the general solution set can be obtained by solving only one point linear system, that is the solution to
the problem (4) for fixed y, z ∈ U(n), y ∈ U(n) being determined by the type of the matrix and z ∈ U(n) being
determined by the corresponding sign-condition. In the general case of an arbitrary regular interval matrix [A]
Rohn [6] gives an iterative algorithm for computing �Σg, based on Theorem 5. Once �Σg is computed, the
corresponding y(i, j), z(i, j) ∈ U(n), i = 1, ..., n, j ∈ {inf, sup} are determined and we can search for the same
quality of the parametric solution set at the corresponding i, j as stated by the following Theorem. Denote by
y(i, j), z(i, j) the corresponding y, z ∈ U(n) for which j({�Σg}i) = xy,z. For each l ∈ {1, ..., n}, m ∈ {inf, sup}
denote T (y(l, m), z(l, m)) = (tij) ∈ R

n×n, tij = y(l, m)i · z(l, m)j, i, j = 1, ..., n.

2[A] is inverse stable if for each i, j ∈ {1, ..., n}, either A−1
ij ≤ 0 for each A ∈ [A], or A−1

ij ≥ 0 for each A ∈ [A].
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Theorem 6. Let [A] be regular and j({�Σg}i) = xy(i,j),z(i,j), i = 1, ..., n, j ∈ {inf, sup}. If there exists
u ∈ U(k) such that A(pu) = Ay(i,j),z(i,j) and b(pu) = by(i,j) for some i ∈ {1, ..., n} and some j ∈ {inf, sup}, then
j({�Σ(A(p), b(p), [p])}i) = j({�Σ([A], [b])}i).

Proof: The proof follows from A(pu)−1b(pu) ∈ Σp, A(pu)−1b(pu) ∈ �Σg and �Σp ⊆ �Σg.

Example 3. Consider the parametrised linear system (1), wherein

A(p) =
(

p1 2p2

p2 p1

)
, b(p) =

(
p3

p4

)
, p ∈ ([2, 4], [ − 1, 0], [17/3, 7], [ − 17,−1])�.

The interval matrix A([p]) is inverse nonnegative. Hence, in Theorem 3, y(1) = y(2) = −e for the inf-components,
y(1) = y(2) = e for the sup-components and we find A−1

m b 	= −e, A−1
m b = e. Hence by Theorem 3 we can

find explicit representation only for the upper bounds of the general solution set. Since A(pv) = A and b(pv) =
b for v = (−1,−1, 1, 1)�, we can apply Theorem 4 to get the exact upper bounds of the parametric solution
set sup Σp = (6, 5/2)�. Applying the iterative Rohn’s algorithm for computing �Σg we find that both lower
bounds of the general solution set are attained for y(i, 1) = (−1,−1)� and z(i, 1) = (−1,−1)�, i = 1, 2. Since
A(pu) = Ay(i,1),z(i,1) = A, b(pu) = by(i,1) = b, i = 1, 2 for u = (−1,−1,−1,−1)�, by Theorem 6 we find that the
parametric solution set has the same quality as the corresponding general solution set at the lower bounds, too.
Thus �Σp = ([−34/3, 6], [−86/6, 5/2])�.

So far, verifying the quality of the parametric solution set for fixed y, z ∈ U(n), it was necessary to test the
relation A(pu) = Ay,z ∨ b(pu) = by for all 2k u ∈ U(k). The next Theorem reduces the number of the verified
relations to k.

Theorem 7. Let A(p)·x = b(p), p ∈ [p] ∈ IR
n be a parametrised linear system. Let the interval matrix A([p])

is regular and j({�Σg}i) = xy(i,j),z(i,j) for i = 1, ..., n, j ∈ {inf, sup}, xy(i,j),z(i,j) being the solution of (4) for
particular y = y(i, j), z = z(i, j) ∈ U(n). Then for fixed i = 1, ..., n, j ∈ {inf, sup} and y = y(i, j), z = z(i, j) ∈ U(n)
the following two conditions are equivalent:

I. There exists u ∈ U(k) such that A(pu) = Ay,z and b(pu) = by.
II. For each fixed m = 1, ..., k

sign
(

∂A(p)
∂pm

)
∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T (y, z)∨ −T (y, z) if sign
(

∂b(p)
∂pm

)
= (0, ..., 0)�,

−T (y, z) if sign
(

∂b(p)
∂pm

) ∼= y,

T (y, z) if sign
(

∂b(p)
∂pm

) ∼= −y.

Proof: Let (I.) hold. Using the notation aλ = {a if λ = −1; a if λ = 1} for [a] = [a, a] ∈ IR and
λ ∈ {1,−1}, we have for i, j = 1, ..., n {Ay,z}ij = {A}λij

ij and {by}i = {b}μi

i wherein λij = −yizj , μi = yi, that
is {a(pu)}ij = a

−yizj

ij and {b(pu)}i = byi

i for all i, j = 1, ..., n. Since all components of A(p) and b(p) depend
affine-linearly on pm, m = 1, ..., k,

{a(pu)}ij = αij1p
u1
1 + ... + αijkpuk

k , {b(pu)}i = βi1p
u1
1 + ... + βikpuk

k , i, j = 1, ..., n,

the corresponding inf/sup bounds of [a]ij , [b]i will be attained at the corresponding inf/sup bounds of the additive
intervals αm[p]m, βm[p]m. Hence (I.) is equivalent to sign(αijm)um

∼= −yizj and sign(βim)um
∼= yi for all i, j =

1, ..., n and m = 1, ..., k, which implies that (I.) is equivalent to um · sign
(

∂b(p)
∂pm

) ∼= y and um · sign
(

∂A(p)
∂pm

) ∼=
−T (y, z) for each fixed m ∈ {1, ..., k}, which leads to (II.).

Let (II.) hold. Defining

um =

⎧⎨
⎩

1 if sign
(

∂b(p)
∂pm

) ∼= y,

−1 if sign
(

∂b(p)
∂pm

) ∼= −y,
m = 1, ..., k,

we obtain A(pu) = Ay,z and b(pu) = by.
Using Theorem 7 we can reformulate Theorem 2, Theorem 4 and Theorem 6 in terms of the sign-condition

II. In particular, for an inverse nonnegative interval matrix �Σg = [x−e, xe], where x−e, xe are solutions to (4);
the relation (2) is equivalent to z = −y, the relation (3) is equivalent to z = y.

To implement Theorem 6 we can extend Rohn’s algorithm [6] for computing xy-s by a verifying procedure
based on the sign condition II. However, Rohn’s algorithm is designed to minimize the number of the end-point
linear systems solved. It may happen, as the following example shows, that at some components the corresponding
inf / sup bound of Σg is determined by more than one end-point linear systems. One of these systems could satisfy
the parametric condition but might not be a vertex of Σg, determined by the Rohn’s algorithm.
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Example 4. ([3]) Consider the parametrised linear system3 (1), wherein

A(p) =
(

1 p1

p1 p2

)
, b(p) =

(
p3

p3

)
, p =

⎛
⎝ p1

p2

p3

⎞
⎠ ∈

⎛
⎝ [0, 1]

[ − 4, −1]
[0, 2]

⎞
⎠ .

As seen on Figure 1.C, representing the parametric and the general solution sets, inf Σp = inf Σg. Applying
Theorem 6 we obtain that {inf Σg}1 is attained for y = (−1,−1)� = −z and the corresponding conditions (II.)
hold. Since {inf Σg}2 is attained for y = (−1, 1)� = −z but sign

(
∂b(p)
∂p3

)
	∼= y, Theorem 6 cannot be applied to

{inf Σp}2. Five different end-point systems have solutions (the solid points on Fig.1C) whose second component is
x2 = −2 = inf Σg

2. One of these systems, Ã · x = b̃ with x2 = −2, is such that there exists u = (−1, 1, 1)� with the
property A(pu) = Ã, b(pu) = b̃, which proves that {inf Σp}2 = {inf Σg}2 for this example.

-4 -2 2 4 6
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-4
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2
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6

8

x2

A

-4 -2 2 4 6
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2

4

6
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-3 -2 -1 1 2 3 4
x1
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-2

-1

1
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-3 -2 -1 1 2 3 4
x1

-3

-2

-1

1

2

3

x2

1 2 3 4
x1

-2

-1

1

2

x2

C

Figure 1: The parametrised (filled in region) and the general (dashed line) solution sets for the linear systems
of Example 1 (A), Example 2 (B) and Example 4 (C).

For completeness, we give the following Theorem:

Theorem 8. Let A([p]) be regular and let for fixed i ∈ {1, ..., n}, j ∈ {inf, sup}

S(i, j) := {{Ã, b̃} | j(�Σg
i ) = Ã−1b̃ and ãkl ∈ {akl, akl}, b̃k ∈ {bk, bk}; k, l = 1, ..., n}

Then j(�Σp
i ) = j(�Σg

i ) iff there exists t ∈ U(k) such that A(pt) = Ã and b(pt) = b̃ for some {Ã, b̃} ∈ S(i, j).

Theorems 2, 4 and 6 define sufficient conditions for comparing �Σp to �Σg and require considerably less
computational effort than a general procedure, based on Theorem 8. The general procedure and the procedure,
based on Theorem 6, are implemented in a Mathematica [7] package.
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