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In this paper, we propose a spreading activation approach for collaborative filtering (SA-

CF). By using the opinion spreading process, the similarity between any users can be
obtained. The algorithm has remarkably higher accuracy than the standard collabora-

tive filtering using the Pearson correlation. Furthermore, we introduce a free parameter
β to regulate the contributions of objects to user–user correlations. The numerical re-

sults indicate that decreasing the influence of popular objects can further improve the
algorithmic accuracy and personality. We argue that a better algorithm should simulta-

neously require less computation and generate higher accuracy. Accordingly, we further
propose an algorithm involving only the top-N similar neighbors for each target user,

which has both less computational complexity and higher algorithmic accuracy.
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1. Introduction

With the advent of the Internet, the exponential growth of the World Wide Web
and routers confront people with an information overload.1 We are facing too much
data to be able to effectively filter out the pieces of information that are most
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appropriate for us. A promising way is to provide personal recommendations to fil-
ter out the information. Recommendation systems use the opinions of users to help
them more effectively identify content of interest from a potentially overwhelming
set of choices.2 Motivated by the practical significance to the e-commerce and so-
ciety, various kinds of algorithms have been proposed, such as correlation-based
methods,3,4 content-based methods,5,6 the spectral analysis,7,8 principle compo-
nent analysis,9 network-based methods,10–13 and so on. For a review of current
progress, see Ref. 14 and the references therein.

One of the most successful technologies for recommendation systems, called col-
laborative filtering (CF), has been developed and extensively investigated over the
past decade.3,4,15 When predicting the potential interests of a given user, such ap-
proach first identifies a set of similar users from the past records and then makes
a prediction based on the weighted combination of those similar users’ opinions.
Despite its wide applications, CF suffers from several major limitations includ-
ing system scalability and accuracy.16 Recently, some physical dynamics, including
mass diffusion,11,12 heat conduction,10 and trust-based model,17 have found their
applications in personal recommendations. These physical approaches have been
demonstrated to be of both high accuracy and low computational complexity.10–12

However, the algorithmic accuracy and computational complexity may be very sen-
sitive to the statistics of data sets. For example, the algorithm presented in Ref. 12
runs much faster than standard CF if the number of users is much larger than
that of objects, whereas when the number of objects is huge, the advantage of this
algorithm vanishes because its complexity is mainly determined by the number of
objects (see Ref. 12 for details). In order to increase the system scalability and ac-
curacy of standard CF, we introduce a network-based recommendation algorithm
with spreading activation, namely spreading activation approach for collaborative
filtering (SA-CF). In addition, two free parameters β and N are presented to in-
crease the accuracy and personality.

2. Method

Denoting the object set as O = {o1, o2, . . . , on} and user set as U =
{u1, u2, . . . , um}, a recommendation system can be fully described by an adjacent
matrix A = {aij} ∈ Rn,m, where aij = 1 if oi is collected by uj, and aij = 0
otherwise. For a given user, a recommendation algorithm generates a ranking of all
the objects he/she has not collected before.

Based on the user-object matrix A, a user similarity network can be constructed,
where each node represents a user, and two users are connected if and only if they
have collected at least one common object. In the standard CF, the similarity
between ui and uj can be evaluated directly by a correlation function:

sc
ij =

∑n
l=1 alialj

min{k(ui), k(uj)} , (1)
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where k(ui) =
∑n

l=1 ali is the degree of user ui. Inspired by the diffusion process
presented by Zhou et al.,12 we assume that a certain amount of resource (e.g.,
recommendation power) is associated with each user, and the weight sij represents
the proportion of the resource, which uj would like to distribute to ui. Following
a network-based resource-allocation process18 where each user distributes his/her
initial resource equally to all the objects he/she has collected, and then each object
sends back what it has received to all the users collected it, the weight sij (the
fraction of initial resource uj eventually gives to ui) can be expressed as

sij =
1

k(uj)

n∑

l=1

alialj

k(ol)
, (2)

where k(ol) =
∑m

i=1 ali denotes the degree object ol. Using the spreading process,
the user correlation network can be constructed, whose edge weight is obtained by
Eq. (2). For the user-object pair (ui, oj), if ui has not yet collected oj (i.e., aji = 0),
the predicted score, vij , is given as

vij =

∑m
l=1,l �=i sliajl∑m

l=1,l �=i sli
. (3)

From the definition of Eq. (3), one can get that, to a target user, all of his neighbors’
collection information would affect the recommendation results, which is different
with the definition reachability.19 Based on the definitions of sij and vij , SA-CF
can be given. The framework of the algorithm is organized as follows:

(i) Calculate the user similarity matrix {sij} based on the spreading approach;
(ii) For each user i, obtain the score vij on every object not being yet collected by

j;
(iii) Sort the uncollected objects in descending order of vij , and those in the top

will be recommended.

3. Numerical Results

To test the algorithmic accuracy and personality, we use a benchmark data set,
namely MovieLens.a The data consist of 1682 movies (objects) and 943 users, who
vote movies using discrete ratings 1–5. Hence we applied the coarse-graining method
previously used in Refs. 12 and 13: A movie is set to be collected by a user only if
the giving rating is larger than 2. The original data contain 105 ratings, 85.25% of
which are ≥ 3, thus the user-object (user-movie) bipartite network after the coarse
gaining contains 85 250 edges. To test the recommendation algorithms, the data
set is randomly divided into two parts: the training set contains 90% of the data,
and the remaining 10% of data constitutes the probe. The training set is treated

aThe MovieLens data can be downloaded from the web site of GroupLens Research
(http://www.grouplens.org).
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as known information, while no information in the probe set is allowed to be used
for prediction.

A recommendation algorithm should provide each user with an ordered queue
of all its uncollected objects. It should be emphasized that the length of queue
should not be given artificially, because of the fact that the number of uncollected
movies for different users are different. For an arbitrary user ui, if the relation ui–oj

is in the probe set (according to the training set, oj is an uncollected object for
ui), we measure the position of oj in the ordered queue. For example, if there are
Li = 100 uncollected movies for ui, and oj is the 10th from the top, we say the
position of oj is 10/Li, denoted by rij = 0.1. Since the probe entries are actually
collected by users, a good algorithm is expected to give high recommendations to
them, thus leading to small rij . Therefore, the mean value of the position rij , 〈r〉
(called ranking score12), averaged over all the entries in the probe, can be used
to evaluate the algorithmic accuracy: the smaller the ranking score, the higher
the algorithmic accuracy, and vice versa. Implementing the SA-CF and CF,b the
average values of ranking score are 0.12187±0.02406 and 0.13069±0.0571.c Clearly,
under the simplest initial configuration, subject to the algorithmic accuracy, the
SA-CF algorithm outperforms the standard CF.

4. Two Modified Algorithms

In order to further improve the algorithmic accuracy, we propose two modified
methods. Similar to the Ref. 13, taking into account the potential role of object
degree may give better performance. Accordingly, instead of Eq. (2), we introduce
a more complicated way to get user–user correlation:

sij =
1

k(uj)

m∑

l=1

alialj

kβ(ol)
, (4)

where β is a tunable parameter. When β = 1, this method degenerates to the algo-
rithm mentioned in the last section. The case with β > 1 weakens the contribution
of large-degree objects to the user–user correlation, while β < 1 will enhance the
contribution of large-degree objects. According to our daily experience, if two users
ui and uj has simultaneously collected a very popular object (with very large de-
gree), it does not mean that their interests are similar; on the contrary, if two users

bThe predicted results of standard CF can be directly obtained by applying Eq. (3) using sc
li

instead of sli.
cNote that the ranking score of the standard CF reported here is slightly different from that of
the Ref. 12. It is because in this paper, if a movie in the probe set has not yet appeared in the
known set, we automatically remove it from the probe; while Ref. 12 takes into account those
movies only appeared in the probe via assigning zero score to them. Another alternative way is
to automatically move those movies from the probe set to the known set, which guarantees that
any target movie in the probe set has been collected by at least one user in the known set. The
values of 〈r〉 are slightly different for these three implementations; however, the choice of different
implementations has no substantial effect on our conclusions.
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both collected an unpopular object (with very small degree), it is very likely that
they share some common and particular tastes. Therefore, we expect a larger β

(i.e., β > 1) will lead to higher accuracy than the routine case β = 1.
Figure 1 shows the algorithmic accuracy as a function of β. The curve has

a clear minimum around β = 1.9, which strongly support the above statement.
Compared with the routine case (β = 1), the ranking score can be further reduced
by 11.2% at the optimal value. It is indeed a great improvement for recommendation
algorithms. Besides accuracy, the average degree of all recommended movies 〈k〉
and the mean value of Hamming distance S13 are taken in account to measure
the algorithmic personality. The movies with higher degrees are more popular than
the ones with smaller degrees. The personal recommendation should give small
〈k〉 to fit the special tastes of different users. Figure 2 shows the average degree
of all recommended movies as a function of β. One can see from Fig. 2 that the
average degree is negatively correlated with β, thus depressing the recommendation
power of high-degree objects gives more opportunity to the unpopular objects.
The Hamming distance, S = 〈Hij〉, is defined by the mean value among any two
recommended lists of ui and uj , where Hij = 1 − Q/L, L is the list length and Q

is the overlapped number of objects in the two users’ recommended lists. Figure 3
shows the positive correlation between S and β, in according with the simulation
results in Fig. 2, which indicates that depressing the influence of high-degree objects
makes the recommendations more personal. The above simulation results indicate
that SA-CF outperforms CF from the viewpoints of accuracy and personality.

Besides the algorithmic accuracy and personality, the computational complex-
ity should also be taken into account. Actually, we argue that a better algorithm
should simultaneously require less computation and generate higher accuracy. Note

Fig. 1. 〈r〉 vs β. The solid and dashed curves represent the performances of SA-CF and CF,
respectively. All the data points are obtained by averaging over 10 independent runs with different
data-set divisions.
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Fig. 2. The average degree of all recommended movies 〈k〉 vs β. The black solid, red dashed, and

green dotted curves represent the cases with typical length L = 10, 20, and 50, respectively. The
blue dotted line corresponds to the optimal value βopt = 0.19. All the data points are obtained
by averaging over 10 independent runs with different data-set divisions.

Fig. 3. S vs β. The black solid, red dashed and green dotted curves represent the cases with
typical lengths L = 10, 20, and 50, respectively. The blue dotted line corresponds to the optimal
value βopt = 0.19. All the data points are obtained by averaging over 10 independent runs with
different data-set divisions.

that the computational complexity of Eq. (3) is very high if the number of user,
m, is huge. Actually, the majority of user–user similarities are very small, which
contribute little to the final recommendation. However, those inconsequential items,
corresponding to the less similar users, dominate the computational time of Eq. (3).
Therefore, we propose a modified algorithm, so-called top-N SA-CF, which only
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Fig. 4. 〈r〉 vs N . The inset shows the relation for larger N . Clearly, when N approaches n, the
algorithmic accuracy is the same as that of the SA-CF with 〈r〉 = 0.12187± 0.02406. All the data
points are obtained by averaging over 10 independent runs with different data-set divisions.

considers the N most similar users’ information to any given user. That is to say,
in the top-N SA-CF, the sum in Eq. (3) runs over only the N most similar users
of ui. In the process of calculation the similarity matrix sij , to each other, we can
simultaneously record its most similar users. When m � N , the additional com-
puting time for top-N similar users are remarkably shorter than what we can save
from the traditional calculation of Eq. (3). More surprisingly, as shown in Fig. 4,
with properly chosen N , this algorithm not only reduces the computation but also
enhances the algorithmic accuracy. This property is of practical significance, es-
pecially for the huge-size recommender systems. From Figs. 2 and 3, one can find
that, to the same β range, the anticorrelations between 〈k〉, S, and β are different in
different β range. Maybe there is a phase transition in the anticorrelations. Because
this paper mainly focuses on the accuracy and personality of the recommendation
algorithms, this issue would be investigated in the future.

5. Conclusions

In this paper, the spreading activation approach is presented to compute the user
similarity of the CF algorithm, named SA-CF. The basic SA-CF has obviously
higher accuracy than the standard CF. Ignoring the degree–degree correlation
in user-object relations, the algorithmic complexity of SA-CF is O(m〈ku〉〈ko〉 +
mn〈ko〉), where 〈ku〉 and 〈ko〉 denote the average degree of users and objects. Cor-
respondingly, the algorithmic complexity of the standard CF is O(m2〈ku〉+mn〈ko〉),
where the first term accounts for the calculation of similarity between users, and
the second term accounts for the calculation of the predictions. In reality, the num-
ber of users, m, is much larger than the average object degree, 〈ko〉; therefore, the
computational complexity of SA-CF is much less than that of the standard CF.
The SA-CF has great potential significance in practice.
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Furthermore, we proposed two modified algorithms based on SA-CF. The first
algorithm weakens the contribution of large-degree objects to user–user correlations,
and the second one eliminates the influence of less similar users. Both the two
modified algorithm can further enhance the accuracy of SA-CF. More significantly,
with proper choice of the parameter N , top-N SA-CF can simultaneously reduces
the computational complexity and improves the algorithmic accuracy.

A natural question on the presented algorithms is whether these algorithms are
robust to other data-sets or random recommendation? To SA-CF, the answer is yes,
because it would get the user similarity more accurately. While to the two modified
algorithms, the answer is no. Since both of the two modified algorithms introduced
the tunable parameters β and N , the optimal values of different data sets are
different. The further work would focus on how to find an effective way to obtain
the optimal value exactly, then the modified algorithms could be implemented more
easily.
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