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In this paper, we introduce a modified collaborative filtering (MCF) algorithm, which has
remarkably higher accuracy than the standard collaborative filtering. In the MCF, instead
of the cosine similarity index, the user–user correlations are obtained by a diffusion
process. Furthermore, by considering the second-order correlations, we design an effective
algorithm that depresses the influence of mainstream preferences. Simulation results
show that the algorithmic accuracy, measured by the average ranking score, is further
improved by 20.45% and 33.25% in the optimal cases of MovieLens and Netflix data. More
importantly, the optimal value λopt depends approximately monotonously on the sparsity
of the training set. Given a real system, we could estimate the optimal parameter according
to the data sparsity, which makes this algorithm easy to be applied. In addition, two
significant criteria of algorithmic performance, diversity and popularity, are also taken into
account. Numerical results show that as the sparsity increases, the algorithm considering
the second-order correlation can outperform the MCF simultaneously in all three criteria. .

1. Introduction

With the expansion of the Internet services, people are becoming increasingly dependent on the Internet resulting in
information overload. Consequently, how to efficiently help people find information that they truly need is a challenging
task nowadays [1]. Being an effective tool to address this problem, the recommender system has captured increasing
attention and has become an essential issue in Internet applications such as the e-commerce system and the digital library
system [2]. Motivated by the practical significance to e-commerce and society, the design of an efficient recommendation
algorithm becomes a joint focus from engineering science to the mathematical and physical community. Various kinds of
algorithms have been proposed, such as correlation-based methods [3,4], content-based methods [5–8], spectral analysis
[9,10], iteratively self-consistent refinement [11], principle component analysis [12], network-based methods [13–16], and
so on. For a review of current progress, see Refs. [17,18] and the references therein.

One of the most successful recommendation algorithms, called collaborative filtering (CF), has been developed and
extensively investigated over the past decade [3,4,19]. When predicting the potential interests of a given user, such an
approach firstly identifies a set of similar users from the past records and then makes a prediction based on the weighted
combination of those similar users’ opinions. Despite its wide applications, collaborative filtering suffers from several major
limitations including system scalability and accuracy [20]. Recently, some physical dynamics, includingmass diffusion (MD)
[14,15,21] and heat conduction (HC) [13], have found their applications in personalized recommendations. Based on MD
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Fig. 1. Illustration of the user correlation network. The users A, B and C are correlated because they have collected some common objects, where object 1
has been collected by all of the three users, while object 2 is only collected by user A and C .

and HC, several effective network-based recommendation algorithms have been proposed [13–16]. These algorithms have
been demonstrated to be of both high accuracy and low computational complexity. However, the algorithmic accuracy and
computational complexity may be very sensitive to the statistics of data sets. For example, the algorithm presented in Ref.
[15] runsmuch faster than the standard CF if the number of users ismuch larger than that of objects, whilewhen the number
of objects is huge, the advantage of this algorithm vanishes because its complexity is mainly determined by the number of
objects (see Ref. [15] for details). Since the CF algorithm has been extensively applied in the real e-commerce systems [4,22],
it is meaningful to find someways to increase the algorithmic accuracy of CF. We therefore present a modified collaborative
filtering (MCF) method, in which the user correlation is defined based on the diffusion process. Recently, Liu et al. [23]
studied the user and object degree correlation effect to CF, they found that the algorithm accuracy could be remarkably
improved by adjusting the user and object degree correlation. In this paper, we argue that the high-order correlations should
be taken into account to depress the influence of mainstream preferences and the accuracy could be improved in this way.
The correlation between two users is, in principle, an integration of many underlying similar tastes. For two arbitrary users,
the very specific yet common tastes shall contribute more to the similarity measure than those mainstream tastes. Fig. 1
shows an illustration of how to find the specific tastes by eliminating the mainstream preference. To the users A and C ,
the commonly selected objects 1 and 2 could reflect their tastes, where 1 denotes the mainstream preference shared by
all A, B and C , and 2 is the specific taste of A and C . Both 1 and 2 contribute to the correlation between A and C . Since 1 is
the mainstream preference, it also contributes to the correlations between A and B, as well as B and C . Tracking the path
A → B → C , the mainstream preference 1 could be identified by considering the second-order correlation between A
and C . Statistically speaking, two users sharing many mainstream preferences should have high second-order correlation,
therefore we can depress the influence of mainstream preferences by taking into account the second-order correlation.
The numerical results show that the algorithm involving high-order correlations is much more accurate and provides more
diverse recommendations.

2. Problem description and performance metrics

Denote the object set as O = {o1, o2, . . . , om} and the user set as U = {u1, u2, . . . , un}, a recommender system can be
fully described by an adjacent matrix A = {aij} ∈ Rm,n, where aij = 1 if oi is collected by uj, and aij = 0 otherwise. For a
given user, a recommendation algorithm generates an ordered list of all the objects he/she has not collected before.

To test the recommendation algorithmic accuracy, we divide the data set into two parts: one is the training set used as
known information for prediction, and the other one is the probe set, whose information is not allowed to be used. Many
metrics have been proposed to judge the algorithmic accuracy, including precision [17], recall [17], F-measure [3], average
ranking score [15], and so on. Since the average ranking score does not dependon the length of recommendation list,we adopt
it in this paper. Indeed, a recommendation algorithm should provide each user with an ordered list of all his/her uncollected
objects. For an arbitrary user ui, if the entry ui–oj is in the probe set (according to the training set, oj is an uncollected object
for ui), wemeasure the position of oj in the ordered list. For example, if there are Li = 100 uncollected objects for ui, and oj is
the 10th from the top, we say the position of oj is 10/100, denoted by rij = 0.1. Since the probe entries are actually collected
by users, a good algorithm is expected to give high recommendations, leading to small rij. Therefore, the mean value of the
position rij, 〈r〉 (called average ranking score [15]), averaged over all the entries in the probe, can be used to evaluate the
algorithmic accuracy: the smaller the ranking score, the higher the algorithmic accuracy, and vice verse. For a null model
with randomly generated recommendations, 〈r〉 = 0.5.

Besides accuracy, the average degree of all recommended objects, 〈k〉, and the mean value of Hamming distance, S, are
taken into account to measure the algorithmic popularity and diversity [16]. The smaller average degree, corresponding
to the less popular objects, are preferred since those lower-degree objects are hard to be found by users themselves. In
addition, the personal recommendation algorithm should present different recommendations to different users according
to their tastes and habits. The diversity can be quantified by the average Hamming distance, S = 〈Hij〉, whereHij = 1−Qij/L,
L is the length of recommendation list, and Qij is the overlapped number of objects in ui’s and uj’s recommendation lists. The
higher S indicates a more diverse and thus more personalized recommendations.
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Fig. 2. The optimal λopt and the improvement (IP) vs. the sparsity of the training sets. All the data points are averaged over ten independent runs with
different data set divisions. The results corresponding to Netflix data are marked.

3. Modified collaborative filtering algorithm based on diffusion process

In the standard CF, the correlation between ui and uj can be evaluated directly by the well-known cosine similarity index

scij =

m∑
l=1

alialj

√
k(ui)k(uj)

, (1)

where k(ui) = ∑m
l=1 ali is the degree of user ui. Inspired by the diffusion process presented by Zhou et al. [15], the user

correlation network can be obtained by projecting the user–object bipartite network. How to determine the edge weight
is the key issue in this process. We assume a certain amount of resource (e.g., recommendation power) is associated with
each user, and the weight sij represents the proportion of the resource uj would like to distribute to ui. This process could
be implemented by applying the network-based resource-allocation process [24] on a user–object bipartite network where
each user distributes his/her initial resource equally to all the objects he/she has collected, and then each object sends back
what it has received to all the users who collected it, the weight sij (the fraction of initial resource uj eventually gives to ui)
can be expressed as:

sij = 1

k(uj)

m∑

l=1

alialj

k(ol)
, (2)

where k(ol) = ∑n
i=1 ali denotes the degree of object ol. For the user–object pair (ui, oj), if ui has not yet collected oj

(i.e., aji = 0), the predicted score, vij, is given as

vij =

n∑
l=1

sliajl

n∑
l=1

sli

. (3)

Based on the definitions of sij and vij, given a target user ui, the MCF algorithm is given as following

(i) Calculating the user correlation matrix {sij} based on the diffusion process, as shown in Eq. (2);
(ii) For each user ui, based on Eq. (3), calculating the predicted scores for his/her uncollected objects;
(iii) Sorting the uncollected objects in descending order of the predicted scores, and those objects in the top will be

recommended.

The standard CF and the MCF have similar process, and their only difference is that they adopt different measures of
user–user correlation (i.e., scij for the standard CF and sij for MCF).

4. Numerical results of MCF

We use two benchmark data sets, one is MovieLens,1 which consists of 1682 movies (objects) and 943 users. The other
one is Netflix,2 which consists of 3000 movies and 3000 users (we use a random sample of the whole Netflix data set). The

1 http://www.grouplens.org.
2 http://www.netflixprize.com.
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Fig. 3. Average degree of recommended objects, 〈k〉, vs. λ when p = 0.9. Squares, circles and triangles represent lengths L = 10, 20 and 50, respectively.
The black point (•) corresponds to the average degree obtained by the standard CF with L = 20. All the data points are averaged over ten independent runs
with different data set divisions.

Fig. 4. S vs. λ when p = 0.9. Squares, circles and triangles represent the lengths L = 10, 20 and 50, respectively. The black point (•) corresponds to the
diversity obtained by the standard CF with L = 20. All the data points are averaged over ten independent runs with different data set divisions.

users vote movies by discrete ratings from one to five. Here we applied a coarse-graining method [15,16]: A movie is set
to be collected by a user only if the giving rating is larger than 2. In this way, the MovieLens data has 85250 edges, and the
Netflix data has 567456 edges. The data sets are randomly divided into two parts: the training set contains p percent of the
data, and the remaining 1 − p part constitutes the probe.

Implementing the standard CF and MCF when p = 0.9, the average ranking scores on MovieLens and Netflix data are
improved from0.1168 to 0.1038 and from0.2323 to 0.2151, respectively. Clearly, using the simply diffusion-based similarity,
subject to the algorithmic accuracy, the MCF outperforms the standard CF. The corresponding average object degree and
diversity are also improved (see Figs. 3 and 4).

5. Improved algorithm

To investigate the effect of second-order user correlation to algorithm performance, we use a linear form to investigate
the effect of the second-order user correlation to MCF, where the user similarity matrix could be demonstrated as

H = S + λS2, (4)

where H is the newly defined correlation matrix, S = {sij} is the first-order correlation defined as Eq. (2), and λ is a tunable
parameter. As discussed before, we expect the algorithmic accuracy can be improved at some negative λ.

When p = 0.9, the algorithmic accuracy curves of MovieLens and Netflix have clear minimums around λ = −0.82 and
λ = −0.84, which strongly support the above discussion. Compared with the routine case (λ = 0), the average ranking
scores can be further reduced to 0.0826 (improved 20.45%) and 0.1436 (improved 33.25%) at the optimal values. It is indeed
a great improvement for recommendation algorithms. Since the data sparsity can be turned by changing p, we investigate
the effect of the sparsity on the two data sets respectively, and find that although we test the algorithm on two different
data sets, the optimal λopt are strongly correlated with the sparsity in a uniform way for both MovieLens and Netflix. Fig. 2
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Table 1
Algorithmic performance for MovieLens data when p = 0.9. The precision, diversity and popularity correspond to L = 50. NBI is an abbreviation of the
network-based recommendation algorithm, proposed in Ref. [15]. Heter-NBI is an abbreviation of NBI with heterogeneous initial resource distribution,
proposed in Ref. [16]. CB-CF is an abbreviation of the correlation-based collaborative filtering method, proposed in Ref. [23]. Improved MCF is an
abbreviation of the algorithm presented in this paper. The parameters in Heter-NBI and IMCF are set as those corresponding to the lowest ranking scores
(for Heter-NBI [16], βopt = −0.80; for CB-CF [23], λopt = −0.96; for IMCF, λopt = −0.82). Each number presented in this table is obtained by averaging
over ten runs, each of which has an independently random division of training set and probe.

Algorithms 〈r〉 S 〈k〉
GRM 0.1390 0.398 259
CF 0.1168 0.549 246
NBI 0.1060 0.617 233
Heter-NBI 0.1010 0.682 220
CB-CF 0.0998 0.692 218
IMCF 0.0877 0.826 175

shows that when the sparsity increases, λopt will decrease, and the improvement of the average ranking score will increase.
These results can be treated as a good guideline for selecting optimal λ of different data sets. Fig. 3 reports the average
degree of all recommended objects as a function of λ. One can see from Fig. 3 that when p = 0.9 the average object degree
is positively correlated with λ, thus to depress the influence of mainstream interests gives more opportunity to the less
popular objects, which could bring more information to the users than the popular ones. When the list length, L, bing equal
to 20, at the optimal point λopt = −0.82, the average degree is reduced by 29.3% compared with the standard CF. When
p = 0.9, Fig. 4 exhibits a negative correlation between S and λ, indicating that to consider the second-order correlations
makes the recommendation lists more diverse. When L = 20, the diversity S is increased from 0.592 (corresponding to
the standard CF) to 0.880 (corresponding to the case λ = −0.82 in the improved algorithm). Figs. 3 and 4 show how the
parameter λ affects the average object degree 〈k〉 and diversity S, respectively. Clearly, the smaller λ leads to less popularity
and higher diversity, and thus the present algorithm can find its advantage in recommending novel objects with diverse
topics to users, compared with the standard CF. Generally speaking, the popular objects must have some attributes fitting
the tastes of themasses of the people. The standard CFmay repeatedly count those attributes and assignmore power for the
popular objects, which increases the average object degree and reduces the diversity. The present algorithm with negative
λ can to some extent eliminate the redundant correlations and give higher chances to less popular objects and the objects
with diverse topics different from the mainstream [25].

6. Conclusions

In this paper, a modified collaborative filtering algorithm is presented to improve the algorithmic performance.
The numerical results indicate that the usage of diffusion-based correlation could enhance the algorithmic accuracy.
Furthermore, by considering the second-order correlations, S2, we presented an effective algorithm that has remarkably
higher accuracy. Indeed, when p = 0.9 the simulation results show that the algorithmic accuracy can be further improved
by 20.45% and 33.25% on MovieLens and Netflix data. Interestingly, we found even for different data sets, the optimal value
of λ exhibits a uniform tendency versus sparsity. Therefore, if we know the sparsity of the training set, the corresponding
optimal λopt could be approximately confirmed. In addition, when the sparsity gets less than 1%, the improved algorithm
would not be effective any more, while as the sparsity increases, the improvement of the presented algorithm is enlarged.

Ignoring the degree–degree correlation in user–object entries, The algorithmic complexity of MCF is O(m〈ku〉〈ko〉 +
mn〈ko〉), where 〈ku〉 and 〈ko〉 denote the average degrees of users and objects. The first term accounts for the calculation
of user correlation, and the second term accounts for the one of the predictions. It approximates to O(mn〈ko〉) for n � 〈ku〉.
Clearly, the computational complexity of MCF is much less than that of the standard CF especially for the systems consisted
of huge number of objects. In the improved algorithm, in order to calculate the second-order correlations, the diffusion
process must flow from the user to the objects twice, therefore, the algorithmic complexity of the improved algorithm is
O(n〈ku〉2〈ko〉2 + mn〈ko〉). Since the magnitude order of the object m is always much larger than the ones of 〈ku〉 and 〈ko〉,
the improved algorithm is also as comparably fast as the standard CF.

Beside the algorithmic accuracy, two significant criteria of algorithmic performance, average degree of recommended
objects and diversity, are taken into account. A good recommendation algorithm should help the users uncovering the
hidden (even dark) information, corresponding those objects with very low degrees. Therefore, the average degree is a
meaningful measure for a recommendation algorithm. In addition, since a personalized recommendation system should
provide different recommendations lists according to the user’s tastes and habits [2], diversity plays a crucial role to quantify
the personalization [26,27]. The numerical results show that the present algorithm outperforms the standard CF and some
recently proposed algorithms in all three criteria (see Table 1). How to automatically find out relevant information for diverse
users is a long-standing challenge in the modern information science, we believe the current work can enlighten readers in
this promising direction.

How to automatically find out relevant information for diverse users is a long-standing challenge in modern information
science; the presented algorithm could also be used for finding the relevant reviewers for scientific papers or for funding

ht
tp

://
do

c.
re

ro
.c

h

5



applications [28,29], and for the link prediction in social and biological networks [30,31]. We believe that the current work
can enlighten readers in this promising direction.
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