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In this paper, by applying a diffusion process, we propose a new index to quantify the
similarity between two users in a user–object bipartite graph. To deal with the discrete
ratings on objects, we use a multi-channel representation where each object is mapped
to several channels with the number of channels being equal to the number of different
ratings. Each channel represents a certain rating and a user having voted an object will be
connected to the channel corresponding to the rating. Diffusion process taking place on
such a user–channel bipartite graph gives a new similarity measure of user pairs, which is
further demonstrated to bemore accurate than the classical Pearson correlation coefficient
under the standard collaborative filtering framework.

1. Introduction

With the rapid growth of the Internet [1] and the World-Wide-Web [2], a huge amount of data and resource is created
and available for the public. This, however, may result in a dilemma problem. On the one hand, the unprecedented growth
of available information has brought us into the world of many possibilities: people may choose from thousands of movies,
millions of books, and billions of web pages; on the other hand, the amount of information is increasing more quickly than
our personal processing abilities and therefore evaluations of all alternatives are not feasible at all. In consequence, it is vital
to automatically extract the hidden information and make personalized recommendations.

A lot of work has been done in this field. A landmark is the use of search engine [3,4]. However, a search engine could only
find the relevant web pages according to the input keywords and returns the same results regardless of users’ habits and
tastes. Another landmark is the so-called recommender system [5],which is essentially an information filtering technique that
attempts to find out objects likely to be interesting to the target users. Due to its significance for economy and society, the
design of efficient recommendation algorithms has become a common focus for computer science, mathematics, marketing
practices, management science and physics (see the review articles [6–8] and the references therein).

Various kinds of recommendation algorithms have been proposed, including the content-based analysis [9], the spectral
methods [10,11], the heat conduction algorithm [12], the opinion diffusion algorithm [13], the network-based inference
[14,15], the latent semantic model [16], the latent Dirichlet allocation [17], the iterative self-consistent refinement [18],
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Fig. 1. Illustration of the two representations of a five-rating system. Plot (a) shows the routine representation where weights on edges denote the
corresponding ratings. Plot (b) describes the multi-channel model where every object is divided into five channels, each of which represents a rating. User
who votes an object is connected to the channel corresponding to the rating.

and so on. Among them, collaborative filtering (CF) is one of the earliest and the most successful algorithms underlying
recommender systems [19]. A latent assumption of CF approach is that, in a social network, thosewho agreed in the past tend
to agree again in the future. The most commonly used algorithmic framework of CF consists of two steps: firstly to identify
the neighborhood of each user by computing similarities between all pairs of users based on their historical preferences,
and then to predict by integrating ratings of target user’s neighbors.

Algorithms within this framework differ in the definition of similarity, the formulation of neighborhoods and the
computation of predictions. The most crucial ingredient in determining the accuracy of CF is how to properly quantify
the similarity between two users [20]. In the simplest case, a recommender system can be well described by a bipartite
user–object network [14], where the relations between users and objects are binary: either presence or absence. For
example, in Amazon.com users are connected with books they purchased [21], and in audioscrobbler.com listeners are
connected with the music groups they collected [22]. Under this bipartite case, the cosine similarity [23] is the most widely
used index to quantify the proximity of user tastes. Recently, somenewsimilarity indices are proposed and shown to bemore
accurate than the cosine similarity, including the random-walk-based similarities [20,24], the diffusion-based similarities
[25–27], the transferring similarity [28], and so on. In addition, Fouss et al. [20] have demonstrated that some classical
similarity indices, such as the Katz index [29] and the matrix forest similarity [30], can give really good recommendations
under the framework of CF. However, most of those indices are not easily to be exploited in measuring the user similarity of
rating systems, where, instead of the simply binary correlations, users can vote objects by different ratings. For example, In
Yahoomusic,Netflix.com andMovieLens, people vote songs andmovies by discrete ratings from 1 to 5. In such rating systems,
the Pearson correlation coefficient is themostwidely used similaritymeasure [6]. In the calculation of the Pearson coefficient,
each rating is treated as a number. Taking again the YahooMusic as an example, the five ratings, from1 to 5, corresponding to
‘‘Never play again’’, ‘‘It is ok’’, ‘‘I like it’’, ‘‘I love it’’, and ‘‘Can’t get enough’’, and it is clear that the distance of feelings between
‘‘Never play again’’ and ‘‘It is ok’’ is much larger than the distance between ‘‘I love it’’ and ‘‘Can’t get enough’’, however, when
the ratings are treated as numbers, rich information gets lost and the distance between two neighboring ratings is supposed
to be the same (in this example, it is one).

To best keep the original information, we divide every object into several channels, each of which represents a certain
rating. Since most of the currently used recommendation engines adopt a five-rating system, this division will not bring
much extra computational complexity. Fig. 1 illustrates such a division for a five-rating system: Fig. 1(a) is the routine
representation with each object denoted by a node and the ratings are assigned to the corresponding edges, and Fig. 1(b)
is the new representation where each object is denoted by five channels corresponding to the five ratings. Under this
representation, one can apply the diffusion process, usually only used in the bipartite version in the past [13], to the multi-
channel systems. In this paper, to get the user similarity, we use a network-based resource-allocationmethod, which can be
considered as a two-step diffusion process and thus much faster than the one based on a certain convergent condition [13].
We then use this user similarity to predict ratings under the standard framework of collaborative filtering. We test this
algorithm on two benchmark data sets, MovieLens and Netflix, the results demonstrate its advantage compared with the
standard collaborative filtering adopting Pearson coefficient. This study indicates a strong potential of applying physical
process to target one of the central scientific problems in the modern information science—how to automatically extract
hidden information.

2. Method

In a recommender system, each user has voted some objects. Formally, let U be the set of m users, and O be the set
of n objects, the rating of user u ∈ U on object α ∈ O is denoted by ruα . We apply a resource-allocation process (two
step of diffusion) to get similarities between users [14,31]. Given a user–channel bipartite network (see Fig. 1(b), such a
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network is consisted ofm users and 5n channels), assuming that a certain amount of resource (e.g., recommendation power)
is associated with each user, we will distribute this resource to other users via the channels. The process follows two steps.
Firstly, each user distributes his initial resource evenly to all the channels he connects, and secondly, each channel distributes
its resource equally to all connected users.

Considering a bipartite graph G = (U, C, E), where U is the set of users, C is the set of channels, and E is the set of edges
connecting users and channels. After the first step, node c ∈ C gets the fraction,

Rcv = avc

k(v)
, (1)

of resource fromuser v, where k(v) is the degree of user v, avc = 1 if user v is connected to channel c , and avc = 0 otherwise.
Then, at the second step, each channel will distribute its resource to all the neighboring users. Thus, resource that user u
gets from v, defined as the similarity between u and v, is:

suv =
∑
c∈C

aucRcv

k(c)
= 1

k(v)

∑
c∈C

aucavc

k(c)
, (2)

where k(c) is the degree of channel c . Note that, the similarity matrix S = (suv) is asymmetric, i.e., suv �= svu. It is reasonable
because a user who rated a lot of objects often has high probability to share many common channels with other users and
thus will assign each of them lower weight. Actually, a recent empirical study showed that this kind of diffusion-based
similarity can better describe the dependence between stations in the Chinese railway network, comparing with some
traditional similarity measures [32]. In addition, the whole process obeys the conservation law, and the similarity matrix is
column-normalized, as

∑
u suv = 1.

Once we have calculated the user similarities, we can then obtain the predicted rating on a new object α ∈ O for a target
user u ∈ U using the standard collaborative filtering framework, that is

r ′
uα = r̄u + κ

∑
v

suv(rvα − r̄v), (3)

where r̄u denotes the average rating of user u, κ = (
∑

v suv)
−1 serves as the normalization factor, and v runs over all users

having voted the object α.

3. Numerical results

To test the algorithmic accuracy, we use two benchmark data sets: (i) MovieLens, which consists of 943 users, 1682
objects, and 105 discrete ratings from 1 to 5. (ii) Netflix, which is a random sample of the original Netflix data set, containing
3000 users who have voted at least 45 objects, and 3000 movies having been voted at least by 23 users. There are in total
567,456 ratings. We randomly divide this data set into two parts: one is the training set, treated as known information, and
the other is the probe, whose information is not allowed to be used for prediction. we use a parameter, p ∈ {10, 20, . . . , 90},
to control the data density, that is, p% of the ratings are put into the probe set, and the remains compose the training set.

To evaluate the prediction accuracy, we use two well-known metrics: mean absolute error (MAE) and root mean square
error (RMSE). They are respectively defined as:

MAE = 1

‖P‖
∑

(u,α)∈P

(ruα − r ′
uα), (4)

RMSE =
√

1

‖P‖
∑

(u,α)∈P

(ruα − r ′
uα)2, (5)

where P denotes the probe set.
We compare the proposed similarity with a benchmark one, namely the Pearson correlation coefficient, which has been

proved highly competitive to other similarity methods and is widely used in collaborative filtering algorithms. Under the
Pearson formula, the similarity, suv , between users u and v is

suv =
∑
α

(ruα − r̄u)(rvα − r̄v)√∑
α

(ruα − r̄u)2
√∑

α

(rvα − r̄v)2
, (6)

where α runs over all movies commonly voted by u and v.
Table 1 presents the algorithmic accuracies onMovieLens and Netflix. Subject to the prediction accuracy, one can see that

the diffusion-based similarity is notably better than the classical Pearson correlation coefficient for both data sets. Figs. 2 and
3 report the comparison between diffusion-based similarity and Pearson correlation coefficient for different data densities,
namely different p. It can be seen that the diffusion-based similarity outperforms the Pearson correlation coefficient in
all cases, and the difference becomes larger when the data gets sparser, indicating that this diffusion-based similarity has
greater advantage for sparser systems.
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Fig. 2. Prediction accuracy onMovieLens for different densities of training set. All the numbers are obtained by averaging over five runs, each of which has
an independently random division of training set and probe.
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Fig. 3. Prediction accuracy on Netflix for different densities of training set. All the numbers are obtained by averaging over five runs, each of which has an
independently random division of training set and probe.

Table 1
Comparison of the two similarity indices on MovieLens and Netflix. The probe contains 10% of the total data, namely p = 10. All the numbers are obtained
by averaging over five runs, each of which has an independently random division of training set and probe.

Data set Similarity index RMSE MAE

Diffusion-based 0.9479 0.7415
MovieLens Pearson 1.0259 0.7805

Diffusion-based 0.9406 0.7303
NetFlix Pearson 1.0441 0.7858

4. Conclusion and discussion

In this paper, by applying a diffusion process, we propose a new index to quantify the similarity between two users
in a user–object bipartite graph. Under the standard collaborative filtering framework, we compare the diffusion-based
similarity and the classical Pearson correlation coefficient. The numerical results on two benchmark data sets, MovieLens
and Netflix, indicated that the diffusion-based similarity can better account for the proximity of user tastes and provide
more accurate predictions. It is worthwhile to emphasize that the diffusion-based similarity can give competitively good
predictions as the so-called transferring similarity based on Pearson correlation coefficient [28]. Since the transferring
similarity, defined as T = (I − εS)−1S with S the matrix of Pearson correlation coefficient and ε a free parameter,
requires high computational resource and is parameter-dependent, the diffusion-based similarity, as a local and parameter-
free index, is comparatively more efficient. We think the diffusion-based similarity, combined with the multi-channel
representation, can find its application especially for the huge-size recommender systems with discrete ratings.
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Finally, we would like to point out two drawbacks of the proposed algorithm. Firstly, this method cannot deal with the
case with continuous ratings, and will fail due to huge computational complexity if the system allows large scale of ratings,
like 1–100 instead of 1–5. Secondly, this method makes the sparse data problem more terrible. In the traditional method,
two users having rated a common objectwill get some correlation,while in the presentmethod, it happens only if the ratings
are exactly the same. That is to say, the data looks like 5 times sparser in the present method. This is also why in the sparser
case, the present method gives no improvement than the traditional one.
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