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It is a capital mistake to theorize before one has data. Insensibly
one begins to twist facts to suit theories, instead of theories to suit
facts.

Sir Arthur Conan Doyle, The Adventures of Sherlock Holmes
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Abstract (English)

Gaussian linear information arises in many real-world models of the natural and
social sciences. The Gaussian distribution has turned out to appropriately represent
uncertainty in many linear models. The main goal of this thesis is to describe and to
compare different algebras of Gaussian linear information: Corresponding elements
and operations in the various algebras are revealed and the respective computational
advantages are highlighted.

In order to make large models computationally tractable, they have to be de-
composed into independent factors by exploiting sparsity. For such factorisations,
valuation algebras provide a general, abstract framework for local computations. A
valuation algebra is a two-sorted algebra with three operations: valuations (which
may be seen as pieces of information) refer to a domain of interest; valuations can be
marginalised (focussed) to a domain of interest, and they may be combined (aggre-
gated). Generic message-passing schemes can be used to answer projection problems.
Many problems in applications can be reduced to a projection problem: diagnostic
estimation, prediction, filtering, smoothing. For instance, Gaussian densities form a
valuation algebra: marginalisation is integration, and combination is multiplication
(plus renormalisation). Gaussian densities may be represented by Gaussian poten-
tials or moment matrices, using either the concentration or the variance-covariance
matrix, respectively. Here, marginalisation and combination are matrix operations.

A conditional Gaussian density is the family of Gaussian densities obtained on
the head variables by fixing a value for the tail variables. A conditional Gaussian
density corresponds to a Gaussian density on the head variables plus a linear regres-
sion on the tail variables. Conditional Gaussian densities can be analysed in three
ways: geometric, algebraic and analytic.

• General Gaussian linear systems lead to Gaussian hints by assumption-based
inference. Gaussian hints have focal sets which are parallel linear manifolds of
the same dimension in the parameter space. Combination corresponds to inter-
section of focal sets and marginalisation to projection of focal sets. Gaussian
potentials correspond to Gaussian hints whose focal sets are all singletons.

• Gaussian potentials can be extended to a valuation algebra of quotients which
are represented by pairs of Gaussian potentials. Conditional Gaussian densities
can be represented in the so-called separative extension of Gaussian potentials.

• Since a conditional Gaussian density is a quotient function of two Gaussian
densities, the concentration matrix in the exponent of the denominator can be
subtracted from the concentration matrix in the exponent of the numerator.
This leads to a new representation of symmetric Gaussian potentials whose
pseudo-concentration matrix is only symmetric but not necessarily positive
definite.

The main result of these considerations is that different conditional Gaussian den-
sities turn out to be linked to the same Gaussian hints (up to equivalence) if and
only if the conditional Gaussian densities are equal up to a constant factor. In other
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words, Gaussian likelihood functions bear the full information contained in Gaussian
hints. This explains why assumption-based reasoning on (over-)determined Gaussian
linear systems reproduces the estimation results based on the maximum-likelihood
principle.

Variables may be linear combinations of other variables. This imposes linear
restrictions on the parameter space. In the spirit of assumption-based reasoning,
algorithms for inference, the combination and marginalisation are derived for sym-
metric Gaussian potentials with deterministic equations.

Finally, it is shown how Gaussian linear systems can be expressed in the lan-
guage Abel. Queries on a complex Gaussian linear system can be answered in the
Abel system. Several examples illustrate the new approach of symmetric Gaussian
potentials.
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Zusammenfassung (deutsch)

Gauss’sche lineare Information kommt in verschiedenen Modellen der reellen Welt
vor, sowohl in den natur- wie auch in den sozialwissenschaftlichen Disziplinen. Mit
der Gauss-Verteilung kann Unsicherheit oft adäquat dargestellt werden. Das Ziel die-
ser Dissertation ist es, verschiedene Algebren Gauss’scher Information zu beschrei-
ben und zu vergleichen: Die einander entsprechenden Elemente und Operationen in
den unterschiedlichen Algebren sollen herausgearbeitet und ihre jeweiligen rechen-
technischen Vorteile hervorgehoben werden.

Damit grosse Modelle computertechnisch behandelt werden können, müssen sie
in unabhängige Faktoren zerlegt werden. Dies ist möglich, falls die Modelle dünn-
besetzt sind. Valuationsalgebren bieten ein allgemeines abstraktes Framework für
lokales Rechnen mit solchen Faktorisierungen. Eine Valuationsalgebra ist eine zwei-
sortige Struktur mit drei Operationen: Valuationen (die als Informationsstücke an-
gesehen werden können) beziehen sich auf eine Domäne; Valuationen können auf
eine Domäne marginalisiert (fokussiert) und kombiniert (aggregiert) werden. Gene-
rische Algorithmen mit Nachrichtenaustausch können angewendet werden, um ein
Projektionsproblem zu lösen. Viele Anwendungsprobleme können auf ein Projekti-
onsproblem zurückgeführt werden: diagnostische, prädiktive, Filter- und Smoothing-
Probleme. Zum Beispiel bilden Gauss’sche Dichten eine Valuationsalgebra: Mar-
ginalisierung ist Integration und Kombination ist Multiplikation (plus Normali-
sierung). Gauss’sche Dichten können durch Gauss’sche Potentiale oder Moment-
Matrizen dargestellt werden, wobei entweder die Konzentrationsmatrix oder die
Varianz-Kovarianzmatrix verwendet wird. Hier sind Marginalisierung und Kombi-
nation Matrizenoperationen.

Eine bedingte Gauss’sche Dichte ist die Familie von Gauss’sche Dichten über
die Kopfvariabeln für einen jeweils festen Wert der Rumpfvariabeln. Eine bedingte
Gauss’sche Dichte entspricht einer Gauss’schen Dichte über die Kopfvariabeln mit
linearer Regression von den Rumpfvariabeln. Bedingte Gauss’sche Dichten können
auf drei Arten betrachtet werden: auf geometrische, algebraische und analytische.

• Allgemeine Gauss’sche lineare System führen zu Gauss’schen Hinweisen durch
annahmen-basiertes Schliessen in Gauss’schen linearen Systemen. Die Fokal-
mengen Gauss’scher Hinweise sind parallele lineare Mannigfaltigkeiten dersel-
ben Dimension im Parameterraum. Gauss’sche Hinweise werden kombiniert,
indem ihre Fokalmengen geschnitten werden, und marginalisert, indem ihre Fo-
kalmengen projiziert werden. Gauss’sche Potentiale entsprechen Gauss’schen
Hinweisen mit einelementigen Fokalmengen.

• Gauss’sche Potentiale können zu einer Valuationsalgebra von Quotienten er-
weitert werden, die durch Paare von Gauss’schen Potentialen repräsentiert
werden. In dieser sogenannten separativen Erweiterung können auch bedingte
Gauss’sche Dichten dargestellt werden.

• Da eine bedingte Gauss’sche Dichte eine Quotientenfunktion zweier Gauss’scher
Dichten ist, entspricht diese der Subtraktion zweier Konzentrationsmatrizen.
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Dies führt zu symmetrischen Gauss’schen Potentialen, deren Pseudo-Konzen-
trationsmatrix nur symmetrisch, aber nicht notwendigerweise positiv definit
ist.

Aus diesen Betrachtungen ergibt sich, dass bedingte Gauss’sche Dichten genau dann
dem (bis auf Äquivalenz) gleichen Gauss’schen Hinweis entsprechen, falls die beding-
ten Gauss’schen Dichten bis auf einen konstanten Faktor gleich sind. In anderen Wor-
ten tragen Gauss’sche Likelihood-Funktionen dieselbe Information wie Gauss’sche
Hinweise. Dies erklärt, wieso annahmen-basiertes Schliessen aus (über-)bestimmten
Gauss’schen linearen Systemen zu denselben Schätzern führt wie die Maximum-
Likelihood-Methode.

Variabeln können lineare Kombinationen anderer Variabeln sein. Dies erlegt li-
neare Einschränkungen auf den Parameterraum. Durch annahmen-basiertes Schlies-
sen werden Algorithmen für Inferenz, Kombination und Marginalisierung für sym-
metrische Gauss’sche Potentiale mit linearen Gleichungen hergeleitet.

Schliesslich wird gezeigt, wie Gauss’sche lineare System in der Sprache Abel
ausgedrückt werden können. Anfragen über komplexe Gauss’sche lineare Systeme
können durch Abel beantwortet werden. Symmetrische Gauss’sche Potentiale wer-
den anhand mehrerer Beispiele illustriert.
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Abstract (romontsch)

Informaziun Gaussian-lineara vegn avon en biars models dil mund real dallas scien-
zias naturalas e socialas. La distribuziun Gaussiana ei semussada adequata per
representar incertezia en numerus models linears. La finamira principala da que-
sta dissertaziun eis ei da descriver e cumparegliar differentas algebras d’informaziun
Gaussian-lineara: Ils elements e las operaziuns che corrispundan in a l’auter ellas
diversas algebras vegnan fatgs resortir e lur avantatgs respectivs per las calculaziuns
vegnan mess en evidenza.

Per tractar models gronds cul computer, eis ei necessari da decumponer quels
en facturs independents. Quei ei pusseivel, sch’ils models ein spargliai. Algebras
da valuaziun porschan in rom d’applicaziuns general ed abstract per la calculaziun
locala cun da quellas factorisaziuns. In’algebra da valuaziuns ei ina structura en
duas specias cun treis operaziuns: valuaziuns (che san gnir interpretadas sco tocs
d’informaziun) serefereschan ad ina domena particulara; valuaziuns san gnir mar-
ginalisadas (ni focussadas) sin in’autra domena, e differentas valuaziuns san gnir
cumbinadas (ni agregadas). Metodas genericas cun scomi d’informaziun san gnir
duvradas per sligiar problems da projecziun. Biars problems en applicaziuns san
gnir reduci ad in problem da projecziun: schazetg diagnostic, predicziun, filtraziun,
smoothing. Aschia fuorman distribuziuns Gaussianas per exempel in’algebra da
valuaziuns: marginalisaziun ei integraziun, e cumbinaziun ei multiplicaziun (plus
renormalisaziun). Distribuziuns Gaussianas san gnir representadas tras potenzials
Gaussians (culla matriza da concentraziun) ni tras matrizas dils muments (cullas
varianzas e covarianzas). Cheu corrispundan marginalisaziun e cumbinaziun ad
operaziuns da matrizas.

Ina distribuziun Gaussiana cundiziunala ei ina famiglia da distribuziuns Gaus-
sianas ch’ins obtegn via las variablas da tgau tras fixar ina valur per las variablas
da cua. Ella corrispunda ad ina distribuziun via las variablas da tgau plus ina re-
gressiun lineara sillas variablas da cua. Distribuziuns Gaussianas cundiziunalas san
gnir analisadas en treis modas e manieras: geometrica, algebraica ed analitica.

• L’inferenza che sebasa sillas interpretaziuns deriva in’indicaziun Gaussiana dad
in sistem Gaussian-linear. Ils ensembels focals dad indicaziuns Gaussianas ein
multiplicitads linearas parallelas dalla medema dimensiun el spazi dils para-
meters. La cumbinaziun corrispunda alla intersecziun dils ensembels focals
e la marginalisaziun alla projecziun dils ensembels focals. Potenzials Gaus-
sians corrispundan ad indicaziuns Gaussianas cun ensembels focals da mo in
element.

• Potenzials Gaussians san gnir extendi ad in’algebra da valuaziuns da quo-
zients che san gnir representai sco pèrs da potenzials Gaussians. Distribuziuns
Gaussianas cundiziunalas san gnir representadas ella schinumnada extensiun
separativa da potenzials Gaussians.

• Essend che distribuziuns Gaussianas cundiziunalas ein ina funcziun da quozient
da duas distribuziuns Gaussianas, sa la matriza da concentraziun egl exponent
dil numnader gnir subtrahada dalla matriza da concentraziun egl exponent dil
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dumbrader. Quei meina ad ina nova representaziun da potenzials Gaussians
simmetrics che han ina matriza da pseudo-concentraziun che ei mo simmetrica
denton buc necessariamein positiv definita.

Il resultat principal da quellas consideraziuns ei quel che differentas distribuziuns
Gaussianas cundiziunalas serefereschan alla medema indicaziun Gaussiana (tochen
tier equivalenza) precis lu, sche las distribuziuns Gaussianas cundiziunalas ein iden-
ticas tochen tier in factur constant. Cun auters plaids, la funcziun da likelihood
cuntegn l’entira informaziun dall’indicaziun Gaussiana. Quei explichescha pertgei
l’inferenza che sebasa sillas interpretaziuns en sistems linears (sur-)determinai repro-
ducescha ils resultats dils schazetgs che sebasan sil principi da maximum-likelihood.
Variablas san esser cumbinaziuns linearas dad autras variablas. Quei inducescha
restricziuns linearas sil spazi dils parameters. Metodas dad inferenza che sebasan sil-
las interpretaziuns, la cumbinaziun e la marginalisaziun ein derivadas per potenzials
Gaussians simmetrics cun equaziuns deterministicas.

Alla fin vegn mussau co sistems Gaussians-linears san gnir exprimi el lungatg
Abel. Il sistem Abel sa rispunder a damondas davart sistems Gaussians-linears
cumplicai. Differents exempels illustreschan la representaziun nova da potenzials
Gaussians simmetrics.
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1
Introduction

Gaussian linear models have been extensively studied from various perspectives and
in different fields. In this thesis, different structures of Gaussian linear information
are compared from the algebraic perspective.

Chapter Outline

Gaussian linear models are illustrated in Section 1.1 by means of two simple intro-
ductory examples: noisy transmission over a Gaussian channel and Kalman filtering
in a simple tracking problem. The algebraic perspective on Gaussian linear models
is explained in Section 1.2. The principal goal of this thesis is to compare differ-
ent algebras of Gaussian linear information, as discussed in Section 1.3. The basic
results are sketched in Section 1.4. Finally, this thesis is outlined in Section 1.5.

1.1 Gaussian Linear Models

Gaussian linear models are presented by way of two introductory examples, followed
by an outline of the general case.

A First Introductory Example: Noisy Transmission over a Gaussian
Channel

Assume that Alice wants to send a message to her friend Bob, either 0 or 1. She may
encode that piece of information as an input signal to a continuous physical channel
going to Bob, i.e. the possible inputs are {x0, x1} ⊆ IR. However, the channel may
be noisy or lossy: When the signal arrives at Bob, it may have changed on the way
from Alice. This is shown in Figure 1.1: An error ω from a noise source (depicted
as a cloud) is added to the input x. When the output arrives, Bob wants to know
Alice’s message. However, all he has got is the output signal z = x + ω. He may
also make some assumptions on the channel: For instance, he may assume that
distortions are less likely the bigger they are. He assumes that the channel noise is
Gaussian. Hence, the channel is specified as a Gaussian linear model : It is linear

1



2 Chapter 1. Introduction

Alice Bob

x

ω

x + ω

Figure 1.1: Gaussian Channel between Alice and Bob

since the output is a given linear combination of the input and a random noise, and
it is Gaussian because of the given distribution of the additive noise term.

Given the Gaussian linear model of the channel, what can Bob infer on Alice’s
message? This situation is shown in Figure 1.2: He knows the received message z
and the Gaussian linear model of the channel.

x?

Bob

ω

x + ω

Figure 1.2: What can Bob infer on the input given the output and some knowledge about
the channel?

A First Approach

When Alice sends a message to Bob, say the message 0, she can compute the proba-
bility of each outcome at Bob: The outcomes which are close to the input are more
likely than those further away. Bob can use these conditional probabilities of the
outcome given the input to choose the input under which the output is more likely
or more plausible or less surprising. Therefore, this approach chooses the input of
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maximum likelihood given the output. However, it has to be emphasised that these
conditional probabilities of the output given the input must not be confounded with
a probability distribution on the input, even when the output is fixed.

A Second Approach

The first approach does not exploit all the information contained in the Gaussian
linear model of the channel: If the actual error ω of the transmission were known,
then Bob could compute the input x = z−ω. However, Bob could not only consider
the isolated likelihoods of the observation given either 0 or 1 was the input. He may
also consider the probabilities in a forward-looking, predicting way: Given input x
(0 or 1) and assuming an error ω, he is able to predict the outcome z = x + ω.
Given an observation z, only the two errors ω0 = z − x0 and ω1 = z − x1 are
possible in light of the generating model. Thus, the Gaussian distribution has to
be conditioned on the event {ω0, ω1}; the corresponding probabilities measure the
strength of the hypotheses x0 and x1, respectively. Using this second approach,
Bob gets the same numerical result with a different interpretation: The assumption
ω0 proves the hypothesis that x0 was the input, and the assumption ω1 proves
the hypothesis x1. Therefore, in this assumption-based approach, probabilities of
provability are derived (Pearl, 1988).

In summary, the first approach only allows to derive probabilities of not dis-
proving a hypothesis; the second approach also allows to derive probabilities of the
evidence proving or supporting a hypothesis.

A Second Introductory Example: A Tracking Problem Using a Simple
Kalman Filter

Consider the following example (Kalman, 1960): Particles leave the origin at time
t = 1, each particle with a constant (unknown) velocity. Suppose that the position of
one of these particles is measured repeatedly at the same interval ∆t = 1. If the data
is contaminated by stationary, additive, correlated noise, what can be inferred on the
position and the velocity of the particle at the time t = k of the last measurement?
Let xt be the position and ~xt the velocity of the particle; noiset is the noise. The
problem is then represented by the model

xt+1 =xt + ~xt (1.1)
~xt+1 = ~xt (1.2)

noiset+1 = ct,t+1 · noiset + ωt (1.3)
zt =xt + noiset (1.4)

for t ∈ {1, 2, . . . , k}. Assume that the disturbances ωt are independent and normally
distributed with mean 0 and variance σ2

t . The unknown values in this problem are
xt, ~xt, noiset, ωt. The model, the measurements zt and the correlation coefficients
ct,t+1 and the variances σ2

t are all known. A block diagram of the model is shown
in Figure 1.3. Boxes represent functions, arrows labelled by variables refer to their
in- and output, and black dots are branching points, i.e. equality constraints.
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Figure 1.3: A block diagram for the tracking problem

The filtering problem consists in making inferences on the current state xk.
Again, the two methods can be applied. In order to apply the likelihood method,
the probabilities of all sequences of unknown values xt and ~xt can be weighed. On
the other hand, in the assumption-based approach, the conditional distribution of
the sequences of noiset which are compatible with the observations zt and which
prove a hypothesis on xk allow to derive the probability of the assumptions proving
that hypothesis.

Gaussian Linear Systems

The foregoing two examples are instances of the more general form

Ax + ω = z (1.5)

for a vector x of unknown values, a known design matrix A, a known observation z
and unknown disturbances ω whose Gaussian distribution is however known. This is
a functional model, relating a parameter x and an assumption ω to the observation
z: If the true parameter and the true disturbance were known, then the observation
would necessarily be z. On the other hand, if the observation z is given and an ω is
assumed, then only a subset of the parameters is compatible with the observation and
the assumption. Thereby, the disturbances ω in the generating model (1.5) become
assumptions in the reasoning process. The geometric picture of the assumption-
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based inference on Gaussian linear systems is very simple: For different ω, the
solution sets or focal sets

Γz(ω) = {x : Ax + ω = z} (1.6)

are parallel linear manifolds. However, some ω are not possible (if Γz(ω) = ∅) and
the distribution of the disturbances has to be conditioned on the event of possible
assumptions

vz = {ω : ∃x s.t. ω = z −Ax} (1.7)

induced by the model. The result of such assumption-based reasoning is captured in
a structure called Gaussian hint (Monney, 2003). In contrast to classical regression
analysis, neither have restrictions to be imposed on the rank of A nor on the form
of the distribution of the ω in order to apply assumption-based reasoning.

Such a Gaussian hint allows to make both statements of support and of plau-
siblity (or possibility or likelihood) on a hypothesis H on the parameters x: The
assumptions under which a hypothesis is necessarily true are said to support H,
whereas the assumptions under which the hypothesis is not disproved are only
plausible. The supporting and plausible assumptions of a hypothesis induce a
subadditive measure (i.e. sp(H) + sp(Hc) ≤ 1) and a superadditive measure (i.e.
pl(H) + pl(Hc) ≥ 1), respectively.

Gaussian linear models arise in very different fields: control theory (Kalman,
1960) and coding theory (MacKay, 2003), in regression analysis (in econometrics),
or Bayesian networks (expert systems). The different graphical representations of
Gaussian linear information (such as by Bayesian networks or block diagrams) can
all be reduced to a Gaussian linear system.

Gaussian linear models have been extensively studied in the past: On the one
hand, many problems can be modelled appropriately by Gaussian linear information;
on the other hand, Gaussian linear models are computationally tractable. This has
often been pointed out in the literature:

The fact that Kalman filter models have proven useful in many situ-
ations is partly a consequence of their mathematical and computational
tractability, but a more fundamental reason is that the models portray
with sufficient accuracy the phenomena under analysis. In the case of a
physical system, the state equations often derive in part from well-studied
physical phenomena, and similarly the observation equations derive from
understanding of measurement processes. The associated Gaussian dis-
tribution assumptions [...] are sometimes made without much thought,
but can often be empirically substantiated, and of course should be
treated as potential sources of mistaken conclusions if their validity and
consequences are not analyzed. In other situations with softer theoret-
ical and empirical support, the assumed equations, distributions, and
independence properties may be deliberately speculative, but still may
improve substantially on nonstochastic thinking. (Dempster, 1990b; p.127)

The popularity of linear gaussian models comes from two fortunate
analytical properties of gaussian processes: the sum of two independent



6 Chapter 1. Introduction

gaussian distributed quantities is also gaussian distributed, [...] and the
output of a linear system whose input is gaussian distributed is again
gaussian distributed. (Roweis and Ghahramani, 1999; p.309)

The Gaussian distribution is often used as a means of modelling random noise:

It is a fairly generally accepted fact that primary macroscopic sources
of random phenomena are independent gaussian processes[:] The proba-
bility distributions will be gaussian because macroscopic random effects
may be thought of as the superposition of very many microscopic random
effects; under very general conditions, such aggregate effects tend to be
gaussian, regardless of the statistical properties of the microscopic effects.
The assumption of independence in this context is motivated by the fact
that microscopic phenomena tend to take place much more rapidly than
macroscopic phenomena; thus primary random sources would appear to
be independent on a macroscopic time scale. (Kalman, 1960; p.39)

1.2 Algebras of Gaussian Linear Information

The foregoing discussion shows the basic operations on Gaussian linear information.

• Given Gaussian linear information, the basic interest is inference on variables
whose values may be unknown. An algebra of Gaussian linear information has
therefore to provide an operator for extracting the relevant information.

• Since the problem structure is most often modular, the problem can be split
into independent factors. Therefore, an algebra of Gaussian linear information
has to provide an operator for combining pieces of Gaussian linear information,
each of which refering to a given set of variables.

• When solving the inference problem, the modular structure should be exploited
for efficient local computations, i.e. computations on domains not larger than
the individual factors.

In mathematical terms, the first two points correspond to an algebra of Gaussian
linear information. It turns out that algebras of Gaussian linear information fit into
a more general framework of valuation algebras for local computation. This relates
Gaussian linear information to other structures representing probabilistic, uncertain
or logical knowledge. In this framework, information is defined implicitly by a set
of axioms imposed on the operations. Furthermore, these axioms are sufficient for
local computation.

• Pieces of information are called valuations. They refer to a domain of interest,
which is a set of variables.

• There is a combination operator for valuations.

• Valuations can be projected or marginalised to a domain of interest.
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• A projection problem is given by a factorisation of the combined model and
the queries, i.e. the domains of interest.

• Algorithms for local computation work on join trees. Each node in the tree
contains a factor. Join trees have the running intersection property, i.e., if a
variable occurs in two different nodes, it has to be in every node on the unique
path between those two nodes.

1.3 Motivation & Purpose

On a practical level, Gaussian linear information often contains redundancy. Redun-
dancy can be treated and described in different ways, for instance by sparse matrix
techniques or by conditional independences as reflected by Bayesian networks. This
thesis advocates the following point of view: Redundancy in the model is reflected
by independent modules referring only to a subset of all variables, i.e. by a factori-
sation of the overall model. The overall model is the (virtual) combination of all
these factors. When the inference problem regarding a particular domain of interest
has to be computed, the domain structure of the factorisation should be taken into
account in order to make computations tractable and to avoid inefficient computa-
tions. For this purpose, the framework of valuation algebras will be used, since it
provides generic message-passing algorithms for local computation.

In fact, there are many different representations of Gaussian linear information:

• likelihood functions or conditional Gaussian densities;

• Gaussian densities plus regression equations;

• Gaussian linear systems (including Gaussian linear regression models);

• quotient functions of a Gaussian density and a marginal (Kohlas, 2003);

• Gaussian hints (Monney, 2003; Kohlas and Monney, 2008) derived by assumption-
based reasoning (Kohlas and Monney, 1995);

• Gaussian belief functions (Dempster, 1990a; Liu, 1996a; 1999).

However, it is not well understood how these different representations are related.
Therefore, the main purpose of this thesis is

• to present different algebras of Gaussian linear information,

• to show how they are related, and

• to discuss their respective advantages on the computational level.

In addition, a new representation of Gaussian linear information, symmetric Gaus-
sian potentials, is developed.

Furthermore, some of these representations do not include deterministic linear
knowledge. Adding deterministic linear equations imposes crisp restrictions on the
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values of the parameter; if there is logically no explanation for the observation, the
Gaussian linear model even becomes contradictory. Therefore, a second purpose of
this thesis is to

• analyse Gaussian linear systems with deterministic equations using assumption-
based reasoning and to

• study the effect of deterministic knowledge on Gaussian hints and symmetric
Gaussian potentials.

1.4 Results & Validation

Algebras of Gaussian Linear Information

A Gaussian linear functional model (1.5) induces different families of conditional
Gaussian distributions for different conditioning variables. In general, such a para-
metric setting only allows to make probabilistic statements of plausibility or likeli-
hood. In contrast, in the Gaussian linear case, it turns out that the induced condi-
tional Gaussian densities contain the full information of the Gaussian linear model.
This remarkable result is derived from three different perspectives.

• Geometrically, the points of the same conditional Gaussian density value form
parallel linear manifolds. If the corresponding Gaussian linear system of re-
gression equations is interpreted in a prescriptive way of how observations are
generated, this leads to the focal sets Γ (ω) of (1.6). Hence, a conditional Gaus-
sian density represents a distribution over these parallel linear manifolds Γ (ω).
Remarkably, it turns out that different conditional Gaussian densities (with
different conditioning variables) are related to the same Gaussian hint if and
only they are the same up to a constant factor; in this case, they are called
equivalent. The geometric interpretation of this equivalence is simple: The
constant factor accounts for different axes of integration for the distribution
over the focal sets Γ (ω).

• Algebraically, a conditional Gaussian density can be described as a quotient
function of a Gaussian density and the marginal density for the conditioning
variables. Therefore, a conditional Gaussian density can be represented by
a pair of two Gaussian densities. Using purely algebraic arguments, it turns
out that separativity is a sufficient criterion for embedding a valuation algebra
into a valuation algebra of pairs (Kohlas, 2003). It turns out that the same
equivalence of conditional Gaussian densities is induced by purely algebraic
arguments instead of geometric arguments.

• Analytically, the quotient of two Gaussian densities corresponds to the matrix
difference of their concentration matrices. The operations from the geometric
and the analytic approach can then be carried over to this new representation.
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Symmetric Gaussian Potentials

The analytic approach leads to symmetric Gaussian potentials. This new repre-
sentation inherits full marginalisation from Gaussian hints and division from the
separative extension of Gaussian potentials. Furthermore, it provides a unique rep-
resentation of equivalent Gaussian hints and conditional Gaussian potentials.

Deterministic knowledge

Deterministic linear equations impose restrictions on the parameter space. This
induces an event in a Gaussian hint. Algorithms are developed for the applica-
tion of deterministic knowledge to Gaussian hints as well as for combination and
marginalisation.

Validation

The validity of the algorithms developed for symmetric Gaussian potentials and
deterministic knowledge is shown in an implementation and in various examples
from the literature.

1.5 Thesis Outline

It follows a more detailed outline of the four main parts of this thesis.

Part I: Local Computation in Valuation Algebras

In the first part, local computation in valuation algebras is introduced by using
Gaussian potentials as the basic example.

In Chapter 2, the framework of valuation algebras is introduced. Different ax-
iomatics of valuation algebras – in terms of marginalisation or variable elimination
– are discussed, and the algebraic theory is presented on an abstract level. Further,
stable valuation algebras can be defined in a domain-free way. Finally, valuation
algebras which decompose into a union of groups are discussed.

In Chapter 3, the valuation algebra of Gaussian potentials is introduced. A
Gaussian potential represents a Gaussian density by its mean vector and its con-
centration matrix. Combination and marginalisation of Gaussian potentials will be
defined in terms of matrix operations: combination corresponds to multiplication
(plus renormalisation) and marginalisation to integration of Gaussian densities. Al-
ternatively, a Gaussian density can be represented by a moment matrix, i.e. by
its mean vector and its variance-covariance matrix. Further, the complexity of the
operations is compared in both representations.

In Chapter 4, local computation in join trees and the basic algorithms (Collect,
Shenoy-Shafer, Lauritzen-Spiegelhalter) are reviewed.
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Part II: Conditional Gaussian Densities

In Chapter 5, conditional Gaussian densities are defined, and three approaches are
introduced: A geometric approach linking conditional Gaussian densities to Gaus-
sian hints, an algebraic approach linking conditional Gaussian densities to pairs of
Gaussian potentials, and an analytic approach leading to symmetric Gaussian po-
tentials. These three approaches are then discussed more thoroughly in the following
chapters.

In Chapter 6, systems of linear equations with Gaussian disturbances are dis-
cussed by using assumption-based reasoning and the theory of hints. Gaussian hints,
the result of the assumption-based inference, represent a distribution over parallel
linear manifolds. Gaussian hints equally form a valuation algebra. Gaussian po-
tentials can be embedded in this valuation algebra and are represented by precise
Gaussian hints, which represent a distribution over points (parallel linear manifolds
of dimension 0).

In Chapter 7, it is shown that different conditional Gaussian densities (with
different head and tail variables) are related to the same Gaussian hint (up to equiv-
alence). It is shown that the combination of Gaussian hints corresponds to the
union of the heads and (up to renormalisation) to the multiplication of conditional
Gaussian densities. Marginalisation corresponds to integration over a head variable
or the reduction of vacuous variables, which are always in the tail.

In Chapter 8, an algebraic theory is given for embedding a separative valuation
algebra into a union of groups whose elements are represented by pairs of valua-
tions. Although conditional Gaussian densities can be represented in the separative
extension of Gaussian potentials, only marginalisation corresponding to integration
is possible; vacuous variables cannot be reduced.

In Chapter 9, it is shown that the symmetric matrix obtained by subtracting the
numerator and the denominator concentration matrices of a quotient of Gaussian
densities can be used for a new unique representation. These symmetric Gaussian
potentials consist of a vector and a symmetric matrix of the same domain. Fur-
thermore, any symmetric matrix is the difference of two symmetric positive definite
matrices whose domains overlap. Therefore, symmetric Gaussian potentials and the
elements of the separative extension are in one-to-one correspondence. Combina-
tion and marginalisation can be carried over from the separative extension and from
Gaussian hints. Thereby, the valuation algebra of symmetric Gaussian potentials
inherits full marginalisation from Gaussian hints and division from the separative
extension. Conditional Gaussian densities correspond to a symmetric Gaussian po-
tential whose pseudo-concentration matrix is non-negative definite.

Part III: Deterministic Knowledge

In Chapter 10, deterministic variables and deterministic linear systems are cap-
tured by a deterministic hint. Such deterministic linear hints induce an event in a
Gaussian hint or the corresponding symmetric Gaussian potential. Algorithms for
the application of deterministic knowledge as well as for the combination and the
marginalisation of these generalised symmetric Gaussian potentials are derived.
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Part IV: Applications and Implementation

In Chapter 11, the Kalman filter model as well as the filtering, smoothing and
prediction problems can easily be translated into the messaging-passing schemes of
local computation. The different parts of the Kalman filter model are represented
by symmetric Gaussian potentials.

In Chapter 12, an implementation of the algorithms for symmetric Gaussian
potentials is shown. Gaussian linear systems and queries can be expressed in the
Abel language and are then handled by the Gauss solver. Queries can be answered
by using the Nenok framework for local computation.

In Chapter 13, some concrete applications of Gaussian linear systems are formu-
lated and computed in Abel.

Finally, a conclusion will be given in Chapter 14. In Appendix A, some re-
sults from matrix algebra used in the text are listed; in Appendix B, the Gaussian
distribution is reviewed.

Chapter Structure

Every chapter consists of the following sections:

1. an introduction, where context and motivation are given in an informal way;

2. a chapter outline, where the thread of the argumentation in the overall chapter
is outlined;

3. the serially numbered sections figuring in the table of contents, where the
theory is developed or exposed formally;

4. chapter synopsis and discussion, recapitulating the most important points in
technical terms, relating the exposition to previous work in the field and sug-
gesting alternatives and open questions.

Proofs are terminated by the symbol ut, examples, definitions, lemmata and theorems
by the symbol �. Terms defined in the text are highlighted using this font.





Part I

Local Computation in
Valuation Algebras





2
Valuation Algebras

The algebraic framework of valuation algebras unifies information processing of
seemingly disparate domains such as relational databases, belief functions, probabil-
ity potentials etc.; see (Shafer, 1991; Kohlas, 2003) for more details and references.
Query answering in these knowledge representation systems is often computation-
ally expensive. Therefore, efficient algorithms have been developed in various do-
mains. It has turned out that many of them are instances of generic algorithms in
the abstract framework of valuation algebras; these algorithms will be the topic of
Chapter 4.

Chapter Outline

The following four topics are discussed in this chapter.

1. Axiomatics: In Section 2.1, valuation algebras are formally defined in terms
of marginalisation. In Section 2.2, valuation algebras are defined in terms of
variable elimination. This second approach is equivalent with the first one if
domains are restricted to be finite.

2. Algebraic theory : In Section 2.3, neutral elements for each domain as well as
null elements are discussed. In Section 2.4, algebraic notions such as con-
gruences, homomorphisms and quotient algebras are carried over to valuation
algebras. Furthermore, if the combination of a valuation with a part of the
same valuation yields nothing new with respect to a congruence, the congru-
ence is called idempotent. Idempotent congruences induce a partial order of
equivalence classes into valuation algebras. Such idempotent congruences are
studied in Section 2.5.

3. Stability : If valuations may represent the same information with respect to
different domains, the valuation algebra is called stable as discussed in Sec-
tion 2.6. From such a stable valuation algebra, a domain-free valuation algebra
can be derived; conversely, a domain-free valuation algebra induces a stable
valuation algebra. This is the topic of Section 2.7.

15
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4. Division: Division in a valuation algebra can be defined if it is composed of dis-
joint groups with inverses. This notion will be formally defined in Section 2.8.
On the one hand, division is important for advanced local computation tech-
niques, see Chapter 4. On the other hand, division may also be relevant for
the semantical point of view, see Chapter 5.

2.1 The Algebraic Framework of Valuation Algebras

The following definition captures an algebraic structure of information pieces called
valuations. A piece of information refers to a domain of interest consisting of a set
of variables. The sets of domains considered are supposed to be closed under union
∪ and intersection ∩, i.e. they are supposed to form a lattice. For instance, the
lattice of all subsets of a set r is the triplet (2r,∪,∩) where

2r = {s : s ⊆ r}, (2.1)

∪ is set union and ∩ is intersection. The set 2r of all subsets is called the powerset
of r. Another example is the set lattice (with union and intersection) over the set
Dfinite of finite subsets of a set r,

Dfinite = {s : s ⊆ r, s finite}. (2.2)

Definition 2.1. Let Φ be a set of elements called valuations and let (D,∪,∩) be a
lattice of subsets of a set r with partial order ⊆. The elements of r are called variables
and the elements of D are called domains. Suppose that there are four operations
defined:

1. labelling: d : Φ→ D, φ 7→ d(φ),

2. combination: ⊗ : Φ× Φ→ Φ, (φ, ψ) 7→ φ⊗ ψ,

3. domain operator: M : Φ→ 2D, φ 7→ M(φ), and

4. marginalisation: ↓: Φ×D → Φ, (φ, s) 7→ φ↓s defined for s ∈M(φ).

The setM(φ) contains all domains s ∈ D such that the marginal φ↓s of φ is defined
relative to the domain s.

Let the following set of axioms be imposed on Φ and D.

(A1) Commutative Semigroup: Φ is associative and commutative under combina-
tion, i.e. for φ, ψ, χ ∈ Φ,

φ⊗ (ψ ⊗ χ) = (φ⊗ ψ)⊗ χ, and
φ⊗ ψ = ψ ⊗ φ.

(A2) Labelling: For φ, ψ ∈ Φ,

d(φ⊗ ψ) = d(φ) ∪ d(ψ). (2.3)
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(A3) Marginalisation: For φ ∈ Φ and s ∈M(φ),

d(φ↓s) = s. (2.4)

(A4) Transitivity: If φ ∈ Φ, s ⊆ t ⊆ d(φ), it follows that

s ∈M(φ) ⇐⇒ t ∈M(φ), s ∈M(φ↓t); (2.5)

then, it also holds that

(φ↓t)
↓s

= φ↓s. (2.6)

(A5) Combination: If φ, ψ ∈ Φ with d(φ) = x, d(ψ) = y and z ∈ D such that
x ⊆ z ⊆ x ∪ y, then z ∩ y ∈M(ψ) implies z ∈M(φ⊗ ψ) and

(φ⊗ ψ)↓z = φ⊗ ψ↓z∩y.

(A6) Domain: φ ∈ Φ with d(φ) = x implies that x ∈M(φ) and

φ↓x = φ. (2.7)

(A7) Identity Element: There is an element e ∈ Φ, d(e) = ∅, M(e) = {∅} such that
for any φ ∈ Φ

φ⊗ e = φ = e⊗ φ. (2.8)

A sextuple A = (Φ,D, d,⊗,M, ↓) satisfying these axioms is called a labelled valuation
algebra. If M(φ) = 2d(φ) for all φ ∈ Φ, then A is called valuation algebra with full
marginalisation, abbreviated A = (Φ,D, d,⊗, ↓). �

The axioms of a valuation algebra represent natural properties of information pro-
cessing. The first axiom indicates that, if information comes in pieces, the sequence
does not influence the overall information. The labelling axiom says that the com-
bination of valuations gives information over the union of the domains involved;
neither do variables vanish, nor do new ones appear. The marginalisation axiom
says that marginalisation yields an element of the target domain. The transitivity
axioms says that the direct and the two-step marginalisation lead to the same result.
The combination axiom is essential for local computation since marginalisation of
a product can be performed in the factors if one the factor domains is a subset of
the marginal domain. The domain axiom says that information is not influenced
by projecting it to its own domain. Without the domain axiom, this is not always
the case (Shafer, 1991). The identity element axiom is used for technical reasons in
the local computation algorithms as discussed in Chapter 4. In (Schneuwly et al.,
2004), it is shown that such an element can be assumed without loss of generality.

Remark 2.2. The basic model for the valuation algebra axioms are quotient func-
tions f(x) = f1(x↓d(f1))

f2(x↓d(f2))
of domain x = d(f1) ∪ d(f2). Here, variables in the numer-

ator f1 can be integrated out as long as they do not occur in the denominator f2.
Therefore, the quotient function can be marginalised to any domain s such that
d(f2) ⊆ s ⊆ x. �
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Remark 2.3. In the case of a valuation algebra with full marginalisation, the tran-
sitivity and the combination axioms can be simplified as follows.

(A4)′ Transitivity (full marginalisation): If φ ∈ Φ, s ⊆ t ⊆ d(φ), then

(φ↓t)
↓s

= φ↓s. (2.9)

(A5)′ Combination (full marginalisation): If φ, ψ ∈ Φ with domains x = d(φ) and
y = d(ψ), x ⊆ s ⊆ x ∪ y, then

(φ⊗ ψ)↓s = φ⊗ ψ↓s∩y. (2.10)
�

The following lemma gives an important property of valuation algebras.

Lemma 2.4. Let A = (Φ,D, d,⊗,M, ↓) be a valuation algebra, and φ, ψ ∈ Φ, x =
d(φ), y = d(ψ), and s ∈ D. If x ∩ y ⊆ s ⊆ x ∪ y, s ∩ x ∈ M(φ) and s ∩ y ∈ M(ψ),
then s ∈M(φ⊗ ψ) and

(φ⊗ ψ)↓s = φ↓x∩s ⊗ ψ↓y∩s. (2.11)
�

Proof. Since x ∩ y ⊆ s ∩ y ⊆ s and s ∩ y = (s ∪ x) ∩ y, by the transitivity and the
combination axioms,

φ↓s∩x ⊗ ψ↓s∩y = (φ⊗ ψ↓s∩y)↓s

= (φ⊗ ψ↓(s∪x)∩y)↓s

= ((φ⊗ ψ)↓s∪x)
↓s

= (φ⊗ ψ)↓s. ut

It says that the marginalisation of a product can be done on the factors if the
intersection of the factor labels is smaller than the domain of the marginalisation
(provided that the necessary marginals are defined).

2.2 Variable Elimination

The transitivity axiom allows to eliminate variables in a valuation one by one in
any order instead of directly marginalising the valuation to the corresponding sub-
domain. The notation

φ−X = φ↓d(φ)−{X} (2.12)

is used for the elimination of X in φ provided that d(φ) − {X} ∈ M(φ). More
generally, the definition of a valuation algebra may be reformulated in terms of
variable elimination instead of marginalisation if D consists only of finite sets.

Definition 2.5. Let Φ be a set of valuations and let D be a lattice of finite subsets
of a set r of variables. Suppose that there are four operations defined:
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1. Labelling: d : Φ→ D; φ 7→ d(φ),

2. Combination: ⊗ : Φ× Φ→ Φ; (φ, ψ) 7→ φ⊗ ψ,

3. Variable Operator: V : Φ→ D; φ 7→ V(φ) where V(φ) ⊆ d(φ),

4. Variable Elimination: − : Φ×D → Φ; (φ,X) 7→ φ−X defined for X ∈ V(φ).

The set V(φ) contains all variables s ⊆ d(φ) which can be eliminated in φ, i.e. such
that φ−X is defined relative to the valuation φ ∈ Φ.

Let the following set of axioms be imposed on Φ and D.

(E1) Commutative Semigroup: Φ is associative and commutative under combina-
tion, i.e. for φ, ψ, χ ∈ Φ,

φ⊗ (ψ ⊗ χ) = (φ⊗ ψ)⊗ χ, and
φ⊗ ψ = ψ ⊗ φ.

(E2) Labelling: For φ, ψ ∈ Φ,

d(φ⊗ ψ) = d(φ) ∪ d(ψ). (2.13)

(E3) Variable Elimination: For φ ∈ Φ and X ∈ V(φ),

d(φ−X) = d(φ)− {X}. (2.14)

(E4) Transitivity: For φ ∈ Φ,

X ∈ V(φ) and Y ∈ V(φ−X) =⇒ Y ∈ V(φ) and X ∈ V(φ−Y ); (2.15)

then, it also holds that (
φ−X

)−Y
=
(
φ−Y

)−X
. (2.16)

(E5) Combination: If φ, ψ ∈ Φ with d(φ) = x, d(ψ) = y and X 6∈ d(φ), then
X ∈ V(ψ) implies X ∈ V(φ⊗ ψ), and

(φ⊗ ψ)−X = φ⊗ ψ−X . (2.17)

(E6) Identity Element: There is an element e ∈ Φ, d(e) = ∅, V(e) = ∅ such that for
any φ ∈ Φ

φ⊗ e = e⊗ φ = φ. (2.18)

A sextuple A = (Φ,D, d,⊗,V,−) satisfying these axioms is called a labelled valuation
algebra with variable elimination. �

Define (X1, X2, . . . , Xn) ∈ V(φ) if

• Xi ∈ V(φi−1), φ0 = φ, φi = ((φ−X1)···)−Xi , i ∈ {1, . . . , n− 1}.



20 Chapter 2. Valuation Algebras

The following lemma shows that variables can be eliminated in any order.

Lemma 2.6. Let A = (Φ,D, d,⊗,V,−) be a valuation algebra with partial variable
elimination. Let (X1, X2, . . . , Xn) ∈ V(φ) for some φ ∈ Φ. Then, (Xi1 , . . . , Xin) ∈
V(φ) and

((φ−X1)···)
−Xn = ((φ−Xi1 )···)

−Xin (2.19)

for every permuation i1, . . . , in of 1, . . . , n. �

Proof. Any two consecutive variables Xi, Xi+1 can be swapped without affect-
ing the result: Since Xi+1 ∈ V(φi) = V(φi−1

−Xi), it follows that by the tran-
sitivity axiom that Xi+1 ∈ V(φi−1), Xi ∈ V(φi−1

−Xi+1) and (φi−1
−Xi+1)

−Xi =
(φi−1

−Xi)
−Xi+1 = φi+1. Therefore, the equality can be established in the following

way: For j from 1 to n, bring variable Xij in front by “bubbling” variable Xij up
to position j by at most n− j swappings. ut

In light of the previous lemma, define

φ−{X1,...,Xn} = ((φ−Xi1 )···)
−Xin (2.20)

if (X1, . . . , Xn) ∈ V(φ) and define φ−∅ = φ.

Remark 2.7. (X1, . . . , Xn) ∈ V(φ) implies {X1, . . . , Xn} ⊆ V(φ), whereas the con-
verse is not necessarily true. �

Theorem 2.8. Let D be the lattice of all finite subsets of a set r of variables.

(1) Let A = (Φ,D, d,⊗,M, ↓) be a valuation algebra. Then, the algebraic struc-
ture AM = (Φ,D, d,⊗,VM,−M) is a valuation algebra with variable elimination
where VM and −M are defined by

VM(φ) = {X : d(φ)− {X} ∈ M(φ)} (2.21)

and for such an X

φ−MX = φ↓d(φ)−{X} (2.22)

for φ ∈ Φ.

(2) If A′ = (Φ,D, d,⊗,V,−) is a valuation algebra with variable elimination, then
AV = (Φ,D, d,⊗,MV , ↓V) is a valuation algebra where, for φ ∈ Φ, MV and ↓V
are defined by

MV(φ) = d(φ) ∪ {s = d(φ)− {X1, . . . , Xn} : (X1, . . . , Xn) ∈ V(φ), (2.23)

and then

φ↓Vs = φ−{X1,...,Xn}. (2.24)
�
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Proof. Marginalisation derived from variable elimination is well defined in light of
Lemma 2.6.
Axioms (A1) and (E1) are the same, as well as (A2) and (E2). On the one hand,
the marginalisation axiom (A3) in AV follows from the definition (2.24) and the
variable elimination axiom (E3). On the other hand, the variable elimination axiom
(E3) in AM follows from the definition (2.22) and the marginalisation axiom (A3).
The domain axiom (A6) in AV follows from the definition (2.24). Observing that
VM(e) = ∅ andMV(e) = ∅, the identity axioms hold in AM and AV .

(A4) Let s ⊆ t ⊆ d(φ). Define x1 = d(φ) − t = {X1, . . . , Xm} and x2 = t − s =
{Xm+1, . . . , Xm+n}. In light of Lemma 2.6, φ−x1−x2 is defined if and only if
φ−x is defined, and then also (φ−x1)−x2 = φ−x. Therefore, s ∈ MV(φ) if and
only if t ∈ MV(φ) and s ∈ MV(φ−x1) = MV(φ↓V t). Further, (φ↓V t)↓Vs =
φ−x1−x2 = φ−x = φ↓Vs.

(A5) Assume d(φ) ⊆ z ⊆ d(φ)∪d(ψ) and z ∈MV(ψ). Let {X1, . . . , Xm} = d(ψ)−z.
Then, (X1, . . . , Xm) ∈ V(φ). Hence, successive application of the combination
axiom shows that (X1, . . . , Xm) ∈ V(φ ⊗ ψ). Hence, d(ψ) − z ∈ MV(ψ).
Further, (φ⊗ ψ)↓Vz = (φ⊗ ψ)−{X1,...,Xm} = φ⊗ψ−{X1,...,Xm} = φ⊗ψ↓Vz∩d(ψ).

(E4) Assume X ∈ VM(φ) and Y ∈ VM(φ−MX). This implies s ∈ M(φ) for s =
d(φ)−{X,Y }. Hence, using the transitivity axiom, t ∈M(φ) and s ∈M(φ↓t)
for t = d(φ) − {X}. Therefore, Y ∈ VM(φ) and X ∈ VM(φ−MY ) since
φ−MX = φ↓t. Furthermore, (φ−MX)−MY = φ↓s = (φ−MY )−MX .

(E5) Assume X ∈ VM(ψ) and X 6∈ d(φ). Define z = (d(φ) ∪ d(ψ))−X. Then, the
combination axiom implies that z ∈M(φ⊗ψ), i.e. X ∈ VM(φ⊗ψ). Further,
(φ⊗ ψ)−MX = (φ⊗ ψ)↓z = φ⊗ ψ↓z∩d(ψ) = φ⊗ ψ−MX . ut

If the elements of D are not finite, then marginalisation in a labelled valuation alge-
bra cannot be expressed as a finite sequence of variable eliminations; so marginali-
sation is more general than variable elimination.

Remark 2.9. V(φ) = d(φ) does not imply that MV = 2d(φ), whereas ∅ ∈ M(φ)
implies VM(φ) = d(φ). �

2.3 Neutral and Null Elements in Valuation Algebras

Many valuation algebras A = (Φ,D, d,⊗,M, ↓) have a neutral element with respect
to combination for every domain s ∈ D.

Definition 2.10. An element es ∈ Φs = {φ ∈ Φ : d(φ) = s} is called neutral
element of the subsemigroup Φs if

es ⊗ φ = φ (2.25)

for all valuations φ ∈ Φs. �
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Since neutral elements do not add any information, they represent empty or vacu-
ous information. However, there are important examples where such elements can
either not be represented explicitly or do not exist at all. For instance, in relational
database theory, the neutral element for a domain is the relation that contains all –
possibly infinitely many – tuples for some domain, see (Kohlas, 2003). If there are
neutral elements for all domains, it is postulated that the neutrality axiom holds:

(A8) Neutrality: For s, t ∈ D, there are neutral elements es and et, and

es ⊗ et = es∪t. (2.26)

Definition 2.11. A valuation algebra satisfying the neutrality axiom is called val-
uation algebra with neutral elements. �

Lemma 2.12. (1) Neutral elements are unique if they exist, i.e. if es, e′s are neutral
elements of Φs, then es = e′s. In particular, the identity element is the neutral
element of the empty domain,

e∅ = e. (2.27)

(2) Neutral elements are idempotent, i.e. es ⊗ es = es.

(3) In a valuation algebra with neutral elements, if d(φ) = x and y ⊆ x, then

φ⊗ ey = φ. (2.28)
�

Proof. (1) By the definition of neutral elements and the commutativity of combi-
nation,

es = e′s ⊗ es = es ⊗ e′s = e′s.

(2) By the definition of neutral elements, es ⊗ es = es.

(3) By the definition of neutral elements and the neutrality axiom,

φ⊗ ey = φ⊗ ex ⊗ ey = φ⊗ ex∪y = φ⊗ ex = φ. ut

Some valuation algebras also have a null or absorbing element zs ∈ Φs for every
domain s ∈ D, i.e. an element zs such that zs ⊗ φ = zs for all valuations φ ∈ Φs. It
represents contradictory information. It is postulated that the nullity axiom holds,
which says that the null information cannot arise from non-contradictory information
by marginalisation.

(A10) Nullity: For φ ∈ Φ, x = d(φ), s ∈M(φ), it holds that

φ↓s = zs ⇐⇒ φ = zx. (2.29)

Definition 2.13. A valuation algebra with a null element zs for every domain s ∈
D satisfying the nullity axiom is called valuation algebra with null elements. �
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Lemma 2.14. (1) Null elements are unique if they exist, i.e. if zs, z′s ∈ Φs, then
zs = z′s.

(2) Null elements are idempotent, i.e. zs ⊗ zs = zs �

Proof. (1) By the definition of null elements and the commutativity of ⊗, it holds
that zs = zs ⊗ z′s = z′s ⊗ zs = z′s.

(2) Follows by definition. ut

2.4 Algebraic Theory

Some concepts of universal algebra (e.g. (Burris and Sankappanavar, 1981)) will now
be applied to the two-sorted special case of valuation algebras. Particular attention
has to be paid to the set lattice of domains. The results of (Kohlas, 2003) for full
marginalisation are generalised to the case of partial marginalisation.

Homomorphisms and Embeddings

Let A1 = (Φ1, D, d1,⊗1,M1, ↓1) and A2 = (Φ2, D, d2,⊗2,M2, ↓2) be valuation alge-
bras. Then, a mapping h : Φ1 → Φ2 is called homomorphism if it is

1. compatible with labelling, i.e. d1(φ) = d2(h(φ)) for all φ ∈ Φ1,

2. compatible with combination, i.e.

h(φ⊗1 ψ) = h(φ)⊗2 h(ψ)

for all φ, ψ ∈ Φ1,

3. compatible with marginalisation, i.e.

η = h(φ), x ∈M1(φ) =⇒ x ∈M2(η), h(φ↓x) = (h(φ))↓
2x

for all φ ∈ Φ1, and

4. the identity element e1 of A1 is mapped to the identity element e2 of A2,
h(e1) = e2.

If a homomorphism h is injective, i.e. if

h(φ) = h(ψ) =⇒ φ = ψ,

then h is called an embedding. Here, M1(φ) ⊆ M2(h(φ)). If there is an embed-
ding e : Φ1 → Φ2, then A2 is called an extension of A1. An embedding (and the
corresponding extension) are called weak if neutral elements in A1 (if they exist and
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except for the identity element) are not mapped to the corresponding neutral ele-
ments of A2. A homomorphism is called surjective if for all η ∈ Φ2 there is a φ ∈ Φ1

such that
h(φ) = η.

A bijective (i.e. injective and surjective) embedding h is called an isomorphism if
M1(φ) = M2(h(φ)) for all φ ∈ Φ1. Then, the inverse mapping h−1 : Φ2 →
Φ1, h

−1(h(φ)) 7→ φ exists and is also an embedding. The valuation algebra A1 is
called a subalgebra of A2 if

• Φ1 ⊆ Φ2,

• d1(φ) = d2(φ) for φ ∈ Φ1,

• φ1 ⊗1 φ2 = φ1 ⊗2 φ2 for φ1, φ2 ∈ Φ1,

• M1(φ) ⊆M2(φ) for φ ∈ Φ1 and φ↓1s = φ↓2s for s ∈M1(φ).

In these terms, an embedding is always an isomorphism with a subalgebra.

Congruences

A binary relation θ in a set A, i.e. a set θ ⊆ A×A, is called an equivalence relation
if it is

1. reflexive: a ∈ A implies (a, a) ∈ θ,

2. symmetric: (a, b) ∈ θ implies (b, a) ∈ θ, and

3. transitive: (a, b), (b, c) ∈ θ imply (a, c) ∈ θ.

The equivalence class of an element a modulo θ is denoted

[a]θ = {b ∈ A : (a, b) ∈ θ}. (2.30)

If (a, b) ∈ θ, then a is said to be equivalent b modulo θ; the following equivalent
notations will be used:

(a, b) ∈ θ ⇐⇒ a ≡ b (mod θ) ⇐⇒ a ≡θ b ⇐⇒ a ∈ [b]θ ⇐⇒ b ∈ [a]θ. (2.31)

The family of equivalence classes modulo θ is called quotient set and is denoted

A/θ = {[a]θ : a ∈ A}. (2.32)

It is well known that A/θ is a partition of A, i.e. that the classes in A/θ are disjoint
and cover A. An equivalence relation θ in a valuation algebra (Φ,D, d,⊗,M, ↓) is
called congruence if it is compatible with marginalisation and combination, i.e. if it
is

1. compatible with combination: φ1 ≡ ψ1 (mod θ), φ2 ≡ ψ2 (mod θ) imply φ1 ⊗
φ2 ≡ ψ1 ⊗ ψ2 (mod θ);
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2. compatible with marginalisation: if φ ≡ ψ (mod θ) and s ∈M(φ),M(ψ), then

[φ↓s]θ = [ψ↓s]θ, (2.33)

and

3. complete under marginalisation:

φ↓t ≡θ ψ, s ∈M(ψ) =⇒ ∃ψ′ ∈ [φ]θ s.t. t, s ∩ t ∈M(ψ′). (2.34)

Remark 2.15. A congruence θ carries the transitivity of marginalisation over to
equivalence classes modulo θ. Equation (2.34) carries transitivity upwards from
[φ↓t]θ to [φ]θ. Let φ ≡θ ψ (mod θ), t ∈M(φ), t′ ∈M(ψ), φ′ ∈ [φ↓t]θ, ψ′ ∈ [φ↓t

′
]θ, s ∈

M(φ′),M(ψ′) and assume s ⊆ t, t′. If θ were not complete under marginalisation, it
could not be proved that φ′↓s ≡θ ψ′↓s. This situation is shown in Figure 2.1 where
equivalent valuations appear in the same box. However, since θ is complete under
marginalisation, there are φ′′ ∈ [φ]θ and ψ′′ ∈ [ψ]θ with s = s ∩ t ∈ M(φ′′) and
s = s ∩ t′ ∈ M(ψ′′). By the transitivity axiom, it also holds that t ∈ M(φ′′) and
t′ ∈M(ψ′′). Hence, since θ is compatible with marginalisation, it follows that

φ′
↓s ≡θ (φ′′↓t)

↓s
= φ′′

↓s ≡θ ψ′′
↓s = (ψ′′↓t

′
)
↓s
≡θ ψ′

↓s
.

This gives the situation in Figure 2.2. �

φ ψ

φ↓t ψ↓t
′

φ′↓s

ψ′↓s

ψ′φ′

Figure 2.1: If θ is not complete under marginalisation, does it hold that φ′↓s ≡θ ψ
′↓s?

According to this definition of congruence, equivalent valuations are not required to
have the same domain. If, however,

φ ≡ ψ (mod θ) =⇒ d(φ) = d(ψ), (2.35)

then θ is called domain-contained. If θ is domain-contained, define

dθ([φ]θ) = d(φ), (2.36)
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φ ψ

φ↓t ψ↓t
′

φ′↓s

ψ′↓s

ψ′φ′

φ′′
ψ′′

ψ′′↓t
′

ψ′′↓s

φ′′↓s

φ′′↓t

Figure 2.2: A congruence θ carries the transitivity of marginalisation over to equivalence
classes modulo θ.

[φ]θ ⊗θ [ψ]θ = [φ⊗ ψ]θ, (2.37)

and
[φ]↓θs

θ = [φ↓s]θ (2.38)

if s ∈M(φ), i.e. the marginalisation is defined for domains

Mθ([φ]θ) = {s : ∃φ′ ∈ [φ]θ s.t. s ∈M(φ′)}. (2.39)

These definitions are well defined since θ is compatible with combination and marginal-
isation. These operations define a quotient valuation algebra as shown by the next
theorem.

Theorem 2.16. Let θ be a domain-contained congruence. Then,

• (Φ/θ,D, dθ,⊗θ,Mθ, ↓θ) is a valuation algebra;

• the mapping φ 7→ [φ]θ is a homomorphism. �

Proof. The axioms are verified in turn.

(A1) The commutative semigroup property is inherited as is easily verifiable.

(A2) The labelling axiom is also inherited since

dθ([φ]θ ⊗θ [ψ]θ) = dθ([φ⊗ ψ]θ) = d(φ⊗ ψ) = d(φ)∪ d(ψ) = dθ([φ]θ)∪ dθ([ψ]θ).

(A3) The marginalisation axiom holds since

dθ([φ]↓θs
θ ) = dθ([φ↓s]θ) = d(φ↓s) = s

for s ∈M(φ) ⊆Mθ([φ]θ).
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(A4) Let s ⊆ t ⊆ dθ([φ]θ). On the one hand, assume s ∈ M(φ) ⊆ Mθ([φθ]. Then,
the transitivity axiom implies that t ∈M(φ) ⊆Mθ([φθ]). On the other hand,
assume t ∈ M(φ) ⊆ Mθ([φ]θ) and s ∈ M(ψ) for a ψ ∈ [φ↓t]θ = [φ]↓θt. Using
(2.34), there is a ψ′ ∈ [φ]θ such that s, t ∈ M(ψ′) ⊆ Mθ([φ]θ). Then, using
the transitivity axiom,

[φ]↓θs
θ = [ψ′↓s]θ = [ψ′↓t

↓s
]θ = [ψ′↓t]↓θs

θ = [φ]↓θt
θ

↓θs
.

(A5) Let [φ]θ and [ψ]θ with domains x = dθ([φ]θ) = d(φ) and y = dθ([ψ]θ) = d(ψ).
Further let s such that x ⊆ s ⊆ x∪y and assume s∩d(ψ) ∈M(ψ) ⊆Mθ([ψ]θ).
Then, the combination axiom implies that s ∈ M(φ ⊗ ψ). Therefore, s ∈
Mθ([φ⊗ ψ]θ) =Mθ([φ]θ ⊗θ [ψ]θ), and

([φ]θ ⊗θ [ψ]θ)↓θs = [φ⊗ ψ]↓θs
θ = [(φ⊗ ψ)↓s]θ = [φ⊗ ψ↓s∩d(ψ)]θ

= [φ]θ ⊗θ [ψ↓s∩d(ψ)]θ = [φ]θ ⊗θ [ψ]↓θs∩dθ([ψ]θ)
θ .

(A6) The domain axiom is also inherited since d(φ) ∈ M(φ) implies dθ([φ]θ) =
d(φ) ∈Mθ([φ]θ) and

[φ]↓θdθ([φ]θ)
θ = [φ]↓θd(φ)

θ = [φ↓d(φ)]θ = [φ]θ.

(A7) The element eθ = [e]θ is an identity element since

[φ]θ ⊗θ eθ = [φ⊗ e]θ = [φ]θ = [e⊗ φ]θ = eθ ⊗θ [φ]θ

and dθ(eθ) = d(e) = ∅.

It is readily verified that φ 7→ [φ]θ is a homomorphism. ut

The following homomorphism theorem is a sort of dual of the previous quotient val-
uation algebra theorem. However, if marginalisation is only partially defined, then
the homomorphism is required to satisfy an additional property in order to induce
a congruence.

Theorem 2.17. Let h : Φ1 → Φ2 be a homomorphism from the valuation algebra
A1 = (Φ1, D, d1,⊗1,M1, ↓1) to A2 = (Φ2, D, d2,⊗2,M2, ↓2). Assume that

s ⊆ t, s, t ∈M2(h(φ)) =⇒ ∃φ′ s.t. h(φ′) = h(φ), and s, t ∈M1(φ′). (2.40)

Then, the relation θ,
φ ≡θ ψ ⇐⇒ h(φ) = h(ψ), (2.41)

is a domain-contained congruence in A1. Furthermore, the mapping hθ : Φ1/θ →
Φ2, [φ]θ 7→ h(φ) is an embedding. �

Proof. The relation θ is an equivalence relation since it is

• reflexive: h(φ) = h(φ) implies φ ≡θ φ;
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• symmetric: φ ≡θ ψ =⇒ h(φ) = h(ψ) =⇒ ψ ≡θ ψ; and

• transitive φ ≡θ ψ,ψ ≡θ χ, =⇒ h(φ) = h(ψ) = h(χ) =⇒ φ ≡θ χ.

Furthermore, θ is compatible with combination since h(φ) = h(φ′) and h(ψ) = h(ψ′)
imply

h(φ⊗1 ψ) = h(φ)⊗2 h(ψ) = h(φ′)⊗2 h(ψ′) = h(φ′ ⊗1 ψ
′).

It is also compatible with marginalisation since h(φ) = h(φ′) and s ∈M1(φ),M1(φ′)
imply that s ∈M2(h(φ)) =M2(h(φ′)) and

h(φ↓
1s) = h(φ)↓

2s = h(φ′)↓
2s = h(φ′↓

1s).

Since h(φ) = h(φ′) implies that d1(φ) = d2(h(φ)) = d2(h(φ′)) = d1(φ′), θ is domain-
contained.
It will now be proved that θ is complete under marginalisation. Assume h(φ↓

1t) =
h(ψ). Since θ is compatible with marginalisation, t ∈ M2(h(φ)) and h(φ↓

1t) =
(h(φ))↓

2t. If s ∈ M1(ψ), then compatibility with marginalisation implies s ∈
M2(h(ψ)) = M2(h(φ↓1t)). Hence, s, t ∈ M2(h(φ)). Therefore, using the condi-
tion (2.40), there is a ψ′ ∈ Φ1 such that h(ψ′) = h(φ) and s, t ∈ M1(ψ′). Since θ is
domain-contained, this shows that θ satisfies (2.34).
Finally, hθ is injective since hθ([φ1]θ) = hθ([φ2]θ) implies h(φ1) = h(φ2), i.e. [φ1]θ =
[φ2]θ. ut

The situation of the Theorem is shown in Figure 2.3. If marginalisation in A2 is
fully defined, then the condition (2.40) can of course be dropped.

Φ1 Φ2

Φ1/θ

h

hθ

[·]θ

Figure 2.3: The homomorphism theorem

In order to keep the notation simple, the conventions of Table 2.1 are used for
quotient valuation algebras induced by a congruence in an underlying valuation
algebra.

2.5 Partial Order Induced by an Idempotent Congruence

A congruence θ in a valuation algebra A = (Φ,D, d,⊗,M, ↓) is called idempotent if

[φ⊗ φ↓s]θ = [φ]θ (2.42)

for all φ ∈ Φ, s ∈M(φ).
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abbreviation for
(Φ/θ,D, d,⊗,M, ↓) (Φ/θ,D, dθ,⊗θ,Mθ, ↓θ)
d([φ]θ) dθ([φ]θ)
[φ]θ ⊗ [ψ]θ [φ]θ ⊗θ [ψ]θ
M([φ]θ) Mθ([φ]θ)
[φ]θ

↓s [φ]θ
↓θs

Table 2.1: Abbreviations for induced quotient valuation algebras working on quotients

Remark 2.18. For all φ ∈ Φ the domain axiom shows that d(φ) ∈ M(φ) and
φ↓d(φ) = φ. Hence,

[φ⊗ φ]θ = [φ⊗ φ↓d(φ)]θ = [φ]θ.

Furthermore, the equivalence classes are semigroups, as φ ≡ ψ (mod γ) implies
φ⊗ ψ ≡ φ⊗ φ ≡ φ (mod γ). �

Such a congruence induces a partial order ≤ between the equivalence classes by

[φ]θ ≤ [ψ]θ ⇐⇒ [φ⊗ ψ]θ = [ψ]θ. (2.43)

It has to be verified that ≤ is a partial order. Let φ, ψ ∈ Φ.

1. Reflexivity: [φ]θ ≤ [φ]θ since θ being idempotent implies that [φ⊗ φ]θ = [φ]θ.

2. Antisymmetry : [ψ]θ ≤ [φ]θ and [φ]θ ≤ [ψ]θ imply [φ]θ = [ψ]θ since the two
conditions and commutativity of combination imply

[φ]θ = [ψ ⊗ φ]θ = [φ⊗ ψ]θ = [ψ]θ.

3. Transitivity: [φ]θ ≤ [ψ]θ and [ψ]θ ≤ [ζ]θ imply [φ]θ ≤ [ζ]θ. This holds since the
two conditions and θ being compatible with marginalisation imply

[ζ]θ = [ψ ⊗ ζ]θ = [(φ⊗ ψ)⊗ ζ]θ = [φ⊗ (ψ ⊗ ζ)]θ = [φ⊗ ζ]θ,

thus indeed [φ]θ ≤ [ζ]θ.

This partial order has the following properties.

Lemma 2.19. Let θ be an idempotent congruence in a valuation algebra

A = (Φ,D, d,⊗,M, ↓),

and let φ, ψ, ψ′ ∈ Φ, x = d(φ), y = d(ψ), y′ = d(ψ′).

(1) [φ]θ, [ψ]θ ≤ [φ⊗ ψ]θ.

(2) If [φ]θ ≤ [ψ]θ, then [φ⊗ ψ]θ = [ψ]θ.

(3) (Φ/θ,≤) is a join-semilattice (i.e. there is a least upper bound sup or ∧ for all
pairs of elements) with

sup{[φ]θ, [ψ]θ} = [φ]θ ∧ [ψ]θ = [φ⊗ ψ]θ. (2.44)
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(4) If [φ]θ ≤ [ψ]θ = [ψ′]θ, then

[φ⊗ ψ]θ = [φ⊗ ψ′]θ. (2.45)

(5) If [φ]θ ≤ [ψ]θ, then for all ψ′ ∈ Φ

[φ]θ ⊗ [ψ′]θ = [φ⊗ ψ′]θ ≤ [ψ ⊗ ψ′]θ = [ψ]θ ⊗ [ψ′]θ. (2.46)

(6) If s ∈M(φ), then

[φ↓s]θ ≤ [φ]θ. (2.47)

(7) If s ∈M(φ) and [φ↓s]θ = [φ]θ, t ∈M(φ), s ⊆ t ⊆ x, then

[φ↓t]θ = [φ]θ. (2.48)
�

Proof. (1), (2) are reformulations of the definition of ≤.

(3) By (1) [φ]θ, [ψ]θ ≤ [φ⊗ψ]θ. Assume there is a ζ ∈ Φ such that [φ]θ, [ψ]θ ≤ [ζ]θ.
Then, by successive application of (2)

[φ⊗ (ψ ⊗ ζ)]θ = [φ⊗ ζ]θ = [ζ]θ,

which implies [φ⊗ψ]θ ≤ [ζ]θ. This shows that [φ⊗ψ]θ is indeed the supremum
of [φ]θ and [ψ]θ.

(4) By the definition of ≤, [φ⊗ ψ]θ = [ψ]θ = [ψ′]θ = [φ⊗ ψ′]θ.

(5) Since [ψ]θ = [φ⊗ ψ]θ, [ψ′]θ = [ψ′ ⊗ ψ′]θ and since θ is compatible with ⊗,

[ψ ⊗ ψ′]θ = [(φ⊗ ψ)⊗ (ψ′ ⊗ ψ′)]θ = [(φ⊗ ψ′)⊗ (ψ ⊗ ψ′)]θ,

i.e. [φ⊗ ψ′]θ ≤ [ψ ⊗ ψ′]θ.

(6) Since θ is idempotent, [φ]θ = [φ↓s ⊗ φ]θ, i.e. [φ↓s]θ ≤ [φ]θ.

(7) By the transitivity axiom, s ∈M(φ↓t). Then, by (6),

[φ]θ = [φ↓s]θ = [(φ↓t)
↓s

]θ ≤ [φ↓t]θ ≤ [φ]θ.

Hence, [φ↓t]θ = [φ]θ since ≤ is a partial order.
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2.6 Stable Valuation Algebras

In many valuation algebras, marginals of neutral elements are again neutral elements,
i.e. the marginal of a piece of vacuous information is vacuous again. This property
is called stability (Kohlas, 2003).

(A9) Stability: For s, t ∈ D, s ⊆ t there are neutral elements es and et such that
s ∈M(et) and

et
↓s = es. (2.49)

Definition 2.20. A valuation algebra that satisfies the neutrality and the stability
axioms is called stable. �

Lemma 2.21. In a stable valuation algebra satisfying the nullity axiom, it holds that

zs ⊗ et = zs∪t, (2.50)
zs ⊗ zt = zs∪t, (2.51)
φ⊗ zt = zx∪t, x = d(φ). (2.52)

�

Proof. By stability, s∩ t ∈M(et), thus by the combination axiom s ∈M(zs⊗ et)
and

(zs ⊗ et)↓s = zs ⊗ et↓s∩t = zs ⊗ es∩t = zs,

using equation (2.28). Hence, it follows by the nullity axiom that zs ⊗ et = zs∪t.
Using equation (2.50) just proved and the idempotency of null elements, zs ⊗ zt =
(zs ⊗ es∪t)⊗ (zt ⊗ es∪t) = zs∪t ⊗ zs∪t = zs∪t.
Finally, using equation (2.51), φ ⊗ zt = φ ⊗ zt ⊗ ex∪t = φ ⊗ zt∪x = φ ⊗ zx ⊗ zt =
zx ⊗ zt = zx∪t. ut

Not every valuation algebra with neutral elements is stable, as has been noted by
(Kohlas, 2003; p.21). However, if a valuation algebra does not contain neutral
elements, it can be extended to a stable valuation algebra.

Lemma 2.22. Let A = (Φ,D, d,⊗,M, ↓) be a valuation algebra. Define

• Φ′ = {(φ, s) : φ ∈ Φ, s ∈ D, d(φ) ⊆ s},

• d′(φ, s) = s,

• (φ, s)⊗′ (ψ, t) = (φ⊗ ψ, s ∪ t),

• M(φ, s) = {t ⊆ s : t ∩ d(φ) ∈M(φ)},

• (φ, s)↓
′t = (φ↓t∩d(φ), t) for t ∩ d(φ) ∈M(φ).

Then, A′ =(Φ′, D, d′,⊗′,M′, ↓′) is a stable valuation algebra with neutral elements
e′s = (e, s) and it is a weak extension of A by the (weak) embedding φ 7→ (φ, d(φ)).�

Proof. (A1) Combination in A′ is clearly associative and commutative.
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(A2) The labelling axiom holds in A′ since

d′((φ, x)⊗′ (ψ, y)) = x ∪ y = d′(φ, x) ∪ d′(ψ, y)

for (φ, x), (ψ, y) ∈ Φ′.

(A3) The marginalisation axiom holds in A′ since d′((φ, x)↓
′s) = d′(φ↓s∩d(φ), s) = s

for s ∈M′(φ, x) ⇐⇒ s ∩ d(φ) ∈M(φ).

(A4) Let (φ, x) ∈ Φ′ and let s ⊆ t ⊆ x. Observe that s∩ d(φ) = s∩ (t∩ d(φ)), hence[
t ∩ d(φ) ∈M(φ) and s ∩ d(φ) ∈M(φ↓t∩d(φ))

]
⇐⇒ s ∩ d(φ) ∈M(φ)

by the transitivity axiom in A, thus[
t ∈M′(φ, x) and s ∈M′((φ, x)↓

′t) =M′(φ↓t∩d(φ), t)
]
⇐⇒ s ∈M′(φ, x).

Therefore, if s ∈M′(φ, x),

((φ, x)↓
′t)
↓′s

= (φ↓t∩d(φ), t)
↓′s

= (φ↓s∩(t∩d(φ)), s) = (φ↓s∩d(φ), s) = (φ, x)↓
′s.

(A5) Let (φ, x), (ψ, y) ∈ Φ′ and x ⊆ s ⊆ x ∪ y, and assume s ∈ M′(ψ), i.e. s ∩
d(ψ) ∈ M(ψ). Observe that d(φ) ⊆ x ⊆ s implies d(φ) ⊆ s ∩ (d(φ) ∪ d(ψ)).
Hence, by the combination axiom in A, s ∩ (d(φ) ∪ d(ψ)) ∈ M(φ ⊗ ψ), i.e.
s ∈M′(φ⊗ ψ, x ∪ y). Then,

((φ, x)⊗′ (ψ, y))↓
′s = (φ⊗ ψ, x ∪ y)↓

′s

= ((φ⊗ ψ)↓s∩(d(φ)∪d(ψ)), s)

= (φ⊗ ψ↓s∩d(ψ), x ∪ (s ∩ y))
= (φ, x)⊗′ (ψ↓s∩d(ψ), s ∩ y)

= (φ, x)⊗′ (ψ, y)↓
′s.

(A6) Let (φ, x) ∈ Φ′. Then, the domain axiom in A shows that x ∩ d(φ) = d(φ) ∈
M(φ), hence x ∈ M′(φ, x). Further, (φ, x)↓

′x = (φ↓x∩d(φ), x) = (φ↓d(φ), x) =
(φ, x). This shows that the domain axiom also holds in A′.

(A7) The identity element in A′ is e′ = e∅ = (e, ∅) since for (φ, x) ∈ Φ′ (φ, x)⊗′ e′ =
(φ⊗ e, x ∪ ∅) = (φ, x) = (φ⊗ e, x ∪ ∅) = e′ ⊗′ (φ, x).

(A8) The elements e′s = (e, s) are neutral elements for the domain s since (φ, s)⊗′
(e, s) = (φ, s). The neutrality axiom follows since e′s ⊗′ e′t = (e, s) ⊗′ (e, t) =
(e⊗ e, s ∪ t) = (e, s ∪ t) = e′s∪t for s, t ∈ D.

(A9) Let e′s = (e, s) ∈ Φ′ and let t ⊆ s. Then, using the identity axiom in A,
t ∩ d(e) = ∅ ∈ M(e) shows that t ∈ M′(e′s) and e′s

↓′t = (e, s)↓
′t = (e↓t∩∅, t) =

(e, t) = e′t.
Finally, A′ is a weak extension of A since
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• d′(φ, d(φ)) = d(φ),

• (φ, d(φ))⊗′ (ψ, d(ψ)) = (φ⊗ ψ, d(φ) ∪ d(ψ)),

• s = s ∩ d(φ) ∈M(φ) ⇐⇒ s ∈M′(φ, d(φ)),

• (φ, d(φ))↓
′s = (φ↓s, s), and,

• if there are neutral elements es ∈ Φ, then (es, s) ⊗′ e′s = (es, s) ⊗′ (e, s) =
(es, s) 6= e′s for s 6= ∅. ut

In a stable valuation algebra, multiplying a valuation by a neutral element of a larger
domain is called vacuous extension to that domain,

φ↑y = φ⊗ ey (2.53)

for d(φ) ⊆ y ∈ D. An illustration of vacuous extension will be given in Section 3.4 in
the context of Gaussian potentials. Vacuous extension has the folllowing properties.

Lemma 2.23. Let (Φ,D, d,⊗,M, ↓) be a stable valuation algebra and let φ, ψ be
valuations on domains x and y, respectively, such that

φ↑x∪y = ψ↑x∪y. (2.54)

Then, the following properties hold.

(1) Let s, u ∈ D such that u ⊇ x and s ⊆ u. Then, s∩x ∈M(φ) implies u ∈M(φ↑u)
and

φ↑u
↓s

= φ↓s∩x
↑s
. (2.55)

In particular, for s = x,
φ↑u

↓x
= φ. (2.56)

(2)
φ↑x∪y ⊗ ψ↑x∪y = φ⊗ ψ (2.57)

(3) If x ∩ y ∈M(φ),M(ψ), then

φ↓x∩y = ψ↓x∩y (2.58)

and
φ↓x∩y

↑x
= φ. (2.59)

(4) For x ⊆ u ⊆ v ∈ D,
φ↑u

↑v
= φ↑v. (2.60)

(5) For x, y ⊆ u ∈ D,
φ↑u = ψ↑u =⇒ φ↑x∪y = ψ↑x∪y. (2.61)

�
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Proof. (1) Using the neutrality axiom, φ⊗ eu = φ⊗ ex ⊗ eu−x = φ⊗ eu−x. Since
(s ∪ x) ∩ (u − x) = s ∩ (u − x) ∈ M(eu−x), the combination axiom shows that
s ∪ x ∈ M(φ ⊗ eu−x) and (φ⊗ eu−x)↓s∪x = φ ⊗ eu−x↓s∩(u−x) = φ ⊗ es∩(u−x),
using stability. Furthermore, by the combination axiom, s ∩ x ∈ M(φ) implies
s ∈ M(φ ⊗ es∩(u−x)) and (φ⊗ es∩(u−x))

↓s = φ↓x∩s ⊗ es∩(u−x) = φ↓x∩s ⊗ es.
Hence, by the transitivity axiom, s ∈M(φ⊗ eu−x) and (φ⊗ eu)↓s = φ↓x∩s⊗ es.
If s = x, then the domain axiom shows that φ↓x∩s ⊗ es = φ⊗ ex = φ.

(2) Using the neutrality axiom, (φ⊗ ex∪y)⊗ (ψ ⊗ ex∪y) = (φ⊗ ψ)⊗ ex∪y = φ⊗ ψ.

(3) By (1), x ∩ y ∈ M(φ↑x∪y),M(ψ↑x∪y) and φ↓x∩y = φ↑x∪y
↓x∩y = ψ↑x∪y

↓x∩y =
ψ↓x∩y. Furthermore, using (1), the neutrality and the combination axioms,

φ = φ↑x∪y
↓x

= (φ⊗ ex∪y)↓x = (φ⊗ ex−y)↓x = φ↓x∩y ⊗ ex−y = φ↓x∩y ⊗ ex.

(4) By the neutrality axiom (φ⊗ eu)⊗ ev = φ⊗ ev.

(5) Since (x ∪ y) ∩ u = x ∪ y ∈M(eu), the combination axiom implies that x ∪ y ∈
M(φ⊗ eu) and (φ⊗ eu)↓x∪y = φ⊗ eu↓x∪y = φ⊗ ex∪y using the stability axiom.
Similarly, it can be proved that (ψ ⊗ eu)↓x∪y = ψ ⊗ ex∪y. Hence, φ ⊗ ex∪y =
(φ⊗ eu)↓x∪y = (ψ ⊗ eu)↓x∪y = ψ ⊗ ex∪y. ut

Property (3) states that the relevant information is contained in the smaller domain
x ∩ y and that φ and ψ represent the same knowledge vacuously extended to their
respective label. Therefore, define

φ ≡σ ψ ⇐⇒ φ↑x∪y = ψ↑x∪y. (2.62)

Lemma 2.24. The relation σ is an equivalence relation in a stable valuation algebra.
Furthermore, it is compatible with combination and marginalisation. �

Proof. Let φ, ψ, χ be valuations on domains x, y, and z, respectively. Reflexivity
follows since φ↑x = φ↑x. Symmetry follows since φ ≡σ ψ =⇒ φ↑x∪y = ψ↑x∪y =⇒
ψ ≡σ φ. Assume φ ≡σ ψ and ψ ≡σ χ. Then, by the transitivity of vacuous extension,
Lemma 2.23 (4),(

φ↑x∪y
)↑x∪y∪z

=
(
ψ↑x∪y

)↑x∪y∪z
=
(
ψ↑y∪z

)↑x∪y∪z
=
(
χ↑y∪z

)↑x∪y∪z
,

and by Lemma 2.23 (5) it follows that φ ≡σ χ. Hence, σ is also transitive. In order
to prove that σ is compatible with combination, let φ ≡σ φ′ and ψ ≡σ ψ′ with
x = d(φ), x′ = d(φ′), y = d(ψ), and y′ = d(ψ′). Then, using the transitivity of
vacuous extension (Lemma 2.23 (4)),

φ↑x∪y∪x
′∪y′ ⊗ ψ↑x∪y∪x′∪y′ = φ↑x∪x

′↑x∪y∪x′∪y′ ⊗ ψ↑y∪y′
↑x∪y∪x′∪y′

= φ′
↑x∪x′↑x∪y∪x

′∪y′
⊗ ψ′↑y∪y

′↑x∪y∪x′∪y′

= φ′
↑x∪y∪x′∪y′ ⊗ ψ′↑x∪y∪x

′∪y′
.
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Hence, it follows from (5) of the same lemma that φ⊗ ψ ≡σ φ′ ⊗ ψ′.
In order to prove that σ is compatible with marginalisation, let φ ≡σ φ′, x = d(φ) and
y = d(φ′) and s ∈M(φ),M(φ′). By Lemma 2.23, s ∈M(φ↑x∪y) and s ∈M(ψ↑x∪y)
and

φ↓s = φ↑x∪y
↓s

= ψ↑x∪y
↓s

= ψ↓s. ut

In order for σ to be a congruence, an additional property is required.

Definition 2.25. The congruence σ in a stable valuation algebra is called closed
under vacuous reduction if φ ≡σ ψ, x = d(φ), y = d(ψ) imply that

• x ∩ y ∈M(φ) and

• s ∈M(φ) =⇒ s ∩ y ∈M(φ↓x∩y). �

Lemma 2.26. Assume σ is closed under vacuous reduction. Let φ ≡σ ψ and x =
d(φ) and y = d(ψ). Then, the following properties hold:

(1) x ∩ y ∈M(φ),M(ψ) and

φ ≡σ φ↓x∩y = ψ↓x∩y ≡σ ψ. (2.63)

(2) s ∩ x ∈M(φ) ⇐⇒ s ∩ y ∈M(ψ) and

φ↓s∩x ≡σ ψ↓s∩y. (2.64)
�

Proof. (1) Since σ is closed under vacuous reduction, x∩y ∈M(φ),M(ψ). Then,
(1) follows from Lemma 2.23 (3).

(2) Assume s ∩ x ∈M(φ). Since σ is closed under vacuous reduction, (s ∩ x) ∩ y ∈
M(φ↓x∩y) =M(ψ↓x∩y). Hence, by the transitivity axiom, s ∩ y ∈M(ψ). Since
φ = φ↓x∩y⊗ex−y, Lemma 2.4 and stability imply that φ↓s∩x = φ↓s∩x∩y⊗e(x−y)∩s.
Similarly, ψ↓s∩y = ψ↓s∩x∩y ⊗ e(y−x)∩s. Since φ↓x∩y = ψ↓x∩y, the transitivity
axiom implies that φ↓s∩x∩y = ψ↓s∩x∩y. Hence, indeed φ↓s∩x ≡σ ψ↓s∩y. ut

Lemma 2.27. If σ is closed under vacuous reduction, it is a congruence. �

Proof. It remains to be proved that σ is complete under marginalisation. Let
φ↓t ≡σ ψ and s ∈ M(ψ). By Lemma 2.26 (2), s = s ∩ t ∈ M(φ↓t), and hence
s = s ∩ t ∈M(φ) by the transitivity axiom. ut
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2.7 Domain-Free Valuation Algebras

The congruence σ in a stable valuation algebra groups elements which represent the
same information with respect to different domains. This motivates the derivation
of a “quotient valuation algebra” of “domain-free” equivalence classes.

A domain s ∈ D such that s ∩ d(φ) ∈ M(φ) and [φ]σ = [φ↓s∩d(φ)]σ is called a
support of [φ]σ. In light of equation (2.63), define the least support of [φ]σ by

∆[φ]σ =
⋂

φ′∈[φ]σ

d(φ′) =
⋂

s support of [φ]σ

s. (2.65)

A variable X ∈ d(φ) is called vacuous in φ if X 6∈ ∆[φ]σ. Define the reduct of φ as

∆φ = φ↓∆[φ]σ . (2.66)

The reduct of φ is the marginal of φ where all vacuous variables are eliminated and
φ is the vacuous extension of its reduct to x,

φ = ∆φ⊗ ex = ∆φ⊗ ex−d(∆φ). (2.67)

Lemma 2.28. For x′ such that ∆[φ]σ ⊆ x′ ⊆ d(φ) = x, it holds that

(1) x′ ∈M(φ) and φ↓x
′ ≡σ φ,

(2) s ∩ x ∈M(φ) ⇐⇒ s ∩ x′ ∈M(φ↓x
′
), and then

φ↓s∩x ≡σ φ↓s∩x
′
= φ↓x

′↓s∩x′
. (2.68)

�

Proof. (1) Using (2.67), the combination, stability and neutrality axioms, φ↓x
′
=

∆φ⊗ ex−x′ = ∆φ⊗ ex′ ≡σ ∆φ ≡σ φ.

(2) Since φ ≡σ φ↓x
′
by (1), the claim follows from Lemma 2.26 (2) and the transi-

tivity axiom. ut

The quotient construction for the combination is the same as in the domain-
contained case. Define

[φ]σ ⊗σ [ψ]σ = [φ⊗ ψ]σ. (2.69)

This is well defined since σ is compatible with ⊗. Define focussing of [φ]σ for domains

Mσ([φ]σ) = {s ∈ D : s ∩ d(φ) ∈M(φ)} (2.70)

by
([φ]σ)⇒σs = [φ↓s∩d(φ)]σ. (2.71)

These definitions are sound in light of Lemma 2.26 (2).
The following lemma shows that the least support is non-increasing under fo-

cussing, i.e. that vacuous variables remain vacuous (if they are not eliminated).
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Lemma 2.29. For s ∈Mσ([φ]σ), it holds that

∆([φ]σ
⇒s) ⊆ ∆[φ]σ. (2.72)

�

Proof. It follows from Lemma 2.28 that s∩d(∆φ) ∈M(∆φ) and φ↓s ≡σ ∆φ↓s∩d(∆φ).
Hence, indeed

∆([φ]σ
⇒s) = ∆[φ↓s]σ = ∆[∆φ↓s∩d(∆φ)]σ ⊆ s ∩ d(∆φ) ⊆ d(∆φ) = ∆[φ]σ. ut

Definition 2.30. Let Ψ be a set of valuations and D be a lattice of subsets of a set
r of variables. Suppose that there are three operations defined:

1. Combination ⊗ : Ψ × Ψ → Ψ ; (η, ζ) 7→ η ⊗ ζ,

2. Domain M : Ψ → 2D; η 7→ M(η),

3. Focussing ⇒: Ψ ×D → Ψ ; (η, x) 7→ η⇒x defined for x ∈M(η).

The set M(η) contains all domains x ∈ D which η ∈ Ψ can be focussed on, i.e. all
domains x ∈ D for which η⇒x is well defined. Let the following set of axioms be
imposed on Ψ and D:

(U1) Commutative Semigroup: Ψ is associative and commutative under combina-
tion, i.e. for η, ζ, χ ∈ Ψ ,

η ⊗ (ζ ⊗ χ) = (η ⊗ ζ)⊗ χ, and (2.73)
η ⊗ ζ = ζ ⊗ η. (2.74)

(U2) Transitivity: For s, t ∈ D, η ∈ Ψ ,

s ∩ t ∈M(η) ⇐⇒ t ∈M(η), s ∈M(η⇒t); (2.75)

then, it also holds that
(η⇒t)⇒s = η⇒s∩t. (2.76)

(U3) Combination: If η, ζ ∈ Ψ with s ∈ M(η), s ∈ M(ζ), then s ∈ M(η⇒s ⊗ ζ)
and

(η⇒s ⊗ ζ)⇒s = η⇒s ⊗ ζ⇒s. (2.77)

(U4) Identity Element: There is a neutral element e ∈ Ψ such that η⊗e = η = e⊗η
for all η ∈ Ψ . Furthermore, M(e) = D and for all s ∈ D

e⇒s = e. (2.78)

(U5) Support: All η ∈ Ψ have a support s ∈ D, i.e. an s ∈M(η) such that

η⇒s = η. (2.79)
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A quintuple (Ψ,D,⊗,M,⇒) satisfying these axioms is called a domain-free valuation
algebra. If every η ∈ Ψ can be focussed to any domain x ∈ D, then (Ψ,D,⊗,M,⇒)
is called a domain-free valuation algebra with full focussing. �

Remark 2.31. The identity element in a domain-free valuation algebra is unique.
Assume e, e′ are identity elements of Ψ . Then, e = e⊗ e′ = e′ ⊗ e = e′. �

The combination axiom of domain-free valuation algebras can be generalised in the
following way.

Lemma 2.32. Let (Ψ,D,⊗,M,⇒) be a domain-free valuation algebra.

(U5)′ If η, ζ ∈ Ψ with s ∈M(η), t ∈M(ζ), then s ⊆ t implies that t ∈M(η⇒s ⊗ ζ)
and

(η⇒s ⊗ ζ)⇒t = η⇒s ⊗ ζ⇒t. (2.80)
�

Proof. The transitivity axiom (U2) implies that t ∈ M(η), s ∈ M(η⇒t) and
(η⇒s)⇒t = η⇒s. Further, the combination axiom shows that t ∈ M((η⇒s)⇒t ⊗ ζ)
and

(η⇒s ⊗ ζ)⇒t = ((η⇒s)⇒t ⊗ ζ)⇒t
= (η⇒s)⇒t ⊗ ζ⇒t = η⇒s ⊗ ζ⇒t. ut

Theorem 2.33. If (Φ,D, d,⊗,M, ↓) is a stable valuation algebra and if σ is closed
under vacuous reduction, then (Φ/σ,D,⊗σ,Mσ,⇒σ) is a domain-free valuation al-
gebra. �

Proof. (U1) It is readily verified that (Φ/σ,⊗σ) inherits associativity and commu-
tativity from (Φ,⊗).

(U2) Let x = d(φ).
On the one hand, assume t ∈ Mσ([φ]σ) and s ∈ Mσ([φ]σ

⇒t). This implies
that t ∩ x ∈M(φ), [φ]⇒σt

σ = [φ↓t∩x]σ and that there is a ψ ∈ [φ]σ
⇒t such that

s ∈ M(ψ). Using Lemma 2.26 (2), it follows that s ∩ (t ∩ x) ∈ M(φ↓t∩x). By
the transitivity axiom, s ∩ t ∩ x ∈M(φ), and thus s ∩ t ∈Mσ([φ]σ).
On the other hand, assume s∩t ∈Mσ([φ]σ). This implies that s∩t∩x ∈M(φ).
By the transitivity axiom, t ∩ x ∈ M(φ) and s ∩ t ∩ x ∈ M(φ↓t∩x). Hence,
t ∈Mσ([φ]σ) and s ∩ t ∈Mσ([φ↓t∩x]σ) =Mσ([φ]⇒σt

σ ).
Then, it holds that

([φ]⇒σt
σ )⇒σs = [φ↓t∩x

↓s∩t∩x
]σ = [φ↓s∩t∩x]σ = [φ]⇒σs∩t

σ .

(U3) Let [φ]σ and [ψ]σ and s ⊆ t such that s ∈ Mσ([φ]σ) and t ∩ d(ψ) ∈ M(ψ) ⊆
Mσ([ψ]σ). Then, [φ]⇒σs

σ ⊗σ [ψ]σ = [φ↓s∩d(φ)⊗ψ]σ. By the combination axiom,
it holds that t∩((s∩d(φ))∪d(ψ)) ∈M(φ↓s∩d(φ)⊗ψ), hence t ∈Mσ([φ↓s∩d(φ)⊗
ψ]σ) =Mσ([φ]⇒σs

σ ⊗σ [ψ]σ). Further,

([φ]⇒σs
σ ⊗σ [ψ]σ)⇒σt = [(φ↓s∩d(φ) ⊗ ψ)

↓t∩((s∩d(φ))∪d(ψ))
]σ

= [φ↓s∩d(φ) ⊗ ψ↓t∩d(ψ)]σ
= [φ]⇒σs

σ ⊗σ [ψ]⇒σt
σ .
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(U4) [e]σ is an identity element since [φ]σ ⊗ [e]σ = [φ ⊗ e]σ = [φ]σ = [e ⊗ φ]σ =
[e]σ ⊗σ [φ]σ. Furthermore, s ∩ d(e) = ∅ ∈ M(e) and ∆[e]σ = ∅ imply that
s ∈Mσ[e]σ for all s ∈ D.

(U5) For all φ ∈ Φ, it holds that d(φ) ∈ M(φ) by the domain axiom. Therefore,
d(φ) ∈ Mσ([φ]σ) and [φ]⇒σd(φ)

σ = [φ↓d(φ)]σ = [φ]σ. This shows that d(φ) is a
support of [φ]σ. ut

From a domain-free valuation algebra (Ψ,D,⊗,M,⇒), a labelled valuation al-
gebra can be constructed. For this purpose, consider the set of pairs

Ψ∗ = {(η, x) : η ∈ Ψ, x ∈M(η), η⇒x = η}. (2.81)

These pairs can be considered as valuations, labelled by their support. The following
lemma holds for these pairs.

Lemma 2.34. (1) If x is a support of η ∈ Ψ and y ⊇ x, y ∈ D, then y is a support
of η.

(2) If y ∈M(η), η ∈ Ψ , then y is a support of η⇒y.

(3) For (η, x), (ζ, y) ∈ Ψ∗, it holds that (η ⊗ ζ, x ∪ y) ∈ Ψ∗, i.e. x ∪ y is a support
of η ⊗ ζ. �

Proof. (1) Assume x is a support of η ∈ Ψ and y ⊇ x. Using the transitivity
axiom, y ∩ x = x ∈M(η) implies that y ∈M(η⇒x) and

η⇒y = (η⇒x)⇒y = η⇒x∩y = η⇒x = η.

This shows that y is a support of η.

(2) Assume y ∈M(η), η ∈ Ψ . Then, by (U2), y ∩ y = y ∈M(η⇒y) and

(η⇒y)⇒y = η⇒y∩y = η⇒y,

so y is indeed a support of η⇒y.

(3) Assume (η, x), (ζ, y) ∈ Ψ∗. By (1), it follows that x ∪ y is a support of ζ.
Hence, by (U3), it follows that x ∪ y ∈M(η⇒x ⊗ ζ) and

(η⇒x ⊗ ζ)⇒x∪y = η⇒x ⊗ ζ⇒x∪y = η ⊗ ζ,

i.e. x ∪ y is a support of η ⊗ ζ. Therefore, (η ⊗ ζ, x ∪ y) ∈ Ψ∗. ut

Therefore, the following operations are well defined in (Ψ∗, D).

1. Labelling : For (η, x) ∈ Ψ∗ define

d(η, x) = x. (2.82)
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2. Combination: For (η, x), (ζ, y) ∈ Ψ∗ define

(η, x)⊗∗ (ζ, y) = (η ⊗ ζ, x ∪ y) (2.83)

3. Marginalisation: For (η, x) ∈ Ψ∗, define

M∗(η, x) =M(η) ∩ 2x (2.84)

and for y ∈M(η, x) define

(η, x)↓
∗y = (η⇒y, y). (2.85)

Theorem 2.35. A∗ = (Ψ∗, d,D,⊗,M, ↓) as defined by equations (2.82)-(2.85) is a
stable labelled valuation algebra. �

Proof. The axioms are verified in turn.

(A1) For (η, x), (ζ, y), (χ, z) ∈ Ψ∗ it holds that

(η, x)⊗∗ ((ζ, y)⊗∗ (χ, z)) = (η ⊗ ζ ⊗ χ, x ∪ y ∪ z) = ((η, x)⊗ (ζ, y))⊗ (χ, z)

and

(η, x)⊗∗ (ζ, y) = (η ⊗ ζ, x ∪ y) = (ζ ⊗ η, y ∪ x) = (ζ, y)⊗∗ (η, x).

This shows that (Ψ∗,⊗∗) is a commutative semigroup.

(A2) The labelling axiom is satisfied by the definition of labelling and combination
in A.

(A3) The marginalisation axiom is satisfied by the definition of marginalisation and
labelling in A.

(A4) Let s ⊆ t ⊆ x = d∗(η, x). On the one hand, assume t ∈ M∗(η, x) and s ∈
M∗((η, x)↓

∗t) = M∗(η⇒t, t). Using the transitivity axiom, s ∩ t = s ∈ M(η)
implies that s ∈ M(η⇒t). This shows that s ∈ M∗(η, x). On the other hand,
assume s ∈ M∗(η, x). Since s = s ∩ t ∈ M(η), the transitivity axiom implies
that t ∈M(η) and s ∈M(η⇒t). Thus, t ∈M∗(η⇒t, t) =M∗((η, x)↓

∗t). Then,
it holds that (η, x)↓

∗t↓∗s = (η⇒t⇒s
, s) = (η⇒s∩t, s) = (η⇒s, s) = (η, x)↓

∗s. This
verifies the transitivity axiom in A∗.

(A5) Let (η, x), (ζ, y) ∈ Ψ∗ with x ⊆ s ⊆ x∪y and assume s∩y ∈M∗(ζ, y) ⊆M(ζ).
By (U2), s ∈M(ζ). By (U3), s ∈M(η⇒x ⊗ ζ). Hence,

(η⇒x ⊗ ζ)⇒s = (η⇒x ⊗ ζ⇒y)⇒s = η⇒x ⊗ ζ⇒s∩y.

Therefore, observing that s∩y is a support of ζ⇒s∩y in light of Lemma 2.34 (2),
the following is well defined:

((η, x)⊗∗ (ζ, y))↓
∗s = (η⇒x ⊗ ζ⇒y, x ∪ y)↓

∗s = (η⇒x ⊗ ζ⇒s∩y, s)

= (η⇒x, x)⊗ (ζ⇒s∩y, s ∩ y) = (η, x)⊗∗ (ζ, y)↓
∗s∩y.

This shows that the combination axiom holds in A∗.
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(A6) By definition, (η, x) ∈ Ψ∗ implies that x ∈ M(η) and η⇒x = η. This implies
that (η, x)↓

∗x = (η⇒x, x) = (η, x), so the domain axiom holds in A∗.

(A7) Define e∗ = (e, ∅) ∈ Ψ∗. Then, d∗(e∗) = ∅ and M∗(e∗) =M(e) ∩ {∅} = {∅}.
For (η, x) ∈ Ψ∗, (η, x)⊗∗ e∗ = e∗ ⊗∗ (η, x) = (η, x) and e∗ ⊗∗ e∗ = e∗. Hence,
e∗ is an identity element of A∗.

(A8) For s ∈ D, the elements e∗s = (e, s), are neutral elements since for (φ, s) ∈ Ψ∗,

e∗s ⊗∗ (φ, s) = (φ, s).

The neutrality axiom holds since for s, t ∈ D

e∗s ⊗∗ e∗t = (e, s ∪ t) = e∗s∪t.

(A9) Furthermore, stability holds since for s ⊆ t ∈ D it holds that s ∈ 2t ∩ D =
2t ∩M(e) =M(e∗t ) and

e∗t
↓s = (e↓s∩∅, s) = e∗s. ut

The following theorem shows that going from a stable labelled valuation (and closed
under vacuous reduction) to its domain-free version and deriving a labelled valuation
algebra from the domain-free yields an isomorphic valuation algebra. The situation
is depicted in Figure 2.4.

Φ Φ/σ

(Φ/σ)∗

[φ]σ

([φ]σ, d(φ))

φ

Figure 2.4: From a stable labelled valuation algebra Φ to a domain-free Φ/σ and back
yields the labelled valuation algebra (Φ/σ)∗ isomorphic to Φ.

Theorem 2.36. Given a stable labelled valuation algebra A = (Φ,D, d,⊗,M, ↓)
such that σ is complete under vacuous reduction. Let Aσ = (Φ/σ,D,⊗σ,Mσ,⇒σ) be
the domain-free valulation algebra derived from A. Finally, Aσ induces the labelled
valuation algebra A∗ = ((Φ/σ)∗, D, d∗,⊗∗,M∗, ↓∗). Then, the mapping i : Φ →
(Φ/σ)∗, φ 7→ ([φ]σ, d(φ)) is an isomorphism. �

Proof. It has to be verified that i is homomorphism:

• ([φ]σ, d(φ)) = i(φ) = i(ψ) = ([ψ]σ, d(ψ)) implies d(φ) = d(ψ);

• i(φ⊗ ψ) = ([φ⊗ ψ]σ, d(φ) ∪ d(ψ) = i(φ)⊗∗ i(ψ);

• on the one hand,M(φ) ⊆M∗([φ]σ, d(φ)) =M∗(i(φ)); on the other hand, s ∈
M∗([φ]σ, d(φ)) implies s ∈ Mσ([φ]σ) and s ∈ M(φ) by Lemma 2.26 (2), thus
s ∈ M∗([φ]σ, d(φ)) = M∗(i(φ)); then, i(φ↓s) = ([φ↓s]σ, s) = (φ, d(φ))↓

∗s =
i(φ)↓

∗s.
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• i(e) = (e, ∅) = e∗.

It remains to be verified that i is a bijection. Assume ([φ]σ, d(φ)) = ([ψ]σ, d(ψ)).
This implies that φ = φ ⊗ ed(φ) = ψ ⊗ ed(ψ) = ψ. Hence, i is injective. Let
([φ]σ, s) ∈ (Φ/σ)∗. Then, φ′ = ∆φ ⊗ es ∈ [φ]σ and i(φ′) = ([φ]σ, s). Hence, i is
surjective. ut

2.8 Valuation Algebras with Division

Definition 2.37. Let A = (Φ,D, d,⊗,M, ↓) be a valuation algebra and let γ be an
idempotent congruence in it such that the equivalence classes γ(φ) = [φ]γ are groups
with identity element fγ(φ), i.e.

φ⊗ fγ(φ) = φ; (2.86)

the inverse of an element φ in its group γ(φ) is denoted φ−1 ∈ γ(φ), i.e.

φ⊗ φ−1 = φ−1 ⊗ φ = fγ(φ). (2.87)

Then, A is called a valuation algebra with division induced by γ. �

On the one hand, the whole semigroup (Φ,D) cannot be a group (if D 6= {∅}) since
e is a multiplicative identity and since φ⊗χ = e implies d(φ) = d(χ) = ∅ (in light of
the labelling axiom). Therefore, Φ is decomposed into disjoint equivalence classes,

Φ =
⋃
φ∈Φ
{[φ]γ}. (2.88)

On the other hand, as seen in Section 2.5, the idempotency of γ induces a partial
order,

γ(φ) ≤ γ(ψ) ⇐⇒ γ(ψ) = γ(φ⊗ ψ) (2.89)

and in particular
γ(φ↓s) ≤ γ(φ), (2.90)

see Lemma 2.19. This property will be exploited in the Lauritzen-Spiegelhalter
architecture for local computation, see Section 4.5. The following lemma gives some
basic properties of valuation algebras with division.

Lemma 2.38. (1) fγ(φ) ⊗ fγ(ψ) = fγ(φ⊗ψ)

(2) (φ⊗ ψ)−1 = φ−1 ⊗ ψ−1.

(3) If γ(ψ) ≤ γ(φ), then
φ⊗ fγ(ψ) = φ (2.91)

(4) φ⊗ χ⊗ φ = φ and χ⊗ φ⊗ χ = χ imply χ = φ−1. �
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Proof. (1) Since γ is a congruence, fγ(φ) ⊗ fγ(ψ) ∈ γ(φ ⊗ ψ). Using the commu-
tativity of ⊗, (φ ⊗ ψ) ⊗ (fγ(φ) ⊗ fγ(ψ)) = (φ ⊗ fγ(φ)) ⊗ (ψ ⊗ fγ(ψ)) = φ ⊗ ψ,
hence fγ(φ) ⊗ fγ(ψ) is an identity element in γ(φ ⊗ ψ). Since identity elements
in groups are unique, it follows that fγ(φ) ⊗ fγ(ψ) = fγ(φ⊗ψ).

(2) Observe that φ−1⊗ψ−1 ∈ γ(φ⊗ψ). Hence, (φ⊗ψ)⊗ (φ−1⊗ψ−1) = (φ⊗φ−1)⊗
(ψ ⊗ ψ−1) = fγ(φ) ⊗ fγ(ψ) = fγ(φ⊗ψ) in light of (1). Since inverses are unique in
a group, it follows that (φ⊗ ψ)−1 = φ−1 ⊗ ψ−1.

(3) Using (1) and γ(φ⊗ ψ) = γ(φ),

φ⊗ fγ(ψ) = φ⊗ fγ(φ) ⊗ fγ(ψ) = φ⊗ fγ(φ⊗ψ) = φ⊗ fγ(φ) = φ.

(4) Since φ⊗ φ ≡γ φ,

γ(φ) = γ(φ⊗ χ⊗ φ) = γ((φ⊗ φ)⊗ χ) = γ(φ⊗ χ);

similarly, γ(χ ⊗ φ) = γ(χ). Hence, γ(χ) ≤ γ(φ) and γ(φ) ≤ γ(χ). Since ≤ is a
partial order, γ(φ) = γ(χ). Therefore, φ⊗χ = φ⊗χ⊗fγ(χ) = φ⊗χ⊗φ⊗φ−1 =
φ⊗ φ−1 = fγ(φ). Since inverses are unique in the group γ(φ) = γ(χ), it follows
that χ = φ−1. ut

There are several sufficient conditions which allow to introduce division in a
valuation algebra with full marginalisation, see (Kohlas, 2003; Pouly, 2008). For
instance, if it holds that φ ⊗ φ↓t = φ for all t ⊆ d(φ), then the valuation algebra is
called idempotent or an information algebra (Kohlas, 2003). In this case, [φ]γ = {φ}
is a trivial idempotent congruence. Furthermore, since φ ⊗ φ = φ, φ is at the
same time its own inverse and also the identity element of the group [φ]γ . There are
many information algebras (Kohlas, 2003), for instance propositional logic, relational
databases, and systems of linear equations.

2.9 Examples

Example 2.39 (Relational Algebra). (Kohlas and Stärk, 1996) A tuple is a
function f which associates a value f(X) ∈ ΩX to each variable X of a finite set x;
the set x is called the domain of f , denoted d(f) = x. Let Ex be the set of all tuples
of domain x. For a tuple f of domain x, the restriction of f to a subset y ⊆ x is
denoted f [y] ∈ Ey.
A relation R is a set of tuples of the same domain x, which is denoted d(R) = x.
The projection of a relation R to y ⊆ x = d(R) is the relation

πy(R) = {f [y] : f ∈ R}

and the join of two relations R1 and R2 of domains x and y is the relation

R1 ./ R2 = {f ∈ Ex∪y : f [x] ∈ R1, f [y] ∈ R2}.

Relations with join and projection form a labelled valuation algebra. Furthermore,
joining is idempotent, i.e. R ./ R = R, and the valuation algebra is stable since it
has neutral elements Ex and πy(Ex) = Ey for y ⊆ x. �
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Example 2.40 (Probability Densities). (Kohlas, 2003) Let x ⊆ r be a finite set
of real-valued variables with configurations x : x→ IR, i.e. mappings which associate
a real value to each variable X ∈ x. Configurations will often be denoted by bold-
faced letters x corresponding to a set x of variables. Alternatively, a configuration x
will be regarded as an |x|-dimensional vector whose components are indexed by the
variables in x, and the space of all configurations of x will be denoted IRx = x→ IR.
The only configuration of the empty set of variables is denoted �; it denotes an
“empty vector.” Define IR∅ = {�}. A continuous, non-negative function f on Rx is
called a probability density if its (Riemann) integral is finite,∫

x∈IRx
f(x)dx <∞.

If the integral equals 1, this definition corresponds to ordinary normalised probabil-
ity densities. The benefit of this more general definition is that one needs not be
bothered about renormalisation on combination as defined below.
For any finite x ∈ D consider the set Φx of probability densities f : Rx → R with
domain d(f) = x. If f is a probability density with domain x and s ⊆ x, then the
marginal f↓s : IRs → IR of f with respect to s is defined for s ∈ IRs by

f↓s(s) =
∫
t∈IRt

f(s, t)dt, t = x− s.

If f and g are two probability densities on x and y, respectively, then the combination
of the two probability densities is defined for configurations z of s ∪ t by

(f ⊗ g)(z) = f(z↓z) · g(z↓t).

It can be shown that probability densities on finite sets of variables form a valuation
algebra (Kohlas, 2003). The identity element of this valuation algebra is the constant
e(�) = 1. It has no neutral elements since f(x) = 1 for all x is not a probability
density (for x 6= ∅). However, it has a null elements zx(x) = 0 for all x ∈ IRx, x ∈ D,
which are probability densities (at least according to this definition). �

Chapter Synopsis & Discussion

The axioms of valuation algebras were initially introduced by (Shenoy and Shafer,
1990) motivated by probability networks and belief function propagation and shown
to be applicable to other domains in (Shafer, 1991). Valuation algebras with partial
variable elimination were axiomatised in (Kohlas, 2003) and with partial marginal-
isation in (Schneuwly et al., 2004). The transitivity axiom of the marginalisation
variant had the following form:

(A4)′′ Transitivity: If φ ∈ Φ and x ⊆ y ⊆ d(φ), then x ∈M(φ) implies x ∈M(φ↓y)∧
y ∈M(φ) and

(φ↓y)
↓x

= φ↓x.

However, the following objection can be raised against this definition:
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• If t, t′ ∈M(φ) and s ∈M(φ↓t),M(φ↓t
′
), it cannot be derived from the axioms

whether φ↓t↓s = φ↓t
′↓s

since the linking intermediate “φ↓s” may not be defined
(i.e. s may not be inM(φ)).

This modification of the transitivity axiom is irrelevant if marginalisation is fully
defined for all subsets.

If neutral elements are presupposed in the definition of a labelled valuation al-
gebra as in (Kohlas, 2003), the combination can be weakened as follows:

(A5)′′ If φ, ψ ∈ Φ with d(φ) = x, d(ψ) = y, then x∩y ∈M(ψ) implies x ∈M(φ⊗ψ)
and

(φ⊗ ψ)↓x = φ⊗ ψ↓x∩y.

The stronger (A5) then follows from (A5)′′ in the same way as (U5)′ follows from
(U5) in the domain-free case (see Lemma 2.32).

The definition of a valuation algebra can be generalised by admitting a general
lattice D of domains, which needs not be Boolean as a set lattice; see (Kohlas, 2003).
Then, some of the proofs using the differences of domains (for instance Lemma 2.23)
are not feasible. However, local computation in join trees as discussed in Chapter 4
can be generalised to local computation in so-called Markov Trees (Mellouli, 1988).

Most definitions and results of this chapter are generalisations to partial marginal-
isation and the stronger transitivity axiom from those in (Kohlas, 2003; Schneuwly
et al., 2004). In contrast, Lemma 2.22 is a new result, stating that any valuation
algebra can be extended to a stable one.
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3
Valuation Algebra of
Gaussian Potentials

In modelling, Gaussian densities are often used to describe unknown errors. This
has two main reasons:

• On the one hand, the central limit theorem states that the distribution of the
(relocated, rescaled and averaged) sum of a sufficiently large number of inde-
pendent and identically-distributed random variables is approximately normal.
This may often be a reasonable assumption for measurement errors.

• On the other hand, multivariate Gaussian densities have properties which make
them a very tractable choice: Marginal distributions have a Gaussian density
(obtained through integration), and the joint distribution of two independent
random variables has a Gaussian density (obtained by multiplying and renor-
malising two Gaussian densities). Furthermore, Gaussian densities can be
easily represented by their mean vector and their concentration matrix. Such
pairs of a mean vector and a concentration matrix representing a Gaussian den-
sity are called Gaussian potentials (Kohlas, 2003; Kohlas and Monney, 2008).
The operations of marginalisation and combination of Gaussian densities cor-
respond to simple matrix operations on the associated Gaussian potentials.
Furthermore, the algebraic structure of Gaussian potentials is a valuation al-
gebra (Kohlas, 2003).

Alternatively, Gaussian densities can be represented by their mean vector and
their variance-covariance matrix (i.e. the inverse of the concentration matrix).
These pairs are called extended matrices (Dempster, 1990a; Liu, 1996a; 1999). The
operations of marginalisation and combination can be carried over to extended ma-
trices. Here, the matrix operations for combination are called sweepings. Swept
matrices represent Gaussian densities conditioned on a fixed value for some vari-
ables.

Models such as Bayesian networks usually consist of conditional distributions.
In the case of (unnormalised) discrete probability potentials, the valuation alge-
bra already contains conditional distributions. However, the algebra of continuous

47



48 Chapter 3. Valuation Algebra of Gaussian Potentials

probability densities does not contain conditional distributions since the integral
over all variables including the conditioning ones does not exist. Therefore, this
chapter serves as a preparation for the discussion of conditional Gaussian densities
in Part II and as an illustration of valuation algebras.

Chapter Outline

In Section 3.1, the terminology and notation of real-valued variables, vectors and
matrices are given. In contrast to the standard definition, columns and rows may
be indexed by variables. In Section 3.2, Gaussian potentials and the operations of
combination and marginalisation are formally defined and shown to correspond to
integration and normalised multiplication of Gaussian densities. A more efficient
formulas of marginalisation in terms of the concentration matrix is presented. In
Section 3.3, it is shown that the algebraic structure of Gaussian potentials is a valua-
tion algebra. A geometric interpretation of vacuously extended Gaussian potentials
is given in Section 3.4. Finally, moment matrices are introduced in Section 3.5. In
contrast to Gaussian potentials, they represent Gaussian densities by their variance-
covariance matrix. The combination rule of moment matrices can then be used to
derive a more efficient way of computing the combined mean of Gaussian potentials.

3.1 Terminology and Notation

Variables and Lattice of Domains

Gaussian potentials always refer to a finite set x of variables. Since finite sets are
closed under set union and intersection, they form a lattice D, whose elements are
called domains. Such a domain x ∈ D of variables of cardinality |x| = n > 0 will
often be indexed by a bijective indexation I : {1, . . . , n} → x. Posing

Xi = I(i),

then
x = {X1, . . . , Xn}

without reference to the particular indexation. Variables will be designated by
(possibly indexed) capital letters, sets of variables by lower-case letters.

Frames and Configurations

Variables may be relative to a frame. Intuitively, a variable can take a value in its
frame. The frame associated with a variable X is denoted Θ(X). A configuration
x associates to every variable X in a set x of variables the value x(X) ∈ Θ(X)
out of its frame. The only configuration of the empty set is denoted �, which is
not specified further. Configurations will be designated by the bold-faced lower-case
letter corresponding to its set.
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Real Vectors

Gaussian potentials refer to real-valued variables. A configuration x of a set x of
real-valued variables is called real vector,

x : x→ IR

or

x ∈ IRx,

and x is called the domain of x. Such a configuration x ∈ IRx associates to every
variable X in its domain x a real value x(X) ∈ IR which can be thought of as the
“component” of the real vector x corresponding to the “index” X. Notice that real
vectors according to this definition are “unordered”, i.e. there is no a priori ordering
of the variables of the domain x in a vector x ∈ IRx. The real vectors of a domain
x of cardinality n = |x| form an n-dimensional vector space over the field of real
numbers. If x 6= ∅, then vector addition is defined variable-wise by

(x1 + x2)(X) = x1(X) + x2(X), x1,x2 ∈ IRx, X ∈ x

and scalar multiplication by

(λ · x)(X) = λ · (x(X)), λ ∈ IR, x : IRx, X ∈ x;

the zero or null vector (or additive identity) is

0x(X) = 0, X ∈ x.

If x = ∅, then IR∅ = {�} is a trivial 0-dimensional vector space over the field IR only
consisting of �. Here,

�+ � = �

and

λ · � = �, λ ∈ IR.

Under an indexation I : {1, . . . , |x| = n} → x, the value corresponding to the ith
variable, i ∈ {1, . . . , n}, is denoted

xi = x(Xi) = x(I(i)),

which leads to the standard matrix notation

x =

x1
...

xn

 ∈ IRn.
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Real Matrices

Analagously, the sets

IR(x, y) = x× y → IR, IR(m,n) = {1, . . . ,m} × {1, . . . , n} → IR

and
IR(m, y) = {1, . . . ,m} × y → IR, IR(x, n) = x× {1, . . . , n} → IR

where x, y ∈ D, m,n ∈ {0, 1, . . .} are vector spaces whose elements are called real
matrices over the field IR. Addition is defined component-wise,

(A+B)(X,Y ) = A(X,Y ) +B(X,Y ), X ∈ x, Y ∈ y,

as well as scalar multiplication,

(λ ·A)(X,Y ) = λ ·A(X,Y ), X ∈ x, Y ∈ y.

The corresponding null elements (which are constant 0) are denoted 0x,y, 0m,n, 0m,y,
0x,n, respectively. If either x or y is empty or m or n equals 0, then

IR(x, y) = IR(m,n) = IR(m, y) = IR(x, n) = {�}.

Let now x and y be either finite sets of variables or index sets x = {1, . . . ,m},
y = {1, . . . , n} for non-negative integers m,n. Then, the matrix-matrix product A ·B
or just AB and the matrix-vector product A ·y or just Ay are defined for compatible
domains, i.e. for matrices

A : x× y → IR and B : y × z → IR,

by AB ∈ IR(x, z),

(AB)(X,Z) =
{ ∑

Y ∈y A(X,Y ) ·B(Y, Z) if y 6= ∅,
0 if y = ∅, (3.1)

and for matrices and vectors

A : x× y → IR and y : y → IR

define Ay ∈ IRx in the same way by identifying a vector z ∈ IRz and the matrix
z̃ ∈ IR(z, 1) such that z̃(Z, 1) = z(Z) for all Z ∈ z.

The following definitions are directly carried over from standard definitions on
integer-indexed matrices and vectors. The transpose of a real matrix A ∈ IR(x, y) is
the function A′ ∈ IR(y, x) defined by

A′(Y,X) = A(X,Y ). (3.2)

A matrix A ∈ IR(x, x), x ∈ D, is symmetric if for all X,Y ∈ x, it holds that

A(X,Y ) = A(Y,X),
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or, equivalently, if A = A′. If A ∈ IR(x, x) is a symmetric matrix and if x is a set of
variables, then x is called the domain of A and denoted d(A) = x. Let 〈·, ·〉 be the
standard scalar product on the Euclidean space IRx,

〈x1,x2〉 = x′1x2 =
{ ∑

X∈x x1(X) · x2(X) if x 6= ∅,
0 if x = ∅,

for x1,x2 ∈ IRx. A symmetric matrix A ∈ IR(x, x) is positive definite if 〈x, Ax〉 > 0
for all x ∈ IRx, x 6= 0x. The configuration of the empty domain, �, is trivially
a symmetric positive definite real matrix since the only element of IR∅ is the null
element � = 0∅.

The identity matrix Ix ∈ IR(x, x) for a finite domain x or Im ∈ IR(m,m) for a
non-negative integer m is defined by

Ix(X,Y ) =
{

1 if X = Y,
0 else

, X, Y ∈ x

and

Im(i, j) =
{

1 if i = j,
0 else

, i, j ∈ {1, . . . ,m}.

They are the multiplicative identities of IR(x, x) and IR(m,m), respectively. A
similar notation Im,x ∈ IR(m,x) will be used for

Im,x(i,X) =
{

1 if i = I(X),
0 else,

i ∈ {1, . . . ,m}, X ∈ x,

if the reference to the particular indexation I is either clear from the context or
irrelevant.

The determinant det(A) of a real square matrix A ∈ IR(x, y) is the standard
determinant of the square matrix Ã ∈ IR(m,m) for m = |x| = |y|, defined by

Ã(i, j) = A(I(i), I(j)).

This is well defined since interchanging rows or columns in Ã leaves the determinant
unaltered. Therefore, det(A) does not depend on the particular indexation I. If
det(A) > 0, then A is called regular or non-singular. If A ∈ IR(x, y) is regular, then
there is a unique function A−1 ∈ IR(y, x), called its inverse, such that AA−1 = Ix
and A−1A = Iy.

Projection, Vacuous Extension and Transport

Consider a finite domain x ∈ D. For a real vector x : x→ IR, x ∈ D, the projection
of x onto s ⊆ x, s ∈ D, denoted

x↓s : s→ IR,

is the restriction of x to s ⊆ d(x) = x, i.e.

x↓s(X) = x(X)
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for X ∈ s. The vacuous extension of x to u ⊇ d(x) = x, u ∈ D, denoted x↑u : u→ IR,
is

x↑u(X) =
{

x(X) if X ∈ x,
0 if X ∈ u− x.

For some (arbitrary) z ∈ D, the transport operator ⇒ will be used,

x⇒z = (x↓x∩z)
↑z
.

If z ⊆ x or x ⊆ z, this corresponds to projection and vacuous extension, respectively.
Similarly, for a matrix A ∈ IR(t1, t2), t1, t2 ∈ D, the projection of A to s1×s2, s1 ⊆ t1,
s2 ⊆ t2, s1, s2 ∈ D, denoted

A↓s1,s2 : s1 × s2 → IR,

is the restriction of A to s1 × s2, and the vacuous extension of A to u1 × u2, u1 ⊇ t1,
u2 ⊇ t2, u1, u2 ∈ D, denoted A↑u1,u2 : u1 × u2 → IR,

A↑u(Xi, Xj) =
{
A(Xi, Xj) if Xi ∈ t1, Xj ∈ t2,
0 if Xi ∈ u1 − t1 or Xj ∈ u2 − t2.

If s = s1 = s2, resp. u = u1 = u2, then the alternative notation

A↓s = A↓s,s,

resp.
A↑u = A↑u,u

will be used. Further, for a matrix A ∈ IR(m,x) (m ∈ IN and x ∈ D), the restriction
to a subset y ⊆ x will often be denoted A↓y ∈ IR(m,x) without reference to the set
indexing the rows. For some (arbitrary) z1, z2 ∈ D, define the transport operator ⇒
by

A⇒z1,z2 = (A↓t1∩z1,t2∩z2)
↑z1,z2

.

Again, if , z1 ⊆ t1 and z2 ⊆ t2 or t1 ⊆ z1 and t2 ⊆ z2, this corresponds to projection
and vacuous extension, respectively, and, if z1 = z2, then the shortcut notation

A⇒z1 = A⇒z2 = A⇒z1,z2

will be used. The following lemma summarises some important properties of vacuous
extension of real vectors and matrices. In particular, property (2) is called the
transitivity of vacuous extension.

Lemma 3.1. For x ∈ IRx and A ∈ IR(x, x) and x ⊆ s ⊆ t,

(1) x↑x = x and A↑x = A,

(2) x↑s↑t = x↑t and A↑s↑t = A↑t,

(3) x↑t↓s = x↑s and A↑t↓s = A↑s. �

Proof. The claim follows from the definition of vacuous extension. ut
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Partitioned Matrices and Vectors

Let K ∈ IR(x, y), K11 ∈ IR(x, x), K12 ∈ IR(x2, x1), K22 ∈ IR(x2, x2) be real matrices.
Further, let x1 ∪ x2 = x and y1 ∪ y2 = y be disjoint subsets of domains x and y,
x1 ∩ x2 = ∅ = y1 ∩ y2. Then, K is said to be partitioned according to x1 and x2,
denoted

K =
(
K11 K12

K21 K22

)
,

if and only if

K(X,Y ) =


K11(X,Y ) if X ∈ x1, Y ∈ x1,
K12(X,Y ) if X ∈ x1, Y ∈ x2,
K21(X,Y ) if X ∈ x2, Y ∈ x1,
K22(X,Y ) if X ∈ x2, Y ∈ x2.

The function K is unambiguously defined by the elements K11,K12,K21,K22 as long
as the block rows and the block columns have disjoint labels. Of course, different
arrangement of the block rows and block columns are possible:(

K11 K12

K21 K22

)
= K =

(
K22 K21

K12 K11

)
.

The partitioning subsets may be empty; for instance, if x2 or y2 is empty, then
K = K11. If the rows or the columns of K are indexed by numbers, then the order is
of course relevant. For instance, a matrixK ∈ IR(m,x) may be partitioned according
to m1 and m2 rows and according to x1 and x2 into matrices Kij ∈ IR(mi, xj) for
i, j ∈ {1, 2} such that m1 +m2 = m. This is denoted(

K11 K12

K21 K22

)
= K =

(
K12 K11

K22 K21

)
.

If one block is not specified, then it is assumed zero; for instance,(
K11 K12

K22

)
=
(
K11 K12

0x2,y1 K22

)
.

In order to save space, columns of a real matrix may also be separated by a comma,
for instance (

K11 K12

)
= (K11,K12).

(Column) vectors x ∈ IRx and one-column matrices x̃ ∈ IR(x, 1) are often identified
if x(X) = x̃(X) for all X ∈ x. This is denoted IRx = IR(x, 1). Furthermore, if x = x̃
is partitioned according to x1 and x2 into x1 and x2, either the matrix notation

x =
(
x1

x2

)
or the shorter notation x = (x1,x2) is used. Since x1 and x2 have different row
labels, there is no clash with the notation used for matrices partitioned into two
column blocks. Also, all these definitions are easily generalised to more than two
blocks of rows or columns.
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Lemma 3.2. For real matrices A ∈ IR(s, t),B ∈ IR(t, u) and C ∈ IR(u, v) and any
index sets s̃, ṽ it holds

(ABC)⇒s̃,ṽ = A⇒s̃,tBC⇒u,ṽ. (3.3)
�

Proof.

(ABC)⇒s̃,ṽ(S, V ) =
{

(ABC)(S, V ) if S ∈ s, V ∈ v
0 else

=
{ ∑

T∈t,U∈uA(S, T )B(T,U)C(U, V ) if S ∈ s, V ∈ v
0 else

= A⇒s̃,tBC⇒u,ṽ(S, V ). ut

3.2 Definition of Gaussian Potentials

A Gaussian potential on a finite domain x ∈ D is a pair φ = (µ,K) where µ ∈
IRx,K ∈ IR(x, x), K symmetric and positive definite. If n = |x| > 0, it represents
the Gaussian density function

φµ,K(x) =

√
|det(K)|

(2π)n
e−

1
2
(x−µ)′K(x−µ), x ∈ IRn, (3.4)

with respect to Lebesgue measure λn. The vector µ is called mean vector, K its con-
centration matrix, and Σ = K−1(variance-)covariance matrix. The unique Gaussian
potential with domain ∅ is

e = φ�,� = (�, �),
representing the probability mass function

φ�,�(�) = 1, (3.5)

or, equivalently, the Dirac measure δ� at � on the σ-algebra 2{�} = {∅, {�}}, i.e.

δ�({�}) = 1, δ�(∅) = 0. (3.6)

Let G denote the set of all such Gaussian potentials φ = (µ,K). The operation
d : G → D is called labelling and d(φ) is called the domain of φ.

Combination of Gaussian Potentials

First, the combination of Gaussian potentials is formally defined and then shown to
correspond to the normalised product of the two corresponding Gaussian densities.
Let φ = (µ1,K1) and ψ = (µ2,K2) be Gaussian potentials Define their combination
φ⊗ ψ = (µ,K) by

K = K1
↑u +K2

↑u, and (3.7)

µ = K−1(K1
↑u · µ1

↑u +K2
↑u · µ2

↑u) (3.8)
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for u = d(φ) ∪ d(ψ). The combination ⊗ is well defined since K is symmetric and
positive definite in light of Lemma A.5. Further, K1

↑u · µ1
↑u = (K1 · µ1)

↑u. Define

z = d(φ) ∩ d(ψ),
x = d(φ)− d(ψ), and
y = d(ψ)− d(φ).

Then, the concentration matrix and the mean vector of the combination can also be
written as

K =

K1
↓z +K2

↓z K1
↓z,x K2

↓z,y

K1
↓x,z K1

↓x 0x,y
K2

↓y,z 0y,x K2
↓y

 (3.9)

and

µ = K−1

K1
↓zµ1

↓z +K2
↓zµ2

↓z +K1
↓z,xµ1

↓x +K2
↓z,yµ2

↓y

K1
↓xµ1

↓x +K1
↓x,zµ1

↓z

K2
↓yµ2

↓y +K2
↓y,zµ2

↓z

 . (3.10)

Theorem 3.3. The combination φ⊗ ψ = (µ,K) represents the density function

(φ⊗ ψ)(u) = k · φ(u↓z∪x) · ψ(u↓z∪y), (3.11)

where the normalisation constant

k =
1∫

u∈IRu φ(u↓z∪x) · ψ(u↓z∪y)du
(3.12)

does not depend on u ∈ IRu. �

Proof. On the one hand,

(φ⊗ ψ)(u) =

√
|det(K)|

(2π)n
· e−

1
2 [
P

s,t∈{x,y,z} (u↓s−µ↓s)
′
K↓s,t(u↓t−µ↓t)] (3.13)

for n = |d(φ) ∪ d(ψ)|. On the other hand,

φ(u↓z∪x) · ψ(u↓z∪y)

=

√
|det(K1)|

(2π)n1
e−

1
2
(u↓z∪x−µ1)′K1(u↓z∪x−µ1)

·

√
|det(K2)|

(2π)n2
e−

1
2
(u↓z∪y−µ2)′K2(u↓z∪y−µ2)

=k′ · e
− 1

2

264
8><>:
∑

s,t∈{x,z} (u↓s − µ1
↓s)′K1

↓s,t(u↓t − µ1
↓t)

+
∑

s,t∈{y,z} (u↓s − µ2
↓s)′K2

↓s,t(u↓t − µ2
↓t)

9>=>;
375

(3.14)



56 Chapter 3. Valuation Algebra of Gaussian Potentials

for

k′ =

√
|det(K1)||det(K2)|

(2π)n1+n2
,

n1 = |d(φ)|, n2 = |d(ψ)|. Then, the sum in the exponent of the right-hand side of
equations (3.13) can be developed as follows:∑

s,t∈{x,y,z}

(u↓s − µ↓s)′K↓s,t(u↓t − µ↓t)

=
∑

s,t∈{x,y,z}

u↓s
′
K↓s,tu↓t

−
∑

s,t∈{x,y,z}

u↓s
′
K↓s,tµ↓t −

∑
s,t∈{x,y,z}

µ↓s
′
K↓s,tu↓t

+ k′′

=u′Ku

− u′K(K−1(K1
↑uµ1

↑u +K2
↑uµ2

↑u))

− (K−1(K1
↑uµ1

↑u +K2
↑uµ2

↑u))′Ku

+ k′′

=u′K1
↑uu + u′K2

↑uu

− u′K1
↑uµ1

↑u − u′K2
↑uµ2

↑u

− µ1
↑u′K1

↑uu− µ2
↑u′K2

↑uu

+ k′′

=u↓z∪x
′
K1u↓z∪x − µ′1K1u↓z∪x − u↓z∪x

′
K1µ1

+ u↓z∪y
′
K2u↓z∪y − µ′2K2u↓z∪y − u↓z∪y

′
K2µ2

+ k′′

=
∑

s,t∈{x,z}

(u↓s − µ1
↓s)

′
K1

↓s,t(u↓t − µ1
↓t)

+
∑

s,t∈{y,z}

(u↓s − µ2
↓s)

′
K2

↓s,t(u↓t − µ2
↓t)

+ k′′′

where
k′′ =

∑
s,t∈{x,y,z}

µ↓s
′
K↓s,tµ↓t

and
k′′′ = µ↓x

′
K↓x,yµ↓y + µ↓y

′
K↓y,xµ↓x − µ↓z ′K↓zµ↓z

do not depend on u. Hence,

(φ⊗ ψ)(u) = k · φ(u↓z∪x) · ψ(u↓z∪y)
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for some k ∈ IR not depending on u. Since

1 =
∫

IRx
(φ⊗ ψ)(u) =

∫
IRx

k · φ(u↓z∪x) · ψ(u↓z∪y)

= k ·
∫

IRx
φ(u↓z∪x) · ψ(u↓z∪y),

indeed
k =

1∫
IRx φ(u↓z∪x) · ψ(u↓z∪y)du

.
ut

Hence, the combination of Gaussian potentials represents the joint probability den-
sity of two independent random variables with Gaussian distribution on x and y. It
will be shown below in Section 6.7 that this rule is a special case of the more general
Dempster Rule of combination.

Example 3.4. The wholesale price W of a car is estimated by two independent
experts (Pearl, 1988; Lehmann et al., 2005; Kohlas and Monney, 2008) by

• the difference µi (i ∈ {1, 2}) of the estimated asking price and the estimated
mean profit and

• a standard deviation σi (i ∈ {1, 2}) which expresses the expert’s confidence or
reliability.

This yields two Gaussian potentials (µi, σ−2
i ) on the domain {W} (for i ∈ {1, 2}).

Let µ1 = 7000, σ1 = 300, µ2 = 9000, and σ2 = 1000. Combining the two experts’
estimates then yields µ = (300−2 + 1000−2)−1(300−2 · 7000 + 1000−2 · 9000) ≈ 7165

and standard deviation σ =
√

(300−2 + 1000−2)−1 ≈ 287. So the combined estimate
has a narrower range of uncertainty, but it is closer to the more confident (or more
reliable) first expert’s estimate. �

Marginalisation of Gaussian Potentials

The marginal φ↓s of a Gaussian potential φ = (µ,K) with domain d(φ) = s ∪ t,
s ∩ t = ∅, is supposed to represent the marginal probability density function

φ↓s(s) =
∫

t∈IRt

φµ,K(s, t)dt (3.15)

for s ∈ IRs. According to Appendix B, define marginalisation ↓: G×D → G, (φ, s) 7→
φ↓s, by

φ↓s = (µ↓s,
(
(K−1)↓s

)−1
) (3.16)

This is well defined since, according to Corollaries 14.2.11 and 14.2.12 of (Harville,
1997; p.214), the inverse of a symmetric positive definite matrix exists and is sym-
metric positive definite and every principal submatrix of a symmetric positive defi-
nite matrix is symmetric and positive definite.
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According to equation (3.15), in order to compute the marginal of a Gaussian
potential, the whole concentration matrix K has to be inverted. An upper bound of
the computational complexity of matrix inversion is given by O(n3) flops (floating
point operations)1 in the schoolbook approach of Gaussian elimination. On the
other hand, the theoretical lower bound time complexity of the inversion of a matrix
of dimension n is of order O(n2) flops since, informally, at least one operation is
required for the n2 entries. Notice that symmetry does not reduce this lower bound
essentially since the upper (or lower) triangular submatrix has n(n+1)

2 entries. Hence,
the complexity is of order O(nκ) flops for some constant κ ≥ 2 depending on the
algorithm used.2 The most widely implemented algorithms used for matrix inversion
have complexity O(c·n3) (c = 2

3 for the LU factorisation, c = 2
3 the QR factorisation,

c = 1
3 for the Cholesky factorsation, c = 4 for the singular-value decomposition; see

(Golub and Van Loan, 1989)).
However, in light of Lemma A.6,(

(K−1)↓s
)−1

= K↓s −K↓s,t(K↓t)
−1
K↓t,s. (3.17)

This shows that, in order to compute the marginal of a Gaussian potential, only
a submatrix of size |t|, the number of variables to be eliminated, needs to be in-
verted and not the whole matrix K of size |d(φ)| ≥ |t|. Let n1 = |t|, n2 = |s|
and n = n1 + n2 = |d(φ)|. Therefore, a computation according to the formula on
the left-hand side of (3.17) requires O(c · (n3 + n1

3)) flops. On the other hand,
a computation according to the formula on the right-hand side of (3.17) requires
O(n1

3 + n1
2n2 + n1n2

2 + n2
2) flops: The inversion of K↓t has complexity of order

O(n1
3), the matrix products require O(n2n1

2 +n2
2n1) flops, and the final difference

is of order O(n2(n2+1)
2 ) = O(n2

2). However, the marginal can also be computed by
successive variable eliminations (since it correspond to extracting the corresponding
elements in the mean vector µ and the variance-covariance matrix K−1). If a single
variable X0 ∈ t is eliminated at a time, only multiplication, division and subtraction
of real numbers are required:(

(K−1)↓d(φ)−{X0}
)−1

(Y, Z) = K(Y, Z)−K(Y,X0)K(X0, X0)
−1K(X0, Z) (3.18)

for Y, Z ∈ s0 = d(φ)− {X0}. Since n1 = 1 in each step, the iteration needs

n2+1∑
j=n

1 + j + j2 + j2 ≈ 2(
n(n+ 1)(2n+ 1)

6
− n2(n2 + 1)(2n2 + 1)

6
)

flops for n large enough. In an ad-hoc empirical test, the iterative method turns out
to be faster.3

1See (Golub and Van Loan, 1989). The question of whether flops are a good measure of com-
plexity and whether memory accesses should be taken into account as well will not be discussed
here.

2The best known algorithm has κ ≈ 2.376, see http://en.wikipedia.org/wiki/Computational
complexity of mathematical operations, accessed 2009/02/27.

3In the marginalisation of a matrix with 500 and 1000 variables, the iterative method is about
5 times faster than using the LU factorisation for the inversion. For details of the iterative imple-
mentation, see Chapter 12.

http://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
http://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
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3.3 Valuation Algebra of Gaussian Potentials

Theorem 3.5 (Valuation Algebra of Gaussian Potentials). The algebraic
structure (G, D, d,⊗, ↓) of Gaussian potentials is a valuation algebra. �

Proof. It has to be verified that the operations satisfy the axioms (A1)-(A7) im-
posed on a valuation algebra.

(A1) Let
φ1 = (µ1,K1), φ2 = (µ2,K2), φ3 = (µ3,K3) ∈ G,

be Gaussian potentials on domains

x = d(φ1), y = d(φ2), z = d(φ3),

and let

u = d(φ1) ∪ d(φ2), v = d(φ2) ∪ d(φ3), s = d(φ1) ∪ d(φ2) ∪ d(φ3).

Then, by the commutativity of vector and matrix addition,

K1
↑u +K2

↑u = K2
↑u +K1

↑u = K

and

φ1 ⊗ φ2 =
(
K−1(K1

↑u · µ1
↑u +K2

↑u · µ2
↑u),K

)
=
(
K−1(K2

↑u · µ2
↑u +K1

↑u · µ1
↑u),K

)
= φ2 ⊗ φ1,

hence combination of Gaussian potentials is indeed commutative. By the
transitivity of vacuous extension

(K1
↑u +K2

↑u)
↑s

+K3
↑s = K1

↑s +K2
↑s +K3

↑s

= K1
↑s + (K2

↑v +K3
↑v)

↑s

and, using Lemma 3.2,(
K1

↑u · µ1
↑u +K2

↑u · µ2
↑u
)↑s

+K3
↑s · µ3

↑s

=K1
↑s · µ1

↑s +K2
↑s · µ2

↑s +K3
↑s · µ3

↑s

=K1
↑s · µ1

↑s +
(
K2

↑v · µ2
↑v +K3

↑v · µ3
↑v
)↑s

.

Therefore,

(φ1 ⊗ φ2)⊗ φ3 =
(
K−1

(
K1

↑s · µ1
↑s +K2

↑s · µ2
↑s +K3

↑s · µ3
↑s
)
,K
)

= φ1 ⊗ (φ2 ⊗ φ3)

where

K = K1
↑s +K2

↑s +K3
↑s,

hence combination of Gaussian potentials is also associative.
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(A2) Let φ1 = (µ1,K1), φ2 = (µ2,K2) with µ1 ∈ IRx, K1 ∈ IR(x, x), µ2 ∈ IRy, K2 ∈
IR(y, y). Let φ = (µ,K) = φ1 ⊗ φ2. Then, µ ∈ IRx∪y and K ∈ IR(x ∪ y, x ∪ y)
in light of equations (3.8) and (3.7), hence d(φ1 ⊗ φ2) = d(φ) = x ∪ y =
d(φ1)∪ d(φ2). This shows that Gaussian potentials verify the labelling axiom.

(A3) Let φ = (µ,K) with µ ∈ IRx and K ∈ IR(x, x), i.e. x = d(φ). Then, for s ⊆ x,

φ↓s = (µ↓s, ((K−1)↓s)
−1

)

where µ↓s ∈ IRs and ((K−1)↓s)
−1
∈ IR(s, s), hence d(φ↓s) = s. This shows

that Gaussian potentials verify the marginalisation axiom.

(A4) In order to prove the transitivity axiom, let φ = (µ,K) be a Gaussian potential
and let t ⊆ s ⊆ d(φ). Then, using the transitivity of projection of vectors and
matrices,

φ↓t = (µ↓t, ((K−1)↓t)
−1

) = ((µ↓s)
↓t
, (((K−1↓s)

−1
)
−1↓t

)
−1

) = (φ↓s)
↓t
,

which shows the transitivity of marginalisation.

(A5) Let φ = (µ1,K1), ψ = (µ2,K2) ∈ G with x = d(φ), y = d(ψ), u = x ∪ y and
z ∈ D such that

x ⊆ z ⊆ x ∪ y.

Let (µ,K) = φ⊗ ψ. Partition K and µ according to z and (x ∪ y)− z,

K =
(
K1

↑z +K2
⇒z K2

⇒z,y−z

K2
⇒y−z,z K2

↓y−z

)
and

µ = K−1(K1
↑uµ1

↑u +K2
↑uµ2

↑u).

On the one hand, let

(µ↓z, K̃) = (φ⊗ ψ)↓z,

where, in light of Lemma 3.2,

µ↓z = (K−1)↓z,u(K1
↑uµ1

↑u +K2
↑uµ2

↑u),

and, according to equation (3.17),

K̃ = K1
↑z +K2

⇒z −K2
⇒z,y−z(K2

↓y−z)
−1
K2

⇒y−z,z.

On the other hand, according to equation (3.17),

ψ↓y∩z = (µ2
↓y∩z, K̃2)
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where

K̃2 = K2
↓y∩z −K2

↓y∩z,y−z(K2
↓y−z)

−1
K2

↓y−z,y∩z.

Then,

φ⊗ ψ↓y∩z = ((K1
↑z + K̃2

↑z
)
−1

(K1
↑zµ1

↑z + K̃↑z
2 µ2

⇒z),K1
↑z + K̃2

↑z
).

In order to prove (φ⊗ ψ)↓z = φ⊗ ψ↓y∩z, it has therefore to be verified that

K̃ = K1
↑z + K̃2

↑z
(3.19)

and that
µ↓z = (K1

↑z + K̃2
↑z

)
−1

(K1
↑zµ1

↑z + K̃↑z
2 µ2

⇒z). (3.20)

Observe that

K̃↑z
2 = K2

⇒z −K2
⇒z,y−z(K2

↓y−z)
−1
K2

⇒y−z,z (3.21)

in light of Lemma 3.2. Hence, equation (3.19) holds indeed. Second, recalling

that K̃ = ((K−1)↓z)
−1

and posing c11 = K̃−1 in Lemma A.6,

(K−1)↓z,u =
(
K̃−1 −K̃−1K2

⇒z,y−z(K2
↓y−z)

−1
)
,

Since x ⊆ z ⊆ u,

(K−1)↓z,uK1
↑uµ1

↑u = K̃−1K1
↑zµ1

↑z.

Using (3.21)

(K−1)↓z,uK2
↑u

=
(
K̃−1 −K̃−1K2

⇒z,y−z(K2
↓y−z)

−1
)( K2

⇒z K2
⇒z,y−z

K2
⇒y−z,z K2

⇒y−z

)
=
(
K̃−1K̃2

↑z
0z,y−z

)
and thus

(K−1)↓z,uK2
↑uµ↑u = K̃−1K̃2

↑z
µ2

⇒z.

Hence, equation (3.20) holds indeed, too.

(A6) The domain axiom follows by the definition of marginalisation.

(A7) Finally, e = (0∅, 0∅,∅) is an identity element. ut

In light of the transitivity of marginalisation of Gaussian potentials, marginals can
be calculated step-wise, using (3.17), or even variable-wise, using (3.18).
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3.4 Vacuous Extension of Gaussian Potentials

It has been shown in Lemma 2.22 how a valuation without neutral elements can
be extended to a stable valuation algebra. The elements in the extension have the
form (φ, x) for φ and d(φ) ⊆ x ∈ D. A geometric interpretation will now be given
for the extension of Gaussian potentials. A Gaussian potential can be viewed as
a random variable whose outcomes are sets of configurations of its domain, i.e. a
Gaussian potential (φ, x) with domain x = d(φ) induces the surjective mapping
Γx(x) = {x}, called focal mapping. Formally, Γx : IRx → 2IRx

is a random variable
whose outcomes are the singleton sets {x}, which form a partition of IRx. In the
spirit of this approach, a neutral element e′x = (�, x), expressing complete ignorance
on the domain x, is represented by the mapping Γ∅↑x(ω) = IRx. This corresponds
to a distribution over the trivial partition consisting of IRx only.
Gaussian potentials in the extension and neutral elements are two extreme cases of
the following general situation: An element (φ, y) with x = d(φ) ⊆ y induces a focal
mapping

Γx
↑y(x) = {x} × IRy−x. (3.22)

The image of such a mapping Γx
↑y is always a partition of IRx, which consists of

parallel linear manifolds which stand orthogonal on the linear hyperplane spanned
by the singleton domain x. Hence, the extension of Gaussian potentials leads to
distributions over parallel linear manifolds, including distributions over singeltons
as a special case.

Example 3.6. An example of the vacuous extension is shown in Figure 3.1: Here,
the points of the x-axis are mapped to planes orthogonal to the x-axis in Fig-
ure 3.1(a) and points of the xy-plane to straight lines perpendicular to that plane
in Figure 3.1(b). �

The marginal
(φ, y)↓z = (φ↓x∩z, z)

induces the focal mapping Γx∩z↑z. Marginalisation in the extension corresponds to
the projection of the configurations in the image of Γx↑y since

Γx
↑y(x)

↓z
= {z ∈ IRz : ∃y ∈ Γx↑y(x), z = y↓z}
= {z ∈ IRz : ∃y ∈ IRy, z = y↓z, y↓x = x}
= x↓x∩z × IRz−x

= Γx∩z
↑z(x↓x∩z)

for x ∈ IRx. Furthermore, the combination

(φ1, y1)⊗′ (φ2, y2) = (φ1 ⊗ φ2, y1 ∪ y1)

induces to the intersection of the sets since

Γx1∪x2
↑y1∪y2(u) = {u} × IRy1∪y2−(x1∪x2)

=
(
{u↓x1} × IRy1∪y2−(x1∪x2)

)
∩
(
{u↓x2} × IRy1∪y2−(x1∪x2)

)
= Γx1

↑y1∪y2(u↓x1) ∩ Γx2
↑y1∪y2(u↓x2)
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x

y

x0

z

Γ
x
↑
x
∪

y
∪

z
(x

0
)

(a) Vacuous extension from one dimension to three
dimensions

x

y

x0 x1

y1

y0

z

Γx∪y
↑x∪y∪z(x0,y0)

Γx∪y
↑x∪y∪z(x1,y1)

(b) Vacuous extension from two dimensions to three

Figure 3.1: Geometric interpretation of the vacuous extension of Gaussian potentials
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for x1 = d(φ1) and x2 = d(φ2) and u ∈ IRx1∪x2 . This product-intersection gives a
geometric interpretation to marginalisation and combination as well.

These mappings will be generalised in the Chapter 6. Furthermore, they will be
derived within a precise theory of (statistical) inference will be given to explain how
such focal mappings arise.

3.5 Moment Matrices and Sweeping

In this section, moment matrices (Dempster, 1990a) or extended matrices (Liu, 1999)
are introduced as an equivalent representation of Gaussian potentials. Combination
is expressed in terms of matrix operations called sweepings on the common vari-
ables. From the sweeping-based combination of moment matrices, a more efficient
way of computing the combined mean of Gaussian potentials will be deduced. Ex-
tended matrices are used for the probabilistic variables in Gaussian belief functions
(Dempster, 1990a; Liu, 1996a; 1999); see also Section 10.7.

Instead of representing a Gaussian density by a Gaussian potential (which is
the pair of its mean vector and its concentration matrix), such a distribution may
be represented by an extended matrix, which is the pair of its mean vector and its
variance-covariance matrix: A corresponding extended matrix can be associated to
every Gaussian potential (µ,K),

σ(µ,K) = (µ,K−1). (3.23)

Marginalisation of Gaussian potentials can then be carried over to such extended
matrices as ↓M by

(µ,K−1)↓Ms =
(
µ↓s, (K−1)↓s

)
. (3.24)

The marginalisation operations of Gaussian potentials and of moment matrices are
compatible since

(µ,K−1)↓Ms =
(
µ↓s, (K−1)↓s

)
= σ

(
µ↓s,

(
(K−1)↓s

)−1
)

= σ
(
(µ,K)↓s

)
.

Marginalisation in terms of extended matrices is an easy operation since only the
relevant elements of the mean vector and the concentration matrix have to be ex-
tracted. Furthermore, combination ⊗ can be carried over as ⊗M by

(µ1,K1
−1)⊗M (µ2,K2

−1) = (K−1((K1µ1)
↑x∪y + (K2µ2)

↑x∪y),K−1) (3.25)
= σ((µ1,K1)⊗ (µ2,K2))

where

K = K1
↑x∪y +K2

↑x∪y, (3.26)

φ1 = (µ1,K1), φ2 = (µ2,K2) ∈ G, x = d(φ1), y = d(φ2). According to formula
(3.25), matrices of the dimension of the number of all variables x ∪ y have to be
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inverted in order to compute the combination of extended matrices, which is ex-
pensive. However, it turns out that there is a less expensive way of computing the
combination of extended matrices: It suffices to invert matrices whose dimension is
at most the number of common variables.

In light of equations (B.10) and (B.9), define the Gaussian potential obtained by
conditioning on a subset of variables.

Definition 3.7. Let φ = (µ,K) be a Gaussian potential with domain d(φ) = x ∪ z
such that x ∩ z = ∅. Then, φx|z ∈ G with d(φx|z) = x, given by

φx|z = (µ↓x −K↓x−1
K↓x,z(z− µ↓z),K↓x), (3.27)

is called the conditioned Gaussian potential of φ on z ∈ IRz. �

Let φ = (µ,K) ∈ G, (µ,Σ) = σ(µ,K), and x ∪ z = d(φ), x ∩ z = ∅. In light of
Lemma B.1, the extended matrix corresponding to a conditioned Gaussian potential
is given by

σ(φx|z) = (µx|z, Σx|z) (3.28)

where
µx|z = µ↓x +Σ↓x,zΣ↓z−1

(z− µ↓z) (3.29)

and
Σx|z = Σ↓x −Σ↓x,zΣ↓z−1

Σ↓z,x. (3.30)

From this extended matrix, the original extended matrix (µ,Σ) can be reconstructed
if z, µ↓z, Σ↓z and Σ↓x,z are retained since then(

µx|z −Σ↓x,zΣ↓z−1(z− µ↓z)
µ↓z

)
=
(
µ↓x

µ↓z

)
= µ

and (
Σx|z +Σ↓x,zΣ↓z−1(Σ↓x,z)′ Σ↓x,z

(Σ↓x,z)′ Σ↓z

)
=
(
Σ↓x Σ↓x,z

Σ↓z,x Σ↓z

)
= Σ.

In order to represent the distribution conditioned on z ∈ IRz, retaining the informa-
tion necessary to reverse the conditioning, (Liu, 1999) defines the forward sweep of
the extended matrix M = (µ,Σ) on z to be the pair .(M, z) = (µ̃, M̃),

µ̃ =

(
µ↓x +Σ↓x,zΣ↓z−1(z− µ↓z)

Σ↓z−1
µ↓z

)
, (3.31)

Σ̃ =

(
Σ↓x −Σ↓x,zΣ↓z−1

Σ↓z,x Σ↓x,zΣ↓z−1

Σ↓z−1
Σ↓z,x −Σ↓z−1

)
(3.32)

and the reverse sweep of such a pair M̃ = (µ̃, Σ̃) from z̃ ∈ IRz by /(φ̃, z̃) = (µ,Σ),

µ =

(
µ̃↓x − Σ̃↓x,z(z̃ + Σ̃↓z−1

µ̃↓z)
−Σ̃↓z−1

µ̃↓z

)
, (3.33)

Σ =

(
Σ̃↓x − Σ̃↓x,zΣ̃↓z−1

Σ̃↓z,x −Σ̃↓x,zΣ̃↓z−1

−Σ̃↓z−1
Σ̃↓z,x −Σ̃↓z−1

)
. (3.34)
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Then, it can be verified that

/(.(M, z), z) = M. (3.35)

Forward and reverse sweepings can be used to express combination in terms of the
associated extended matrices as shown by the following lemma. (Liu, 1996a; 1999),
derived the same combination rule for moment matrices from Dempster’s Rule of
Combination. It will be shown below in Section 6.7 in a more general setting that
the combination of Gaussian potentials complies with Dempster’s Rule. Here, a
direct a proof is given instead.

Lemma 3.8. Let φ, ψ ∈ G with z = d(φ) ∩ d(ψ), x = d(φ)− d(ψ), y = d(ψ)− d(φ).
Then

σ(φ⊗ ψ) = /([.(σ(φ), z)⊕ .(σ(ψ), z)], z) (3.36)

for any z ∈ IRz where ⊕ stands for addition of the two vectors and matrices vacuously
extended to x ∪ z ∪ y. �

Proof. Let (µ1,K1) = φ, (µ2,K2) = ψ, Σ1 = K1
−1, and Σ2 = K2

−1. Then,
σ(φ) = (µ1, Σ1) and σ(ψ) = (µ2, Σ2).
On the one hand,

.(σ(φ), z)⊕ .(σ(ψ), z)

is given by the vector µ1
↓x +Σ1

↓x,zΣ1
↓z−1

(z− µ1
↓z)

µ2
↓y +Σ2

↓y,zΣ2
↓z−1

(z− µ2
↓z)

(Σ1
↓z)

−1
µ1

↓z + (Σ2
↓z)

−1
µ2

↓z


and the matrixΣ1

↓x −Σ1
↓x,zΣ1

↓z−1
Σ1

↓z,x 0x,y Σ1
↓x,z(Σ1

↓z)
−1

0y,x Σ2
↓y −Σ2

↓y,zΣ2
↓z−1

Σ2
↓z,y Σ2

↓y,z(Σ2
↓z)

−1

(Σ1
↓z)

−1
Σ1

↓z,x (Σ2
↓z)

−1
Σ2

↓z,y −((Σ1
↓z)

−1
+ (Σ2

↓z)
−1

)

 .

Let
(µ,Σ) = /([.(σ(φ), z)⊕ .(σ(ψ), z)], z)

where

µ =

µ1
↓x −Σ1

↓x,zΣ1
↓z−1

(µ1
↓z − µz)

µ2
↓y −Σ2

↓y,zΣ2
↓z−1

(µ2
↓z − µz)

µz

 (3.37)

for
µz = ((Σ1

↓z)
−1

+ (Σ2
↓z)

−1
)
−1

((Σ1
↓z)

−1
µ1

↓z + (Σ2
↓z)

−1
µ2

↓z)
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and

Σ =

 Σx Σx,y Σ1
↓x,z(Σ1

↓z)
−1
Σz

Σy,x Σy Σ2
↓y,z(Σ2

↓z)
−1
Σz

Σz(Σ1
↓z)

−1
Σ1

↓z,x Σz(Σ2
↓z)

−1
Σ2

↓z,y Σz

 (3.38)

for

Σx = Σ1
↓x −Σ1

↓x,z(Σ1
↓z)

−1
Σ1

↓z,x +Σ1
↓x,z(Σ1

↓z)
−1
Σz(Σ1

↓z)
−1
Σ1

↓z,x,

Σx,y = Σ1
↓x,z(Σ1

↓z)
−1
Σz(Σ2

↓z)
−1
Σ2

↓z,y,

Σy,x = Σ2
↓y,z(Σ2

↓z)
−1
Σz(Σ1

↓z)
−1
Σ1

↓z,x,

Σy = Σ2
↓y −Σ2

↓y,z(Σ2
↓z)

−1
Σ2

↓z,y +Σ2
↓y,z(Σ2

↓z)
−1
Σz(Σ2

↓z)
−1
Σ2

↓z,y,

and

Σz = ((Σ1
↓z)

−1
+ (Σ2

↓z)
−1

)
−1
.

On the other hand, let
(µ̃,K) = φ⊗ ψ

where, in light of equation (3.10),

µ̃ = K−1

 K1
↓xµ1

↓x +K1
↓x,zµ1

↓z

K2
↓yµ2

↓y +K2
↓y,zµ2

↓z

K1
↓zµ1

↓z +K2
↓zµ2

↓z +K1
↓z,xµ1

↓x +K2
↓z,yµ2

↓y


= K−1

 K1
↓x,zµ1

↓z

K2
↓y,zµ2

↓z

K1
↓zµ1

↓z +K2
↓zµ2

↓z

+

 K1
↓xµ1

↓x

0y
K1

↓z,xµ1
↓x

+

 0x
K2

↓yµ2
↓y

K2
↓z,yµ2

↓y


= K−1

 K1
↓x,zµ1

↓z

K2
↓y,zµ2

↓z

K1
↓zµ1

↓z +K2
↓zµ2

↓z

+K↓z∪x∪y,xµ1
↓x +K↓z∪x∪y,yµ2

↓y

 ,
and, applying Lemma A.6 to both Σ1 and Σ2,

K = K1
↑x∪y∪z +K2

↑x∪y∪z =
(
Σ1

−1
)↑x∪y∪z +

(
Σ2

−1
)↑x∪y∪z

=

 s12 0x,y −(Σ1
↓x)

−1
Σ1

↓x,zs11

0y,x s22 −(Σ2
↓y)

−1
Σ2

↓y,zs21

−(Σ1
↓z)

−1
Σ1

↓z,xs12 −(Σ2
↓z)

−1
Σ2

↓z,ys22 s11 + s21

 (3.39)

for

s12 = (Σ1
↓x −Σ1

↓x,z(Σ1
↓z)

−1
Σ1

↓z,x)
−1
,

s11 = (Σ1
↓z −Σ1

↓z,x(Σ1
↓x)

−1
Σ1

↓x,z)
−1
,

s22 = (Σ2
↓y −Σ2

↓y,z(Σ2
↓z)

−1
Σ2

↓z,y)
−1
,
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and

s21 = (Σ2
↓z −Σ2

↓z,y(Σ2
↓y)

−1
Σ2

↓y,z)
−1
.

With these definitions, the claim can be written as

σ(µ,K) = (µ,Σ),

so it has to be proved that ΣK = Ix∪y∪z and µ = µ̃. Firstly, using equations (3.39)
and (3.38) and the definitions of their submatrices,

(ΣK)↓z =Σz(s11 + s21) +Σz(Σ1
↓z)

−1
Σ1

↓z,x(−(Σ1
↓x)

−1
Σ1

↓x,zs11)

+Σz(Σ2
↓z)

−1
Σ2

↓z,y(−(Σ2
↓y)

−1
Σ2

↓y,zs21)

=Σz(s11 + s21) +Σz(Σ1
↓z)

−1
(s11−1 −Σ1

↓z)s11

+Σz(Σ2
↓z)

−1
(s21−1 −Σ2

↓z)s21

=Σz(s11 + s21) +Σz((Σ1
↓z)

−1 − s11) +Σz((Σ2
↓z)

−1 − s21)

=Σz((Σ1
↓z)

−1
+ (Σ2

↓z)
−1

) = Iz,

(ΣK)↓x =Σ1
↓x,z(Σ1

↓z)
−1
Σz(−(Σ1

↓z)
−1
Σ1

↓z,xs12)

+ (s12−1 +Σ1
↓x,z(Σ1

↓z)
−1
Σz(Σ1

↓z)
−1
Σ1

↓z,x)s12
=s12−1s12 = Ix,

(ΣK)↓z,x = Σz(−Σ1
↓z−1

Σ1
↓z,xs12) +ΣzΣ1

↓z−1
Σ1

↓z,xs12 = 0z,x,

(ΣK)↓x,y =Σ1
↓x,z(Σ1

↓z)
−1
Σz(−(Σ2

↓z)
−1
Σ2

↓z,y)s22

+Σ1
↓x,z(Σ1

↓z)
−1
Σz(Σ2

↓z)
−1
Σ2

↓z,ys22 = 0x,y.

By similar arguments, it can proved that (ΣK)↓y = Iy and (ΣK)↓z,y = 0z,y, and it
then follows by the symmetry of ΣK that ΣK = Ix∪z.
Secondly, using K−1 = Σ and applying equation (B.13) [taking K11 = Σ1

↓z and
Σ22 = K1

↓x],

µ̃↓z =Σz(K1
↓zµ1

↓z +K2
↓zµ2

↓z)

+Σz(Σ1)
↓z−1

Σ1
↓z,xK1

↓x,zµ1
↓z +Σz(Σ2)

↓z−1
Σ2

↓z,yK2
↓y,zµ2

↓z

=Σz((K1
↓z −K1

↓z,x(K1
↓x)

−1
K1

↓x,z)µ1
↓z + (K2

↓z −K2
↓z,y(K2

↓y)
−1
K2

↓y,z)µ2
↓z)

=((Σ1
↓z)

−1
+ (Σ2

↓z)
−1

)
−1

((Σ1
↓z)

−1
µ1

↓z + (Σ2
↓z)

−1
µ2

↓z)

=µ↓z,
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and

µ̃↓x =Σ1
↓x,z(Σ1

↓z)
−1
Σz(K1

↓zµ1
↓z +K2

↓zµ2
↓z)

+ ((K1
↓x)

−1
+Σ1

↓x,z(Σ1
↓z)

−1
Σz(Σ1

↓z)
−1
Σ1

↓z,x)K1
↓x,zµ1

↓z

+Σ1
↓x,z(Σ1

↓z)
−1
Σz(Σ2

↓z)
−1
Σ2

↓z,yK2
↓y,zµ2

↓z + Ixµ1
↓x

=Σ1
↓x,z(Σ1

↓z)
−1
Σz(K1

↓zµ1
↓z + (Σ1

↓z)
−1
Σ1

↓z,xK1
↓x,zµ1

↓z)

+Σ1
↓x,z(Σ1

↓z)
−1
Σz(K2

↓zµ2
↓z + (Σ2

↓z)
−1
Σ2

↓z,yK2
↓y,zµ2

↓z)

+ (K1
↓x)

−1
K1

↓x,zµ1
↓z + µ1

↓x

=Σ1
↓x,z(Σ1

↓z)
−1
Σz(K1

↓zµ1
↓z −K1

↓z,x(K1
↓x)

−1
K1

↓x,zµ1
↓z)

+Σ1
↓x,z(Σ1

↓z)
−1
Σz(K2

↓zµ2
↓z −K2

↓z,y(K2
↓y)

−1
K2

↓y,zµ2
↓z)

−Σ1
↓x,z(Σ1

↓z)
−1
µ1

↓z + µ1
↓x

=Σ1
↓x,z(Σ1

↓z)
−1
Σz((Σ1

↓z)
−1
µ1

↓z + (Σ2
↓z)

−1
µ2

↓z)

−Σ1
↓x,z(Σ1

↓z)
−1
µ1

↓z + µ1
↓x

=µ1
↓x +Σ1

↓x,z(Σ1
↓z)

−1
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In the same way it can be proved that µ̃↓y = µ↓y, hence µ̃ = µ. ut

The combination of extended matrices associated with Gaussian potentials can be
summarised in the following way:

• sweep the extended matrices forward to the same but arbitrary value of the
shared variables,

• add the mean vectors and matrices, and

• sweep backwards on the same value.

This is a remarkable property of the Gaussian distribution.
In order to compute the combination of extended matrices, only the submatrices

corresponding to the common variables z have to be inverted according to equation
(3.37). This can be carried over to Gaussian potentials: By using equation (B.10),
instead of equation (3.10), the mean of the combination of two Gaussian potentials
can be computed more efficiently

µ =

µ1
↓x +K1

↓x−1
K1

↓x,z(µ1
↓z − µz)

µ2
↓y +K2

↓y−1
K2

↓y,z(µ2
↓z − µz)

µz

 (3.40)

Chapter Synopsis & Discussion

In Section 3.3, the proof that Gaussian potentials form a valuation algebra was
direct. However, there are at least two indirect proofs.
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• In (Kohlas, 2003), it is proved that probability densities form a valuation
algebra. Therefore, since Gaussian potentials correspond to Gaussian densities
and since they are closed under combination and marginalisation, this results
an indirect proof of the theorem.

• In (Kohlas and Monney, 2008), it is proved that Gaussian potentials cor-
respond to precise Gaussian hints, which belong to the valuation algebra of
Gaussian hints. Again, since Gaussian potentials are closed under combination
and marginalisation, this yields a second indirect proof of the theorem.

The extension of the valuation algebra of Gaussian potentials by neutral elements
corresponds to the subalgebra of only those Gaussian hints whose focal sets are
parallel to the axes of (a part of) the variables.

The combination of moment matrices has been derived from the product-inter-
section rule (Liu, 1996a; 1999). This gives an alternative proof of the compatibility
of the combination of Gaussian potentials and moment matrices (Lemma 3.8).

Furthermore, alternative formulas for marginalisation and combination have
been derived for the “direct” formulas of (Kohlas, 2003; Kohlas and Monney, 2008):

• computing the marginal concentration matrix according to (3.17) requires the
inversion of a matrix corresponding to the variables to be eliminated;

• computing the combined mean according to (3.40) requires the inversion of
two matrices corresponding to the variables occurring in one factor only.

Further, the marginalisation of moment matrices is easy, whereas the combination
requires the inversion of two matrices corresponding to the common variables.



4
Join Trees and Local Computation

Information may come in pieces, since it may either become available only little
by little in an interactive system, or since its modular structure allows to decom-
pose it. In order to capture the overall knowledge, the different pieces have to be
combined. One may then be interested in what can be said about a certain sub-
domain of this bundled piece of knowledge. This subdomain will be called a query.
However, this process of first combining and then marginalising information pieces
may be intractable or at least computationally inefficient: In the case of relational
databases, for instance, this intuitive approach would result in a huge table with
lots of redundancy (i.e. functional dependencies). Therefore, by an astute interplay
of marginalisations and combinations, the construction of such a huge table can be
avoided, and computations are done locally on smaller domains which do not exceed
those of the factors. The combination axiom and its derivative Lemma 2.4 are the
key to these local computation schemes. In a first step, valuations are assigned to
the nodes of a join tree, which has the running intersection property, i.e. a variable
occurring in two nodes resides in every node on the path between these two nodes.
Then, messages (i.e. marginals to the intersection with the child node) are sent
towards a designated root node, whose label contains the query. When all messages
have arrived, the root node, marginalised to the query, will contain the same infor-
mation as obtained by first combining all pieces and then marginalising them to the
query. This scheme is called collect algorithm (Kohlas, 2003). If there are several
queries, a join tree has to be constructed which covers all queries; then, the same
messages as in the collect algorithm can be computed for every root node. How-
ever, the messages cannot be added to the nodes’ content, but they are stored in
separate mailboxes associated with the edges, one for each direction. This scheme is
called Shenoy-Shafer architecture (Shenoy and Shafer, 1990). However, if there are
inverses in a valuation algebra, the message does not need to be stored separately
since the node’s content can be divided out before sending a message. This scheme
is called Lauritzen-Spiegelhalter architecture (Lauritzen and Spiegelhalter, 1988).

Applying these techniques to Gaussian potentials, one can reduce the space re-
quirements from order O(m2) to O(max{mi

2}) (m being the number of all variables,
and mi being the number of variables of the factor i).

71
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Chapter Outline

In Section 4.1, the query problem is formally defined, and covering join trees are
introduced as a graphical structure bearing the different valuations of a knowledge
base. How a join tree can be constructed for such a factorisation by use of the
fusion algorithm is set out in Section 4.2. The collect algorithm for answering a
single query is discussed in Section 4.3, the Shenoy-Shafer architecture for several
queries in Section 4.4. If valuations can be divided out in the valuation algebra, this
property can be used for more efficient computations in the Lauritzen-Spiegelhalter
architecture of Section 4.5. Finally, if marginalisation is only partially defined, not
every required marginal for local computation may be defined. If the factorisation
forms a construction sequence, there is always such a scheduling of the local com-
putation algorithms that all required marginals are defined. This is the topic of
Section 4.6.

4.1 Covering Join Trees

Given a knowledge base consisting of several pieces of information, one may be
interested in several questions or queries.

Definition 4.1. A set {φ1, . . . , φn} is called a factorisation of φ ∈ Φ if φ = φ1⊗· · ·⊗
φn. A factorisation {φ1, . . . , φn} of φ together with a set of queries q1, . . . , qk ∈M(φ)
is called a projection problem. If there is only one query q, then the projection problem
is called simple. The factors φ1, . . . , φn form the knowledge base of the projection
problem. �

The direct approach to query answering is to combine all factors to compute φ and
then to marginalise φ to the queries. In many applications, the complexity increases
exponentially with the number of variables involved. For instance, computing the
marginal of a probability potential involves exponentially many terms in the sum-
mation. Furthermore, the storage space required to represent the valuations may
increase exponentially, too; for instance, a probability table for n binary variables
has 2n entries. In the case of Gaussian potentials, an upper bound of space and time
requirements is O(m2) where m is the number of variables involved.

However, there are efficient generic methods (such as the Shenoy-Shafer (Shenoy
and Shafer, 1990), the Lauritzen-Spiegelhalter (Lauritzen and Spiegelhalter, 1988)
and the HUGIN (Jensen et al., 1990) architectures), which are all based on join
trees, where computations can be carried out locally on smaller domains. Join trees
express how the different information pieces are related, for instance functional de-
pendencies in relational databases and conditional independences in joint probability
distributions. Furthermore, if there are several queries, a join tree allows to avoid
redundant computations.

In order to formalise join trees, some basic graph-theoretic notions are introduced
first.

Definition 4.2. An (undirected) graph is a pair G = (V,E), where
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• the elements of V are called vertices or nodes and

• the elements of E are two-element sets {i, j}, i, j ∈ V , and are called edges.

If two vertices i, j ∈ V are connected by an edge e = {i, j} ∈ E, then they are called
neighbours or adjacent. The set of all neighbours of a vertex i is denoted ne(i). A
path from a node i1 to a node in is a sequence of different edges e1, e2, . . . , en−1

such that ek = {ik, ik+1} ∈ E for all k ∈ {1, . . . , n}. Notice that, if there is path
e1, . . . , en−1 from i1 to in, then en−1, . . . , e1 is a path from in to i1. Therefore,
without loss of information, a path from i to j is also said to be a path between
i and j. A graph G = (V,E) is connected whenever there is a path between two
different nodes, i.e. if i 6= j implies that there is a path e1, . . . , en such that i ∈ e1
and j ∈ en. A tree is a connected graph with the property that removing an edge
leads to an unconnected graph. A labelled tree is a quartuple (V,E, λ,D) where

• (V,E) is a tree,

• D is a lattice of domains,

• λ : V → D assigns the label λ(v) to every node v ∈ V . �

Remark 4.3. In a tree T = (V,E), there is a unique path between distinct nodes
i, j ∈ V . This can be proved as follows: Since a tree is connected, there is a path
between any distinct nodes i, j ∈ V . Assume the contraposition, i.e. that there are
two paths between two nodes i, j ∈ V . Then, there is at least one edge e = {k, l} not
common to both paths. When that edge is removed, the graph remains connected
since the gap can be bridged by the path from k to i, over the alternative path to l
and from there to j. Therefore, T cannot be a tree. �

Example 4.4 (Tree). Consider the graph G = (V,E) of Figure 4.1: The ver-
tices V = {1, . . . , 5} are represented by dots labelled by the vertex, and the edges
E = {{1, 2}, {2, 3}, {3, 4}, {2, 5}} are represented by straight lines. For any pair
of vertices, there is a path between them in the graph G: for instance, the path
{1, 2}, {2, 5} connects the nodes 2 and 5. Furthermore, if any edge is removed, G
becomes disconnected: for instance, after removing the edge {3, 4}, there is no path
from the isolated node 4 to any other node of the modified graph. Therefore, G is a
tree. Furthermore, the graph obtained by adding the edge {4, 5} is not a tree since
this adds a second path from 4 to 5. Finally, the graph (V ∪{6}, E) is not connected
since there is no path from the isolated node 6 to any other node of the graph. �

Definition 4.5. A labelled tree (V,E, λ,D) satisfies the running intersection prop-
erty (or Markov property or join tree property) if, for every variable X common to
the label of distinct nodes i, j ∈ V , i.e. for X ∈ λ(i)∩λ(j), and for every node k on
the path from i to j, it holds that X is also in the node k’s label, i.e. that X ∈ λ(k).
A join tree (or Markov tree) is a labelled tree satisfying the running intersection
property. �
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1

2

3

4

5

6

Figure 4.1: A graph a part of which forms a tree

Example 4.6 (Join Tree). The vertices of the tree in Example 4.4 can be labelled
by the variables r = {A,B,C,D} forming the lattice D = 2r as shown in Figure 4.2,
where each node i is depicted by an oval bearing the label λ(i). The quartuple
(V,E, λ,D) forms a labelled tree, satisfying the running intersection property since
the variable A, for instance, is contained in the labels of vertices 1, 2, and 5, and it
is contained in all possible paths between these nodes. However, adding the variable
C to the label of node 3, then 3 and 5 would both contain C in their label, but not
2, which is on the path between 3 and 5, hence, the modified tree would not satisfy
the running intersection property. �

{A,B,C}

{B}

{A,B}

{A,B}1

2

3

{B,D} 4

5

Figure 4.2: A tree satisfying the running intersection property

Definition 4.7. A join tree JT = (V,E, λ,D) is called a covering join tree for a
factorisation {φ1, . . . , φn} if, for each factor φi, i ∈ {1, . . . , n}, there is a node j ∈ V
such that d(φi) ⊆ λ(j); j is then said to cover φi. A function a : {φ1, . . . , φm} → V
is called an assignment mapping if d(φi) ⊆ λ(a(φi)) for all i ∈ {1, . . . ,m}. �

Example 4.8 (Assignment Mapping). Figure 4.3 shows an assignment mapping
from the knowledge base φ1, . . . , φ6 to the join tree of Example 4.6: The valuations
are depicted by diamonds bearing their domain. The assignment of a valuation to
a node is shown by an arrow from the valuation to the node. �

The following lemma shows that every assignment mapping a induces a surjective
assignment mapping a′ and a new factorisation as shown by the following lemma.
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{A,B,C}

{B}

{A,B}

{A,B}1

2

3

{B,D} 4

5

{B}{A,B} {B,D} {A,B,C} {BC}{D}

φ1 φ2 φ3 φ4 φ5 φ6

Figure 4.3: An assignment of a knowledge base to a join tree

Lemma 4.9. Let a : {φ1, . . . , φn} → V be an assignment mapping to the covering
join tree (V,E, λ,D). For j ∈ {1, . . . ,m = |V |}, define

ψj =
{ ⊗

φi:a(φi)=j
φi if ∃φi : a(φi) = j,

e else

and
a′(ψj) = j.

Then, a′ is a bijective assignment mapping for the new factorisation {ψ1, . . . , ψm}
of φ = φ1 ⊗ · · · ⊗ φn. �

Proof. In light of the identity and the commutativity axioms and since a assigns
every φi to exactly one node j,⊗

j∈{1,...,m}

ψj =
⊗

j∈{1,...,m},φi:a(φi)=j

φi

=
⊗

i∈{1,...,n}

φi = φ. ut

In light of this lemma, it can be assumed without loss of generality that an assign-
ment mapping is bijective.

Definition 4.10. Let a be a bijective assignment mapping a : {ψ1, . . . , ψm} → V .
Then,

• λ(j) is called the label of the node j ∈ V and
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• ωj = d(a−1(j)) is called the domain of the valuation assigned to node j ∈ V .�
Notice the difference between the label λ(j) and the domain ωj of a node j: By the
definition of an assignment mapping,

ωj ⊆ λ(j),

i.e. the valuation ψj = a−1(j) assigned to the node j is not required to fill the node
completely. The label may be seen as the “capacity” of the node, as the largest
domain it may cover.

Example 4.11 (Bijective Assignment Mapping). The assignment mapping of
Example 4.8 induces a bijective assignment mapping for a new factorisation ψ1, . . . , ψ5

as shown in Figure 4.4: Several valuations assigned to the same node are combined
(ψ4 = φ3 ⊗ φ4 and ψ5 = φ5 ⊗ φ6); if there is no factor assigned to a node, then
the identity element is assigned to it instead (ψ3 = e); all other assignments are not
changed (ψ1 = φ1 and ψ2 = φ2). �

{A,B,C}

{B}

{A,B}

{A,B}1

2

3

{B,D} 4

5

{B}{A,B} {B,D} {A,B,C}

ψ1 = φ1 ψ2 = φ2 ψ3 = e ψ4 = φ3 ⊗ φ4 ψ5 = φ5 ⊗ φ6

{}

Figure 4.4: Induced bijective assignment mapping

Definition 4.12. A join tree (V,E, λ,D) is a covering join tree for the projection
problem consisting of the knowledge base {φ1, . . . , φn} and the queries {q1, . . . , qk} if

1. it is a covering join tree for the factorisation {φ1, . . . , φn},

2. it covers the domains qj, j ∈ {1, . . . , k}, and

3.
⋃n
i=1 d(φi) =

⋃
j∈V λ(j). �

The third point in this definition requires that every variable occurring in a node of
the join tree also occurs in one of the factors. However, the nodes’ labels need not
be filled up by the factors (initially) assigned to them.
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4.2 Fusion Algorithm for Join Tree Construction

In order to solve a projection problem, the first step is to find a covering join tree for
it. Notice that it is always possible to assign all factors to one node, which results
in a trivial join tree. Since the complexity of the operations or the required storage
space may increase exponentially in the number of variables involved, one might
want to find a join tree whose biggest label has minimal cardinality. This problem is
known to be NP-hard (Arnborg et al., 1987). However, the fusion algorithm (Shenoy,
1992) can be used to compute join trees: Given a factorisation Φ = {φ1, . . . , φn} of
φ and a sequence X1, . . . , Xk of all variables d(φ)− t = {X1, . . . , Xk}, variables are
successively eliminated, i.e.

φ↓t =
((
φ−X1

)···)−Xk

, (4.1)

Such a sequence is therefore called an elimination sequence.

Definition 4.13. Let Φ = {φ1, . . . , φn} be a factorisation of φ and let x = d(φ).
Then, a sequence X1, . . . , Xk such that x = {X1, . . . , Xk} is called an eliminiation
sequence. �

The fusion algorithm eliminates variables locally : Consider eliminating Y in φ =
φ1 ⊗ · · · ⊗ φn; here, the factors not containing Y remain unchanged in light of the
combination axiom, so the factors that do contain Y in their domain may first be
combined and Y may then be eliminated from their combination, i.e.

φ−Y =

 ⊗
i:Y ∈d(φi)

φi

−Y

⊗
⊗

i:Y 6∈d(φi)

φi. (4.2)

Let Φ = {φ1, . . . , φn} and

ψ =

 ⊗
i:Y ∈d(φi)

φi

−Y

.

Then, in terms of
FusY (Φ) = {ψ} ∪ {φi : Y 6∈ d(φi)}, (4.3)

it thus holds that
φ↓t =

⊗
FusXk

(· · · (FusX1(Φ))).

The fusion algorithm can be used to construct a join tree from a factorisation
(Shafer, 1996; Kohlas, 2003) as given in the pseudo-code of Algorithm 1: At each
step i, the variable Xi is eliminated and the labels of remaining factors containing
Xi in their label are removed from the list l, their union is added to the list l, and
the other labels remain untouched in the list l. The following lemma shows that
the fusion algorithm produces a covering join tree for the initial factorisation Φ; see
(Kohlas, 2003).

Lemma 4.14. The graph G = (V,E) constructed by the fusion Algorithm 1 is a
covering join tree for Φ. �
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�� ��Algorithm 1: Fusion

→ input:
a set of domains {x1, . . . , xn} and a sequence X1, . . . , Xk of all vari-
ables occurring in a domain xj (j ∈ {1, . . . , n})

← output: a covering join tree (V,E, λ,D)

V := ∅, E := ∅, l := {x1, . . . , xn}
loop for i from 1 to k
do

1. vi :=
⋃
{x ∈ l : Xi ∈ x}

2. v′i := vi − {Xi}

3. V := V ∪ {vi, v′i}

4. E := E ∪ {{vi, v′i}} ∪ {{v, vi} : v ∈ l ∩ V,Xi ∈ v}

5. l := l ∪ {v′i} − {x ∈ l : Xi ∈ x}

done
λ(v) := v

Proof. 1. Notice that, at the start of step i, the domains in the list l do not
contain the eliminated variables X1, . . . , Xi−1. This trivially holds for i =
1. Assume the claim holds at the beginning of step i − 1; then all domains
containing Xi are removed from the list and the only domain v′i added does
not contain Xi by definition, hence the claim holds indeed at the start of step
i.

2. Observe that, at the end of the algorithm, the list l contains only the empty
set, l = {∅}. On the one hand, by the previous observation, at the end of step
k, the list does not contain any non-empty domain, i.e. l ⊆ {∅}; on the other
hand, v′k = ∅ and vk ∈ l. Thence, l = {∅}.

3. It will now be proved that every factor xj in Φ is covered by a node of G.
Initially xj ∈ l; after each step i, either xj ∈ l or xj ⊆ vi, not both. As soon
as Xi ∈ xj , then xj ⊆ vj and then xj is covered by G; since the iteration goes
over all variables, finally all nodes will be covered.

4. It will now be proved that G is a tree. Since l = {v′k} at the end and since every
vertex being removed from the list is connected to some vertex remaining in
the list, there is a path from any vertex to the node vk; since also (vk, v′k) ∈ E,
the graph G is connected. On the other hand, notice that there are only
edges (vi, v′i) and (v′i, vj) with i < j, i, j ∈ {1, . . . , k}; therefore, an edge of
the first type (vi, v′i) lies in every path from the vertices v1, v′1, . . . , vi−1, v

′
i−1

to vk and an edge of the second type (v′i, vj) lies in every path from the ver-
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tices v1, v′1, . . . , vj−1, v
′
j−1 to vk, hence removing any edge makes the graph

disconnected. Thence, G is indeed a tree.

5. It remains to be proved that G satisfies the running intersection property.
Observe that a variable Xi may only occur in nodes vj where j ≤ i or v′j where
j < i. By construction, for j < i, if it is in vj , then it is in v′j , and it is in
every node on the unique path from vj to vi, where it is eliminated in the
edge to v′j . Therefore, whenever Xi is in vj , then it is in vi; hence, the unique
path between two nodes vj1, vj2 containing Xi goes through vi, whence Xi is
contained in every node in the unique path between vj1 and vj2. This shows
that G indeed satisfies the running intersection property. ut

Several heuristics for finding an elimination sequence resulting in a “good” join
tree have been proposed in the literature, attempting to minimise the size of the
largest label of the join tree obtained by the fusion algorithm; see (Lehmann, 2001)
for an overview of such heuristics.

Example 4.15 (Fusion Algorithm). Figure 4.5 shows the join tree constructed
by the fusion algorithm for the elimination sequence C,D,A,B; each one of the
six diamonds stands either for a valuation or a query; the nodes of the tree are
depicted by ovals and the edges by straight lines; to the right of the dashed vertical
lines, there are only nodes and valuations which do not contain the variable in their
label; an arrow shows a possible assignment of the valuation to a covering node, and
corresponds to eliminating the valuation from the list l in Algorithm 1. �

4.3 Collect Algorithm

The collect algorithm (Kohlas, 2003; Schneuwly et al., 2004) allows to solve a simple
projection problem on a corresponding join tree covering all factors φ1, . . . , φm of the
knowledge base and also the single query q. The factors are supposed to belong to a
valuation algebra with full marginalisation. The collect algorithm can be viewed as
a message-passing scheme between distributed processors, the nodes of the covering
join tree, to a selected node covering q, called the root node; messages are marginals
of the node content, which are then combined with the node content of the receiv-
ing node. At the end of the collect algorithm, the root node will contain the full
information of the knowledge base with respect to the query.

As seen above, it can be assumed without loss of generality that the assignment
mapping a : φ1, . . . , φm → V is bijective from the factors of the knowledge base
to the vertices of the join tree (V,E, λ,D), i.e. m = |V |. The vertices will be
denoted by integers 1, . . . ,m. A tree (V,E) with nodes V = {1, . . . ,m} is said to
be directed towards the node m if j > i for every node j ∈ V lying on the path
between i and m. By a suitable permutation π of the nodes V , a join tree can be
assumed directed towards the node r = π−1(m) covering the query q, i.e. q ⊆ λ(r);
the permutation can be constructed using Algorithm 2. The correctness of the
algorithm is straightforward.
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Figure 4.5: The covering join the constructed by the fusion algorithm
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�� ��Algorithm 2: Direct Join Tree

→ input:
a covering join tree (V,E, λ,D) for a simple projection problem
φ1, . . . , φm with query q, a root node r ∈ V covering q (i.e. q ⊆ λ(r)).

← output: a permutation π such that π−1(r) = m and π−1(j) > π−1(i) for every
node j ∈ V lying on the path between i and m

Done := ∅; Next := {r}; i:=m
loop until Done == V
do

1. Pre := Next; Next := ∅

2. for j in Pre
do
π(j) = i; i := i− 1; Next := Next ∪ ne(j)−Done
done

3. Done := Done ∪ Pre

done

In a directed tree (V,E) with the root node m = |V |, terms of human ancestry
and the tree metaphor are used to denominate particular nodes and relations between
nodes:

Definition 4.16. The parents of a node i are the nodes

pa(i) = {j : j < i, {i, j} ∈ E}.

A node without parents is called leaf (node). The child ch(i) of a node i ∈ V is the
unique node j with j > i and {i, j} ∈ E. The nodes on the path from a node i to
the root node are called descendants of i, the nodes on a path from a node i to a leaf
its ancestors. �

The reader should not be misled by the facts that in this terminology a child may
have none, only one or even several parents and that a directed tree is rooted at the
youngest member of the family.

Example 4.17. Consider the tree in Figure 4.1 (see Example 4.4). The tree is
directed since the nodes on the paths from the leaves 1 and 4 to the root node 5 are
increasing. Node 2 has parents pa(2) = {1, 3}, ancestors {1, 3, 4} and its child (and
unique descendant) is ch(2) = 5. �

With this terminology, the collect algorithm for solving the simple projection
can now be specified. Let (V,E, λ,D) be a covering join tree directed towards the
root node m = |V | for a simple projection problem consisting of the knowledge base
φ1, . . . , φm and the query q ⊆ λ(m), and let a be a bijective assignment mapping,
a : {φ1, . . . , φm} → V . In the collect algorithm, each node acts according to the
following two rules:
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R1 If a message from a parent arrives, combine it with your content.

R2 If every parent has sent a message and it is combined with your own content,
marginalise your content to the intersection of its domain and the domain of
your child, and set that message to your child.

According to these rules, every node except the root node sends exactly one message
to its unique child; leaves can send immediately. This leads to m− 1 messages in a
run of the collect algorithm. Since combination is commutative, the messages from
the parent nodes can be combined in any order. Thus, different schedulings of the
collect algorithm lead to the same result. Since the covering join tree is directed,
the parents of a node i all have a number j < i, so node i becomes ready to send
after all nodes j < i have sent their message, i.e. the nodes may send their messages
in ascending order of their node number. This particular scheduling leads to the
following description of the collect algorithm in m steps. Let

ψ
(i)
j

be the content of the node j ∈ V = {1, . . . ,m} before step i ∈ {1, . . . ,m} of the
collect algorithm; in particular, the initial contents are given by

ψ
(1)
j = a−1(j).

Since a node’s content and its domain may change during a run of the collect algo-
rithm, the domain of a node j’s content before step i is referred to as

ω
(i)
j = d(ψ(i)

j ).

Then, at each step i, the node i computes the message

µi→ch(i) = ψ
(i)
i

↓ω(i)
i ∩λ(ch(i))

, (4.4)

which is sent to the child ch(i) with node label λ(ch(i)). In node ch(i), upon
reception, the message is combined with the old content and the result is stored as
the new content,

ψ
(i+1)
ch(i) = ψ

(i)
ch(i) ⊗ µi→ch(i); (4.5)

all other nodes do not change their content,

ψ
(i+1)
k = ψ

(i)
k , k 6= ch(i). (4.6)

At the end of the collect algorithm, the root node m is filled up (i.e. d(ψ(m)
m = λ(m))

since all variables of λ(m) occur in some factor in light of the third condition of
Definition 4.12. Furthermore, the root node’s content reflects the overall information
of the knowledge base with respect to λ(m).

Theorem 4.18. A the end of the collect algorithm, the root node m contains the
marginal of φ = φ1 ⊗ · · · ⊗ φm relative to λ(m), i.e.

ψ(m)
m = φ↓λ(m).

In particular,
ψ(m)
m

↓q
= φ↓q. �
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Proof. The first assertion is proved in (Schneuwly et al., 2004; Schneuwly, 2007).
The second claim then follows by the transitivity axiom. ut

{A,B}

{A}

{A,C}

{A,D}

Figure 4.6: A join tree for the four variables A,B,C,D

Example 4.19 (Collecting Gaussian Potentials). Consider the covering join
tree of Figure 4.6 and the corresponding adjacency matrix for the variablesA,B,C,D
in Figure 4.7, where the grey-shaded areas show the pairs of variables which are in
the same node in the join tree. It is a covering join tree for three Gaussian potentials
with domains d(φ1) = {A,D}, d(φ2) = {A,C} and d(φ3) = {A,B} and the query
q = {A,B}. The assignments are shown in Figure 4.8. By this factorisation, the
storage cost is reduced from order O(42) = O(16) to O(3 · 22 + 12) = O(12). For
simplicity’s sake, assume that the mean vectors are all zero. Let the concentration
matrices be K1, K2 and K3, respectively. Then, using the alternative formula (3.17)
for marginalisation of Gaussian potentials, (φ1 ⊗ φ2 ⊗ φ3)

↓{A,B} is given by

K↓{A,B} −K↓{A,B},{C,D}K↓{C,D}−1
K↓{C,D},{A,B}

for
K = K1

↑{A,B,C,D} +K2
↑{A,B,C,D} +K3

↑{A,B,C,D}.

Notice that the non-zero entries of K correspond exactly to the grey-shaded areas
in the adjacency matrix of Figure 4.6.

However, it is not necessary to build the sparse matrix K since, using the com-
bination axiom,

(φ1 ⊗ φ2 ⊗ φ3)
↓{A,B} = φ1

↓{A} ⊗ φ2
↓{A} ⊗ φ3,

which is given by
K̃
↑{A,B}
1 + K̃

↑{A,B}
2 +K3

where
K̃1 = K1

↓{A} −K1
↓{A},{D}K1

↓{D}−1
K1

↓{D},{A}
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and

K̃2 = K2
↓{A} −K2

↓{A},{C}K2
↓{C}−1

K2
↓{C},{A}.

Thereby, the time complexity is reduced from O(22) to O(max{12, 12}) = O(1).
This can be directly translated into an execution of the collect algorithm as shown
in Figure 4.8: first, the messages φ1

↓{A} and φ2
↓{A} are sent to the node with label

{A}, where they are combined with the node’s content, the identity element e; then,
the message φ1

↓{A} ⊗ φ2
↓{A} is sent to the root node with label {A,B} where it is

finally combined with φ3. �

ABCD

A

B

C

D

Figure 4.7: The adjacency matrix for the join tree of Figure 4.6

{A,B}

{A}

{A,C}

{A,D}

φ1

φ2

φ3

φ1
↓{A}

φ2
↓{A}

φ1
↓{A}

⊗ φ2
↓{A}

e

Figure 4.8: An execution of the collect algorithm towards the node with label {A,B}
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4.4 Shenoy-Shafer Architecture

In order to solve a general projection problem with several queries q1, . . . , qk, the
collect algorithm could be run for each query one after another. However, the join
tree covers all queries and some of the messages of the collect algorithm for the first
root node q1 covering the first query, r1 ⊆ λ(r1), some messages for a second root
node r2 covering q2 remain the same. Therefore, those messages could be cached
and then re-used. In fact, if a message µi→ch(i) has already been computed, then
it can be used for propagating messages towards any other root node. Therefore,
the Shenoy-Shafer architecture (Shenoy and Shafer, 1990; Schneuwly et al., 2004)
introduces mailboxes on every edge to store the messages. The vertices compute the
messages for every root node according to the following rule:

R A node i sends a message to its neighbour j as soon as a message has arrived
from all other neighbours; the message is the combination of the initial content
ψi with the messages from all other nodes, which is then marginalised to the
intersection of its domain with the receiving neighbour’s label.

The message sent from a node i to a neighbour j in the Shenoy-Shafer architecture
is therefore

µi→j =

ψi ⊗ ⊗
k∈ne(i),k 6=j

µk→i

↓ωi→j∩λ(j)

where
ωi→j = d(ψi) ∪

⋃
k∈ne(i),k 6=j

d(µk→i).

Theorem 4.20. At the end of the message passing in the Shenoy-Shafer architec-
ture,

φ↓λ(i) = ψi ⊗
⊗

j∈ne(i)

µj→i. (4.7)
�

Proof. Since the messages µj→i are the same as for the collect algorithm with the
root node i, the assertion follows from Theorem 4.18. ut

After the execution of the Shenoy-Shafer algorithm, every query qk can be answered
in a node i covering qk ⊆ λ(i) since

φ↓qk =
(
φ↓λ(i)

)↓qk
= (ψi ⊗

⊗
j∈ne(i)

µj→i)
↓qk
.

in light of the transitivity of axiom.

Example 4.21 (Redirecting a Join Tree). Figure 4.9 shows the same tree di-
rected to two different root nodes (after permutation π); an arrow from node i
pointing to j is to be read “i < j.” Only one message has to be computed for the
new root nodes, the other three are the same as for the first root node. �
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1

2

3

4

5

1 = π(1)

2 = π(2)

3 = π(3)

5 = π(4)

4 = π(5)

Figure 4.9: Most of the messages can be re-used for a different root node.

Although the Shenoy-Shafer algorithm has been described in terms of rules that
the nodes have to apply independently, it can also be described in terms of a particu-
lar scheduling induced by choosing an arbitrary node as root node and (re)directing
the join tree towards that node m = |V |. Then, as in the collect algorithm, the nodes
can send their message in ascending order of their node number i; in this first phase,
called collect phase or inward propagation, messages are sent towards the particular
root node. After this first phase, nodes may send in decreasing order of their node
number. This second phase, called distribute phase or outward propagation, messages
are sent from the root node to the leaves.

Example 4.22 (Shenoy-Shafer Algorithm with Gaussian Potentials).
The join tree of Example 4.19 may be redirected towards the other nodes. The
corresponding messages are shown in Figure 4.10. �

{A,B}

{A}

{A,C}

{A,D}

φ1
↓{A}

φ2
↓{A}

φ1
↓{A}

⊗ φ2
↓{A}

φ3
↓{A}

φ2
↓{A}

⊗ φ3
↓{A}

φ1
↓{A}

⊗ φ3
↓{A}

Figure 4.10: The messages in the Shenoy-Shafer architecture

4.5 Lauritzen-Spiegelhalter Architecture

In the collect algorithm, the messages are immediately combined with the receiving
node’s content at arrival. In contrast, in the Shenoy-Shafer architecture, all the mes-
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sages are stored in mailboxes on the edges and only combined when a node becomes
ready to send. The reason why the messages cannot be directly combined is that
the messages from the inward propagation phase must not be sent in the outward
propagation phase. However, if the messages from the inward propagation phase can
be divided out before sending the message of the outward propagation phase, then
the messages of the inward propagation phase could be directly combined with the
receiving node’s content as in the collect algorithm and then divided out before the
outward propagation phase of the Shenoy-Shafer architecture. This scheme is called
Lauritzen-Spiegelhalter architecture (Lauritzen and Spiegelhalter, 1988; Schneuwly
et al., 2004) and can be used to solve a projection problem in a valuation algebra
with division (see Section 2.8).

The Lauritzen-Spiegelhalter architecture will now be described in terms of an
inward/collect and an outward/distribute phase as the Shenoy-Shafer architecture.
In the first phase of the Lauritzen-Spiegelnhalter architecture, the same messages as
in the Shenoy-Shafer architecture are used: Every node i sends the message

µi→ch(i) = ψ
(i)
i

↓ω(i)
i ∩λ(ch(i))

(4.8)

to its unique child ch(i), where

ψ
(i)
i = ψi ⊗

⊗
j∈pa(i)

µj→i.

As in the collect algorithm, the message is combined with receiver node’s content
on reception,

ψ
(i+1)
ch(i) = ψ

(i)
ch(i) ⊗ µi→ch(i); (4.9)

however, the sender divides the message out after sending its message,

ψ
(i+1)
i = ψ

(i)
i ⊗ µi→ch(i)

−1, (4.10)

all other nodes do not change their content,

ψ
(i+1)
k = ψ

(i)
k , k 6= i, ch(i). (4.11)

The inward propagation phase is terminated when the root node m has received
all messages from its parents. In the outward propagation phase, when a node has
received the message from its child, it combines the message with its content and
sends the message

µj→i = (ψ(m)
j ⊗ µch(i)→i)

↓λ(j)∩λ(i)
(4.12)

to every parent j ∈ pa(i).

Theorem 4.23. At the end of the Lauritzen-Spiegelhalter architecture, every node
i contains φ↓λ(i). �

Proof. The scheduling of the outward propagation is irrelevant. The proof goes
by induction over the particular scheduling m, . . . , 1, where step i means that the
node i has received the message from its child.
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Since the messages are the same as in the Shenoy-Shafer architecture, it follows
by the correctness of the Shenoy-Shafer architecture, Theorem 31, that the root
node m contains φ↓λ(m) at the end of the inward propagation phase. That is the
basis of the induction.

Assume the induction hypothesis holds, i.e., at step i, the node i has received
the message

µch(i)→i = φ↓λ(ch(i))∩λ(i).

Then, by Lemma 2.19 (6),

γ(µi→ch(i)) ≤ γ(µch(i)→i ⊗ µi→ch(i)) ≤ γ(φ↓λ(ch(i))∩λ(i)) ≤ γ(φ↓λ(i))

hence, by the correctness of the Shenoy-Shafer architecture and Lemma 2.38 (3),

ψ
(m)
i ⊗ µch(i)→i =ψi ⊗

⊗
k∈pa(i)

µk→i ⊗ µi→ch(i)
−1 ⊗ φ↓λ(ch(i))∩λ(i)

=ψi ⊗
⊗

k∈pa(i)

µk→i ⊗ µi→ch(i)
−1 ⊗

⊗
k∈ne(ch(i))

µk→ch(i)

=ψi ⊗
⊗

k∈pa(i)

µk→i ⊗
⊗

k∈ne(ch(i)),k 6=i

µk→ch(i) ⊗ fγ(µi→ch(i))

=ψi ⊗
⊗

k∈pa(i)

µk→i ⊗ µch(i)→i ⊗ fγ(µi→ch(i))

=ψi ⊗
⊗

k∈ne(i)

µk→i ⊗ fγ(µi→ch(i))

=φ↓λ(i) ⊗ fγ(µi→ch(i))

=φ↓λ(i). ut

4.6 Local Computation in Valuation Algebras with Partial
Marginalisation

So far, it has been assumed that local computation is performed in valuation algebras
with full marginalisation, i.e. that marginals exist for all subsets of a valuation’s
domain. If marginalisation is only partially defined, it has to be verified that the
marginals required as messages exist in the collect algorithm and in the Shenoy-
Shafer architecture. In an even slightly more general context, it has been shown
in (Schneuwly et al., 2004; Lemma 12) that all the messages for the Shenoy-Shafer
algorithm exist whenever the collect algorithm can be executed. Furthermore, if
the Shenoy-Shafer algorithm can be executed, then Lauritzen-Spiegelhalter can also
be executed (Schneuwly et al., 2004; Theorem 4). Hence, the problem of whether
the messages for local computation exist is reduced to finding a scheduling for the
collect algorithm.

A particular case where there is such a scheduling are construction sequences
(Shafer, 1996; Kohlas, 2003), which generalise the chain rule of probability calculus:
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a sequence φ1, . . . , φn of conditionals such that the combination φ1 ⊗ · · · ⊗ φi (1 ≤
i ≤ n) of every initial subsequence is a density with full marginalisation again. Such
factorisations arise in particular from Bayesian networks. The following definitions
are a further generalisation of such construction sequences (Kohlas, 2003).

Definition 4.24. Let A = (Φ,D, d,⊗,M, ↓) be a valuation algebra with division.
Then, a valuation φ ∈ Φ with domain d(φ) = h ∪ t, h ∩ t = ∅ is a kernel for h given
t if

• t ∈M(φ) and

• φ↓t = fγ(φ↓t).

A kernel for h given ∅ is called density. A construction sequence is a sequence
φ1, φ2, . . . , φn of kernels with heads hi and tails ti, such that

• t1 = ∅, ti ⊆ d(φ1) ∪ · · · ∪ d(φi−1),

• hi disjoint from d(φ1) ∪ · · · ∪ d(φi−1), and

• γ(φi↓ti) ≤ γ(φ1 ⊗ · · · ⊗ φi−1). �

Lemma 4.25. Let A = (Φ,D, d,⊗,M, ↓) be a valuation algebra with division.

(1) Every marginal of a density is well defined and is a density as well.

(2) Let φ1, . . . , φn be a construction sequence. Then, for i = 1, . . . , n,

φ1 ⊗ φ2 ⊗ · · · ⊗ φi

is a density and

φ1 ⊗ φ2 ⊗ · · · ⊗ φi =(φ1 ⊗ φ2 ⊗ · · · ⊗ φn)↓d(φ1)∪···∪d(φi). �

Proof. (1) Let φ ∈ Φ be a density. Since ∅ ∈ M(φ), the transitivity axiom implies
that the marginal for every s ⊆ d(φ) exists, i.e. s ∈ M(φ). Since φ↓∅ = fγ(φ↓∅),

the transitivity axiom implies that ∅ ∈ M(φ↓s) and that (φ↓s)↓∅ = φ↓∅ = fγ(φ↓∅),
hence φ↓s is a density as well.

(2) The first claim holds by induction over i. It clearly holds for i = 1. Assume
that φ1 ⊗ · · · ⊗ φi−1 is a density for some i ∈ {2, . . . , n}. Since ti = d(φ1 ⊗ · · · ⊗
φi−1)∩d(φi) ∈M(φi), the combination axiom implies that d(φ1)∪ · · ·∪d(φi−1) ∈
M(φ1 ⊗ · · · ⊗ φi) and

(φ1 ⊗ · · · ⊗ φi)↓d(φ1)∪···∪d(φi−1) =φ1 ⊗ · · · ⊗ φi−1 ⊗ φi↓ti

=φ1 ⊗ · · · ⊗ φi−1 ⊗ fγ(φi
↓ti )

=φ1 ⊗ · · · ⊗ φi−1,
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using the combination axiom and Lemma 2.38 (3) with the third condition of
a construction sequence. Hence, using the induction hypothesis and the transi-
tivity axiom, ∅ ∈ M(φ1 ⊗ · · · ⊗ φi) and

(φ1 ⊗ · · · ⊗ φi)↓∅ = ((φ1 ⊗ · · · ⊗ φi)↓d(φ1)∪···∪d(φi−1)
↓∅
,

which by the induction hypothesis is the identity element of its group. Hence,
φ1 ⊗ φ2 ⊗ · · · ⊗ φi is indeed a density.
Therefore, φ1⊗· · ·⊗φn is a density, hence the second claim holds for i = n. As-
sume that the claim holds for some i ∈ {2, . . . , n}. Then, using the transitivity,
the induction hypotesis, the combination axioms and Lemma 2.38 (3) with the
third condition of a construction sequence,

(φ1 ⊗ · · · ⊗ φn)↓d(φ1)∪···∪d(φi−1) =((φ1 ⊗ · · · ⊗ φn)↓d(φ1)∪···∪d(φi))
↓d(φ1)∪···∪d(φi−1)

=(φ1 ⊗ · · ·φi)↓d(φ1)∪···∪d(φi−1)

=φ1 ⊗ · · · ⊗ φi−1 ⊗ φi↓ti

=φ1 ⊗ · · · ⊗ φi−1 ⊗ fγ(φi
↓ti )

=φ1 ⊗ · · · ⊗ φi−1.

By induction, this shows that the second claim also holds. ut

If the factors ψ1, . . . , ψm assigned to a join tree form a construction sequence, then
the collect algorithm can be executed in that order. Since the messages in the subtree
Ti correspond to the collect algorithm with root node i in that tree, it follows from
Theorem 4.18 that

ψ
(i)
i =

⊗
ψj∈Ti

ψj .

Since the initial subsequence ψ1, . . . , ψi is a construction sequence, it follows from
Lemma 4.25 that ψ1 ⊗ · · · ⊗ ψi is a density, hence, using the combination axiom,

(ψ1 ⊗ · · · ⊗ ψi)↓d(Ti) =
⊗
ψj∈Ti

ψj ⊗ (
⊗
ψj 6∈Ti

ψj)
↓∅

= ψ
(i)
i ⊗ (

⊗
ψj 6∈Ti

ψj)
↓∅

for d(Ti) =
⋃
ψj∈Ti

d(ψj). Therefore, using the transitivity and the combination

axioms, every marginal of ψ(i)
i is well defined and hence node i is ready to send at

step i.

Chapter Synopsis & Discussion

The presentation and notation used here closely follow (Schneuwly et al., 2004;
Schneuwly, 2007).

The term join tree is borrowed from database theory (Maier, 1983). In other
domains, join trees have different names: qualitative Markov trees (Shenoy and
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Shafer, 1986) and hypertrees (Shenoy and Shafer, 1990) in the context of belief-
function propagation, junction trees (Jensen et al., 1990) and clique trees (Lauritzen
and Spiegelhalter, 1988) in the field of probabilistic inference and expert systems.

In (Shenoy, 1997), binary join trees are introduced, i.e. join trees which have
at most three neighbours. It is always possible to convert a join tree into a binary
one by introducing additional nodes, see for instance (Lehmann, 2001). When a
join tree is made binary, there are more nodes in the tree, hence more marginal-
isations and additional storage space may be needed for the new nodes (Kohlas
and Shenoy, 2000). However, these additional requirements may be outweighed by
several improvements in efficiency.

1. Redundant combinations in the Shenoy-Shafer architecture: In the Shenoy-
Shafer architecture, an incoming message µk→i to a node i appears in every
outgoing message µi→j from node i with node valuation ψi to any other neigh-
bour j 6= k, i.e. the factors ψ and µk→i have to be combined several times; in
a binary join tree, this number is cut down to 2.

2. Locality : The size of the domains of the nodes may be reduced; in particular,
even the tree width (i.e. the maximum size of the node domains) may be
reduced as observed in (Kohlas and Shenoy, 2000). Roughly speaking, the
operations take place on smaller domains and also require less storage space.
More precisely,

• the domain of the combinations are smaller. This is desirable when val-
uations are enumerations since the combination may then cut down on
the number of elements, for instance in relational databases.

• Furthermore, when the messages are computed, some variables may not
be propagated and marginalised out earlier.

As an example, take Figure 4.11 (Pouly, 2008): The four valuations α, β, γ, δ
with domains d(α) = {S, T}, ... are assigned to a non-binary join tree. Fig-
ure 4.12 shows a binary join tree for the same knowledge base. When messages
are propagated to the root node {U, V }, variable T is already eliminated in
the message coming to the node {S, V, U}, while this is not the case in the first
join tree.
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α

β

γ

δ

{S, T}

{T,U}

{U, V }

{S, V }{S, T, U, V }

α

γ

(α ⊗ β ⊗ γ)↓{U,V }β

Figure 4.11: A non-binary join tree with four valuations

α

β
γ

δ

{S, T}

{T,U}

{U, V }

{S, V }

{S, T, U, V }{S, V, U}

{S, V, U}

α

γ

α ⊗ β

(α ⊗ β)↓{S,U}

((α ⊗ β)↓{S,U}
⊗ γ)↓{U,V }

β

Figure 4.12: A binary join tree for the same four valuations
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Conditional Gaussian Densities





5
Conditional Gaussian Densities

Probabilistic statements often make no sense without a specification of the condi-
tions under which they hold. For instance, weather forecasts depend on the current
weather and the expert’s experience; the success of medical treatment depends on
the patient’s age, health etc. Therefore, (Rényi, 1970) concludes that every proba-
bility is a conditional probability. Consequently, the primary objects of his treatise
are conditional probability spaces. Similarly, in Bayesian networks, a family of con-
ditional distributions form a factorisation of a joint distribution (due to conditional
independences expressed in the network). This may be called the engineer’s point
of view. In contrast, mainstream probability theory usually takes probability spaces
as their primary objects, from which conditional distributions are derived. This may
be called the mathematician’s point of view.

The starting point of statistical reasoning is often a statistical specification: a
parameterised family of probability distributions on the observation space. Given
an observation, statistical inference seeks to make statements about the unknown
parameter. In this chapter, a particular type of statistical specification is introduced:
conditional Gaussian densities. Conditioning a Gaussian density φ = φµ,K with
domain d(φ) = x∪ z, x∩ z = ∅, on an event “z = z” results in the Gaussian density
φx|z on x,

φx|z(x) = φµ(z),K↓x(x) (5.1)

for
µ(z) = µ↓x −K↓x−1

K↓x,z(z− µ↓z), (5.2)

see Appendix B.4. Different observations of the variables z lead to the family

{φx|z : z ∈ IRz} (5.3)

of densities on x (one for each value z ∈ IRz). This family constitutes the conditional
Gaussian density (CGD) function

φx|z(x|z) = φx|z(x) = φµ(z),K↓x(x). (5.4)

This function is a density on the head variables x given a fixed value for the tail
variables z, but not on both arguments.

95



96 Chapter 5. Conditional Gaussian Densities

A related notion is the likelihood function

lx(z) = φx|z(x|z) (5.5)

of the observations x under a fixed parameter z. However, the likelihood function
is not a probability density on z, and it makes no sense to normalise it. So the
interpretation of the likelihood function is delicate, and one must be careful not
to interpret likelihoods as probabilities. The Bayesian answer is to require a prior
distribution on z and to derive the posterior distribution on z given an observation of
x. An alternative approach is provided by the theory of hints (Kohlas and Monney,
1995; Monney, 2003; Kohlas and Monney, 2008), which obtains a similar notion in
a completely different way with clear semantics. This will be further explored in
Chapters 6 and 7.

Chapter Outline

Three alternative approaches are introduced in this chapter:

1. algebraically, a conditional Gaussian density can be expressed by the quotient
of the full density φ divided by the marginal density φ↓z (in Section 5.1);

2. geometrically, the regression of the dependent variables x on z can be modelled
as a Gaussian linear system (in Section 5.2);

3. analytically, a conditional Gaussian density can be represented by a vector and
the symmetric non-negative definite “pseudo-concentration matrix” which is
the difference of the concentration matrices of the full density and the marginal
density (in Section 5.3).

In this chapter, these three approaches will be motivated, but only briefly sketched.
They will be worked out in the subsequent Chapters 6–9.

In the following discussion, a Gaussian potential φ = (µ,K) and the correspond-
ing Gaussian density φµ,K will often be used interchangeably. For instance, for
φ = (µ,K), φµ,K(x) will often be abbreviated as φ(x).

5.1 The Algebraic Approach

A conditional Gaussian density φx|z can always be represented by the pair (φ, φ↓z)
of Gaussian potentials, as shown by the following theorem.

Theorem 5.1. For a Gaussian potential φ = (µ,K) ∈ G with domain d(φ) = x ∪ z
such that x ∩ z = ∅, it holds that

φx|z(x|z) =
φ(x, z)
φ↓z(z)

. (5.6)
�
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Proof. Let µ(z) as in equation (5.2). Then,

φx|z(x|z) = φx|z(x)

=

√
|det(K↓x)|

(2π)|x|
e−

1
2
(x−µ(z))′K↓x(x−µ(z))

=

√
|det(K↓x)|

(2π)|x|
e

− 1
2

26664 (x′ − (µ↓x)′, z′ − (µ↓z)′)K
(
x− µ↓x
z− µ↓z

)
−(z′ − (µ↓z)′)(K↓z −K↓z,xK↓x−1

K↓x,z)(z− µ↓z)

37775

=

√
| det(K)|

(2π)|x|+|z|
e
− 1

2
(x′−(µ↓x)

′
,z′−(µ↓z)

′
)K

0@x− µ↓x
z− µ↓z

1A
√

| det(K↓z−K↓z,xK↓x−1K↓x,z)|
(2π)|z|

e−
1
2
(z′−(µ↓z)′)(K↓z−K↓z,xK↓x−1K↓x,z)(z−µ↓z)

=
φ(x, z)
φ↓z(z)

because, in light of Theorem 13.3.8 of (Harville, 1997; p.188),

det(K) = det(K↓x) · det(K↓z −K↓z,xK↓x−1
K↓x,z). ut

Such pairs will be called conditional Gaussian potentials.

Definition 5.2. Let φ be a Gaussian potential and let z ⊆ d(φ) and x = d(φ)− z.
Then, the pair (φ, φ↓z) is called conditional Gaussian potential (CGP) or conditional
of φ for x given z. The first element of the pair is called numerator and the second
element denominator. The variables x are called the head and the variables z the tail
of the conditional Gaussian potential. The set of all conditional Gaussian potentials
shall be denoted Gc. �

Notice that there are clearly different conditional Gaussian potentials which repre-
sent the same conditional Gaussian density, for instance (φ⊗ψ,ψ↓z⊗ψ) for φ, ψ ∈ G
with d(φ) = x ∪ z and d(ψ) = z since, using Theorem 3.3 and observing that the
normalisation constant is the same in the numerator and the denominator,

φ⊗ ψ(x, z)

(φ⊗ ψ)↓z(z)
=
φ⊗ ψ(x, z)
φ↓z ⊗ ψ(z)

=
φ(x, z) · ψ(x)
φ↓z(z) · ψ(x)

=
φ(x, z)
φ↓z(z)

= φx|z(x|z).

In other words, the two different (full) densities φ and ψ′ = φ ⊗ ψ on x ∪ z both
induce the same conditional Gaussian density on x given z, i.e. φx|z(x|z) = ψ′x|z(x|z)
for all x ∈ IRx, z ∈ IRz.

Conditional Gaussian densities and conditional Gaussian potentials will often be
used interchangeably, using the conventions of Table 5.1.
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abbreviation for
φ(x) φµ,K(x)
φx|z (φ, φ↓z)
φx|z(x|z) (φµ,K)x|z(x|z)

Table 5.1: Notational conventions for a Gaussian potential φ = (µ,K) ∈ G

5.2 The Geometric Approach

The geometric approach can be motivated as follows. In light of Lemma B.1, the
conditional Gaussian density φx|z is given by

φx|z(x|z) = φx|z(x) = φµ(z),K↓x(x). (5.7)

for µ(z) = µ↓x−K↓x−1
K↓x,z(z−µ↓z), representing the family {φx|z}z∈IRz of Gaussian

densities on x. In light of equation (5.7), the points

Γ (ω) = {(x, z) ∈ IRx∪z : ω = x− µ↓x +K↓x−1
K↓x,z(z− µ↓z)} (5.8)

have the same conditional density value

φx|z(x|z) = φx|z(ω).

Since the sets Γ (ω) are parallel linear manifolds of dimension |z| in IRx∪z covering
IRx∪z, conditional Gaussian densities represent a (full) distribution over these par-
allel linear manifolds Γ (ω). This gives a geometric flavour to conditional Gaussian
densities.

The linear regression equation

x = µ↓x −K↓x−1
K↓x,z(z− µ↓z) + ω (5.9)

can be derived from φx|z for each ω. So far, these equations describe only points
of the same conditional density, and the ω index the disjoint sets Γ (ω). But what
is the motivation for considering these sets Γ (ω) of points of the same conditional
density?

Equation (5.9) can be rewritten as

x +K↓x−1
K↓x,zz− ω = y (5.10)

for y = µ↓x+K↓x−1
K↓x,z(z−µ↓z). This defines a linear function of x, z and ω. This

mapping may be interpreted in a prescriptive way, mapping the unknown parameter
(x, z) and the unknown disturbance ω to the observation y on the right-hand side.
In other words, if the unknown parameter (x, z) and the unknown disturbance ω
were the true one, this would necessarily have generated the observation y. Thus,
the set Γ (ω) consists of those (x, z) which are compatible with the observation y and
the assumption ω given the functional model (5.10): If the assumption ω is correct,
one of the parameters in Γ (ω) must be the correct one since the observation follows
the model (5.10).
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In summary, if the regression equations (5.9) are interpreted as a functional
model, the sets Γ (ω) get clear semantics. Furthermore, the sets of ω which make
a hypothesis necessarily true or which only make a hypothesis possibly true can be
used to evaluate hypotheses on the parameters. Such assumption-based reasoning
on Gaussian linear models as (5.10) is discussed in detail in the Chapters 6 and 7.

5.3 The Analytic Approach

A conditional Gaussian density can be expressed by

φx|z(x|z) = φx|z(x)

=

√
|det(K↓x)|

(2π)|x|
e−

1
2
(x′−µ↓x′+(z′−µ↓z ′)K↓z,xK↓x−1

)K↓x(x−µ↓x+K↓x−1
K↓x,z(z−µ↓z))

=

√
|det(K↓x)|

(2π)|x|
e
− 1

2
(x′−µ↓x′,z′−µ↓z)′K̃

 
x− µ↓x

z− µ↓z

!
(5.11)

in terms of the matrix

K̃ = (K −
(
K↓z −K↓z,xK↓x−1

K↓x,z
)↑x∪z

),

which is symmetric but only non-negative definite (and thus singular) in general.
This holds since

(x′ − µ↓x′ + (z′ − µ↓z ′)K↓z,xK↓x−1
)K↓x(x− µ↓x +K↓x−1

K↓x,z(z− µ↓z))

=(x′ − µ↓x′)K↓x(x− µ↓x)

+ (z′ − µ↓z ′)K↓z,xK↓x−1
K↓x(x− µ↓x) + (x′ − µ↓x′)K↓xK↓x−1

K↓x,z(z− µ↓z)

(z′ − µ↓z ′)K↓z,xK↓x−1
K↓xK↓x−1

K↓x,z(z− µ↓z)

=(x′ − µ↓x′)K↓x(x− µ↓x)

+ (z′ − µ↓z ′)K↓z,x(x− µ↓x) + (x′ − µ↓x′)K↓x,z(z− µ↓z)

+ (z′ − µ↓z ′)K↓z,xK↓x−1
K↓x,z(z− µ↓z)

=(x′ − µ↓x′, z′ − µ↓z ′)K
(
x− µ↓x
z− µ↓z

)
− (z′ − µ↓z ′)K↓z(z− µ↓z)

+ (z′ − µ↓z ′)K↓z,xK↓x−1
K↓x,z(z− µ↓z)

=(x′ − µ↓x′, z′ − µ↓z ′)K
(
x− µ↓x
z− µ↓z

)
− (z′ − µ↓z ′)(K↓z −K↓z,xK↓x−1

K↓x,z)(z− µ↓z)

=(x′ − µ↓x′, z′ − µ↓z ′)K̃
(
x− µ↓x
z− µ↓z

)
. (5.12)

Since C = K̃ appears in the exponent of (5.11) in the same way as a concentration
matrix in the formula of an ordinary Gaussian density, C will be called pseudo-
concentration matrix. On the other hand, the reason for using the pseudo-mean
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vector ν = K̃µ cannot be fully understood yet and will become clear only below in
Chapter 9. However, the idea can be illustrated by means of a simple special case:
A Gaussian potential (µ,K) is represented by the symmetric Gaussian potential
(Kµ,K). In this representation, it suffices to add the pseudo-mean vectors and the
concentration matrices, which avoids inverting the combined concentration matrix.
More generally, it turns out that the combination carried over from Gaussian hints
(and equivalently from Gaussian quotients) induces the multiplication of conditional
Gaussian densities (irrespective of head and tail) up to a constant factor, and hence
induces the addition of pseudo-mean vectors and pseudo-concentration matrices of
symmetric Gaussian potentials. Notice that the pair (ν, C) = (K̃µ, K̃) determines
the function φx|z up to a constant factor since the exponent in equation (5.12) for
u = ( x

z ) can be developed further as

(u′ − µ′)K̃(u− µ) = u′K̃u− 2uK̃µ+ µ′K̃µ = u′Cu− 2u′ν + µ′K̃µ,

which yields that the terms depending on u are determined by (ν, C) and the re-
maining summand µ′K̃µ results in a constant factor of the conditional Gaussian
density. Therefore, the pair (ν, C) = (K̃µ, K̃), representing the conditional Gaus-
sian density φx|z, will be called symmetric Gaussian potential (associated with φx|z).
More generally, symmetric Gaussian potentials can be defined as follows.

Definition 5.3. Let x ∈ D be a finite set of variables. A pair φ = (ν, C), ν ∈ IRx,
C ∈ IR(x, x), C symmetric, is called symmetric Gaussian potential, and x is called
its domain, denoted d(φ) = x. The vector ν is called pseudo-mean vector and the
matrix c is called pseudo-concentration matrix. The set of all symmetric Gaussian
potentials is denoted ∆. �

They will be studied in Chapter 9.

Chapter Synopsis & Discussion

A conditional Gaussian density φx|z – the family of densities φx|z obtained by con-
ditioning the same Gaussian distribution with density φ on the different values z of
the same set z of variables – can be represented threefold:

• algebraically, by the pair (φ, φ↓z) of Gaussian potentials since φx|z(x|z) =
φ(x,z)
φ↓z(z)

;

• geometrically, by the Gaussian hint obtained from the regression equation (5.9);

• analytically, by a pseudo-mean vector and a symmetric pseudo-concentration
matrix which is the difference of the concentration matrix of φ and φ↓z resulting
from the division of φ by φ↓z.

In Chapter 7, it will be shown that different conditional Gaussian densities may
be related to the same Gaussian hint: The head and tail variables for the focal
manifolds can be chosen in several ways. Since the head variables correspond to
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different axes of integration, the inducing conditional Gaussian densities are equal
up to a constant normalisation factor. It will be shown that Gaussian hints and
conditional Gaussian densities are in one-to-one correspondence as well as how the
operations of combination and marginalisation can be carried over from Gaussian
hints to conditional Gaussian potentials. In Chapter 8, the same operations will be
introduced in conditional Gaussian potentials in a more general algebraic setting.
Finally, in Chapter 9, an equivalent valuation algebra will be defined in terms of
symmetric Gaussian potentials. It will be shown that symmetric Gaussian potentials
provide a canonical way of representing (equivalent) Gaussian hints and conditional
Gaussian potentials.



102 Chapter 5. Conditional Gaussian Densities



6
Gaussian Hints

Systems of linear equations with Gaussian disturbances can be analysed using as-
sumption-based reasoning : By assuming that a disturbance was underlying the ob-
servation, the consequences are logically derived from that assumption. The distur-
bances which cannot logically have generated the observation are ruled out, and the
distribution is conditioned on the possible assumptions. The result is captured in
a structure called hint (Kohlas and Monney, 1995). Assumption-based reasoning
has been used for Gaussian linear systems in (Monney, 2003; Kohlas and Monney,
2008). This theory gives clear semantics to statistical inference from such models,
while still reproducing and generalising the results obtained by least-squares and
maximum-likelihood estimation.

Chapter Outline

In Section 6.1, the predictive and postdictive approaches of statistical reasoning are
introduced in order to set forth the statistical context of assumption-based reason-
ing, which is then discussed in Section 6.2. Assumption-based reasoning extracts
the possible assumptions and derives their consequences. The result is captured
in a structure called hint. Hypotheses can then be evaluated qualitatively by the
supporting and plausible assumptions and quantitatively by the probability of these
arguments conditioned on the possible assumptions. Different hints coming from in-
dependent sources can be combined using Dempster’s Rule. In Section 6.3, Gaussian
linear systems are formally introduced, and Gaussian hints are derived from them
by assumption-based reasoning. Marginalisation and combination of Gaussian hints
are motivated semantically and defined in Sections 6.4 and 6.5. In order to use the
algorithms of Chapter 4 for the solution of the projection problem in the context
of Gaussian hints, it is shown in Section 6.6 that Gaussian hints form a valuation
algebra. Finally, it is shown in Section 6.7 that Gaussian hints extend the valuation
algebra of Gaussian potentials

103
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6.1 Statistical Reasoning

Predictive and Postdictive Probability Statements

A probability P (E) of an event E may be considered in two different ways (Dempster,
1964):

• predictively, as a forward-looking measure of uncertainty about a future occur-
rence of E;

• postdictively, after the event E is observed, as a measure of likelihood or non-
surprise or plausibility of that event.

There are two fundamental and contrasting situations under which
any probability such as P (E) requires interpretation. If the trial or
experiment determining whether or not E obtains has not yet occurred,
or if ignorance of the outcome of this trial prevails, then P (E) is to be
regarded as a measure of the degree of certainty concerning the eventual
establishment of the occurrence of E. On the other hand, if the outcome
E of the trial is observed, then a quite different attitude towards P (E)
is natural, corresponding to the question: Is it plausible that an event
E with probability P (E) should have occurred? [...] I propose to use
the terms predictive for the first situation and postdictive for the second.
(Dempster, 1964; p.56)

(Dempster, 1964) further distinguishes between pre-data and post-data statements,
i.e. statements made before or after an observation is made:

For example, if a variable X is assigned a N(0, 1) distribution, i.e., a
normal distribution with mean zero and variance unity, then, in advance
of observing X, the statement

Pr(X ≤ 1.645) = .95 (6.1)

should be interpreted predictively, i.e., .95 measures a degree of certainty
about the event Pr(X ≤ 1.645) before the value of X is established. But
after the value of X is observed to be, say, 1.805, the statement (6.1) can
only be interpreted postdictively, i.e., it is known that an event previously
judged to have probability .05 must have occurred. If the probability thus
postdictively interpreted is tiny it conveys a feeling of surprise, and, con-
sequently, diffidence or reluctance about accepting the validity of the
original predictive probability statement (6.1). On the other hand, if an
event E with moderate probability P (E), say P (E) = .30, is contem-
plated before observation and subsequently is observed, then no feeling
of surprise is natural and the postdictive interpretation is effectively neu-
tral.
In statistical inference the postdictive interpretation turns up most clearly
in the rationale of a significance test. Indeed, the postdictive interpre-
tation given in the above example, with observed X = 1.805, may be



6.1. Statistical Reasoning 105

conveyed by stating that the observation is significantly large at the
5 per cent level when the null hypothesis is that X has the N(0, 1)
distribution. On the other hand, the classical instance of a predictive
interpretation in statistical inference is provided by a Bayes posterior
probability. For example, if X is regarded as drawn from the N(µ, 1)
distribution, if µ is regarded as drawn from a uniform distribution with
a very wide range, and if X = 1.805 is observed, then µ is assigned a
posterior distribution very nearly N(1.805, 1). This distribution is to
be used for making predictive probability assertions about µ while µ
remains unknown. (Dempster, 1964; p.56f.)

Pre-data Predictive Statistical Approaches

Pre-data predictive statistical methods are parameter-based, starting from a statis-
tical specification or distribution model

(Z,A, {Pθ : θ ∈ Θ}) (6.2)

with outcomes z ∈ Z and a fixed but unknown distribution Pθ from the parametric
family {Pθ : θ ∈ Θ} of distributions on the σ-algebra A of subsets of Z. An estimator
θ̂ of θ has then to be based on some principle that decides which distribution is
a better explanation of the observation. In this approach, the parameters θ are
hypothesised and some mathematical procedure is used to find an estimator θ̂ under
which the observation is least surprising or most likely before data is available (before
an observation is made). However, after the observation, only postdictive judgements
are possible in the setting of a statistical specification: The observation may have
been more or less surprising, resp. less or more likely under different parameters.
The surprising observations are then often called significant . The same is true for
confidence regions, which guarantee some overall behaviour of a statistical procedure
over the whole observation space Z. Again, no positive confidence in a certain
outcome or prediction of a certain outcome is possible, and nothing can be said about
the possible error of the estimate after an observation z. Therefore, (Dempster,
1964) suggested using the term indiffidence region instead. Pre-data predictive
methods provide operational statements about a procedure rather than inference on
the parameter. This has been called the position of a seller of a statistical procedure
(Kohlas and Monney, 2008).

Two classical methods with Gaussian linear models are pre-data predictive: The
principle of maximum likelihood suggests choosing the parameter under which the
observation has the highest likelihood. Another standard approach of linear regres-
sion analysis is to find the straight line which fits best a given data set by using
the principle of least squares. It is then argued that the obtained estimator is un-
biased, and the Gauss-Markov theorem asserts that it has the least variance among
all unbiased linear estimators.
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Post-data Predictive Approaches

In contrast, in a post-data predictive approach, a probability distribution is used to
make predictive judgements about the uncertainty of some uncertain outcome or
value to be observed.

The classical post-data predictive approach is the Bayesian method: Given a
prior distribution on the parameter, a posterior distribution for the parameter given
an observation can be derived by using Bayes’ Theorem. The posterior distribution
given the observation then allows truly post-data predictive probability statements.
However, if nothing is known about θ, then this ignorance cannot be modelled
appropriately in this framework and the requirement of a prior becomes apodictic.

In contrast, assumption-based statistical inference (Kohlas and Monney, 1995;
Monney, 2003; Kohlas and Monney, 2008) provides an alternative post-data pre-
dictive approach. Starting from a functional model and an observation, predictive
probabilities can be inferred by assumption-based reasoning (Kohlas and Monney,
1995; Monney, 2003; Kohlas and Monney, 2008). It is a framework including and
generalising Fisher’s fiducial methods, Fraser’s structural approach (Fraser, 1968)
and Bayesian statistics. On the other hand, the theory gives clear semantics to the
likelihood function.

6.2 Assumption-Based Reasoning

Instead of a statistical specification, the starting point of assumption-based reasoning
is a functional model (Monney, 2003)1

(f,A, P ) (6.3)

where f : Θ ×Ω → Z and where P is a probability measure on the σ-algebra A of
subsets of Ω. The function f models how an observation is generated given that the
parameter θ and a disturbance ω are known. The post-data inference then starts
with an observation z ∈ Z: Hypothesising an ω ∈ Ω leads to the set

Γz(ω) = {θ ∈ Θ : f(θ, ω) = z}, (6.4)

the set of parameters compatible with the observation z and the assumption ω.
The other parameters cannot possibly have generated the observation under no
assumption. The set Γz(ω) is the smallest set which, under the assumption ω,
contains the true parameter with certainty. The assumptions ω for which

Γz(ω) = {θ ∈ Θ : f(θ, ω) = z} = ∅

lead to a contradiction since there is no corresponding parameter that could have
generated the observation z; so they have to be ruled out as inadmissible or impos-
sible. Therefore, define

vz = {ω ∈ Ω : Γz(ω) 6= ∅}, (6.5)

1The term had been used in a less general way in the literature before as remarked by (Monney,
2003; p.23).
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the set of admissible assumptions. This part is the qualitative result of the assumption-
based inference. Quantitatively, the assumption-based inference leads to a condi-
tional probability measure P ′ on the σ-algebra

A′ = {A ∩ vz : A ∈ A}

in the following four cases.

1. If vz is measurable with respect to A and if P (vz) > 0, then define

P ′(A′) =
P (A′)
P (vz)

(6.6)

for A′ ∈ A′ ⊆ A. It is readily verified that P ′ is a probability measure.

2. If vz is not measurable with respect to A and P ∗(vz) > 0, then define

P ′(A′) =
P ∗(A′)
P ∗(vz)

(6.7)

for A′ ∈ A′ where P ∗ is the outer measure

P ∗(A′) = inf{P (K) : K ⊇ A′,K ∈ A}.

It has been noted by (Neveu, 1964; p.19) that P ′ is a probability measure in
this second case.

3. Assume that vz is a null set, i.e. that there is a set N ∈ A such that P (N) = 0
and vz ⊆ N . Then, there cannot logically be a conditional probability measure
given vz since every subset B ⊆ vz has the same probability 0. However, the
Radon-Nikodým theorem allows for an extension under limited circumstances,
see e.g. (Rényi, 1970; Section 5.1). In particular, if A = IBy is the Borel
σ-algebra on the |y|-dimensional real space IRy and if P has a density f , i.e. if

P (B) =
∫
B
f(y)dy, B ∈ IBy,

then an event “z = z” induces the null set vz = IRx × {z},

P (vz) = 0,

for z ⊆ y, z ∈ IRz and x = y − z. If h(y) > 0 for all y ∈ IRy, then

g(x) =
h(x, z)∫

IRx h(x, z)dx
(6.8)

may be interpreted as the conditional density function for x given “z = z”
since g defines a probability measure P ′ on A′ = IBx × {z} by

P ′(A′) =
∫
A′↓x

g(x)dx, A′ ∈ IBx.

The function g is a (normalised) probability density since g(x) > 0 and

P ′(vz) =
∫

IRx
g(x)dx =

∫
IRx

h(x, z)∫
IRx h(x, z)dx

dx =

∫
IRx h(x, z)dx∫
IRx h(x, z)dx

= 1.
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4. If P has a positive density f and vz = {x1, . . . ,xn} consists of a finite number
of points, then vz is null set. The probabilities

P ′(xi) = c · f(xi) (6.9)

for i ∈ 1, . . . , n and

c =
n∑
i=1

f(xi)

define a probability measure on A′ = 2vz . The motivation for this extension is
that P ′(xi) = limh→0 P

′
h(xi) where

P ′h(xi) = ch ·
∫ xi+h

xi−h
f(x)dx

for
ch = P (∪ni=1[xi − h,xi + h]).

In these four cases, the result of the assumption-based reasoning on a functional
model instance is well defined and summarised in the structure

h = (vz, P ′, Γ ′z, Θ) (6.10)

where Γ ′z : vz → 2Θ is the restriction of Γz to vz,

Γ ′z(ω) = Γz(ω), ω ∈ vz.

Such a structure is called a hint (Kohlas and Monney, 1995).

Definition 6.1. A hint is a quadruple

(Ω,P, Γ,Θ) (6.11)

where

• P is a probability measure on a σ-algebra of subsets of Ω,

• Γ : Ω → 2Θ such that Γ (ω) 6= ∅.

The elements of the set Ω are called assumptions, Θ is called the frame of discernment,
and Γ is called the focal mapping �

Example 6.2 (Gaussian Channel). The description follows (MacKay, 2003; Chap-
ter 11). However, the example is analysed under the completely different perspective
of assumption-based reasoning. Consider a continuous-time channel with input x(t)
and output z(t) = x(t) + ω(t) over a period [0, T ] 3 t, with noise ω(t). In a signal
of duration T , a set of n real numbers {xi}ni=1 can be transmitted as a weighted
combination of orthonormal basis functions φi(t),

x(t) =
n∑
i=1

xiφi(t), (6.12)
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where
∫ T
0 φi(t)φj(t)dt = δij , δij = 1 if i = j and δij = 0 if i 6= j, i, j ∈ {1, . . . , n}.

The receiver then gets the n numbers {zi}ni=1 obtained by

zi =
∫ T

0
φi(t)z(t) = xi +

∫ T

0
φi(t)ω(t)dt = xi + ωi, i ∈ {1, . . . , n},

with disturbances ωi. If these disturbances ω =
(
ω1, . . . , ωn

)′ ∈ IRn are distributed
normally with Gaussian density φ0,K(ω), the channel is called Gaussian.

When the output z(t) reaches the receiver, the input x(t) should be recovered.
However, the transmission error ω(t) is unknown. Therefore, such a pulse x(t)
may be used to encode only two instead of n values, represented by two vectors
Θ = {x0, x1} ⊂ IRn. This defines a functional model f : Θ × IRn → IRn, f(x, ω) =
x+ ω = z. After an observation z, the only two possible disturbances are

vz = {ω0 = z − x0, ω1 = z − x1}. (6.13)

Observe that ω0 6= ω1 since z−x0 6= z−x1. Conditioning on the event vz yields the
conditional probabilities

p′(ωj) =
φ0,K(ωj)

φ0,K(ω0) + φ0,K(ω1)
, j ∈ {0, 1} (6.14)

defining the probability measure

P ′(A) =
∑
ω∈A

p′(ω), A ⊆ vz.

Of course, vz is a null set. The focal sets are

Γz(ωj) = {xj}, j ∈ {0, 1}. (6.15)

Hence, the received information is captured in the hint h = (vz, P ′, Γz, Θ). �

Evaluating Hypotheses

A hint (Ω,P, Γ,Θ) can be used to evaluate a hypothesis H ⊆ Θ regarding the true
parameter θ∗ ∈ Θ. Every ω such that Γ (ω) ⊆ H is an argument in favour of
the hypothesis H: The hypothesis is necessarily true under the assumption ω as it
contains all logically possible parameters Γ (ω). The assumptions under which H is
necessarily true are then grouped together in the set

u(H) = {ω ∈ Ω : Γ (ω) ⊆ H}; (6.16)

the set u(H) represents the qualitative evaluation of the hypothesis H and its ele-
ments are said to support the hypothesis. If u(H) is P -measurable (i.e. u(H) ∈ A,
P : A → [0, 1]), then the degree of support

sp(H) = P (u(H)) (6.17)
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gives the quantitative evaluation of H. The function sp can be extended in the
following semantically motivated way: Since sp is supposed to measure the strength
of the arguments which support H, it seems reasonable to assign the least upper
bound of the probabilities P (A) of all sets A containing only assumptions supporting
H, i.e.

sp(H) = sup
A∈A:A⊆u(H)

P (A) = P∗(u(H)) (6.18)

where P∗ is an inner measure. This function is indeed an extension since the supre-
mum is attained by u(H) if u(H) is measurable. However, it has been noted that
(6.18) is not the only possible extension of support or belief functions (Shafer, 1979;
Kohlas and Monney, 1995).

On the other hand, an argument ω disproves a hypothesis H if the hypothesis
cannot be true under that assumption. The assumptions disproving H are gathered
in

w(H) = {ω ∈ Ω : Γ (ω) ∩H = ∅}. (6.19)

Since clearly
w(H) = {ω ∈ Ω : Γ (ω) ⊆ Hc}, (6.20)

w(H) contains the assumptions supporting the complementary hypothesis Hc = Θ−
H. No assumptions support both H and its complement Hc, but some assumptions
may well support neither H nor Hc. Therefore, for all H ⊆ Θ,

u(H) ∩ w(H) = ∅ and u(H) ∪ w(H) ⊆ Ω (6.21)

and
sp(H) + sp(Hc) ≤ 1. (6.22)

An assumption ω casts doubt on a hypothesis H if it supports its complement
Hc. Conversely, if an assumption ω does not disprove the complementary hypothesis
Hc, then H remains possible or plausible under ω. These assumptions form the set

v(H) = {ω ∈ Ω : Γ (ω) 6⊆ Hc}. (6.23)

Clearly,
u(H) ⊆ v(H) (6.24)

and
v(H) = {ω ∈ Ω : Γ (ω) ∩H 6= ∅}. (6.25)

Their strength is measured by the degree of plausibility

pl(H) = 1− sp(Hc). (6.26)

Since an assumption may neither disprove Hc nor (Hc)c = H, it follows that

pl(H) + pl(Hc) ≥ 1. (6.27)

The functions sp : 2Θ → [0, 1] and pl : 2Θ → [0, 1] are called support and
plausibility function, respectively. They have the following further properties.
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Theorem 6.3. (1) pl(H) = infA∈A:A⊇v(H) P (A) = P ∗(v(H)).

(2) sp(∅) = pl(∅) = 0, sp(Θ) = pl(Θ) = 1.

(3) sp(H) = 1− pl(Hc), pl(H) = 1− sp(Hc).

(4) sp(H) ≤ pl(H).

(5) If H1 ⊆ H2, then sp(H1) ≤ sp(H2) and pl(H1) ≤ pl(H2). �

Proof. (1) See for instance (Halmos, 1950). Assertions (2)–(5) are proved in
(Kohlas and Monney, 1995; Theorem 3.2) for Θ finite. The general proof is es-
sentially the same without this assumption. ut

Degrees of plausibility are clearly post-data postdictive statements about the
parameter. Moreover, in the discrete case, a functional model always induces a
statistical specification by

pθ(z) = P ({ω : f(θ, ω) = z}) (6.28)

if Θ is discrete. However, different functional models may induce the same statistical
specification as observed by (Monney, 2003; Kohlas and Monney, 2008). Therefore, a
functional model in general contains more information than a statistical specification
alone. The assumption-based approach also gives a clear semantics to the likelihoods

lz(θ) = pθ(z) = c · P ′({ω : f(θ, ω) = z}) = c · pl({θ}) (6.29)

for a positive constant c not depending on θ accounting for the conditioning to the
admissible assumptions: The likelihoods are proportional to the degrees of plausi-
bility of the corresponding singleton hypothesis. In the continuous case, if the focal
sets are all disjoint and cover Θ, if h is a continuous density on Ω and if f is a
continuous function, then the functional model induces the statistical specification
given by

hθ(z) = h(f−1(θ, z)) (6.30)

where ω = f−1(θ, z) is uniquely determined by f(θ, ω) = z. Let h̄ be the conditional
density on vz, and let the plausibility density be defined by

h̄θ(z) = h̄(f−1(θ, z)). (6.31)

Then, the likelihood function
lz(θ) = hθ(z) (6.32)

is proportional to the plausibility density, i.e.

lz(θ) = c · h̄(f−1(θ, z)) (6.33)

for a positive constant c.
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Example 6.4 (Decoding Messages over a Gaussian Channel). The redun-
dancy in a pulse over the Gaussian channel of Example 6.2 can be used for reliable
decoding. Here, the degrees of support are

spz({xj}) = p′(ωj), j ∈ {0, 1}, (6.34)

and
spz({x0, x1}) = p′(ω0) + p′(ω1) = 1, (6.35)

i.e. the input has been x0 or x1 with certainty. Intuitively, one should take x0 if
spz({x0}) > spz({x1}) and x1 if spz({x1}) > spz({x0}). If spz({x0}) = spz({x1}),
no decision can be taken. It can be verified that this induces the following decision
rule:

a(z) > 0→ x0,

a(z) < 0→ x1,

a(z) = 0→ no decision

where a(z) = z′K(x0 − x1).
What is the reliability of this decoding scheme? Assume that one has decided

for x0. Then,
1− α = spz({x0}) > spz({x1}) = α. (6.36)

The decision was right if ω0 was the correct error and wrong if ω1 was the correct
error. This leads to the hint E = (vz, P ′, ΓE ,∆) on the decisions ∆ = {right, wrong}
with ΓE(ω0) = {right} and ΓE(ω1) = {wrong}. The support of the decision being
right is

spE({right}) = p′(ω0) = 1− α.

However, the decision being wrong remains plausible with degree

plE({wrong}) = p′(ω1) = α.

This shows that the probability of rejecting x0 wrongly and accepting x0 wrongly are
both bounded by α. The same argument can be applied in the case of a decision
for x1. Assumption-based decision rules have been studied in more generality in
(Kohlas and Monney, 2008). �

Precise Hints

Definition 6.5. A hint is called precise if all its focal sets are singletons. �

Assumptions in a precise hint lead to mutually contradictory most precise answers
(neglecting that two assumptions may lead to the same singleton focal set).

Theorem 6.6. Let sp and pl denote the support and plausibility functions of a
precise hint. Then, sp(H) = pl(H) for all H ⊆ Θ and sp is a probability measure
on 2Θ. �
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Proof. The general proof is essentially the same as that of Theorem 3.8 of (Kohlas
and Monney, 1995) for finite Θ. ut

Although the mapping Γ : Ω → 2Θ of a precise hint is formally a random variable,
its interpretation is different: The set Ω contains all possible assumptions and the
function Γ derives their consequences.

Equivalence of Hints

Definition 6.7. Two hints h1, h2 on the same domain are called equivalent, h1
∼=

h2, if and only if they induce the same plausibility and support functions. �

It has to be remarked that the support function unambiguously determines the
plausibility function and vice-versa. Equivalent hints are obtained by renaming and
regrouping assumptions with the same focal set.

Combining Hints

Since information may come in junks, several pieces of information have to be
aggregated or combined. Combining two hints h1 = (Ω1, P1, Γ1, Θ) and h2 =
(Ω2, P2, Γ2, Θ) yields a new hint

h1 ⊗ h2 = (v, P ′, Γ,Θ),

which is obtained by Dempster’s Rule or product-intersection rule (Dempster, 1967):
Define the mapping Γ : v → 2Θ by

Γ (ω1, ω2) = Γ1(ω1) ∩ Γ2(ω2)

where
v = {(ω1, ω2) ∈ Ω1 ×Ω2 : Γ1(ω1) ∩ Γ2(ω2) 6= ∅};

further let

P (A1 ×A2) = P1(A1) · P2(A2), A1 ∈ A1, A2 ∈ A2

and define P ′ to be the conditional distribution of P given v in the same way as in
Section 6.2. The qualitative interpretation of this rule is the following: In order to
derive a θ from both ω1 and ω2, that θ has to be in the intersection Γ1(ω1)∩Γ (ω2).
If the intersection is empty, no θ can be derived from both ω1 and ω2. Hence, h
corresponds to the joint functional model of any two functional models inducing
h1 and h2, respectively. Furthermore, the two random variables Γ1 and Γ2 have
independent distribution, and the joint probability measure P has to be conditioned
on the set v of assumptions admissible in light of the joint functional model. See
also (Kohlas and Monney, 2008).
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Example 6.8 (Gaussian Channel with a Prior). Continuing Example 6.4, as-
sume now that there is additional information on the input in the form of probabil-
ities q0(x0), q0(x1). This piece of information is captured in the precise hint

h0 = (Θ,Q0, Γ0, Θ)

where
Γ0(xi) = {xi}, i ∈ {0, 1},

and Q0 is the probability measure

Q0(A) =
∑
xi∈A

q0(xi), A ⊆ Θ.

How does this additional information influence the decision-making? The new piece
of information has to combined to the updated hint h′ = h ⊗ h0 = (v′, Q, Γz, Θ)
where v′ = {(ω1, x1), (ω2, x2)} and

Q(A) =
∑

(xi,ωi)∈A

p′(ωi) · q0(xi).

It can be verified that this induces the following updated decision rule:

a′(z) > 0→ x0,

a′(z) < 0→ x1,

a′(z) = 0→ no decision

where a′(z) = z′K(x0−x1)+ ln q0(x0)
q0(x1) . This rule corresponds to the previous rule in

the case q0(x0) = 0.5 = q0(x1). In fact, p′(ωi) can be interpreted as the conditional
probability of z given xi and q0 is then a prior on the xi. This reproduces the results
of the Bayesian approach of (MacKay, 2003). �

6.3 Assumption-Based Reasoning on Gaussian Linear Systems

Algorithms for the assumption-based inference on Gaussian linear systems will now
be derived. This leads to Gaussian hints. Again, domains are supposed to be in a
lattice D ⊆ 2r of finite subsets of a set r of variables.

Gaussian Linear Systems and Gaussian Hints

Gaussian linear systems and Gaussian hints will now be defined formally.

Definition 6.9. Let x ∈ D and let m ∈ IN be a non-negative integer. A Gaussian
linear system (GLS) on x ∈ D is a triplet

g = (A, z,K)

where
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• A ∈ IR(m,x) of rank r ≤ m, |x|,

• z ∈ IRm,

• and K ∈ IR(m,m) symmetric and positive definite.

The matrix A is called the design matrix, the vector z the observation vector, and K
the concentration matrix. Let the set of all Gaussian linear system be denoted L. The
domain d(g) = x is called the label of g. This defines an operation d : L→ D. �

A Gaussian linear system is an instance of a functional model (Monney, 2003)
(f,A, P ) for statistical inference about x (i.e. Θ = IRx): When an experiment
is performed, the outcome depends only on the value x of the parameter x and the
random “disturbance” ω; the outcome is then given by f : IRx × IRm → IRm,

f(x, ω) = Ax + ω.

Further, A = IBx ⊆ 2IRx
and P = Φ0,K (the probability measure with Gaussian

density φ0,K). Given the result of such an experiment, some ω cannot have generated
the observation and become impossible or inadmissible in light of the functional
model, i.e. the set

Γz(ω) = {x : Ax + ω = z}
may be empty for some ω. Although it is not known which assumption ω was under-
lying the experiment, one may ask what the consequences Γz(ω) of the assumption
ω are. Since the experiment is described by the functional model, the assumptions ω
which lead to the contradiction Γz(ω) = ∅ have to be ruled out and the distribution
has to be conditioned on the admissible assumptions

vz = {ω : ∃x : ω = z −Ax}.

How do these focal sets look like? Let r = r(A) be the rank of A. Then, for an
admissible assumption ω ∈ vz, the focal set Γz(ω) is a linear manifold of dimension
|x| − r. In other words, the distribution conditioned on vz is a distribution over
focal sets which are parallel linear manifolds in IRx. On the one extreme, if r = 0,
then the unique linear manifold of the partition is IRx itself; on the other extreme,
if r = |x|, then the focal sets are all the singletons made up of one point of IRx, i.e.
the Gaussian linear system represents a Gaussian distribution over the points of IRx.

How can the admissible disturbances be described? In a Gaussian linear system,
all assumptions are admissible if and only if the design matrix A has full row rank
since then and only then, for each ω, there is a linear combination of the columns
of A such that z −Ax = ω. The set of admissible disturbances is given by

vz = C(A) + z = {ω : ω = Ax + z, x ∈ IRx},

the r-dimensional column space C(A) of the design matrix A which is translated by
z.

Example 6.10. An example is shown in Figure 6.1: The event vz is a straight line
in the (ω1, ω2)-space for a design matrix A of rank r(A) = 1. Here, the event vz has
probability P (vz) = 0. So in this case the conditional probability is assured by the
Radon-Nikodým Theorem (see above p. 107). �
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ω1

ω2

z

vz

ω = (ω1,ω2) = z − Ax

C(A)
!z

!z

0

Figure 6.1: The admissible disturbances are given by a straight line vz in the space of the
disturbances ω = (ω1, ω2).

In order to compute the distribution conditioned on vz, a change of coordinates is
suitable: The Gaussian linear system has to be transformed such that the first rows
have full rank and the remaining rows are 0. In these new coordinates, the admissible
disturbances are given by any value in the first components and a constant value
in the remaining components. An example in the two-dimensional space is shown
in Figure 6.2: In the new coordinates (ξ1, ξ2), the event vz is given by the equation
ξ2 = c. Now, Lemma B.1 can be applied to compute the conditional Gaussian

ω1

ω2

vz

0

ξ1

ξ2

ξ2 = c

c

Figure 6.2: In the new coordinates (ξ1, ξ2), the admissible disturbances vz are given by
ξ2 = c.

distribution of the admissible disturbances.
More generally, let B1 ∈ IR(m, r) be a basis of the column space of A. Then, there
is a matrix Λ ∈ IR(r, x) such that

A = B1Λ.

Further, let
B = (B1, B2)

be a regular matrix of IR(m,m).
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Definition 6.11. Let A ∈ IR(m,x) and let B = (B1, B2) ∈ IR(m,m) be a regular
matrix such that C(B1) = C(A). Then, B is called a permissible basis for A.2 �

Then, the Gaussian linear system can be transformed by the regular matrix T =
B−1. Let T be partitioned into T1 ∈ IR(r,m) and T2 ∈ IR(m− r,m) such that

T =
(
T1

T2

)
.

Then,

TA =
(
T1A
T2A

)
=
(

T1A
T2B1Λ

)
=
(
T1A

0m−r,x

)
. (6.37)

Here, T1A has full row rank r since T2A = 0m−r,x and T being regular imply that

r(T1A) = r(TA) = r(A)

in light of Corollary 8.3.3 of (Harville, 1997; p.83). Therefore,

Γz(ω) = {x : T1Ax + T1ω = T1z, T2ω = T2z}. (6.38)

Here, according to Appendix B.2, the transformed disturbances Tω have the density
φ0,T−1′KT−1 . It holds that

T−1′KT−1 =
(
B′

1KB1 B′
1KB2

B′
2KB1 B′

2KB2

)
.

In these transformed coordinates, it is easy to capture the admissible disturbances,
namely

vz = {ω : T2ω = T2z}. (6.39)

Theorem 6.12. Let (A, z,K) be a Gaussian linear system, A ∈ IR(m,x) of rank
k = r(A), z ∈ IR(m), K ∈ IR(m,m) symmetric and positive definite. Let B ∈
IR(m,m) be a permissible basis and define T = B−1. Partition

T =
(
T1

T2

)
,

T1 ∈ IR(k,m), T2 ∈ IR(m− k,m), and

B = (B1, B2),

B1 ∈ IR(m, k), B2 ∈ IR(m,m − k). The result of the assumption-based inference is
given by the Gaussian linear system

(T1A, T1z + (B′
1KB1)

−1(B′
1KB2)T2z,B

′
1KB1), (6.40)

2The matrix A is not required to have full column rank as in the definition of a permissible basis
of (Monney, 2003; p.82).
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or, in terms of the covariance matrix Σ = K−1,

TΣT ′ =
(
T1ΣT

′
1 T1ΣT

′
2

T2ΣT
′
1 T2ΣT

′
2

)
,

by

(T1A, T1z − T1ΣT
′
2(T2ΣT

′
2)
−1
T2z, T1ΣT

′
1 − T1ΣT

′
2(T2ΣT

′
2)
−1
T2ΣT

′
1). (6.41)

�

Proof. In light of Lemma B.1, the conditional distribution of T1ω given T2ω = T2z
has concentration

B′
1KB1 = (T1ΣT

′
1 − T1ΣT

′
2(T2ΣT

′
2)
−1
T2ΣT

′
1)
−1

and mean

−(B′
1KB1)

−1(B′
1KB2)T2z = T1ΣT

′
2(T2ΣT

′
2)
−1
T2z. ut

The Gaussian linear system obtained by assumption-based reasoning is called a
Gaussian hint.

Definition 6.13. A Gaussian hint is a Gaussian linear system (A, z,K) on x ∈ D
where A ∈ IR(m,x) has full row rank m = r(A). The set of all Gaussian hints shall
be denoted by H, where H ⊆ L. �

Formally, the triplet (A, z,K) is of course not a hint as defined in equation (6.11):
More precisely, it is taken as an abbreviation for the hint

(IRm, Φ0,K , Γ, IRx) (6.42)

where

• Φ0,K is the Gaussian distribution with concentration matrix K,

• Γ : IRm → 2IRx
, Γ (ω) = {x ∈ IRx : Ax + ω = z}.

Example 6.14 (Measurement Model). A real-valued variable X with unknown
value x∗ ∈ IR is measured m times with results zi (i ∈ {1, . . . ,m}) and the errors
ωi are assumed to be independent and identically distributed according to N (0, σ2).
This situation induces the following functional linear model on x = {X}:

x + ωi = zi, i = 1, . . . ,m.

This functional model is captured in the Gaussian linear system (A, z,K),

A =

1
...
1

 , z =

 z1
...
zm

 , K =


1
σ2

. . .
1
σ2

 .
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In order to get directly directly x in the first row, a transformation matrix is cho-
sen such that T1A =

(
1 0 · · · 0

)′, T2A = 0 and such that T1ω and T2ω are
independent, for instance

T =


1
m

1
m · · · 1

m
1 −1
...

. . .
1 −1

 .

Applying T yields {
x + ξ1 = 1

m

∑m
i=1 zi,

ξi = z1 − zi, i ∈ {2, . . . ,m}

where the transformed disturbances ξ are distributed normally with mean 0 and
variance-covariance

TK−1T ′ =


σ2

m 0 · · · 0
0 2σ2 σ2 · · ·
... σ2 . . . . . .

0
...

. . . 2σ2.


Here, T corresponds to the permissible basis

T−1 =



1 1
m · · · · · · 1

m

1 −m−1
m

. . . . ..
...

... 1
m

. . . . . .
...

...
...

. . . . . . 1
m

1 1
m . . . 1

m −m−1
m


.

Since the distribution of the ξ1 is independent from ξi for i ∈ {2, . . . ,m}, the condi-
tional distribution of ξ1 given ξi = z1−zi for i ∈ {2, . . . ,m} has mean 0 and variance
σ2

m . So the more observations there are, the more support one gets for x being close
to the sample mean z̄ = 1

m

∑m
i=1 zi. From the equation ξ1 = z̄ − θ, the predictive

fiducial density of θ given the observation vector z ∈ IRm is then

t(θ; z) = φ
0,
σ2

m

(z̄ − θ) = c · e−
1
2 (z̄−θ)2 = c′φ0,σ2(z1 − θ) · · ·φ0,σ2(zm − θ) (6.43)

for appropriate normalisation constants c, c′ > 0. This shows that the fiducial den-
sity is proportional to the product of the fiducial densities from the individual mea-
surements zi, i ∈ {1, . . . ,m}. However, this fiducial density must be interpreted
carefully: The measurement model does not take into account any outliers due to
improper measurements. Assumption-based reasoning relies on the premise that all
eventualities are modelled explicitly. Therefore, if improper measurements are pos-
sible, their impact must be stated in the model as well.
Although the above results are the same as obtained by least-squares estimation,
the interpretation is radically different: The distribution of x reflects the strength
of the supporting (and plausible) arguments implied by the model. No optimisation
is involved in the reasoning process. �
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Equivalent Gaussian Hints and Equivalent Gaussian Linear Systems

Different Gaussians hints may have the same focal sets and the same distribution
over these focal sets. Such equivalent Gaussian hints capture essentially the same
information, with respect to a different basis of the assumption space. Since, as
defined above, the hint inferred from a Gaussian linear system depends on the choice
of a permissible basis, it has also to be verified that inference leads to equivalent
Gaussian hints.

Definition 6.15. Let h1 = (A1, z1,K1) and h2 = (A2, z2,K2) be two Gaussian
hints on the same set x ∈ D of variables, where A1, A2 ∈ IR(m,x), z1, z2 ∈ IRm,
K1,K2 ∈ IR(m,m) symmetric and positive definite. Then, h1 and h2 are equivalent,
written

h1
∼= h2,

if and only if there is a regular matrix B ∈ IR(m,m) such that

(A2, z2,K2) = (BA1, Bz1, B
−1′K1B

−1).

The set of equivalent Gaussian hints is denoted H(h), and the quotient set of all
equivalence classes of Gaussian hints is H/ ∼= {H(h) : h ∈ H}. �

The relation ∼= is an equivalence relation in H as shown by (Monney, 2003; The-
orem 22, p.62). The following two lemmata show that equivalent Gaussian hints
essentially represent the same information, although they do not represent the same
hint in the sense of (6.42): They represent the same information since they have the
same focal sets and the same distribution over these focal sets.

Lemma 6.16. Let h1 = (A1, z1,K1) and h2 = (A2, z2,K2) be two equivalent Gaus-
sian hints on the same domain x ∈ D, where A1, A2 ∈ IR(m,x), z1, z2 ∈ IRm,
K1,K2 ∈ IR(m,m) symmetric and positive definite. Define Γ1, Γ2 : IRm → 2IRx

by

Γ1(ω) = {x ∈ IRm : A1x + ω = z1},
Γ2(ω) = {x ∈ IRm : A2x + ω = z2}.

Then, there is a regular matrix B ∈ IR(m,m) such that for ω ∈ IRm

Γ1(ω) = Γ2(Bω) (6.44)

and
φ0,K1(ω) = φ0,K2(Bω) · |det(B)| . (6.45)

�

Proof. Let B ∈ IR(m,m) be the regular matrix that establishes the equivalence
h1
∼= h2, i.e.

A2 = BA1, z2 = Bz1, K2 = B−1′K1B
−1
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Let ω ∈ IRm. Then, since B is regular,

Γ1(ω) = {x ∈ IRm : A1x + ω = z1}
= {x ∈ IRm : B−1A2x + ω = B−1z2}
= {x ∈ IRm : A2x +Bω = z2}
= Γ2(Bω).

Using
det(B′KB) = det(B′) · det(K) · det(B) = det(B)2 · det(K)

[in light of Theorem 13.3.4 of (Harville, 1997; p.187) and Lemma 13.2.1 of (Harville,
1997; p.181)], it also follows that

φ0,K1(ω) =

√
|det(K1)|

(2π)|x|
· e−

1
2
ω′K1ω

=

√
|det(B′K2B)|

(2π)|x|
· e−

1
2
(Bω)′B−1′K1B−1(Bω)

=

√
det(B)2 · |det(K2)|

(2π)|x|
· e−

1
2
(Bω)′K2(Bω)

= φ0,K2(Bω) · |det(B)|. ut

The previous lemma shows that equivalent Gaussian hints have the same focal sets
and the same distribution over these focal sets. Moreover, the following theorem
shows that Gaussian hints are equivalent if and only if they generate the same
support and plausibility functions. This shows that the notion of equivalence of
Gaussian hints is compatible with the more general notion of equivalence of hints
defined in Section 6.2 and justifies the use of the same symbol ∼=.

Theorem 6.17. Let h1 = (A1, z1,K1) and h2 = (A2, z2,K2) be Gaussian hints on
the same domain. Then, they are equivalent if and only they generate the same
support and plausibility functions. �

Proof. For the “only if” part, see Theorem 23 of (Monney, 2003; p.64).
In order to prove the “if” part, assume that the support functions sp1 of h1 and sp2

of h2 are equal, i.e. that sp1(H) = sp2(H) for all H ⊆ IRx. Let Γ1 : IRm1 → 2IRx
,

Γ1(ω) = {x : A1x + ω = z1} and Γ2 : IRm2 → 2IRx
, Γ2(ξ) = {x : A2x + ξ = z2}.

Let U ∈ IBm2 be the unit ball in IRm2 and let HU = Γ2(U) =
⋃
ξ∈U Γ2(ξ). Since the

focal sets Γ2(ξ) form a partition of IRx and since HU is the union of such partitioning
elements, it follows that sp2(HU ) = P2(U) > 0. Define S(ω) = {ξ : Γ2(ξ) ∩ Γ1(ω) 6=
∅}.
It is now shown that dim(Γ2(ξ)) = dim(Γ1(ω)). Conversely, assume dim(Γ2(ξ)) >
dim(Γ1(ω)). This situation is depicted in Figure 6.3(a). Assume Γ1(ω) ⊆ HU . Then,
S(ω) ⊆ U since HU is the union of partitioning elements Γ2(ξ). Since dim(Γ2(ξ)) =
dim(Γ1(ω)) and since the focal sets are parallel of the same dimension, for a fixed ω,
there are then different ξ1, ξ2 such that Γ2(ξ1) ∩ Γ1(ω) 6= ∅ and Γ2(ξ2) ∩ Γ1(ω) 6= ∅.
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Define S0(ω) = {ξ = ξ1 +s ·(ξ1−ξ2) : Γ2(ξ1)∩Γ1(ω) 6= ∅, Γ2(ξ2)∩Γ1(ω) 6= ∅, s ∈ IR}.
Then S0(ω) ⊆ S(ω) since for x1 ∈ Γ (ξ1)∩Γ1(ω) and x2 ∈ Γ (ξ2)∩Γ1(ω) it holds that
A2(x1 +s · (x1−x2))+(ξ1 +s · (ξ1− ξ2)) = (s+1) · (A2x1 + ξ1)−s · (A2x2 + ξ2) = z2.
Hence, ∅ 6= S0(ω) ⊆ U . However, this is not possible since the vectors in S0(ω) are
unbounded whereas the vectors in U are bounded. A similar argument shows that
dim(Γ2(ξ)) < dim(Γ1(ω)) also leads to a contradiction. Hence, indeed dim(Γ2(ξ)) =
dim(Γ1(ω)).
It will now be shown that h1 and h2 have the same focal sets, i.e. that im(Γ1) =
im(Γ2). Conservely, assume im(Γ1) 6= im(Γ2). This situation is depicted in Fig-
ure 6.3(b). Assume Γ1(ω) ⊆ HU . Again, for fixed ω, there are then different ξ1, ξ2
such that Γ2(ξ1) ∩ Γ1(ω) 6= ∅ and Γ2(ξ2) ∩ Γ1 6= ∅. A similar argument as above
shows that im(Γ1) = im(Γ2).
Since im(Γ1) = im(Γ2), Lemma A.2 (4) shows that there is a regular matrix T such
that A2 = TA1 and z2 = Tz1. Therefore, Γ2(Tω) = Γ1(ω) for all ω ∈ IRm1 = IRm2 .
Hence, for all A ∈ IBx,∫

ω∈A
φ0,K1(ω)dω = sp1(Γ1(A))

= sp2(Γ2(A))

=
∫
ξ∈TA

φ0,K2(ξ)dξ

=
∫
ω∈A
|det (T )| · φ0,K2(Tω)dω.

Since φ0,K1 and |det(T )| · φ0,K2 are both the derivative of P1 with respect to ω, it
follows that φ0,K1(ω) = |det (T )| · φ0,K2(Tω) for all ω. Hence,√

|det(K1)|
(2π)|x|

· e−
1
2
ω′K1ω = φ0,K1(ω)

= |det(T )| · φ0,K2(Tω)

=

√
|det(K2)|
(2π)|x|

· e−
1
2
(Tω)′K2(Tω)

=

√
|det(K2)|
(2π)|x|

· e−
1
2
ω′(T ′K2T )ω.

Since the first factor is constant (not depending on ω) and since e is strictly mono-
tone, it follows that ω′Kω = ω′(T ′K2T )ω for all ω. Hence, in light of Lemma A.4,
K1 = T ′K2T and, equivalently, K2 = T−1′K1T

−1. ut

This shows that equivalent Gaussian hints capture essentially the same information
with respect to different bases of the assumption space. Geometrically, equivalent
Gaussian hints represent the same distribution over the same focal sets.

As developed so far, the assumption-based inference starts with a permissible
basis B and then defines the matrix T = B−1. Then, T2A = 0. It is now shown
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H
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Γ2(ξ1)

Γ2(ξ2)
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x
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(ω) = S0
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(a) Assumption Γ1(ω) ⊆ HU and dim(Γ2(ξ)) > dim(Γ1(ω))
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Γ2(ξ2)
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(b) Assumption im(Γ1) 6= im(Γ2), Γ1(ω) ⊆ HU and dim(Γ2(ξ)) = dim(Γ1(ω))

Figure 6.3: Gaussian hints are equivalent if they have the same support function.
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that any matrix having the properties of T corresponds to a permissible basis and
can thus be used for the assumption-based inference.

Definition 6.18. Let A ∈ IR(m,x) of rank k = r(A). Then, a regular matrix
T ∈ IR(m,m),

T =
(
T1

T2

)
, T1 ∈ IR(k, x), T2 ∈ IR(m− k, x),

is called admissible if T2A = 0m−k,x.3 �

The following lemma shows that the inverse of an admissible matrix constitutes a
permissible basis.

Lemma 6.19. Let T be an admissible matrix for a Gaussian linear system (A, z,K),
A ∈ IR(m,x) of rank k = r(A), z ∈ IR(m), K ∈ IR(m,m) symmetric and positive
definite. Partition

T =
(
T1

T2

)
,

T1 ∈ IR(k, x), T2 ∈ IR(m− k, x) such that T2A = 0m−k,x. Let B = T−1 and

B = (B1, B2),

B1 ∈ IR(m, k), B2 ∈ IR(m,m− k). Then, B is a permissible basis, i.e. B1 is a basis
of the column space C(A) of A. �

Proof. Since T is regular, the column space of A and its rank are preserved when
premultiplied by T ,

C(TA) = C(A), r(TA) = r(A) = k,

according to Lemma of 8.3.2 (Harville, 1997; p.83). Since

TA =
(

T1A
0m−k,x

)
,

the matrix

Λ1 =
(

Ik
0m−k,k

)
is a basis of C(TA). Hence, C(TA) = C(Λ1). Again, since T−1 is regular,

C(T−1Λ1) = C(T−1TA) = C(A).

Since the columns of B1 = T−1Λ1 are linearly independent, B1 is a basis of C(A).
Hence, B is indeed a permissible basis. ut

3As in the case of a permissible basis, this definition of an admissible matrix is more general
than that of (Monney, 2003; p.83).
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The following theorem shows that the assumption-based inference with different
permissible bases (or, equivalently, different admissible matrices) leads to equivalent
Gaussian hints.

Theorem 6.20. Let T, T̃ be admissible matrices for a Gaussian linear system (A, z,K),
A ∈ IR(m,x) of rank k = r(A), z ∈ IR(m), K ∈ IR(m,m) symmetric and positive
definite. Then, assumption-based inference leads to equivalent Gaussian hints. �

Proof. Partition

T =
(
T1

T2

)
, T̃ =

(
T̃1

T̃2

)
T1, T̃1 ∈ IR(k,m), T2, T̃2 ∈ IR(m−k, x) such that T2A = T̃2A = 0m−k,x. Let B = T−1

and B̃ = T̃−1. Partition

B = (B1, B2), B̃ = (B̃1, B̃2),

B1, B̃1 ∈ IR(m, k), B2, B̃2 ∈ IR(m,m − k). According to Lemma 6.19, B and B̃
are permissible bases, hence B1 and B̃1 are bases of the column space C(A) of A.
Similarly, B2 and B̃2 are bases of the null space N (A) of A. Therefore, every column
of B̃1 is a unique linear combination of columns of B1, hence there is a unique matrix
R1 ∈ IR(k, k) such that

B1R1 = B̃1.

Similarly, there is a unique matrix R2 ∈ IR(m− k,m− k) such that

B2R2 = B̃2.

Observe that
k ≥ r(R1) ≥ r(B1R1) = r(B̃1) = k

in light of Corollary 4.4.5 of (Harville, 1997; p.37), hence r(R1) = k. Thus, R1 is
regular. It can be shown similarly that R2 is regular as well. Furthermore,

B̃ = B

(
R1 0k,m−k

0m−k,k R2

)
= (B1R1, B2R2)

and

T̃ = B̃−1 =
(
R1

−1 0k,m−k
0m−k,k R2

−1

)
B−1 =

(
R1

−1 0k,m−k
0m−k,k R2

−1

)
T

=
(
R1

−1T1

R2
−1T2

)
,

using result (8.2.8) of (Harville, 1997; p.82) for the inverse of a product of regular
matrices and result (8.5.2) of (Harville, 1997; p.88) for the inverse of a block-diagonal
matrix. Hence,

T̃1 = R1
−1T1, B̃1 = B1R1. (6.46)

Then, according to Theorem 6.12, the hint inferred using T is

h = (T1A, T1z − (B′
1KB1)

−1
B′

1Kz,B
′
1KB1)
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and the hint inferred using T̃ is

h̃ = (T̃1A, T̃1z − (B̃′
1KB̃1)

−1
B̃′

1Kz, B̃
′
1KB̃1).

Using (6.46),
T̃1A = R1

−1(T1A),

B̃′
1KB̃1 = (B1R1)′K(B1R1) = R′1(B

′
1KB1)R1,

and

T̃1z − (B̃′
1KB̃1)

−1
B̃′

1Kz = (R1
−1T1)z −R1

−1(B′
1KB1)

−1
R′1

−1
R′1B

′
1Kz

= R1
−1(T1z − (B′

1KB1)
−1
B′

1Kz),

using result (8.2.8) of (Harville, 1997; p.82) for the inverse of a product of regular
matrices, result (8.2.3) of (Harville, 1997; p.82) for the commutativity of transpo-
sition and inversion of regular matrices and result (1.2.13) of (Harville, 1997; p.5)
for the transpose of a product of matrices. Hence, R1

−1 establishes the equivalence
h ∼= h̃. ut

In light of Theorem 6.20, the hints inferred from a Gaussian linear system p by
different permissible bases are equivalent. Since h ∈ H(h) for h ∈ H, the following
(extensions of existing) definitions are sound.

Definition 6.21. For a Gaussian linear system p ∈ L, define H(p) to be set of
equivalent Gaussian hints induced by the Gaussian linear system. This defines an
inference operator H : L→ H/ ∼=. Furthermore, two Gaussian linear systems p, p′ ∈
L are said to be equivalent, p ∼= p′ if and only if they induce equivalent Gaussian
hints, i.e.

p ∼= p′ ⇐⇒ H(p) = H(p′). (6.47)
�

This situation is shown in Figure 6.4: Gaussian hints are a subset of Gaussian linear
systems, H ⊆ L; the grey-shaded area shows the equivalence class of a Gaussian
linear system p; the dark grey-shaded subareaH(p) is the subset of induced Gaussian
hints; the Gaussian linear system p′ is an equivalent Gaussian linear system which
leads to the same Gaussian hint up to equivalence, i.e. H(p) = H(p′).

The following lemma gives a sufficient criterion for two Gaussian linear systems
to be equivalent if they have the same number of equations.

Lemma 6.22. Let p = (A, z,K) and p̃ = (Ã, z̃, K̃) be Gaussian linear systems of
m equations over the same domain x ∈ D, A, Ã ∈ IR(m,x), z, z̃ ∈ IRm, K, K̃ ∈
IR(m,m). Let n = |x|. If there is a regular matrix P ∈ IR(m,m) such that

(Ã, z̃, K̃) = (PA,Pz, P−1′KP−1),

then
p ∼= p̃. �
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H

L

p

p
′

H(p)

Figure 6.4: Gaussian linear systems are equivalent if the derived Gaussian hints are equiv-
alent.

Proof. Let B be a permissible basis for p and define T = B−1. Further, define

B̃ = PB

and
T̃ = B−1P−1 = TP−1.

Observe that Ã = PA and P being regular imply that r(Ã) = r(A) in light of
Lemma 8.3.2 of (Harville, 1997; p.83). Define k = r(A). Partition

T =
(
T1

T2

)
, T̃ =

(
T̃1

T̃2

)
where T1, T̃1 ∈ IR(k,m) and T2, T̃2 ∈ IR(m− k,m) and

B = (B1, B2), B̃ = (B̃1, B̃2)

where B1, B̃1 ∈ IR(m, k) and B2, B̃2 ∈ IR(m,m− k). Then,(
T̃1Ã

0m−k,x

)
=
(
T̃1Ã

T̃2Ã

)
= T̃ Ã = TP−1PA = TA =

(
T1A
T2A

)
=
(

T1A
0m−k,x

)
shows that T̃ is an admissible matrix for p̃. Hence, in light of Lemma 6.19, B̃ is a
permissible basis for p̃. Then, in light of Theorem 6.12, the hint inferred from p is
given by

h = (T1A, T1z + (B′
1KB1)

−1(B′
1KB2)T2z,B

′
1KB1) ∈ H(p)

and the hint inferred from p̃ by

h̃ = (T̃1Ã, T̃1z̃ + (B̃′
1K̃B̃1)

−1
(B̃′

1K̃B̃2)T̃2z̃, B̃
′
1K̃B̃1) ∈ H(p̃).
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Since

T̃1Ã = T1P
−1PA = T1A,

B̃′
1K̃B̃1 = (PB1)′(P ′

−1
KP−1)(PB1) = B′

1P
′P ′

−1
KP−1PB1 = B′

1KB1,

and

T̃1z̃ + (B̃′
1K̃B̃1)

−1
(B̃′

1K̃B̃2)T̃2z̃

=T1P
−1Pz + (B′

1KB1)
−1(B′

1((PB1)′P ′
−1
KP−1(PB))T2P

−1Pz

=T1z + (B′
1KB1)

−1(B′
1KB2)T2z,

it follows that h ∼= h̃, i.e. H(p) = H(p̃). ut

How an admissible matrix can be constructed for a Gaussian linear system is
discussed in depth in (Monney, 2003). Another algorithm based on singular-value
decomposition has been discussed and implemented in (Eichenberger, 2004) .

Inference if the Design Matrix has full Column Rank

If the design matrix of a Gaussian linear system has full column rank n, then the
focal sets are linear manifolds of dimension 0. Hence, the result of the assumption-
based inference is a precise hint representing a distribution over the points (more
precisely the singleton subsets) of the parameter space. The result can then be
obtained in a very simple way as shown by the following theorem.

Theorem 6.23. Let p = (A, z,K) be a Gaussian linear system, A ∈ IR(m,x) of
rank r(A) = |x| = n, z ∈ IRm, K ∈ IR(m,m) symmetric and positive definite. Then,
the result of the assumption-based inference is given by the Gaussian hint

(Ix, (A′KA)−1
A′Kz,A′KA) ∈ H(p). (6.48)

�

Equation (6.48) is short-hand for

(In,x, In,x(A′KA)−1
A′Kz, In,xA

′KAIx,n), (6.49)

i.e. the rows are indexed by variables in (6.48) instead of numbers in (6.49).

Proof. Notice that m ≥ n. Since A has full column rank n, there is a permutation
π of {1, . . . ,m} such that the n rows π(1), . . . , π(n) are linearly independent. Define
the regular permutation matrix P ∈ IR(m,m) by P (i, j) = δπ(i),j for i, j ∈ {1, . . . ,m}
(for δi,j = 1 if i = j and δi,j = 0 if i 6= j). Consider the transformed Gaussian linear
system

p̃ = (Ã, z̃, K̃) = (PA,Pz, P ′−1
KP−1), (6.50)

which is equivalent to the original Gaussian linear system (A, z,K) in light of
Lemma 6.22, i.e. H(p) = H(p̃). Partition

Ã =
(
Ã1

Ã2

)
, z̃ =

(
z̃1
z̃2

)
,
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Ã1 ∈ IR(n, x), Ã2 ∈ IR(m− n, x), z̃1 ∈ IRn, z̃2 ∈ IRm−n. By the definition of P , the
first n rows of PA are linearly independent, i.e. Ã1 is regular. Then, the matrix

B =
(
Ã1 0
Ã2 Im−n

)
is a permissible basis and T = B−1,

T =
(

Ã−1
1 0

−Ã2Ã
−1
1 Im−n

)
,

is an admissible matrix. According to Theorem 6.12, the hint inferred from (6.50)
is given by

(Ix, Ã−1
1 z̃1 + (Ã′KÃ)

−1
Ã′K

(
0

−Ã2Ã
−1
1 z̃1 + z̃2

)
, Ã′KÃ).

Here,

Ã−1
1 z̃1 + (Ã′KÃ)

−1
Ã′K

(
0

−Ã2Ã
−1
1 z̃1 + z̃2

)
=Ã−1

1 z̃1 + (Ã′KÃ)
−1
Ã′K

(
−Ã1Ã

−1
1 z̃1 + z̃1

−Ã2Ã
−1
1 z̃1 + z̃2

)
=Ã−1

1 z̃1 − (Ã′KÃ)
−1

(Ã′KÃ)Ã−1
1 z̃1 + (Ã′KÃ)

−1
Ã′Kz̃

=(Ã′KÃ)
−1
Ã′Kz̃.

Hence,
h̃ = (Ix, (Ã′KÃ)

−1
Ã′Kz̃, Ã′KÃ) ∈ H(p̃).

Further,

Ã′KÃ = A′P ′P ′
−1
KP−1PA = A′KA

and

(Ã′KÃ)
−1
Ã′Kz̃ = (A′KA)−1

A′P ′P ′
−1
KP−1Pz

= (A′KA)−1
A′Kz.

Therefore, h̃ ∈ H(p̃) shows that H(p) = H(p̃). ut

Notice that Theorem 6.23 can be applied to all equivalent Gaussian linear systems,
and (6.48) is then a canonical representation of the result of the assumption-based
inference. This will be discussed more thoroughly in Section 6.7.

Example 6.24 (Measurement Model Revisited). Reconsider the measurement
model of Example 6.14. Assume that the errors ωi are still independent but with
possible different known variance σ2

i for i ∈ {1, . . . ,m}. Since A = (1, 1, . . . , 1)′,
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Theorem 6.23 can be applied. The result of the assumption-based inference is thus
the weighted sample mean [

m∑
i=1

1
σ2
i

]−1 m∑
i=1

zi
σ2
i

(6.51)

with variance [
m∑
i=1

1
σ2

i

]
. (6.52)

Again, these results are the same as obtained by least-squares estimation, with the
same different interpretation as remarked in Example 6.14. The results of Exam-
ple 6.14 are of course reproduced for σ2

1 = σ2
2 = · · · = σ2

m = σ2. �

6.4 Marginalisation of Gaussian Hints

In order to extract the consequences of an assumption in a hint with respect to a
smaller domain, its focal sets have to be projected to that domain. This idea is now
applied to Gaussian hints. Let

h = (A,µ,K) ∈ H

be a Gaussian hint on x ∪ z, x ∩ z = ∅ with A ∈ IR(m,x ∪ z), A1 ∈ IR(m,x),
A2 ∈ IR(m, z),

A = (A1, A2),

µ ∈ IRm, K ∈ IR(m,m) symmetric and positive definite. Then, if one is not inter-
ested in the variables z, the focal function Γ : IRm → 2IRx∪z

becomes Γ ↓x : IRm →
2IRx

,

Γ ↓x(ω) = {u↓x : u ∈ Γ (ω) ⊆ IRx∪z} (6.53)
= {x ∈ IRx : ∃z ∈ IRz s.t. A1x +A2z + ω = µ}. (6.54)

In other words, x ∈ IRx is a consequence of ω if and only if there is a complement
z ∈ IRz such that (x, z) is a consequence of ω. Further, an assumption cannot
become impossible through marginalisation since Γ (ω) ⊆ Γ ↓x(ω) × IRz. Further,
Γ ↓x(ω) = Γ ↓x(ω′) does not imply Γ (ω) = Γ (ω′). Then the assumptions with the
same focal set can be grouped together, which leads to an other equivalent hint.
How can now the projection these focal sets and their distribution be described? Can
the result be described by a Gaussian hint again? The answers to both questions
are affirmative. The strategy is the following: Find a transformation T = ( T1

T2
) such

that TA2 = ( 0
T2A2

) and such that T2A2 has full row rank. Then,

Γ ↓x(ω) = {x ∈ IRx : ∃z ∈ IRz s.t. T1A1x + T1ω = T1µ, T2A1x + T2A2z + T2ω = T2µ}
= {x ∈ IRx : ∃z ∈ IRz s.t. T1A1x + T1ω = T1µ}
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since T2A2 has full row rank. Given such a transformation, the projection is charac-
terised by the assumptions T1ω and their marginal distribution, which is Gaussian.
Therefore, it suffices to show how such a transformation can be found.
Let k = r(A2) and let B = (B1, B2) ∈ IR(m,m) be a regular matrix such that the
submatrix B2 ∈ IR(m, k) is a basis of the column space C(A2). Then, there is a
matrix C2 ∈ IR(k, z) such that

A2 = B2C2.

Define T = B−1 and partition

T =
(
T1

T2

)
such that T1 ∈ IR(m − k,m), T2 ∈ IR(k,m). Transformation by T leads to the
equivalent hint

h′ = (TA, Tµ,B′KB),

where

TA =
(
T1A1 T1A2

T2A1 T2A2

)
=
(
T1A1 T1B2C2

T2A1 T2A2

)
=
(
T1A1 0m−k,z
T2A1 T2A2

)
. (6.55)

The focal function of h′ is

Γ ′(ξ) = {u ∈ IRx∪z : TAu + ξ = Tµ}
= {u ∈ IRx∪z : T1A1x + ξ1 = T1µ, T2A1x + T2A2z + ξ2 = T2µ}

for ξ =
(
ξ1
ξ2

)
∈ IRm, ξ1 ∈ IRm−k, ξ2 ∈ IRk. Then,

Γ (ω) = {u ∈ IRx∪z : Au + ω = µ}
= {u ∈ IRx∪z : TAu + Tω = Tµ}
= Γ ′(Tω).

Since T is regular and since A has full row rank m, the matrix TA has full row rank.
In particular, T1A and T2A have full row rank. Therefore, for all x ∈ IRx and all
ω ∈ IRm there is a z ∈ IRz such that T2A1x + T2A2z + T2ω = T2µ. Therefore, using
(6.54) and (6.55),

Γ ↓x(ω) = Γ ′
↓x(Tω)

={x ∈ IRx : ∃z ∈ IRz s.t. T1A1x + T1ω = T1µ, T2A1x + T2A2z + T2ω = T2µ}
={x ∈ IRx : ∃z ∈ IRz s.t. T1A1x + T1ω = T1µ}
={x ∈ IRx : T1A1x + T1ω = T1µ}.

These focal sets Γ ↓x(ω) are parallel affine linear manifolds of dimension

|x| − r(T1A1) = |x| − (m− k) = |x| − (r(A)− r(A2)).



132 Chapter 6. Gaussian Hints

Here, according to Appendix B.3, the marginal distribution of the disturbances
ξ1 = T1ω has mean 0m−k and concentration (T1K

−1T ′1)
−1. Therefore, the Gaussian

hint
(T1A1, T1µ, (T1K

−1T ′1)
−1)

represents the information contained in h about x. As observed above, T1A has full
row rank.

Definition 6.25. Let A = (A1, A2) ∈ IR(m,x ∪ z), A1 ∈ IR(m,x), A2 ∈ IR(m, z).
Let k = r(A2). A matrix T1 ∈ IR(m−k,m) of full row rank m−k such that T1A2 = 0
is called a projection matrix for A to x. �

The following lemma shows that using different projection matrices on equivalent
Gaussian hints yields equivalent Gaussian hints again.

Lemma 6.26. Let h = (A, z,K) and h̃ = (Ã, z̃, K̃) be equivalent Gaussian hints,
A, Ã ∈ IR(m,x), z, z̃ ∈ IRm, K, K̃ ∈ IR(m,m),

A = (A1, A2) , Ã = (Ã1, Ã2),

A1, Ã1 ∈ IR(m,x), k = r(A2). Let C ∈ IR(m,m) be the regular matrix that estab-
lishes the equivalence h ∼= h̃, i.e.

CA = Ã, Cz = z̃, C−1′KC−1 = K̃.

Further, let T1 and T̃1 be projection matrices for h and h̃ to x ⊆ d(h) = d(h̃),
respectively. Then,

(T1A1, T1z, (T1K
−1T ′1)

−1) ∼= (T̃1Ã1, T̃1z̃, (T̃1K̃
−1T̃ ′1)

−1
).

Furthermore, T̃1 is also a projection matrix for h to x. �

Proof. Observe that
CA2 = Ã2,

and, since C is regular,

r(Ã2) = r(CA2) = r(A2) = k

in light of Lemma 8.3.2 of (Harville, 1997; p.83). Therefore, T̃1 being a projection
matrix for Ã, it has the same dimensions and rank as T1, i.e. T̃1 ∈ IR(m−k,m) and
r(T̃1) = m− k. Also, it follows from

T1A2 = 0 = T̃1Ã2 = T̃1CA2 ⇐⇒ A′2T
′
1 = 0 = Ã′2T̃

′
1 = A′2C

′T̃ ′1

that
C(T ′1), C(C ′T̃ ′1) ⊆ N (A′2). (6.56)

Furthermore,

dim(N (A′2)) = m− r(A′2) = m− r(A2) = m− k
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in light of Lemma 11.3.1 of (Harville, 1997; p.142). On the other hand, since C ′ is
regular,

r(T ′1) = r(T1) = m− k = r(T̃1) = r(T̃ ′1) = r(C ′T̃ ′1).

Hence, using (6.56) and r(T ′1) = dim(N (A′2)) = r(C ′T̃ ′1), it follows that

C(T ′1) = N (A′2) = C(C ′T̃ ′1).

Therefore,
C(T ′1) = C(C ′T̃ ′1) ⇐⇒ R(T1) = R(T̃1C),

i.e. every row of T1 is a linear combination of the rows of T̃1C. Hence, there is a
matrix D ∈ IR(m− k,m− k) such that

T1 = T̃1CD. (6.57)

In light of Corollary 4.4.5 of (Harville, 1997; p.37),

m− k = r(T1) = r(T̃1CD) ≤ r(T̃1C) =≤ r(T̃1) = m− k.

From r(T̃1CD) = m− k = r(T̃1C), it follows that r(D) ≥ m− k in light of Corollary
4.4.5 of (Harville, 1997; p.37). Hence, D ∈ IR(m − k,m − k) is regular. Therefore,
multiplying both sides of (6.57) on the right-hand side by D−1C−1 yields

T1D
−1C−1 = T̃1. (6.58)

Since D is regular,

R(T1D
−1) = R(T1), r(T1D

−1) = r(T1)

in light of Lemma 8.3.2 of (Harville, 1997; p.83). Hence, there is matrix E ∈
IR(m− k,m− k) such that

ET1 = T1D
−1, (6.59)

which is regular since

m− k = r(T1D
−1) = r(ET1) ≤ r(E) ≤ m− k

in light of Lemma 11.3.1 of (Harville, 1997; p.142). Using (6.58) and (6.59),

T̃1Ã1 = T1D
−1C−1CA1 = E(T1A1), T̃1z̃ = T1D

−1C−1Cz = E(T1z),

and

(T̃1K̃
−1T̃ ′1)

−1
= (T1D

−1C−1CK−1C ′C−1′D−1′T ′1)
−1

= (ET1K
−1C ′C ′

−1
T ′1E

′)
−1

= E−1′(T1K
−1T ′1)

−1
E−1.

So the regular matrix E establishes that indeed

(T1A, T1µ, (T1K
−1T ′1)

−1) ∼= (T̃1A, T̃1µ, (T̃1K
−1T̃ ′1)

−1
).
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Furthermore, since D−1C−1 is regular, by the same argument as above, there is a
regular matrix Ẽ ∈ IR(m− k,m− k) such that

T1D
−1C−1 = ẼT1.

Then,
T̃1A2 = T1D

−1C−1A2 = ẼT1A2 = Ẽ0 = 0

shows that T̃1 is also a projection matrix for h to x. ut

In light of the second assertion of Lemma 6.26, a projection matrix P for a particular
representative h ∈ H is also a projection matrix for any h̃ ∈ H(h).

Definition 6.27. The marginalisation of Gaussian hints ↓: H×D → H, (h, x) 7→
h↓x for x ⊆ d(h) is defined up to equivalence by

h↓x ∼= (T1A1, T1µ, (T1K
−1T ′1)

−1) (6.60)

where T1 is any projection matrix for A to x. �

Marginalisation of Gaussian Linear Systems

The marginalisation of Gaussian hints can easily be generalised to Gaussian linear
systems since projection matrices also exist for matrices A which do not have full row
rank (as can be verified by the same argument as for Gaussian hints above without
the assumption of full row rank). Applying a projection matrix P to a Gaussian
linear system (A, z,K) yields the Gaussian linear system

(PA1, P z, (PK−1P ′)−1).

The following lemma shows that different projection matrices lead to equivalent
Gaussian linear systems.

Lemma 6.28. Let p = (A, z,K) be a Gaussian linear system on x, A ∈ IR(m,x),
z ∈ IRm, K ∈ IR(m,m) symmetric and positive definite. Let s ⊆ x and partition

A = (A1, A2),

A1 ∈ IR(m, s), A2 ∈ IR(m,x − s). Let r = r(A), k1 = r(A1), k2 = r(A2) and let
P, P̃ ∈ IR(m− k,m) be projection matrices for p to s, i.e. they are matrices of full
row rank r(P ) = m− k = r(P̃ ) and PA2 = 0 = P̃A2. Then,

r(PA) = r(P̃A) = k − k2.

Further, applying P and P̃ to p and p̃ yields

ps = (PA1, P z, (PK−1P ′)−1)

and
p̃s = (P̃A1, P̃ z, (P̃K−1P̃

′
)
−1

),

respectively. Then, H(ps) = H(p̃s) �
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Proof. Since

PA2 = 0 = P̃A2 = 0 ⇐⇒ A′2P
′ = 0 = A′2P̃

′
,

it follows that
C(P ′), C(P̃ ′) ⊆ N (A′2).

Furthermore, dim(N (A′2)) = m − r(A′2) = m − r(A2) = m − k2 = dim(N (A2)) in
light of Lemma 11.3.1 of (Harville, 1997; p.142). Since

r(P ′) = r(P ) = m− k2 = r(P̃ ) = r(P̃
′
),

it follows that C(P ′) = N (A′2) = C(P̃ ′). Hence, R(P ) = R(P̃ ). Let C ∈ IR(k2,m)
be a basis of R(A2). Then, the rows of

D =
(
P
C

)
and D̃ =

(
P̃
C

)
are linearly independent, so D and D̃ are regular. Since D is regular, r(DA2) =
r(A2) = k2. Since

DA2 =
(

0m−k2,x−s
CA2

)
,

it follows that r(CA2) = r(DA2) = k2. Then, since DA is block-triangular,

DA =
(
PA
CA

)
=
(
PA1 0
CA1 CA2

)
,

and since CA2 has full row rank r(CA2) = k2, it follows that

r(PA1) = r(DA)− r(CA2) = k − k2

in light of Lemma 8.5.3 of (Harville, 1997; p.90). In the same way, it can be proved
that r(P̃A1) = k − k2.
Since R(P ) = R(P̃ ), there is a matrix B ∈ IR(m− k2,m− k2) such that

P̃ = BP.

Then, m − k2 = r(P̃ ) = r(BP ) ≤ r(B) ≤ m − k2 shows that B is regular. Further,
the matrix B establishes

P̃A1 = B(PA1), P̃ z = B(Pz)

and
(P̃K−1P̃

′
)
−1

= ((BP )K−1(BP )′)−1 = B−1′(PK−1P ′)−1
B−1.

Hence, B establishes that ps and p̃s are equivalent Gaussian linear systems in light
of Lemma 6.22, i.e. H(ps) = H(p̃s). ut
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Since applying different projection matrices to a Gaussian linear system yields equiv-
alent Gaussian linear systems, projection of Gaussian linear systems can be defined
up to equivalence by

(A, z,K)↓s ∼= (PA,Pz, (PK−1P ′)−1) (6.61)

where P is any projection matrix to the domain s. Applying this definition to a
Gaussian hint h ∈ H ⊆ L yields a Gaussian hint h↓s ∈ H ⊆ L. Therefore, it is
sound to use the same symbol ↓ also for the marginalisation of general Gaussian
linear systems.

The following lemma shows that projection and inference commute: The hint
obtained from the projected Gaussian linear system is equivalent to the one obtained
by projecting the hint obtained from the original Gaussian linear system. In other
words, the projections of equivalent Gaussian linear systems are equivalent.

Lemma 6.29. Let p = (A, z,K) be a Gaussian linear system on x, A ∈ IR(m,x),
z ∈ IRm, K ∈ IR(m,m) symmetric and positive definite. Let s ⊆ x and partition

A = (A1, A2),

A1 ∈ IR(m, s), A2 ∈ IR(m,x− s). Let r = r(A), k1 = r(A1), k2 = r(A2). Let

• h be the hint inferred from p by an admissible matrix T ,

• h↓s be the projection of h by a projection matrix P ,

• ps be the projection of p by a projection matrix P̃ , and let

• hs be the hint inferred from ps by an admissible matrix T̃ .

Then, hs is equivalent to the projection of h to s,

hs ∼= h↓s. �

The situation of this lemma is shown in Figure 6.5. Inferences are shown by a
horizontal arrow labelled by an admissible matrix, projections by a vertical arrow
labelled by the projection matrix used.

hs
∼
= h

↓s

p h

ps

T

T̃

PP̃

Figure 6.5: Projection and inference of Gaussian linear systems commute.
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Proof. On the one hand, let T ∈ IR(m,m) be an admissible matrix for p,

T =
(
T1

T2

)
,

T1 ∈ IR(k,m), T2 ∈ IR(m− k,m), T2A = 0 and

B = T−1 = (B1, B2),

B1 ∈ IR(m, k), B2 ∈ IR(m,m−k). This leads to the Gaussian hint h = (Ah, zh,Kh),

Ah = T1A, zh = T1z + (B′
1KB1)

−1(B′
1KB2)T2z, Kh = B′

1KB1.

Further, let P ∈ IR(k − k2, k) be a projection matrix such that

PT1A2 = 0 (6.62)

and r(T1A2) = r(A2) = k2. Then, the projection of h to s is hs = (As, zs,Ks) where

As = PT1A1, zs = P (T1z + (B′
1KB1)

−1(B′
1KB2)T2z), Ks = (P (B′

1KB1)
−1
P ′)

−1

On the other hand, let P̃ ∈ IR(m− k2,m) be a projection matrix for p to s, i.e.
of rank r(P ) = m− k2 such that P̃A2 = 0. Define

ps = (P̃A1, P̃ z, (P̃K−1P̃ ′)
−1

).

Further, let hs = (Ãs, z̃s, K̃s) be the hint inferred from ps,

Ãs = T̃1P̃A1, K̃s = (B̃′
1(P̃K

−1P̃ ′)
−1
B̃1),

z̃s = T̃1P̃ z +
(
B̃′

1(P̃K
−1P̃ ′)

−1
B̃1

)−1
(B̃′

1(P̃K
−1P̃ ′)

−1
B̃2)T̃2P̃ z)

under an admissible matrix T̃ ∈ IR(m− k2,m− k2),

T̃ =
(
T̃1

T̃2

)
,

T̃1 ∈ IR(k − k2,m− k2), T̃2 ∈ IR(m− k,m− k2), T̃2A = 0 and

B̃ = T̃−1 = (B̃1, B̃2),

B̃1 ∈ IR(m− k2, k − k2), B̃2 ∈ IR(m− k2,m− k).
It is now going to be shown that there are regular matrices R1 ∈ IR(k − k2, k − k2),
R2 ∈ IR(k2, k2) and R3 ∈ IR(m− k,m− k) such that

(T̃1P̃ ) = R1(PT1), P̃2 = R2(P2T1), T̃2P̃ = R3T2. (6.63)

Let P2 ∈ IR(k2, k) and P̃2 ∈ IR(k2,m) be matrices such that(
P
P2

)
∈ IR(k, k)
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and (
P̃

P̃2

)
∈ IR(m,m)

are regular. Further, define C, C̃ ∈ IR(m,m), C1, C̃1 ∈ IR(k − k2,m), C2, C̃2 ∈
IR(k2,m) and C3, C̃3 ∈ IR(m− k,m) by

C =

C1

C2

C3

 =

PT1

P2T1

T2

 , C̃ =

C̃1

C̃2

C̃3

 =

T̃1P̃

P̃2

T̃2P̃

 ,

which are both regular since they are the product of regular matrices,PT1

P2T1

T2

 =

P
P2

Ik

(T1

T2

)

and T̃1P̃

P̃2

T̃2P̃

 =

Ik−k2 Ik−2

Im−k

T̃1

T̃2

Ik

( P̃
P̃2

)
.

Then, using (6.62),

CA =

PT1

P2T1

T2

 (A1, A2) =

PT1A1 0
P2T1A1 P2T1A2

0 0

 =

C1A1 0
C2A1 C2A2

0 0


and

C̃A =

T̃1P̃

P̃2

T̃2P̃

 (A1, A2) =

T̃1P̃A1 0
P̃2A1 P̃2A2

0 0

 =

C̃1A1 0
C̃2A1 C̃2A2

0 0

 .

Observe that
A′C ′3 = 0 = A′C̃ ′3,

hence C(C3), C(C̃ ′3) ⊆ N (A′). Then, since

r(C ′3) = r(C3) = m− k = r(C̃3) = r(C̃ ′3)

and since
dim(N (A′)) = m− r(A) = m− k

in light of Lemma 11.3.1 of (Harville, 1997; p.142), it follows that

C(C ′3) = N (A′) = C(C̃ ′3).

Hence,

R(C3) = R(C̃3). (6.64)

Similarly,
A′2(C

′
1, C

′
3) = 0 = A′2(C̃

′
1, C̃

′
3)



6.4. Marginalisation of Gaussian Hints 139

implies that
C(
(
C ′1, C

′
3

)
), C(

(
C̃ ′1, C̃

′
3

)
) ⊆ N (A′2).

Then, since C and C̃ are regular,

r(
(
C ′1, C

′
3

)
) = m− k2 = r(

(
C̃ ′1, C̃

′
3

)
)

and
dim(N (A′2)) = m− r(A′2) = m− r(A2) = m− k2

in light of Lemma 11.3.1 of (Harville, 1997; p.142). Hence,

C(
(
C ′1, C

′
3

)
) = N (A′2) = C(

(
C̃ ′1, C̃

′
3

)
),

and thus

R(
(
C1

C3

)
) = R(

(
C̃1

C̃3

)
). (6.65)

Since the rows of C and C̃ are linearly independent and since they have the same
row space R(C) = IR(1,m) = R(C̃), it follows from equations (6.64) and (6.65) that

R(C1) = R(C̃1). (6.66)

Similarly, since the rows of C and C̃ are linearly independent, it follows from equa-
tion (6.65) that

R(C2) = R(C̃2). (6.67)

Hence, in light of (6.66), the rows of C̃1 are linear combinations of the rows of C1.
Therefore, there is a matrix R1 ∈ IR(k − k2, k − k2) such that

T̃1P̃ = C̃1 = R1C1 = R1(PT1)

which is regular since k − k2 = r(C̃1) = r(R1C1) ≤ r(R1) ≤ k − k2. Hence, there
is indeed such a regular matrix R1 as claimed. The existence of R2 and R3 can be
derived in the same way from (6.67) and (6.64), respectively. This shows that the
matrices R1, R2, R3 satisfying (6.63) exist.
Finally, it is going to be shown that R1 establishes the equivalence hs ∼= h↓s. Observe
that(

B′
1KB1 B′

1KB2

B′
2KB1 B′

2KB2

)
= B′KB = (TK−1T ′)−1 =

(
T1K

−1T ′1 T1K
−1T ′2

T2K
−1T ′1 T2K

−1T ′2

)−1

(6.68)

and(
B̃′

1(P̃K
−1P̃ ′)

−1
B̃1 B̃′

1(P̃K
−1P̃ ′)

−1
B̃2

B̃′
2(P̃K

−1P̃ ′)
−1
B̃1 B̃′

2(P̃K
−1P̃ ′)

−1
B̃2

)
=
(
T̃1(P̃K−1P̃ ′)T̃ ′1 T̃1(P̃K−1P̃ ′)T̃ ′2
T̃2(P̃K−1P̃ ′)T̃ ′1 T̃2(P̃K−1P̃ ′)T̃ ′2

)−1

.

(6.69)
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Firstly, using (6.63), T̃1P̃A1 = R1(PT1A1), i.e. the design matrices of hs and h↓s

are related by R1. Secondly,

B̃′
1(P̃K

−1P̃ ′)
−1
B̃1

(1)
=(T̃1P̃K

−1P̃ ′T̃ ′1 − T̃1P̃K
−1P̃ ′T̃ ′2(T̃2P̃K

−1P̃ ′T̃ ′2)
−1
T̃2P̃K

−1P̃ ′T̃ ′1)
−1

(2)
=(R1PT1K

−1T ′1P
′R′1 −R1PT1K

−1T ′2R
′
3(R3T2K

−1T ′2R
′
3)
−1
R3T2K

−1T ′1P
′R′1)

−1

(3)
=(R1P

(
T1K

−1T ′1 − T1K
−1T ′2R

′
3R

′
3
−1(T2K

−1T ′2)
−1
R3

−1R3T2K
−1T ′1

)
P ′R′1)

−1

(4)
=(R1P (T1K

−1T ′1 − T1K
−1T ′2(T2K

−1T ′2)
−1
T2K

−1T ′1)P
′R′1)

−1

(5)
=R1

−1′(P (B′
1KB1)

−1
P ′)

−1
R1

−1,

applying (A.3) to (6.69) in (1), using (6.63) in (2), and applying (A.3) to (6.68) in
(5). This shows that the concentrations matrices are also related by R1. Thirdly,

T̃1P̃ z +
(
B̃′

1(P̃K
−1P̃ ′)

−1
B̃1

)−1 (
B̃′

1(P̃K
−1P̃ ′)

−1
B̃2

)
T̃2P̃ z

(1)
= T̃1P̃ z − T̃1P̃K

−1P̃ ′T̃ ′2(T̃2P̃K
−1P̃ ′T̃ ′2)

−1
T̃2P̃ z

(2)
=R1PT1z −R1PT1K

−1T ′1P
′R′1(R3T2K

−1T ′2R
′
3)
−1
R3T2z

(3)
=R1PT1z −R1PT1K

−1T ′2R
′
3R

′
3
−1(T2K

−1T ′2)
−1
R3

−1R3T2z

(4)
=R1P (T1z − (T1K

−1T ′2(T2K
−1T ′2)

−1)T2z)
(5)
=R1P (T1z + (B′

1KB1)
−1(B′

1KB2)T2z),

using (B.13) in (1) [withK11 = (B̃′
1(P̃K

−1P̃ ′)
−1
B̃1) andK12 = (B̃′

1(P̃K
−1P̃ ′)

−1
B̃2)],

then (6.63) in (2), and again (B.13) in (5) [with Σ12 = T1K
−1T ′2 and Σ22 =

T2K
−1T ′2]. This shows that the mean vectors are related by R1, as well. Hence,

indeed hs ∼= h↓s. ut

6.5 Combination of Gaussian Hints

Dempster’s Rule may be applied to Gaussian hints h1 = (A1, z1,K1) and h2 =
(A2, z2,K2) (of possibly different domains x and y) where A1 ∈ IR(m1, x), A2 ∈
IR(m2, y). Using the convention IRx × IRy = IRx∪y (if x ∩ y = ∅), this leads to focal
sets

Γ (ω1, ω2) = (Γ1(ω1)× IRy−x) ∩ (Γ2(ω2)× IRx−y) (6.70)

= {u ∈ IRx∪y : A1u↓x + ω1 = z1, A2u↓y + ω2 = z2} (6.71)
= {u ∈ IRx∪y : Au + ω = z} (6.72)

where

A =
(
A1

↓x−y A1
↓x∩y 0

0 A2
↓x∩y A2

↓y−x

)
, z =

(
z1
z2

)
, (6.73)
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and the disturbances ω =
(
ω1

ω2

)
∈ IRm1+m2 have density φ0,K where

K =
(
K1 0
0 K2

)
. (6.74)

This defines the operation of joining Gaussian linear systems ⊕ : L× L→ L by

(A1, z1,K1)⊕ (A2, z2,K2) = (A, z,K). (6.75)

The following lemma shows that the Gaussian hint inferred from a joint Gaussian
linear system can also be obtained from the joint system of the hints from the original
Gaussian linear systems. The situation is shown in Figure 6.6.

p1, p2

H(p1),H(p2)

H(p1 ⊕ p2)

p1 ⊕ p2

H(p1) ⊕H(p2)

= H(H(p1) ⊕H(p2))

⊕

H

⊕

H

H

Figure 6.6: Joining Gaussian linear systems and their Gaussian hints

Lemma 6.30. Let p1, p2 ∈ L be Gaussian linear systems. Then,

H(p1 ⊕ p2) = H
(
H(p1)⊕H(p2)

)
. (6.76)

�

Proof. First, two simplifying assumptions can be made.

• Let p1 = (A1, z1,K1) and p2 = (A2, z2,K2) of domains x1 and x2, A1 ∈
IR(m1, x1), A2 ∈ IR(m2, x2), z1 ∈ IRm1 , z2 ∈ IRm2 , K1 ∈ IR(m1,m1) and
K2 ∈ IR(m2,m2). Then extend the design matrices vacuously by defining
Ã1 = (A1, 0m1,x2−x1) ∈ IR(m1, x) and Ã2 = (A2, 0m2,x1−x2) ∈ IR(m2, x2).
Further, let p̃1 = (Ã1, z1,K1) and p̃2 = (Ã2, z2,K2). It is readily verified that
p1 ⊕ p2 = p̃1 ⊕ p̃2 and H(p1) ⊕ H(p2) = H(p̃1) ⊕ H(p̃2). Therefore, assume
without loss of generality that x = x1 = x2.

• The transformation by an admissible matrices T1 and T2 yields equivalent
systems p̃1 = (Ã1, z1,K1) and p̃2 = (Ã2, z2,K2). Then, the matrix T = ( T1 0

0 T2
)

establishes the equivalence of p1⊕p2 and p̃1⊕ p̃2. Therefore, it can be assumed
without loss of generality that A1 = (A11

0 ) and A2 = (A21
0 ) such that A11 and

A21 have full row rank.

Further, in order to simplify the proof, variance-covariance matrices will be used
instead of concentration matrices. Therefore, define Σ1 = K1

−1 and Σ2 = K2
−1.

Consider first the right-hand side of equation (6.76). According to the rank of A1
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and A2, partition z1 = ( z11z12 ), z2 = ( z21z22 ), Σ1 = (Σ11 Σ12
Σ21 Σ22

) and Σ2 = (Σ33 Σ34
Σ43 Σ44

). Then,
using Theorem 6.12,

h1 = (A11, z11 +Σ12Σ22
−1z12, Σ̂11), Σ̂11 = Σ11 −Σ12Σ22

−1Σ21, and

h2 = (A21, z21 +Σ34Σ44
−1z22, Σ̂22), Σ̂22 = Σ33 −Σ34Σ44

−1Σ43

are Gaussian hints inferred from p1 and p2, respectively. Let T = ( T11 T12
T21 T22

) be an
admissible matrix for the joint system h1 ⊕ h2. Applying T yields the equivalent
system (Ā, z̄, Σ̄) ∼= h1 ⊕ h2

Ā =
(
T11A11 + T12A21

0

)
, z̄ =

(
T11(z11 +Σ12Σ22

−1z12) + T12(z21 +Σ34Σ44
−1z22)

T21(z11 +Σ12Σ22
−1z12) + T22(z21 +Σ34Σ44

−1z22)

)
Σ̄ =

(
T11Σ̂11T

′
11 + T12Σ̂22T

′
12 T11Σ̂11T

′
21 + T12Σ̂22T

′
22

T21Σ̂11T
′
11 + T22Σ̂22T

′
12 T21Σ̂11T

′
21 + T22Σ̂22T

′
22.

)
On the other hand, consider now the left-hand side of equation (6.76). The matrix

T̃ =


T11 0 T12 0
T21 0 T22 0
0 0 I 0
0 0 0 I

 .

is an admissible matrix for the joint system p1 ⊕ p2. Indeed, applying T̃ yields the
equivalent system (Ã, z̃, Σ̃) given by

Ã =


T11A11 + T12A21

0
0
0

 , z̃ =


T11z11 + T12z21
T21z11 + T22z21

z12
z22



Σ̃ =


T11Σ11T

′
11 + T12Σ33T

′
12 T11Σ11T

′
21 + T12Σ33T

′
22 T11Σ12 T12Σ34

T21Σ11T
′
11 + T22Σ33T

′
22 T21Σ11T

′
21 + T22Σ33T

′
22 T21Σ12 T22Σ34

Σ21T
′
11 Σ21T

′
21 Σ22 0

Σ43T
′
12 Σ43T

′
22 0 Σ44


In order to prove the lemma, it suffices to show that (Ā, z̄, Σ̄) and (Ã, z̃, Σ̃) induce
the same Gaussian hint. Since the assumption-based inference in these two systems
consists in conditioning to the admissible assumptions and since conditioning can be
done step-wise, it suffices to show that partial conditioning to z12 = 0 and z22 = 0
in (Ã, z̃, Σ̃) produces (Ā, z̄, Σ̄). Indeed, using Lemma B.1 for conditioning, the first
parts of the observation are equal,

T11z11 + T12z21 − T11Σ12Σ22
−1z12 − T12Σ34Σ44

−1z22

=T11(z11 +Σ12Σ22
−1z12) + T12(z21 +Σ34Σ44

−1z22),

and the first diagonal block of the variance-covariance matrices are equal,

T11Σ11T
′
11 + T12Σ33T

′
12 − T11Σ12Σ22

−1Σ21T
′
11 − T12Σ34Σ44

−1Σ43T
′
12

=T11(Σ11 −Σ12Σ22
−1Σ21) + T12(Σ33 −Σ34Σ44

−1Σ43)

=T11Σ̂11T
′
11 + T12Σ̂22T

′
12.
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The equality of the other components of the observation vector and the variance-
covariance matrix can be proved in the same way. ut

Corollary 6.31. Let p1, p̃1 and p2, p̃2 be equivalent Gaussian linear systems, re-
spectively, i.e.

H(p1) = H(p̃1), H(p2) = H(p̃2).

Then, the joint Gaussian linear systems p1 ⊕ p2 and p̃1 ⊕ p̃2 induce the equivalent
Gaussian hints, i.e.

H(p1 ⊕ p2) = H(p̃1 ⊕ p̃2). �

Proof. Let h1, h2, h̃1, h̃2 be Gaussian hints in H(p1), H(p2), H(p̃1), and H(p̃2),
respectively. Let B1 and B2 be the regular matrices that establish the equivalences
h1
∼= h̃1 and h2

∼= h̃2. Then, in light of Lemma 6.22, the matrix B = (B1
B2

)
establishes the equivalence h1 ⊕ h2

∼= h̃1 ⊕ h̃2, i.e. H(p1)⊕H(p2) = H(p̃1)⊕H(p̃2).
Therefore, using Lemma 6.30,

H(p1 ⊕ p2) = H(h1 ⊕ h2) = H(h̃1 ⊕ h̃2) = H(p̃1 ⊕ p̃2). ut

In light of Corollary 6.31, the combination of Gaussian hints can be defined up to
equivalence.

Definition 6.32. The combination ⊗ : H×H → H, (h1, h2) 7→ h1⊗h2 of Gaussian
hints can be defined up to equivalence. by the Gaussian hint inferred from the joint
Gaussian linear system of h1 and h2, i.e.

h1 ⊗ h2 ∈ H(h1 ⊕ h2). (6.77)

or, equivalently,
h1 ⊗ h2

∼= h1 ⊕ h2, (6.78)

or also
H(h1 ⊗ h2) = H(h1 ⊕ h2). (6.79)

�

As the joint design matrix of two Gaussian hints h1, h2 ∈ H ⊆ L is need not have
full row rank, the two operations ⊕ on Gaussian linear systems and ⊗ on Gaussian
hints only have to be distinguished. If h1 ⊕ h2 is a Gaussian hint, then of course
H 3 h1 ⊗ h2

∼= h1 ⊕ h2 ∈ L.

6.6 Valuation Algebra of Gaussian Hints

The following to observations summarise the operations defined on Gaussian hints.

• Equivalent hints are related by a regular matrix. The regular matrices of the
same dimension form a group.
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• Combination and marginalisation have been defined only up to equivalence,
i.e. there is a family of combination and marginalisation operators compatible
with ∼= .

Of course, it would be possible to fix a particular algorithm of the operations and
then to derive a quotient valuation algebra as in Section 2.4. However, since equiv-
alent Gaussian hints represent the same information, the choice of a canonical rep-
resentation and of a canonical algorithm is in general not important. However, in
order to keep the notation simple, representatives will be used for their equivalence
classes; the abbreviations of Table 6.1 will be used.

representative for
H H/ ∼=
h H(h)
h1 =id h2 h1 = h2

h1 = h2 h1
∼= h2

h1 ⊗ h2 = h h1 ⊗ h2
∼= h

h↓s = hs h↓s ∼= hs

Table 6.1: Abbreviations for the operations on Gaussian hints defined only up to equiva-
lence

The situation of Gaussian hints can be generalised as follows: Assume the ele-
ments of the equivalence classes [φ]θ in Φ are related by a group G[φ]θ of transfor-
mations, i.e.

ψ ∈ [φ]θ ⇐⇒ ∃g ∈ G[φ]θ s.t. ψ = g(φ).

Further, assume that a family of combination and marginalisation operators is de-
fined which are all compatible with θ. Without defining combination and marginal-
isation in Φ exactly, this results in a valuation algebra (Φ/θ,D, d,⊗,M, ↓) directly.
Such a (well-defined) valuation algebra will also be called a quotient valuation alge-
bra although the underlying valuation algebra is not specified. Here, the simplified
notation of Table 2.1 cannot be used. Instead, it is often more convenient to work
on representatives of the equivalence classes without naming the congruence. The
abbreviations of Table 6.2 will be used for both kinds of a quotient valuation algebra
(i.e. induced or not).

abbreviation for
(Φ,D, d,⊗,M, ↓, θ) (Φ/θ,D, d,⊗,M, ↓)
φ =id ψ φ = ψ
φ = ψ [φ]θ = [ψ]θ
d(φ) d([φ]θ)
φ⊗ ψ [φ]θ ⊗ [ψ]θ
M(φ) M([φ]θ)
ψ = φ↓s ψ ∈ [φ]θ

↓s

Table 6.2: Abbreviations for quotient valuation algebras working on representatives
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In order to apply the local computation algorithms of Chapter 4 to Gaussian
hints, it will now be shown that Gaussian hints with the operations defined on them
form a valuation algebra.

Theorem 6.33. Gaussian hints (H, D, d,⊗, ↓) form a stable valuation algebra. �

Proof. It has to be verified that the operations satisfy the axioms (A1)-(A7) im-
posed on a valuation algebra.

(A1) Combination of Gaussian hints h1, h2, h3 ∈ H is associative since

H((h1 ⊗ h2)⊕ h3) = H((h1 ⊕ h2)⊕ (h3))
= H((h1)⊕ (h2 ⊕ h3)) = H(h1 ⊕ (h2 ⊗ h3))

in light of Lemma 6.30.
In order to prove that the combination of Gaussian hints is commutative, let
h1 = (A1, z1,K1) and h2 = (A2, z2,K2) be Gaussian hints with A1 ∈ IR(m1, x),
A2 ∈ IR(m2, y). Define

(A12, z12,K12) = h1 ⊕ h2, (A21, z21,K21) = h2 ⊕ h1.

Define

B =
(

0 Im2

Im1 0

)
,

which is regular since its inverse is

B−1 =
(

0 Im1

Im2 0

)
.

Observe that

A21 = BA12, z21 = BA12, K21B
−1′K12B

−1,

i.e. the equivalence of h1 ⊕ h2 and h2 ⊕ h1 is established by B. Hence, using
Lemma 6.22, h1 ⊗ h2 = H(h1 ⊕ h2) = H(h2 ⊕ h1) = h2 ⊗ h1. This shows that
combination is also commutative.

(A2) d(h1 ⊗ h2) = d(H(h1 ⊕ h2)) = d(h1 ⊕ h2) = d(h1) ∪ d(h2).

(A3) The marginalisation axiom follows by definition (6.60) of marginalisation.

(A4) Let h = (A, z,K) ∈ H be a Gaussian hint with A ∈ IR(m,x), z ∈ IRm,
K ∈ IR(m,m) symmetric and positive definite. Further, let s ⊆ t ⊆ x and
let Tt and Ts be projection matrices for h to t and for h↓t to s, respectively.
Then, in light of the definition of marginalisation (6.60), it suffices to prove
that T = TsTt is a projection matrix for h to s. Partition

A = (A1, A2, A3)

such that A1 ∈ IR(m, s), A2 ∈ IR(m, t− s), A3 ∈ IR(m,x− t). Then,

h↓t = ((TtA1, TtA2), Ttµ, (TtK−1T ′t)
−1),
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and, using the transitivity axiom,

h↓s = h↓t
↓s

= (TsTtA1, TsTtµ, (TsTtK−1T ′tT
′
s)
−1),

Observe that
TtA3 = 0

and
Ts(TtA2) = 0.

Hence, on the one hand,

TsTt (A2, A3) = Ts (TtA2, 0) = (Ts(TtA2), Ts0) = 0.

On the other hand, Tt having full row rank implies that r(T ) = r(TsTt) = r(Ts)
in light of Lemma 8.3.2 of (Harville, 1997; p.83), hence T has full row rank.
It holds that

• Tt ∈ IR(m− r(A3),m),

• Ts ∈ IR(m− r(A3)− r(TtA2),m− r(A3)), and

• r(A2, A3) = r(A3) + r(TtA2).

Thus,
r(T ) = r(Ts) = m− r(A3)− r(TtA2) = m− r(A2, A3).

Therefore, T = TsTt is indeed a projection matrix for h to s.

(A5) Let h1 = (A1, z1,K1) and h2 = (A2, z2,K2) be Gaussian hints, A1 ∈ IR(m1, x),
z1 ∈ IRm1 , A2 ∈ IR(m2, y), z2 ∈ IRm2 , K1 ∈ IR(m1,m1) and K2 ∈ IR(m2,m2)
both symmetric positive definite. Let (A, z,K) = h1⊕h2 be the joint Gaussian
linear system and let s be a domain such that x ⊆ s ⊆ x ∪ y.
Then, let P ∈ IR(m2 − k,m2) be a projection matrix for A2 to s ∩ y, i.e.
PA22 = 0 and r(A22) = k for

A2 = (A21, A22),

A21 ∈ IR(m2, y ∩ s), A22 ∈ IR(m2, y − s). Then,

h2
↓s∩y = (PA21, P z2, (PK−1P ′)−1).

Furthermore, let

g = (
(

A1
↑s

PA21
⇒s

)
,

(
z1
Pz2

)
,

(
K1

(PK2
−1P ′)−1

)
).

On the one hand,
h1 ⊕ h2

↓s∩y = g. (6.80)

On the other hand, define P̃ ∈ IR(m1 +m2 − k,m1 +m2),

P̃ =
(
Im1

P

)
.
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It is now shown that P̃ is a projection matrix for the Gaussian linear system
h1 ⊕ h2 to s. Indeed, on the on hand,

P̃

(
A1

↑s 0
PA21

⇒s A22

)
=
(

A1
↑s 0

PA21
⇒s 0

)
. (6.81)

On the other hand, the block-diagonal matrix P̃ has rank

r(P̃ ) = r(Im1) + r(P ) = m1 + (m2 − k),

where

r(
(

0m1,y−s
A22

)
) = r(A22) = k.

Hence, P̃ is indeed a projection matrix for h1 ⊕ h2 to s. It then follows from
equations (6.80) and (6.81) that

h1 ⊕ h2
↓s∩y = g = (h1 ⊕ h2)

↓s.

Hence, in light of Lemma 6.29,

(h1 ⊗ h2)
↓s = h1 ⊗ h2

↓s∩y.

(A6) The domain axiom is also verified by the definition of marginalisation.

(A7) Finally, e = (�, �, �) is an identity element since joining e with any Gaussian
hint h leads to the Gaussian linear system h⊕ e = h = e⊕ h. Hence, h⊗ e =
h = e⊗ h. ut

6.7 Precise Gaussian Hints and Gaussian Potentials

It is now shown that Gaussian hints are more general than Gaussian potentials:
Gaussian potentials can be represented by precise Gaussian hints and the operations
of valuation algebras in both representations are compatible. It is readily verified
that the focal sets of a Gaussian hint are all singletons if and only if the design matrix
is regular. Therefore, a Gaussian hint (A, z,K) is called precise if A is regular. Define
H0 to be the set of all precise Gaussian hints,

H0 = {(A, z,K) ∈ H : A regular}. (6.82)

This definition is sound since h1 ∈ H0 and h1 = h2 imply that h2 ∈ H0.
The following lemma shows that precise Gaussian hints have a canonical repre-

sentation.

Lemma 6.34. Let h1 = (A1, z1,K1), h2 = (A2, z2,K2) be precise Gaussian hints on
x. Let

h′1 = (Ix, A1
−1z1, A

′
1K1A1) and h′2 = (Ix, A2

−1z1, A
′
2K2A2).
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Then,

h1 = h′1, h2 = h′2 (6.83)

and

h1 = h2 ⇐⇒ h′1 = h′2. (6.84)
�

Proof. Since h1, h2 are precise, it follows that A1, A2 are regular, thus invertible,
A1

−1, A2
−1 ∈ IR(x,m). Hence, the equivalence of h1 and h′1 is established by A1

−1,
and, similarly, the equivalence of h2 and h′2 by A2

−1. Thus, this proves the first
claim. The second claim holds since Ix is the only matrix that could establish
h′1 = h′2 (⇐⇒ h1 = h′1 = h′2 = h2). ut

This relates precise Gaussian hints to Gaussian potentials by the mapping p : H → G
defined by

p(A, z,K) = (A−1z,A′KA). (6.85)

The mapping p : H0 → G, (A, z,K) 7→ p(A, z,K) is well defined in light of
Lemma 6.34. The following theorem is a reformulation of Lemma 6.34 in terms
of the mapping p; it shows that the equivalence classes of precise Gaussian hints
mapping to the same Gaussian potential coincide with the classes of equivalent pre-
cise hints.

Theorem 6.35. For h1, h2 ∈ H0

h1 = h2 ⇐⇒ p(h1) = p(h2). (6.86)
�

Proof. The “if” part follows from Lemma 6.34. Let h1 = (A1, z1,K1) and h2 =
(A2, z2,K2). Let (µ,K) = p(h1) = p(h2) and

h0 = (Im,x, µ,K)

for m = |x|. Then, the equivalence h1 = h0 is established by A1
−1 and the equiva-

lence h0 = h2 by A2, hence h1 = h2 shows the “only if” part. ut

Furthermore, p is compatible with the operations of valuation algebras; more for-
mally, it is now shown that p is a surjective valuation algebra homomorphism, i.e.
that p is

1. surjective: for every φ ∈ G there is a h ∈ H0 such that p(h) = φ,

2. compatible with combination: p(h1 ⊗ h2) = p(h1)⊗ p(h2) for h1, h2 ∈ H0, and

3. compatible with marginalisation: p(h↓s) = p(h)↓s for h ∈ H0, s ⊆ d(h).
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It has to be remarked that these three conditions and surjectivity imply that the
identity element of H0 is mapped to the identity element of G.

Theorem 6.36. p : H0 → G is a surjective valuation algebra homomorphism. �

Proof. For φ = (µ,K) ∈ G, x = d(φ), m = |x|, it holds that

h = (Im,x, Im,xµ, Im,xKIx,m) ∈ H0

and
p(h) = (Ix,mIm,xµ, Ix,mIm,xKIx,mIm,x) = (µ,K) = φ,

hence p is surjective.
Let h1, h2 be precise Gaussian hints on x1, x2 ∈ D and let h′1 and h′2 be their

canonical representations. Let h′1 = (Im1,x, z1,K1) and h′2 = (Im2,x2 , z2,K2) for
m1 = |x1|, m2 = |x2|. Let m = m1 +m2 and x = x1 ∪ x2. Notice that |x1|+ |x2| =
m ≥ |x| = |x1| ∪ |x2|,

|x1 − x2| = m−m2, |x1 ∩ x2| = m1 +m2 −m, |x2 − x1| = m−m1

and
m1 +m2 = (m−m2) + 2 · (m1 +m2 −m) + (m−m1).

Define n = |x| = |x1 ∪ x2|,

l1 = |x1 − x2|, l2 = |x2 − x1|, and l12 = |x1 ∩ x2|.

Partition

z1 =
(
z1.1
z1.2

)
, z2 =

(
z2.1
z2.2

)
such that z1.1 ∈ IRl1 , z1.2, z2.1 ∈ IRl12 , z2.2 ∈ IRl2 , and

K1 =
(
K1.11 K1.12

K1.21 K1.22

)
, K2 =

(
K2.11 K2.12

K2.21 K2.22

)
such that K1.11 ∈ IR(l1, l1), K1.12 ∈ IR(l1, l12), K1.21 ∈ IR(l12, l1), K1.22 ∈ IR(l12, l12),
K2.11 ∈ IR(l12, l12), K2.12 ∈ IR(l12, l2), K2.21 ∈ IR(l2, l12) and K2.22 ∈ IR(l2, l2).
Then, h′1 ⊗ h′2 is the hint inferred from the Gaussian linear system (A, z,K) where
A ∈ IR(m1 +m2, x), z ∈ IR(m1 +m2) and K ∈ IR(m1 +m2,m1 +m2) are given by

A =


Il1,x1−x2 0l1,x1∩x2 0l1,x2−x1

0l12,x1−x2 Il12,x1∩x2 0l12,x2−x1

0l12,x1−x2 Il12,x1∩x2 0l12,x2−x1

0l2,x1−x2 0l2,x1∩x2 Il2,x2−x1

 ,

z =


z1.1
z1.2
z2.1
z2.2
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and

K =


K1.11 K1.12

K1.21 K1.22
0m1,m2

0m2,m1

K2.11 K2.12

K2.21 K2.22

 .

Then, in light of Theorem 6.23,

h′1 ⊗ h′2 = (In,x, (A′KA)−1
A′Kz,A′KA),

where

A′KA =

K1.11 K1.12 0
K1.21 K1.22 +K2.11 K2.12

0 K2.21 K2.22

 .

and

A′Kz =

 K1.11z1.1 +K1.12z1.2
K1.21z1.1 +K1.22z1.2 +K2.11z2.1 +K2.12z2.2

K2.21z2.1 +K2.22z2.2


Hence,

p(h′1 ⊗ h′2) = (Ix,n(A′KA)−1
A′Kz, Ix,nA

′KAIn,x).

On the other hand,

p(h′1) = (Ix1,m1z1, Ix1,m1K1Im1,x1),
p(h′2) = (Ix2,m2z2, Ix2,m2K2Im2,x2).

Define (µ̃, K̃) = p(h′1)⊗ p(h′2), where

K̃ = (Ix1,m1K1Im1,x1)
↑x + (Ix2,m2K2Im2,x2)

↑x

and

µ̃ = K̃−1
(
(Ix1,m1K1Im1,x1)

↑x(Im1,x1z1)
↑x + (Ix2,m2K2Im2,x2)

↑x(Im2,x2z2)
↑x
)

= K̃−1
(
(Ix1,m1K1z1)

↑x + (Ix2,m2K2z2)
↑x
)
.

Then, observing that A′KA = K̃ and (A′KA)−1A′Kz = K̃A′Kz = µ̃, it follows
that

p(h′1 ⊗ h′2) = p(h′1)⊗ p(h′2).

Since h1 = h′1 and h2 = h′2 and thus h1 ⊗ h2 = h′1 ⊗ h′2, it follows in light of
Lemma 6.34 that

p(h1) = p(h′1), p(h2) = p(h′2), p(h1 ⊗ h2) = p(h′1 ⊗ h′2),

hence

p(h1 ⊗ h2) = p(h′1 ⊗ h′2) = p(h′1)⊗ p(h′2) = p(h1)⊗ p(h2),

mailto:@K1.11
mailto:@K1.11
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so p is indeed compatible with combination.
Let h be a precise Gaussian hint on x ∈ D, let h0 = (Ix, µ,K) be its canonical

version, and let s ⊆ x. Since marginalisation of Gaussian hints is compatible with
the equivalence of Gaussian hints and in light of Lemma 6.34,

p(h↓s) = p(h0
↓s) = p(PIx, Pµ, (PK−1P ′)−1)

= p(Is, µ↓s, (K−1↓s)
−1

) = (µ↓s, (K−1↓s)
−1

) = p(h)↓s

where P ∈ IR(s, x),

P (S,X) =
{

0 if S 6= X
1 if S = X,

is an elimination matrix of full row rank |s|. Hence, p is compatible with marginal-
isation. ut

It has been shown that Gaussian potentials can be seen as canonical represen-
tations of precise Gaussian hints and that the operations on them are compatible.
This is summarised in Figure 6.7.

H

H0G p

Figure 6.7: Precise Gaussian hints form a subalgebra of Gaussian hints. Gaussian poten-
tials and precise Gaussian hints form isomorphic valuation algebras.

Chapter Synopsis & Discussion

Assumption-based reasoning and the theory of hints provide a framework for statis-
tical inference (Kohlas and Monney, 1995). Assumption-based inference on Gaus-
sian linear systems leads to Gaussian hints, as discussed in depth by (Monney,
2003; Kohlas and Monney, 2008). An implementation of an alternative inference
algorithm based on singular-value decomposition was developed in (Eichenberger,
2004). Gaussian hints form a valuation algebra, where marginalisation and combi-
nation have a geometric interpretation: Marginalisation essentially corresponds to
the projection and combination to the intersection of focal sets. Gaussian potentials
correspond to precise Gaussian hints.
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7
Gaussian Hints and

Conditional Gaussian Densities

A conditional Gaussian density represents a family of Gaussian densities on the
same set x of variables. These densities are indexed by the values of a set z of
variables (disjoint from x). In this setting, probabilities can only be asserted if the
value of each variable of z is known. However, a conditional Gaussian density in-
duces a Gaussian linear system of regression equations from the tail on the head
variables. The induced system is already a Gaussian hint. Thereby, different con-
ditional Gaussian densities (with different head and tail variables) may be linked to
the same Gaussian hint (up to equivalence).

Chapter Outline

It will be shown that

• every conditional Gaussian density induces a Gaussian hint (in Section 7.1),

• every Gaussian hint represents a conditional Gaussian density (in Section 7.2),
and

• how different conditional Gaussian densities inducing the same Gaussian hint
are related (in Section 7.3).

The pivotal role of Gaussian hints is depicted in Figure 7.1: Different conditional
Gaussian densities φx1|z1 and ψx2|z2 may be related to the same Gaussian hint h, and
a conditional Gaussian density may be represented by different conditional Gaussian
potentials. Further, combination of Gaussian hints and elimination of variables in
Gaussian hints will be carried over to conditional Gaussian densities (in Sections 7.4
and 7.5).
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φ
x1|z1

ψ
x2|z2

(ψ,ψ↓z2)

(φ′,φ′↓z1)

(φ,φ↓z1)

H Gc

.

.

.

.

.

.

.

.

.

CGD

h

Figure 7.1: Different conditional Gaussian densities may be related to the same Gaussian
hint h, and different conditional Gaussian potentials may represent the same conditional

Gaussian density.

7.1 From Conditional Gaussian Densities to Gaussian Hints

As sketched in Section 7.1, a conditional φx|z of a Gaussian density φµ,K induces
the Gaussian hint

H(φx|z) = (A, µ̄, K̄) (7.1)

on x ∪ z where

A =
(
Im,x, Im,xK

↓x−1
K↓x,z

)
, µ̄ = Im,x(µ↓x +K↓x−1

K↓x,zµ↓z) (7.2)

and
K̄ = Im,xK

↓xI ′m,x. (7.3)

It has to be verified that another indexation Jm,x yields the same Gaussian hint
(up to equivalence). Indeed, the indexations Im,x and Jm,x are related by a regular
permutation matrix B ∈ IR(m,m) such that Jm,x = BIm,x. It also holds that

Bµ̄ = BIm,x(µ↓x +K↓x−1
K↓x,zµ↓z) = Jm,x(µ↓x +K↓x−1

K↓x,zµ↓z)

and
BK̄B′ = Im,xK

↓xI ′m,xB
′ = Jm,xK

↓xJ ′m,x = J ′m,x
−1
K↓xJm,x

−1.

Recalling the conventions of Tables 5.1 and 6.1, H is a mapping

H : Gc → H. (7.4)

In order to simplify the notation, the following abbreviation will be used for (7.1):

H(φx|z) =
[(
Ix,K

↓x−1
K↓x,z

)
, µ↓x +K↓x−1

K↓x,zµ↓z,K↓x
]
. (7.5)

Here, the rows of the design matrix are indexed by the head variables of φx|z. Let
φx1|z1 and ψx2|z2 be two conditional Gaussian densities, and let

H(φx1|z1) = (A1, z1,K1), H(ψx2|z2) = (A2, z2,K2),



7.2. From Gaussian Hints to Conditional Gaussian Densities 155

where A1 ∈ IR(x, x ∪ z1) and A2 ∈ IR(x̃, x̃ ∪ z2). In this notation, the two condi-
tional Gaussian densities φx1|z1 and ψx2|z2 induce the same Gaussian hint (up to
equivalence) if and only there is a regular matrix T ∈ IR(x2, x1) such that

A2 = TA1, z2 = Tz1, K2 = T−1′K1T
−1.

In summary, the mappingH associates a Gaussian hint to every conditional Gaussian
density.

7.2 From Gaussian Hints to Conditional Gaussian Densities

The following lemma shows that every Gaussian hint represents at least one condi-
tional Gaussian density. The proof is constructive.

Lemma 7.1. Let h = (A,µ,K) ∈ H be a Gaussian hint on y = d(h), A ∈ IR(m, y).
Then, there is a subset x ⊆ y of cardinality |x| = m and a Gaussian potential φ ∈ G
of domain d(φ) = y such that

H(φx|z) = h

where z = y − x. Let x ⊆ y of cardinality |x| = m such that the submatrix A1 ∈
IR(m,x) of A = (A1, A2) is regular. Then, there is a Gaussian potential φ of domain
d(φ) = y such that

H(φx|z) = h. �

Proof. In light of Theorem 4.4.10 of (Harville, 1997; p.39), there is a subset x ⊆ y
of cardinality |x| = m such that A1 has full column rank m and thus is regular. Let
x be any such subset x ⊆ y of cardinality |x| = m such that A1 has full column
rank m. Then, transformation by the regular matrix T = A1

−1 ∈ IR(x,m) yields an
equivalent representation h = ((Ix, B), µ̃, K̃) where

B = TA↓z, µ̃ = Tµ, K̃ = T−1′KT−1.

Define

µ̄ =
(
µ̃
0z

)
, K̄ =

(
K̃ K̃B

B′K̃ Iz +B′KB

)
.

By Lemma A.7, K̄ is a symmetric and positive definite matrix. Hence, φ = (µ̄, K̄)
is a Gaussian potential such that

H(φx|z) =
(
(Ix, K̃−1K̃B), µ̃+B · 0z, K̃

)
=
(
(Ix, B), µ̃, K̃

)
= h.

This concludes the proof. ut

This lemma not only shows that every Gaussian hint is induced by a conditional
Gaussian density; it also shows that different conditional Gaussian densities (with
different head and tail) may induce the same Gaussian hint: Whenever the submatrix
corresponding to variables x ⊆ d(h) is regular, there is a conditional Gaussian
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density with head x inducing the Gaussian hint. The lemma also shows that, if
the design matrix is regular, the conditional Gaussian potential constructed in the
proof has empty tail and thus corresponds to a non-conditional Gaussian density.
The following very simple example illustrates the construction given in the proof.

Example 7.2. Let a Gaussian hint h on the variables X1, X2 be given by A =(
1 1

)
, µ = (1) and K = (1). Let x1 and x2 be the singleton sets consisting of the

corresponding variable only. Construct the Gaussian potential φ = (µ̄, K̄)

µ̄ =
(

1
0

)
, K̄ =

(
1 1
1 2

)
.

Then, the conditional of φ for x1 given x2 induces h since H(φx1|x2
) = h. Similarly,

a Gaussian potential φ′ could be constructed such that H(φ′x2|x1
) = h. �

In summary, different conditional Gaussian densities (represented by a conditional
Gaussian potential) may be related to the same Gaussian hint.

7.3 CGDs Related to the Same Gaussian Hint

Since a conditional Gaussian density φx1|z1 induces the Gaussian hint H(φx1|z1),
the sets of conditional Gaussian densities related to the same Gaussian hint form
equivalence classes of the equivalence relation ∼= defined by

φx1|z1
∼= ψx2|z2 ⇐⇒ H(φx1|z1) = H(ψx2|z2). (7.6)

It is now shown how the equivalence relation ∼= in conditional Gaussian densities
induced by Gaussian hints can be defined solely in terms of conditional Gaussian
densities without reference to Gaussian hints.

Lemma 7.3. Let
φ = (µ1,K1), ψ = (µ2,K2)

be Gaussian potentials such that

H(φx1|z1) = H(ψx2|z2).

Then, for all u ∈ IRx1∪z1 = IRx2∪z2

φx1|z1(u
↓x1 |u↓z1) = c · ψx2|z2(u

↓x2 |u↓z2)

for some constant c > 0 not depending on u. �

Proof. By definition,

H(φx1|z1) =
(
A1, A1µ1,K1

↓x1
)

and
H(ψx2|z2) =

(
A2, A2µ2,K2

↓x2
)
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where
A1 =

(
Ix1 ,K1

↓x1
−1
K1

↓x1,z1

)
, A2 =

(
Ix2 ,K2

↓x2
−1
K2

↓x2,z2

)
.

Furthermore, H(φx1|z1) = H(ψx2|z2) implies that there is a regular matrix T ∈
IR(x2, x1) such that

A2 = TA1, A2µ2 = TA1µ1

and
K2

↓x2 = T−1′K1
↓x1T−1.

Then, for u ∈ IRx1∪z1 ,

φx1|z1(u
↓x1 |u↓z1) = φ0,K1

↓x1 (A1µ1 −A1u)

= φ0,K1
↓x1 (T

−1T (A1µ1 −A1u))

=

√
det(K1

↓x1)
(2π)m

e−
1
2
(TA1(µ1−u))′T−1′K1

↓x1T−1(TA1(µ1−u))

= |det(T )| ·

√
det(K2

↓x2)
(2π)m

e−
1
2
(A2µ2−A2u)′K2

↓x2 (A2µ2−A2u)

= |det(T )| · φ0,K2
↓x2 (A2µ2 −A2u)

= |det(T )| · ψx2|z2(u
↓x2 |u↓z2)

where m = |x1 ∪ z1| = |x2 ∪ z2| and since√
det(K1

↓x1) = |det(T )| · |det(T−1)| ·
√

det(K1
↓x1)

= |det(T )| ·
√

det(T−1) det(K1
↓x1) det(T−1)

= |det(T )| ·
√

det(T−1′) det(K1
↓x1) det(T−1)

= |det(T )| ·
√

det(T−1′K1
↓x1T−1)

= |det(T )| ·
√

det(K2
↓x2)

in light of Theorem 13.3.7, Lemma 13.2.1 and Theorem 13.3.4 of (Harville, 1997;
p.188;p.181;p.187). Then, det(T ) 6= 0 in light of Theorem 13.3.7 of (Harville, 1997;
p.188), hence c = |det(T )| > 0 proves the lemma. ut

This shows that two conditional Gaussian densities which are related to the same
Gaussian hint are (up to a constant factor) the same function of head and tail
variables. The converse is also true, as shown by the following lemma.

Lemma 7.4. Let φ, ψ ∈ G be Gaussian potentials on the same domain d(φ) =
x1 ∪ z1 = x2 ∪ z2 = d(ψ), x1 ∩ z1 = x2 ∩ z2 = ∅ such that

φx1|z1(u
↓x1 |u↓z1) = c · ψx2|z2(u

↓x2 |u↓z2). (7.7)

for all u ∈ IRx1∪z1 = IRx2∪z2 and some positive constant c > 0 not depending on u.
Then,

H(φx1|z1) = H(ψx2|z2). �
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Proof. Let φ = (µ1,K1) and ψ = (µ2,K2) such that (7.7) holds, and define

A1 = (Ix1 ,K1
↓x1

−1
K1

↓x1,z1), A2 = (Ix2 ,K2
↓x2

−1
K2

↓x2,z2).

Using this notation,

H(φx1|z1) = (A1, A1µ1,K1
↓x1), H(ψx2|z2) = (A2, A2µ2,K2

↓x2).

Clearly, |x1| = |x2|. Let m = |x1|. In light of Lemma A.3, there is a regular matrix
T ∈ IR(x2, x1) such that

K2
↓x2 = T−1′K1

↓x1T−1. (7.8)

Then, using the definition (5.1) of conditional Gaussian densities, it holds for all
u ∈ IRx1∪z1 = IRx2∪z2 that

φ0,K1
↓x1 (A1µ1 −A1u) = φx1|z1(u

↓x1 |u↓z1) = c · ψx2|z2(u
↓x2 |u↓z2)

= c · φ0,K2
↓x2 (A2µ2 −A2u)

= c · c2 · e−
1
2
(A2(µ2−u))′(T−1′K1

↓x1T−1)(A2(µ2−u))

= c ·
∣∣det(T−1)

∣∣ · c1 · e− 1
2
(T−1A2(µ2−u))′K1

↓x1 (T−1A2(µ2−u))

= c ·
∣∣det(T−1)

∣∣ · φ0,K1
↓x1 (T

−1A2(µ2 − u)), (7.9)

where

c1 =

√
det(K1

↓x1)
(2π)m

, c2 =

√
det(K2

↓x2)
(2π)m

=
∣∣det(T−1)

∣∣ · c1
since√

det(K2
↓x2) =

√
det(T−1′K1

↓x1T−1) =
√

det(T−1′) · det(K1
↓x1) · det(T−1)

=
√

det(T−1) · det(K1
↓x1) · det(T−1) =

∣∣det(T−1)
∣∣√det(K1

↓x1)

in light of Theorem 13.3.4 and Lemma 13.2.1 of (Harville, 1997; p.187;p.181). In
light of (7.9), there is a u at which the maximum is realised. More precisely, since
A1 and A2 have full row rank, there is a u0 such that

A1µ1 −A1u0 = 0 = T−1A2(µ2 − u0).

Then, √
det(K1

↓x1)
(2π)m

= φ0,K1
↓x1 (A1µ1 −A1u0)

= c ·
∣∣det(T−1)

∣∣ · φ0,K1
↓x1 (T

−1A2(µ2 − u0))

= c ·
∣∣det(T−1)

∣∣ ·
√

det(K1
↓x1)

(2π)m
.

Hence, c ·
∣∣det(T−1)

∣∣ = 1. Therefore,

φ0,K1
↓x1 (A1(µ1 − u)) = φ0,K2

↓x2 (T
−1A2(µ2 − u))
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for all u, i.e.

c1 · e−
1
2
(A1(µ1−u))′K1

↓x1 (A1(µ1−u)) = c1 · e−
1
2
(T−1A2(µ1−u))′K1

↓x1 (T−1A2(µ2−u))

for all u. Hence, multiplying both sides by 1
c1

, taking the logarithm to the natural
basis [observing that the exponential function e is strictly monotone] and multiplying
by −2 yields

(µ1 − u)′A′1K1
↓x1A1(µ1 − u) = (µ2 − u)′A′2T

−1′K1
↓x1T−1A2(µ2 − u) (7.10)

for all u. Since K1
↓x1 is symmetric and positive definite, both sides of this equation

equal 0 if and only

A1(µ1 − u) = 0 = T−1A2(µ2 − u),

i.e. the solution sets
Γ1 = {u : A1u = A1µ1}

and
Γ2 = {u : T−1A2u = T−1A2µ2}

are equal, Γ1 = Γ2. Notice that

Γ2 = {u : A2u = A2µ2}

in light of Lemma A.2. Then, using the same Lemma A.2 for Γ1 = Γ2, there is a
regular matrix T̃ ∈ IR(x1, x1) such that

A2 = T̃A1 and A2µ2 = T̃A1µ1. (7.11)

Plugging (7.11) into (7.10) yields that

(µ1 − u)′A′1K1
↓x1A1(µ1 − u) = (A2µ2 −A2u)′T−1′K1

↓x1T−1(A2µ2 −A2u)

= (T̃A1µ1 − T̃A1u)′K2
↓x2(T̃A1µ1 − T̃A1u)′

= (µ1 − u)′A′1T̃
′K2

↓x2 T̃A1(µ1 − u)

for all u. Hence, in light of Lemma A.4,

A′1K1
↓x1A1 = A′1T̃

′K2
↓x2 T̃A1.

Observing that A1 has full row rank and that, equivalently, A′1 has full column rank,
applying Lemma A.1 yields that

K1
↓x1 = T̃ ′K2

↓x2 T̃ .

Thus,
K2

↓x2 = T̃
−1′
T̃ ′K2

↓x2 T̃ T̃
−1

= T̃
−1′
K1

↓x1 T̃ . (7.12)

In light of (7.11) and (7.12), T̃ establishes H(φx1|z1) = H(ψx2|z2). ut

The results from Lemmata 7.3 and 7.4 are summarised in the following theorem.
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Theorem 7.5. For φ, ψ ∈ G, d(φ) = x1∪z1 = x2∪z2 = d(ψ), x1∩z1 = x2∩z2 = ∅,

φx1|z1(u
↓x1 |u↓z1) = c · ψx2|z2(u

↓x2 |u↓z2) ⇐⇒ H(φx1|z1) = H(ψx2|z2) (7.13)

for all u ∈ IRx1∪z1 = IRx2∪z2 and some positive constant c > 0 not depending on u.�

In light of Theorem 7.5, two conditional Gaussian densities φx1|z1 and ψx2|z2 are
related to the same Gaussian hint if and only if they represent the same function
up to a constant factor. The following theorem gives another criterion for two
conditional Gaussian densities to be related to the same Gaussian hint.

Theorem 7.6. For conditional Gaussian densities φx1|z1 = (φ, φ↓z1) and ψx2|z2 =
(ψ,ψ↓z2), φ, ψ ∈ G with d(φ) = x1 ∪ z1 = x2 ∪ z2 = d(ψ), x1 ∩ z1 = x2 ∩ z2 = ∅,

φ⊗ ψ↓z2 = φ↓z1 ⊗ ψ ⇐⇒ H(φx1|z1) = H(ψx2|z2). (7.14)

�

Proof. According to Theorem 7.5, different conditional Gaussian densities φx1|z1
and ψx2|z2 induce the same Gaussian hint if and only if they represent the same
function on IRx1∪z1 = IRx2∪z2 up to a positive constant factor c, i.e.

c · φx1|z1(u
↓x1 |u↓z1) = ψx2|z2(u

↓x2 |u↓z2)
for all u ∈ IRx1∪z1 = IRx2∪z2

}
⇐⇒ H(φx1|z1) = H(ψx2|z2).

The condition on the left-hand side is equivalent to

c · φ(u)
φ↓z1(u↓z1)

= c · φx1|z1(u
↓x|u↓z2) = ψx2|z2(u

↓x2 |u↓z2) =
ψ(u)

ψ↓z2(u↓z2)

for all u ∈ IRx1∪z1 = IRx2∪z2 , whence to

c · φ(u) · ψ↓z2(u↓z2) = φ↓z1(u↓z1) · ψ(u)

for all u ∈ IRx1∪z1 = IRx2∪z2 , and finally, in light of Theorem 3.3, to

c ·k1
−1 · (φ⊗ψ↓z2)(u) = c ·φ(u) ·ψ↓z2(u↓z2) = φ↓z1(u↓z1) ·ψ(u) = k2

−1 · (φ↓z1⊗ψ)(u)

for some positive constants k1, k2 > 0 not depending on u. Here,

c · k1
−1 = c · k1

−1

∫
u∈IRx1∪z1=IRx2∪z2

φ↓z1 ⊗ ψ(u)

= k2
−1 ·

∫
u∈IRx1∪z1=IRx2∪z2

φ⊗ ψ↓z2(u)

= k2
−1.

Therefore, H(φx1|z1) = H(ψx2|z2) if and only if φ⊗ψ↓z2 = φ↓z1 ⊗ψ and d(φ) = d(ψ)
with c = k1

k2
. ut
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The geometric interpretation of these results is very simple: A conditional Gaus-
sian density represents a distribution over the parallel linear manifolds given by the
regression equation (5.9). The scalar factor c depends on the head variables cho-
sen for the axis of integration over these sets; more technically, c is the Jacobian
determinant of the corresponding variable substitution, which is constant since the
transformation is linear. In contrast, such a constant factor does not appear in the
left-hand side of the equivalence (7.14) since the normalisation constants k1

−1 and
k2
−1 of the combination already account for c.

Example 7.7. Figure 7.2 shows parallel straight lines in the two-dimensional space.
This situation corresponds to a Gaussian hint with a one-row design matrix. Here,
the x1- and the x2 axis can be used as pointer to these straight lines. If neither
coefficient in the design matrix is 0, both submatrices are regular, so both variables
can be in the head (see Lemma 7.1). �

x1

x2

Γ(ω)
ω

∆
ω

∆x1

∆
x

2

Figure 7.2: The same focal sets Γ (ω) can be indexed by the x1, the x2-, or the ω-axis.
The variables x1 and x2 can both be chosen as head of a corresponding conditional Gaussian

density. The constant factor c compensates for the ratio of ∆x1 and ∆x2.

7.4 Combination of Gaussian Hints and of CGDs

The following theorem shows that the combination of Gaussian hints can be carried
over to conditional Gaussian densities.

Theorem 7.8. Let φx1|z1 and ψx2|z2 be conditional Gaussian densities. Then, there
is a Gaussian potential ω ∈ G such that

H(φx1|z1)⊗H(ψx2|z2) = H
(
ωx1∪x2|z1∪z2−(x1∪x2)

)
, (7.15)
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in which case it holds that

(φ⊗ ψ)⊗ ω↓z1∪z2−(x1∪x2) = (φ↓z1 ⊗ ψ↓z2)⊗ ω. (7.16)
�

Proof. Consider the combined GLS (A,µ,K) of H(φx1|z1) = ((Ix1 , B1), z1,K1) and
H(ψx2|z2) = ((Ix2 , B2), z2,K2) where A ∈ IR(m = |x1|+ |x2| , x1 ∪ z1 ∪ x2 ∪ z2),

A =


Ix1−x2 0x1−x2,x1∩x2 B1

⇒x1,z1∩x2 B1
⇒x1,(z1∪z2)−(x1∪x2)

0x1∩x2.x1−x2 Ix1∩x2

B2
⇒x2,z2∩x1

Ix1∩x2 B2
⇒x2,(z1∪z2)−(x1∪x2)

Ix2−x1

 ,

Here, the three submatrices corresponding to the variables x1 − x2, x1 ∩ x2, and to
x2−x1 all have full row rank and since the remaining columns are linear combinations
of the columns of these three submatrices, it follows that r(A) = |x1 ∪ x2|. Let
T ∈ IR(r,m) be an admissible matrix, which has full row rank r = r(T ) = |x1 ∪ x2|,
and let A↓x1∪x2 be the submatrix of A of the columns corresponding to the variables
x1 ∪ x2. Then, in light of Lemma 8.3.2 of (Harville, 1997; p.83),

r(TA↓x1∪x2) = r(T ) = |x1 ∪ x2|,

i.e. TA↓x1∪x2 is regular. Therefore, equation (7.15) follows from Lemma 7.3 and
equation (7.16) then follows from Theorem 7.6. ut

This theorem shows that the combination of Gaussian densities corresponds to com-
bining the numerators and the denominators since it follows from (7.16) and Theo-
rem 7.5 that

c · ω(u)
ω↓z1∪z2−(x1∪x2)(u↓z1∪z2−(x1∪x2))

=
(φ1 ⊗ ψ1)(u)

(φ↓z1 ⊗ ψ↓z2)(u↓z1∪z2)

for all u ∈ IRx1∪z1∪x2∪z2 and some constant c > 0 not depending on u.

Remark 7.9. Of course, the pair (φ1⊗ψ1, φ
↓z1⊗ψ↓z2) is in general not a conditional

Gaussian potential in the sense of Definition 5.2.
More precisely, it does not follow from equation (7.16) that (ω, ω↓z1∪z2−(x1∪x2)) is the
same pair as (φ1⊗φ2, (φ1 ⊗ φ2)

↓z1∪z2−(x1∪x2)). In other words, it does not generally
hold that (φ1 ⊗ φ2)x1∪x2|z1∪z2−(x1∪x2) corresponds to the combination of H(φx1|z1)
and H(ψx2|z2). �

Therefore, in the algebraic approach of Chapter 8, arbitrary pairs of Gaussian po-
tentials will be considered: Equation (7.16) will be used as the definition of an
equivalence relation in G × G, and combination can be defined component-wise.
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7.5 Variable Elimination in Gaussian Hints and CGDs

In order to analyse the marginalisation of Gaussian hints in terms of the related
conditional Gaussian densities, the following definitions will be helpful.

Definition 7.10. Let h = (A, z,K) be a Gaussian hint, where A ∈ IR(m,x). Then,
a variable X ∈ x = d(h) is called vacuous in h if the column in A corresponding to
X contains only zeros, i.e. if

A↓{X} = 0m;

else it is called non-vacuous. �

This definition is sound: If (BA,Bz,BK) is any another representative of h for
some regular matrix B ∈ IR(m,m),

(BA)↓{X} = BA↓{X} = B0m = 0m

shows that X is vacuous in every representative of the hint. Hence, the definition
does not depend on the representative of the hint. The following example gives a
geometric interpretation of vacuous variables.

Example 7.11. Let a Gaussian hint h on the variables X1, X2 be given by A =(
1 0

)
, µ = (1) and K = (1). Let x1 and x2 be the singleton sets consisting of the

corresponding variable only. Then, the focal sets are straight lines parallel to the x2-
axis as shown in Figure 7.3. Furthermore, since these focal sets contain points of the
same conditional Gaussian density, this shows that the Gaussian density function
does not depend on the vacuous variables x2 or, in other words, that the vacuous
variables are irrelevant for the conditional Gaussian density function. �

x1

x2

Γ(ω)

Figure 7.3: If the variable x2 is vacuous, the focal sets are parallel to the x2-axis.

The following two lemmata characterise vacuous and non-vacuous variables of
a Gaussian hint in terms of the related conditional Gaussian densities. The first
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lemma shows that vacuous variables are always in the tail. Further, for a non-
vacuous variable, a corresponding conditional Gaussian density can always be found
with that variable in its head.

Lemma 7.12. Let h = (A, z,K) be a Gaussian hint where A ∈ IR(m, s). Then, a
variable Z ∈ s is vacuous if and only if there is no conditional Gaussian density
with Z in its head, i.e. there is no φx|z such that H(φx|z) = h and Z ∈ x. �

Proof. On the one hand, assume that Z is vacuous in h. Then, for every Gaussian
potential φ = (µ,K) ∈ G such that H(φx|z) = h, it holds, in light of equation (7.1),
that

0x,{Z} = A↓x,{Z} =
(
K↓x−1

K↓x,z
)↓x,{Z}

= K↓x−1
K↓x,{Z}.

Thus, since every principal submatrix K↓x of a symmetric positive definite matrix
K is regular as well as its inverse

(
K↓x)−1, it follows that K↓x,{Z} = 0x. Therefore,

if Z ∈ x, the diagonal element K(Z,Z) = 0. However, since K is positive definite,
the diagonal elements are strictly positive in light of Corollary 14.2.13 of (Harville,
1997; p.214). Hence, Z ∈ X leads to a contradiction. Thus, a vacuous variable must
be in the tail z.

On the other hand, it will now be shown that, if Z is non-vacuous, there is always
a Gaussian potential φ ∈ G such that H(φx|z) = h and Z ∈ x. If Z is non-vacuous,
then by definition

A↓x,{Z} 6= 0x,{Z}.

Since A has full row rank m and since A↓x,{Z} 6= 0x,{Z}, there is thus a subset

x′ ⊆ x ∪ z such that Z ∈ x′ and A↓x,x
′
is regular. Let B = A↓x,x

′−1 ∈ IR(x′, x) and
z′ = (x ∪ z)− x′. Then, the Gaussian hint(

(Ix′ , BA↓x,z
′
), Bz,B−1′KB−1

)
equals h. Define

φ =

((
Bz
0z′

)
,

(
K KBA↓x,z

′

A↓x,z
′ ′
B′K Iz +A↓x,z

′ ′
B′KBA↓x,z

′

))
.

By Lemma A.7, the second element of φ is a symmetric and positive definite matrix,
hence φ is a Gaussian potential. Then,

H(φx|z) =
(
(Ix′ ,K−1KBA↓x,z

′
), Bz +K−1KBA↓x,z

′
0z′ ,K

)
=
(
(Ix′ , BA↓x,z

′
), Bz,B−1′KB−1

)
= h,

where Z ∈ x′. This shows by contraposition that the converse implication also
holds. ut

The following lemma shows that vacuous variables in a conditional Gaussian density
can be separated out in a factor of their own.
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Lemma 7.13. Let H(φx|z) = h, s = x ∪ z, φ = (µ,K) ∈ G, and Z ∈ z be vacuous
in h. Then, there are φ1, φ2 such that

• (φ1 ⊗ φ2)x|z = φx|z

• Z 6∈ d(φ1) and

• d(φ2) = {Z}. �

Proof. In light of equation (7.1),(
K↓x−1

K↓x,z
)↓x,{Z}

= K↓x−1
K↓x,{Z} = 0x.

Since K↓x−1 is regular, its columns are linearly independent, which then shows that

K↓x,{Z} = 0x,{Z}. (7.17)

Then,
φ↓z = (µ↓z,Kz)

where

Kz = K↓z −K↓z,xK↓x−1
K↓x,z = K↓z −

(
K↓z̃,xK↓x−1

K↓x,z̃ 0z̃,{Z}
0{Z},z̃ 0{Z},{Z}

)

for z̃ = z − {Z}. Define the Gaussian potential φ1 = (µ1,K1) by

µ1 = µ↓x∪z̃, K1 = K↓x∪z̃,

and let φ2 = (µ2,K2) be an arbitrary Gaussian potential with domain d(φ2) = {Z}.
In light of Theorem 7.6 and the combination axiom, it has to be shown that

φ⊗ φ1
↓z̃ ⊗ φ2 = φ⊗ (φ1 ⊗ φ2)

↓z = φ↓z ⊗ (φ1 ⊗ φ2). (7.18)

Let (µ̄, K̄) = φ1 ⊗ φ2 where

µ̄ =
(
µ↓x∪z̃

µ2

)
, K̄ =

(
K↓x∪z̃ 0

0 K2

)
.

Further,

φ1
↓z̃ = (µ↓z̃,K↓z̃ −K↓z̃,xK↓x−1

K↓x,z̃).

Let (µ̄z, K̄z) = φ1
↓z̃ ⊗ φ2 where

µ̄z =
(
µ↓z̃

µ2

)
, K̄z =

(
K↓z̃ −K↓z̃,xK↓x−1

K↓x,z̃ 0
0 K2

)
.
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Hence, using (7.17),

K + K̄↑s
z =K +

(
K↓z̃ −K↓z̃,xK↓x−1

K↓x,z̃ 0
0 K2

)↑s

=

 K↓x K↓x,z̃ 0x,{Z}
Kz̃,x 2K↓z̃ −K↓z̃,xK↓x−1

K↓x,z̃ K↓z̃,{Z}

0{Z},x K↓{Z},z̃ K↓{Z} +K2


=

(
K↓z̃ −K↓z̃,xK↓x−1

K↓x,z̃ K↓z̃,{Z}

K↓{Z},z̃ K↓{Z}

)↑s

+

 K↓x K↓x,z̃ 0
K↓z̃,x K↓z̃ −K↓z̃,xK↓x−1

K↓x,z̃ 0
0 0 K2


=Kz

↑s + K̄

and

Kµ+
(
K̄zµ̄z

)↑s =Kµ+

(
(K↓z̃ −K↓z̃,xK↓x−1

K↓x,z̃)µ↓z̃

K2µ2

)↑s

=

 K↓xµ↓x +K↓x,z̃µ↓z̃

K↓z̃,xµ↓x + 2K↓z̃µ↓z̃ −K↓z̃,xK↓x−1
K↓x,z̃µ↓z̃ +K↓z̃,{Z}µ↓{Z}

K↓{Z},zµ↓z +K2µ2


=

(
K↓z̃µ↓z̃ −K↓z̃,xK↓x−1

K↓x,z̃µ↓z̃ +K↓z̃,{Z}µ↓{Z}

K↓{Z},zµ↓z

)↑s

+

K↓xµ↓x +K↓x,z̃µ↓z̃

K↓z̃,xµ↓x +K↓z̃µ↓z̃

+K2µ2


=(Kzµz)

↑s + K̄µ̄.

This shows (7.18). ut

The interpretation of the above lemma is as follows: The corresponding conditional
Gaussian density does not depend on the vacuous variable Z since Z only appears
in a constant factor, i.e.

φx|z(x|z) =
φ1(x, z↓z

′
)

φ1
↓z′(z↓z′)

· φ2(z↓{Z})
φ2(z↓{Z})

. (7.19)

The following theorem shows how the elimination of variables in Gaussian hints
can be carried over to conditional Gaussian densities. Recall that

h−X = h↓u−{X},

for X ∈ d(h) = u. Furthermore, every variable X ∈ d(h) is either non-vacuous or
vacuous. According to Lemma 7.1, there is then always a Gaussian potential φ ∈ G
such that H(φx|z) = h = (A,µx,Kx) where A ∈ IR(x, x ∪ z).
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Theorem 7.14. Let φx|z be a conditional Gaussian density and let h = H(φx|z).
Let X ∈ x ∪ z.

1. If X is non-vacuous and X ∈ x, then

H(φ−Xx′|z) = H(φx|z)
−X . (7.20)

for x′ = x− {X}.

2. If X is vacuous, then X ∈ z and

H(φx|z)
−X = H(φ−Xx|z′) (7.21)

for z′ = z − {X}. �

Proof. In the first case, if X is non-vacuous, there is a subset x′ ⊆ x ∪ z of
cardinality |x′| = |x| containing X ∈ x′ such that

B = A↓x,x
′

is regular. Hence, transformation by B−1 ∈ IR(x′, x) yields the equivalent represen-
tative

(B−1A,B−1µx, B
′KxB),

where (B−1A)↓x
′
= Ix′ . Therefore, it can be assumed without loss of generality that

X ∈ x. On the one hand, the matrix

E = Ix
↓x−{X},x

is a projection matrix for x′ = x− {X}, hence

H(φx|z)
−X =

(
EA,Eµx, (EKx

−1E′)−1
)

=
(
A↓x

′,x′∪z, µx
↓x′ , ((Kx

−1)↓x
′
)
−1
)
,

where
A↓x

′
= Ix′ . (7.22)

On the other hand, define

φ = (µ,K), µ ∈ IRx∪z, K ∈ IR(x ∪ z, x ∪ z)

where

µ =
(
µx
0z

)
, K =

(
Kx KxA

↓x,z

(A↓x,z)′Kx Iz + (A↓x,z)′KxA
↓x,z

)
, (7.23)

which, according to the proof of Lemma 7.1, is a Gaussian potential such that

H(φx|z) = (A,µx,Kx).
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Furthermore, let φ−X = (µ̄, K̄) where

µ̄ =
(
µx

↓x′

0µx

)
, K̄ =

((
K−1

)↓x′∪z)−1
. (7.24)

Then,
µ̄↓x

′
= µx

↓x′ , (7.25)

and

K̄↓x′ (1)
=
(
K↓x′∪z −K↓x′∪z,{X}(K↓{X})

−1
K↓{X},x′∪z

)↓x′
(2)
= K↓x′ −K↓x′,{X}(K↓{X})

−1
K↓{X},x′

(3)
= Kx

↓x′ −Kx
↓x′,{X}(Kx

↓{X})
−1
Kx

↓{X},x′

(4)
= ((Kx

−1)↓x
′
)
−1

(7.26)

using Lemma A.6 in (1) and (4), Lemma 3.2 in (2), and using equation (7.23) in
(3). Further,

K̄↓x′,z (1)
=
(
Kx

↓x′∪z −Kx
↓x′∪z,{X}(Kx

↓{X})
−1
Kx

↓{X},x′∪z
)↓x′,z

(2)
= Kx

↓x′,z −Kx
↓x′,{X}(Kx

↓{X})
−1
Kx

↓{X},z

(3)
=
(
KxA

↓x,z
)↓x′,z

−Kx
↓x′,{X}(Kx

↓{X})
−1

(KxA)↓{X},z

(4)
= Kx

↓x′,xA↓x,z −Kx
↓x′,{X}(Kx

↓{X})
−1
Kx

↓{X},xA↓x,z

(5)
=
(
Kx

↓x′,x −Kx
↓x′,{X}(Kx

↓{X})
−1
Kx

↓{X},x
)
A↓x,z

(6)
=
(((

Kx
−1
)↓x′)−1

,Kx
↓x′,{X} −Kx

↓x′,{X}(Kx
↓{X})

−1
Kx

↓{X}
)
A↓x,z

(7)
=
(
K̄↓x′ , 0x′,{X}

)
A↓x,z

(8)
= K̄↓x′A↓x

′,z, (7.27)

using (7.23) in (1) and (6), Lemma 3.2 in (2) and (4), using equation (7.23) in (3)
and finally (7.26) in (7). Hence, using (7.22)–(7.27),

H(φ−Xx′|z) =
(

(Ix′ ,
(
K̄↓x′

)−1
K̄↓x′,z), µ̄↓x

′
, K̄↓x′

)
=
(
A↓x

′,x′∪z, µx
↓x′ , ((Kx

−1)↓x
′
)
−1
)

= H(φx|z)
−X .

In the second case, if X is vacuous, only the null column corresponding to the
vacuous variable X has to be removed, i.e.

(A,µx,Kx)
−X = (A↓x,x

′∪z, µx,Kx).



7.5. Variable Elimination in Gaussian Hints and CGDs 169

Let φ = (µ,K) such that H(φx|z) = h. As seen in the proof of Lemma 7.12,

K↓x,{X} = 0. (7.28)

Further, let φ−X =
(
µ̄, K̄

)
where µ̄ = µ↓x∪z

′
and

K̄
(1)
= K↓x∪z′ −K↓x∪z′,{X}K↓{X}−1

K↓{X},x∪z′

(2)
=
(
K↓x K↓x,z′

K↓z′,x K↓z′

)
−
(

0
K↓z′,{X}

)
K↓{X}−1 (

0 K↓{X},z′)
=

(
K↓x K↓x,z′

K↓z′,x K↓z′ −K↓z′K↓{X}−1
K↓{X},z′

)
,

using (7.23) in (1) and equation (7.28) in (2). Then,

A↓x,(x∪z
′) =

(
Ix K↓x−1

K↓x,z
)↓x,(x∪z′)

=
(
Ix K↓x−1

K↓x,z′
)

=
(
Ix K̄

↓x−1
K̄
↓x,z′

)
,

µx = µ↓x +K↓x−1
K↓x,zµ↓z = µ↓x +K↓x−1

K↓x,z′µ↓z
′

= µ̄↓x + K̄
↓x−1

K̄
↓x,z′

µ̄↓z
′
, and

Kx = K↓x = K̄
↓x
,

using (7.28) for µx. This shows that indeed H(φx|z)
−X = H(φ−Xx|z′). ut

In summary, every variable X is either vacuous or non-vacuous in a Gaussian
hint:

• If it is non-vacuous, there is a conditional Gaussian density φx|z with the
variable in the head, X ∈ x. Then, the elimination of X in h corresponds to
integration over X in the numerator, i.e.

φ−Xx′|z(x
′|z) =

φ−X(x′, z)
φ↓z(z)

. (7.29)

• On the other hand, if X is vacuous, it is always in the tail of the related
conditional Gaussian densities. Here, the elimination of X in h corresponds to
the reduction of an irrelevant constant factor as seen in equation (7.19) and
not to integration of the conditional Gaussian density.

Chapter Synopsis

Two conditional Gaussian densities φx1|z1 , ψx2|z2 are related to the same Gaussian
hint H(φx1|z1) = H(ψx2|z2) if and only if
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• they represent the same function up to a constant factor c > 0, i.e.

c · φx1|z1(u
↓x1 |u↓z1) = ψx2|z2(u

↓x2 |u↓z2)

for all u ∈ IRx1∪z1 = IRx2∪z2 ,

or, equivalently, if and only if

• they are related by the equation φ⊗ ψ↓z2 = φ↓z1 ⊗ ψ and d(φ) = d(ψ).

If a variable is vacuous in a Gaussian hint (i.e. if the corresponding column in the
design matrix is 0), it is always in the tail of all corresponding conditional Gaussian
densities and can be reduced in the numerator and the denominator. On the other
hand, if a variable is non-vacuous in a Gaussian hint, there is a conditional Gaussian
density that has the variable in its head, and the variable can be marginalised
out in the numerator respecting the rules of integration. Therefore, every variable
can be eliminated (either because its vacuous or non-vacuous). This leads to full
marginalisation of conditional Gaussian densities.

Furthermore, since Gaussian hints are closed under combination, the same holds
for conditional Gaussian densities since the operations are compatible. In conditional
Gaussian densities, the union of any two heads becomes a head of the combination.

Discussion

In the Bayesian approach, head and tail of a conditional Gaussian potential are
fixed. Nonetheless, Lauritzen and Jensen (2001) distinguish marginalising out head
variables from the reduction of tail variables. This corresponds to the eliminiation
of non-vacuous and vacuous variables, respectively. However, they do not identify
equivalent conditional Gaussian densities, i.e. a non-vacuous variable in the tail
cannot be eliminated in their approach. In contrast, by considering conditional
Gaussian densities related to the same Gaussian hint by the regression equations,
every variable can either be eliminated by integration in the numerator or reduced.
By an interplay of elimination by integration in the numerator and reduction of
variables in an equivalent conditional Gaussian densities, this then leads to full
marginalisation



8
Separative Extension of

Gaussian Potentials

As introduced in Section 5.1, conditional Gaussian densities φx|z can be represented
algebraically by pairs or fractions (φ, φ↓z) of Gaussian potentials. It is well known
from semigroup theory that a cancellative semigroup can be embedded in a group of
quotients of equivalent fractions. The most famous example is the embedding of the
multiplicative semigroup of natural numbers (without zero) in the rational numbers,
represented by fractions of non-zero natural numbers.
The same idea can be generalised to valuation algebras: Combination in the ex-
tension is defined component-wise as the combination of the numerators and de-
nominators, which corresponds to the laws of calculus of the product of rational
numbers. Marginalisation can only be partially defined in the extension: If vari-
ables only appear in the numerator (but not in the denominator) of a fraction,
they can be marginalised out (or eliminated) in the numerator without affecting the
denominator. This complies with the laws of integration of quotient functions.

Chapter Outline

First, the theory of separative valuation algebras is developed for cancellative val-
uation algebras. In Section 8.1, a valuation algebra of pairs is constructed from a
cancellative valuation algebra. Different fractions may be equivalent, as discussed
in Section 8.2. For this equivalence relation to be complete under marginalisation,
a further Property (M) is required. This Property (M) is a sort of converse of the
combination axiom, going from a factorisation of a marginal to a factorisation be-
fore marginalisation. Such a separative valuation algebra can be embedded into a
quotient valuation algebra with division. In Section 8.3, it is shown that this theory
can be applied to Gaussian potentials.

Probability densities are not cancellative. However, the subsemigroups of densi-
ties of the same support (i.e. with the same zeros) are cancellative. In fact, support is
an idempotent congruence which decomposes densities into cancellative semigroups.
In Section 8.4, the theory of separative valuation algebras is generalised to cover this

171
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example. Finally, in Section 8.5, construction sequences (Shafer, 1996; Kohlas, 2003)
are introduced to generalise the Chain Rule of Bayesian Networks: A construction
sequence factorises an element of the underlying separative valuation algebra into
conditionals, which are elements of the separative extension only.

The theory of separative valuation algebras was first set forth in (Kohlas, 2003),
in a slightly different way. These differences are pointed in the Discussion at the
end of this chapter.

8.1 Valuation Algebra of Fractions

Example 8.1. Rational numbers (without zero) can be represented by pairs or
fractions of integers. For instance, (1, 2) represents the rational number 0.5. Fur-
thermore, non-zero integer numbers ZZ∗ = {1,−1, 2,−2} form a valuation algebra
on the trivial lattice D = {∅} with labelling d(p) = ∅, combination · and trivial
marginalisation p↓∅ = p. Then, the product of the two rational number represented
by (p1, q1) and (p2, q2) can be represented by the fraction (p1 · p2, q1 · q2). More
formally, the multiplication of rational numbers can be carried over to the multipli-
cation ∗ among these fractions by

(p1, q1) ∗ (p2, q2) = (p1 · p2, q1 · q2). �

Example 8.2. Similarly, one can extend positive densities by pairs (f, g). Here, a
positive density can be represented by the pair (f, e) where e is the constant function
with empty domain e(�) = 1. The combination of these pairs of densities can be
defined in the same as way as for integers. On the contrary, marginalisation is more
involved. If no variables in the denominator are integrated out,∫

t∈IRt

f(t,u↓x−t)
g(u↓y)

for x = d(f) and y = d(g), u = x ∪ y, u ∈ IRu such that t ∩ y = ∅. Therefore, the
marginal of (f, g) to s ⊇ d(ψ) can be defined by (f↓s∩d(φ), g). �

These examples motivate the following definitions. Let A = (Φ,D, d,⊗, ↓) be a
valuation algebra with full marginalisation. Let Φ∗ be the set of pairs of valuations,

Φ∗ = Φ× Φ = {(φ, ψ) : φ, ψ ∈ Φ}. (8.1)

Define
d∗(φ, ψ) = d(φ) ∪ d(ψ). (8.2)

(φ1, ψ1)⊗∗ (φ2, ψ2) = (φ1 ⊗ φ2, ψ1 ⊗ ψ2) (8.3)

and
(φ, ψ)↓

∗s = (φ↓s∩d(φ), ψ) (8.4)

for
s ∈M∗(φ, ψ) = {s : d(ψ) ⊆ s ⊆ d(φ) ∪ d(ψ)}. (8.5)
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Lemma 8.3. A∗ = (Φ∗, D, d∗,⊗∗,M∗, ↓∗) is a valuation algebra that extends A by
the embedding φ 7→ (φ, e). �

Proof. (A1) Let (φ1, ψ1), (φ2, ψ2), (φ3, ψ3) ∈ Φ∗. Then, using the semigroup axiom
in A,

(φ1, ψ1)⊗∗ (φ2, ψ2) = (φ1 ⊗ φ2, ψ1 ⊗ ψ2)
= (φ2 ⊗ φ1, ψ2 ⊗ ψ1)
= (φ2, ψ2)⊗∗ (φ1, ψ1).

Furthermore,

((φ1, ψ1)⊗∗ (φ2, ψ2))⊗∗ (φ2, ψ2) = (((φ1 ⊗ φ2)⊗ φ3) , ((ψ1 ⊗ ψ2)⊗ ψ3))
= ((φ1 ⊗ (φ2 ⊗ φ3)) , (ψ1 ⊗ (ψ2 ⊗ ψ3)))
= (φ1, ψ1)⊗∗ ((φ2, ψ2)⊗∗ (φ2, ψ2)) .

(A2) Let (φ1, ψ1), (φ2, ψ2) ∈ Φ∗ and x1 = d∗(φ1, ψ1), x2 = d∗(φ2, ψ2). Then, using
the labelling axiom in A, d∗((φ1, ψ1) ⊗∗ (φ2, ψ2)) = d∗(φ1 ⊗ φ2, ψ1 ⊗ ψ2) =
d(φ1) ∪ d(ψ1) ∪ d(φ2) ∪ d(ψ2) = x1 ∪ x2.

(A3) Let s ∈M∗(φ, ψ), i.e. d(ψ) ⊆ s ⊆ d(φ)∪d(ψ). Then, using the marginalisation
axiom in A, d∗((φ, ψ)↓

∗s) = d∗(φ↓d(φ)∩s, ψ) = (d(φ) ∩ s) ∪ d(ψ) = (d(φ) ∩ s) ∪
(d(ψ) ∩ s) = (d(φ) ∪ d(ψ)) ∩ s = s.

(A4) Let s ⊆ t ⊆ d(φ) ∪ d(ψ). Then, s ∈ M∗(φ, ψ) ⇐⇒ d(ψ) ⊆ s ⇐⇒ t ∈
M∗(φ, ψ) and s ∈M∗((φ, ψ)↓

∗t) =M∗(φ↓t∩d(φ), ψ). In both cases, (φ, ψ)↓
∗s =

(φ↓s, ψ) = (φ↓t∩d(φ), ψ)↓
∗s = ((φ, ψ)↓

∗t)↓
∗s.

(A5) Let (φ1, ψ1), (φ2, ψ2) ∈ Φ∗ with domains y1 and y2 and let z∩y2 ∈M∗(φ2, ψ2)
such that y1 ⊆ z ⊆ y1 ∪ y2. Hence, d(ψ1) ⊆ z, d(ψ2) ⊆ z ∩ y2 ⊆ z, and thus
d(ψ1) ∪ d(ψ2) ⊆ z. Therefore, it follows that z ∈ M∗(φ1 ⊗ φ2, ψ1 ⊗ ψ2) =
M∗((φ1, ψ1)⊗∗ (φ2, ψ2)). Finally, using the combination axiom in A,(

(φ1, ψ1)⊗∗ (φ2, ψ2)
)↓∗z = (φ1 ⊗ φ2, ψ1 ⊗ ψ2)↓

∗z

= ((φ1 ⊗ φ2)
↓z∩(d(φ1)∪d(φ2)), ψ1 ⊗ ψ2)

= (φ1 ⊗ φ2
↓z∩d(φ2), ψ1 ⊗ ψ2)

= (φ1, ψ1)⊗∗ (φ2, ψ2)↓
∗z∩y2 .

(A6) Let (φ, ψ) ∈ Φ∗ and let x = d∗(φ, ψ) = d(φ) ∪ d(ψ). Since d(ψ) ⊆ x, it follows
that x ∈M∗(φ, ψ) and

(φ, ψ)↓
∗x = (φ↓x∩d(φ), ψ) = (φ, ψ)

by the domain axiom in A.

(A7) The element e∗ = (e, e) is an identity element since e∗ ⊗∗ (φ, ψ) = (φ, ψ) =
(φ, ψ)⊗∗ e∗.

It remains to be verified that A∗ extends A. Indeed,
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• d∗(φ, e) = d(φ),

• (φ, e)⊗∗ (ψ, e) = (φ⊗ ψ, e),

• d(e) = ∅ ⊆ s ⊆ d(φ) implies s ∈M∗(φ, e) and (φ, e)↓
∗s = (φ↓s, e), and

• e∗ = (e⊗ e, e) = (e, e) is the identity element in A∗. ut

The elements of Φ∗ will be called separative fractions. It has to be remarked that A∗

is not an ordinary product of two algebras in the sense of universal algebra, where
the Cartesian product of the underlying sets are taken and where the operations are
defined coordinate-wise. In A∗, the lattice of domains is not a Cartesian product,
andM∗ is not symmetric, i.e. M∗(φ, ψ) andM∗(ψ, φ) are in general not the same.

8.2 Separative Valuation Algebras

Example 8.4. The same rational number can be represented by different, equiva-
lent fractions. For instance, (1, 2) and (2, 4) represent the same rational number 0.5.
Here, it holds that 1 · 4 = 2 · 2. More generally, two fractions (p1, q1) and (p2, q2)
represent the same rational number if and only if p1 · q2 = q1 · p2. This relation is
clearly reflexive and symmetric. From p1 · q2 = q1 · p2 and p2 · q3 = q2 · p3, it follows
that p1 · q2 · q3 = q1 · p2 · q3 = q1 · q2 · p3. Hence, p1 · q3 = q1 · p3, which shows that the
relation is also transitive. The last step requires more than a general semigroup. �

Definition 8.5. A semigroup (Φ,⊗) is cancellative if

φ⊗ ψ = φ⊗ ψ′ =⇒ ψ = ψ′. (8.6)
�

Lemma 8.6. Let A = (Φ,D, d,⊗, ↓) be a valuation algebra with full marginalisation
such that (Φ,⊗) is cancellative. Then, the relation ≡∗ in Φ∗ defined by

(φ, ψ) ≡∗ (φ′, ψ′) ⇐⇒ φ⊗ ψ′ = ψ ⊗ φ′

is an equivalence relation. In particular, the relation =∗ defined by

η1 =∗ η2 ⇐⇒ η1 ≡∗ η2 and d∗(η1) = d∗(η2) (8.7)

is an equivalence relation in Φ∗. �

Proof. Reflexivity and symmetry follow from the commutativity of combination.
In order to prove transitivity, assume (φ1, ψ1) ≡∗ (φ2, ψ2) and (φ2, ψ2) ≡∗ (φ3, ψ3),
i.e.

φ1 ⊗ ψ2 = ψ1 ⊗ φ2, (8.8)

and
φ2 ⊗ ψ3 = ψ2 ⊗ φ3. (8.9)
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Then, multiplying (8.8) by φ3 ⊗ φ3 and substituting (8.9) into it yields

φ1 ⊗ ψ2 ⊗ ψ3 = ψ1 ⊗ φ2 ⊗ ψ3 = ψ1 ⊗ ψ2 ⊗ φ3.

Hence, by cancellativity, it follows that indeed φ1 ⊗ ψ3 = ψ1 ⊗ φ3, i.e. (φ1, ψ1) ≡∗
(φ3, ψ3).
The relation =∗ is an equivalence relation since it refines the partition induced by
≡∗. ut

The equivalence classes
Φ∗/ =∗ (8.10)

are called separative quotients. In order for these quotients to form a valuation
algebra, the following property of the underlying valuation algebra will be used to
prove its completeness under marginalisation and thereby the transitivity of the
marginalisation of quotients.

Definition 8.7. Let A = (Φ,D, d,⊗, ↓) be a valuation algebra. Then, A has the
Property (M) if the following implication holds.

• Assume φ↓t factorises as
φ↓t = φ1 ⊗ χ (8.11)

for some φ1 such that d(φ1) = t.

• Then, there is a φ2 with domain x = d(φ2) = d(φ) such that

φ = φ2 ⊗ χ (8.12)

and φ2
↓t = φ1. �

The Property (M) is a sort of converse of the combination axiom: Whereas the
combination states that a factorisation φ = φ2 ⊗ χ has the marginal φ↓t = φ2

↓t ⊗ χ,
the Property (M) goes in the opposite direction from φ↓t = φ1⊗χ to the factorisation
φ = φ2 ⊗ χ.

Definition 8.8. A valuation algebra A = (Φ,D, d,⊗, ↓) is called separative if

• the semigroup (Φ,⊗) is cancellative and

• A has the Property (M). �

Lemma 8.9. Let (Φ,D, d,⊗, ↓) be a separative valuation algebra. The relation =∗

is a domain-contained congruence in (Φ∗, D, d∗,⊗∗,M∗, ↓∗). �

Proof. It has been shown in Lemma 8.6 that =∗ is an equivalence relation. Let
(φ1, ψ1) =∗ (φ′1, ψ

′
1) and (φ2, ψ2) =∗ (φ′2, ψ

′
2), i.e.

φ1 ⊗ ψ′1 = ψ1 ⊗ φ′1, φ2 ⊗ ψ′2 = ψ2 ⊗ φ′2
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and

d(φ1) ∪ d(ψ1) = d(φ′1) ∪ d(ψ′1) and d(φ2) ∪ d(ψ2) = d(φ′2) ∪ d(ψ′2).

Hence, the equivalence relation =∗ is domain-contained since d∗(φ1, ψ1) = d(φ1) ∪
d(ψ1) = d(φ′1) ∪ d(ψ′1) = d∗(φ′1, ψ

′
1).

In order to show that =∗ is compatible with ⊗∗, let (φ1, ψ1) =∗ (φ′1, ψ
′
1) and

(φ2, ψ2) =∗ (φ′2, ψ
′
2), i.e. φ1 ⊗ ψ′1 = ψ1 ⊗ φ′1, φ2 ⊗ ψ′2 = ψ2 ⊗ φ′2, d(φ1) ∪ d(ψ1) =

d(φ′1) ∪ d(ψ′1), and d(φ2) ∪ d(ψ2) = d(φ′2) ∪ d(ψ′2). Then, on the one hand,

(φ1 ⊗ φ2)⊗ (ψ′1 ⊗ ψ′2) = (φ1 ⊗ ψ′1)⊗ (φ2 ⊗ ψ′2)
= (ψ1 ⊗ φ′1)⊗ (ψ2 ⊗ φ′2)
= (φ′1 ⊗ φ′2)⊗ (ψ′1 ⊗ ψ′2)

since ⊗ is associative and commutative. On the other hand,

d∗(φ1, ψ1) ∪ d∗(φ2, ψ2) = d(φ1) ∪ d(ψ1) ∪ d(φ2) ∪ d(ψ2)
= d(φ′1) ∪ d(ψ′1) ∪ d(φ′2) ∪ d(ψ′2)
= d∗(φ′1, ψ

′
1) ∪ d∗(φ′2, ψ′2).

This shows that =∗ is indeed compatible with ⊗∗.
In order to show that =∗ is compatible with marginalisation, let (φ1, ψ1) =∗ (φ2, ψ2)
and s ∈M∗(φ1, ψ1),M∗(φ2, ψ2). This implies that φ1 ⊗ ψ2 = ψ1 ⊗ φ2 and

d(ψ1), d(ψ2) ⊆ s ⊆ d(φ1) ∪ d(ψ1) = d(φ2) ∪ d(ψ2).

Hence, by the combination axiom,

φ1
↓s∩d(φ1) ⊗ ψ2 = (φ1 ⊗ ψ2)

↓s = (φ2 ⊗ ψ1)
↓s = φ2

↓s∩d(φ2) ⊗ ψ1.

Since (s ∩ d(φ1)) ∪ d(ψ1) = (d(φ1) ∪ d(ψ1)) ∩ s = s = (s ∩ d(φ2)) ∪ d(ψ2),

(φ1, ψ1)↓
∗s = (φ1

↓s∩d(φ1), ψ1) =∗ (φ2
↓s∩d(φ2), ψ2) = (φ2, ψ2)↓

∗s.

This shows that =∗ is indeed compatible with ↓∗.
In order to prove that marginalisation is complete under =∗, assume t ∈M∗(φ1, ψ1)
and (φ1

↓d(φ1)∩t, ψ1) = (φ1, ψ1)↓
∗t =∗ (φ2, ψ2). Since (φ1 ⊗ ψ1, ψ1 ⊗ ψ1) =∗ (φ1, ψ1)

and since M∗(φ1 ⊗ ψ1, ψ1 ⊗ ψ1) = M∗(φ1, ψ1), assume without loss of generality
that d(ψ1) ⊆ d(φ1). Using the same argument, assume d(ψ2) ⊆ d(φ2). Then, it
holds that d(φ1) ⊆ t = d(φ2). By the combination axiom,

(φ1 ⊗ ψ2)
↓t = φ1

↓t∩d(φ1) ⊗ ψ2 = ψ1 ⊗ φ2.

Then, the Property (M) shows that there is a φ ∈ Φ with d(φ) = d(φ1) such that
φ1 ⊗ ψ2 = φ ⊗ ψ1. Hence, (φ1, ψ1) =∗ (φ, ψ2). Further, s ∈ M∗(φ2, ψ2) implies
s ∈M∗(φ, ψ2). This shows that =∗ satisfies (2.34). ut

Theorem 8.10. (Φ∗, D, d∗,⊗∗,M∗, ↓∗,=∗) forms a quotient valuation algebra. Fur-
thermore, the mapping φ 7→ (φ, e) is an embedding. �
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Proof. The first claim follows from the quotient valuation algebra Theorem 2.16
and Lemma 8.23.
The mapping is a homomorphism since, for φ, ψ ∈ Φ,

• d(φ) = d(φ) ∪ ∅ = d∗(φ, e),

• (φ, e)⊗∗ (ψ, e) = (φ⊗ ψ, e),

• M(φ, e) = {s : ∅ = d(e) ⊆ s ⊆ d(φ)} =M(φ),

• (φ, e)↓
∗s = (φ↓s, e), and

• e∗ = (e, e) is the identity element.

Finally, the mapping is injective since (φ, e) =∗ (φ′, e) implies φ = φ⊗ e = e⊗ φ′ =
φ′. ut

Recall the conventions of Table 2.1 for quotient valuation algebras:

• representatives are used for their equivalence class, i.e.

– (φ, ψ) ∈ Φ∗ instead of [(φ, ψ)]=∗ ∈ Φ∗/ =∗ and

– (φ, ψ) = (φ′, ψ′) instead of (φ, ψ) =∗ (φ′, ψ′);

• the operator symbols for separative fractions are used for separative quotients;
for instance, (φ1, ψ1) ⊗∗ (φ2, ψ2) = (φ, ψ) stands for (φ1, ψ1) ⊗∗ (φ2, ψ2) =∗

(φ, ψ).

The valuation algebra A∗ = (Φ∗, D, d∗,⊗∗,M∗, ↓∗,=∗) is called the separative exten-
sion of (Φ,D, d,⊗, ↓).

Every semigroup

Φ∗x = {(φ, ψ) ∈ Φ∗ : d∗(φ, ψ) = x}

of separative fractions of the same domain x ∈ D is a group:

• the identity element is ex = (χ, χ) for any χ ∈ Φ with domain d(χ) = x (since
(φ, ψ)⊗∗ (χ, χ) = (φ, ψ) for all (φ, ψ) ∈ Φ∗x);

• the inverse of (φ, ψ) ∈ Φ∗x is (φ, ψ)−1 = (ψ, φ) since (φ, ψ)⊗∗ (ψ, φ) = ex.

These observations are captured in the following theorem.

Theorem 8.11. A separative extension A∗ = (Φ∗, D, d∗,⊗∗,M∗, ↓∗,=∗) is a valu-
ation algebra with division, where the groups are formed by the separative quotients
of the same domain. �
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8.3 Gaussian Quotients

In order to construct the separative extension of Gaussian potentials, it has to be
shown that the semigroup of Gaussian potentials of the same domain are cancellative
and that they satisfy the Property (M). As a preliminary step, it is first shown that
the semigroups of Gaussian potentials of the same domain are cancellative.

Lemma 8.12. The sets Gx of Gaussian potentials of the same domain x ∈ D,

Gx = {φ ∈ G : d(φ) = x}, �

are cancellative semigroups.

Proof. That Gx (x ∈ D) is a semigroup is a direct consequence of the labelling
axiom in G. Let φ, ψ, ψ′ ∈ Gx for some x ∈ D. Assume φ ⊗ ψ = φ ⊗ ψ′ = (µ,K).
If d(φ) = ∅, it holds that ψ = ψ′ = e since G∅ = {e}. Assume x 6= ∅, φ = (µ1,K1),
ψ = (µ2,K2), and ψ′ = (µ3,K3). Then,

(µ1,K1)⊗ (µ2,K2) = ((K1 +K2)
−1(K1µ1 +K2µ2),K1 +K2),

and
(µ1,K1)⊗ (µ3,K3) = ((K1 +K3)

−1(K1µ1 +K3µ3),K1 +K3).

The assumption φ⊗ψ = φ⊗ψ′ = (µ,K) implies K1 +K2 = K1 +K3. Hence, since
IR(x, x) is an additive group, it follows that K2 = K3. Further,

(K1 +K2)
−1(K1µ1 +K2µ2) = (K1 +K2)

−1(K1µ1 +K2µ3),

so, since IRx is an additive group,

(K1 +K2)
−1K2µ2 = (K1 +K2)

−1K2µ3.

Finally, multiplication by K2
−1(K1+K2) yields µ2 = µ3. This concludes the proof.ut

In order to use Lemma 8.6, it is now shown that the whole semigroup of Gaussian
potentials is cancellative.

Lemma 8.13. The semigroup of Gaussian potentials is cancellative. �

Proof. Let φ1 ⊗ φ2 = φ1 ⊗ φ3 for any φ1, φ2, φ3 ∈ G. Let φ1 = (µ1,K1), φ2 =
(µ2,K2), φ3 = (µ3,K3), and assume

φ1 ⊗ φ2 = φ1 ⊗ φ3 = (µ,K) = φ.

Let x = d(φ). Then,

K = K1
↑x +K2

↑x = K1
↑x +K3

↑x.

Hence, since IR(x, x) is an additive group, it follows that

K2
↑x = K3

↑x.
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Since the diagonal elements of the positive definite matrix K are positive (Corollary
14.2.13 of (Harville, 1997; p.214)), and since K2 and K3 are positive definite, it
follows from K2

↑x = K3
↑x that d(φ2) = d(φ3), so, using Lemma 8.12, K2 = K3.

Further,

K−1((K1µ1)
↑x + (K3µ3)

↑x) = µ = K−1((K1µ1)
↑x + (K2µ2)

↑x).

Then, multiplying by K and subtracting (K1µ1)
↑x on both sides yields

(K2µ2)
↑x = (K3µ3)

↑x.

Since d(φ2) = d(φ3) and K2 = K3, it follows that

K2µ2 = K2µ3.

Premultiplication by K2
−1 yields µ2 = µ3. Hence, indeed (µ2,K2) = (µ3,K3). ut

As a consequence of Lemma 8.13, the following corollary is obtained.

Corollary 8.14. The relation =∗ defined by

η1 =∗ η2 ⇐⇒ η1 ≡∗ η2 and d∗(η1) = d∗(η2) (8.13)

is an equivalence relation in the set G∗ = G×G of fractions of Gaussian potentials.�

The second requirement for Gaussian potentials to be separative is the Property (M).

Lemma 8.15. Gaussian potentials have the propery (M) �

Proof. Let φ = (µ,K), φ1 = (µ1,K1) and χ = (µχ,Kχ) such that φ↓t = φ1 ⊗ χ
and d(φ1) = t. Define s = d(φ)− t. Then,

φ↓t = (µ↓t,K↓t −K↓t,sK↓s−1
K↓s,t).

It follows from equation (8.11) that

K↓t −K↓t,sK↓s−1
K↓s,t = K1 +Kχ

↑t (8.14)

and
µ↓t = (K1 +Kχ

↑t)
−1

(K1µ1 +Kχ
↑tµχ

↑t).

Define

K2 =

(
K↓s K↓s,t

K↓t,s K1 +K↓t,sK↓s−1
K↓s,t

)
and

µ2 = K2
−1(Kµ− (Kχ)

↑x(µχ)
↑x).

It follows from Lemma A.7 that K2 is symmetric and positive definite. Thus, φ2 =
(µ2,K2) is a Gaussian potential.
On the one hand, equation (8.14) implies that

K↓t −Kχ
↑t = K1 +K↓t,sK↓s−1

K↓s,t,
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hence

K = (K −Kχ
↑x) +Kχ

↑x =
(
K↓s K↓s,t

K↓t,s K↓t −Kχ
↑t

)
+Kχ

↑x = K2 +Kχ
↑x.

On the other hand, it follows from the definition of µ2 that

µ = K−1(K2µ2 + (Kχ)
↑x(µχ)

↑x) = (K2 +Kχ
↑x)

−1
(K2µ2 + (Kχ)

↑x(µχ)
↑x).

This shows that φ = φ2 ⊗ χ. ut

Since Gaussian potentials are cancellative and have the Property (M), they form
a separative valuation algebra.

Theorem 8.16. The valuation algebra of Gaussian potentials is separative. �

Pairs of Gaussian potentials are called Gaussian fractions and their equivalence classes
Gaussian quotients. The set of all Gaussian fractions is denoted G∗.

8.4 Generalisation of Separative Valuation Algebras

In contrast to Gaussian potentials, the semigroup of probability densities is not can-
cellative. However, the semigroups of probability densities having the same support ,
i.e. the same zeros, are cancellative and have the Property (M). Based on this ex-
ample of probability densities, the concept of separative valuation algebra will now
be generalised

Example 8.17. Consider probability densities (see Example 2.40). Here, f ⊗ g =
f ⊗g′ does not imply g = g′ since g and g′ may differ whenever f is zero. Therefore,
only densities which have the same support should be considered, i.e.

supp(f) = {x ∈ IRx : x = d(f), f(x) > 0}. (8.15)

Define
supp(f)↑y = supp(f)× IRy−x (8.16)

for d(f) ⊆ y. Then, it is easily verified that for densities f, g with domains x and y

supp(f ⊗ g) = supp(f)↑x∪y ∩ supp(g)↑x∪y. (8.17)

In order to simplify notation,

supp(f) = supp(g) (8.18)

will be used for supp(f)↑x∪y = supp(g)↑x∪y where x = d(f) and y = d(g). Further-
more, it is easily verified that

supp(f↓s) ⊇ supp(f) (8.19)
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for s ⊆ d(f). Using (8.17), it is easily seen that supp(f) = supp(f ′) and supp(g) =
supp(g′) imply that

supp(f ⊗ g) = supp(f ′ ⊗ g′) and supp(f↓s) = supp(f ′↓s) (8.20)

for s ⊆ d(f), d(f ′). Using equations (8.16) and (8.19),

supp(f ⊗ f↓s) = supp(f). (8.21)

Hence, supp is an idempotent congruence.
It is now shown that densities of the same support (modulo label) are can-

cellative. Let f, g1, g2 be densities with domains s = d(f), t1 = d(g1), t2 = d(g2)
such that supp(f)↑u = supp(g1)

↑u = supp(g2)
↑u and u = s ∪ t1 = s ∪ t2. Assume

f ⊗ g1 = f ⊗ g2. Then,

f(u↓s) · g1(u↓t1) = f(u↓s) · g2(u↓t2)

for all u ∈ IRu. Since they have the same support, this implies

g1(u↓t1) = g2(u↓t2)

for all u ∈ IRu, Hence, it has to be shown that t1 = t2. For fixed t12 ∈ IRt1∩t2 , it
holds that

g1(t12, t1) = g2(t12, t2),

for all t1 ∈ IRt1−t2 , t2 ∈ IRt2−t1 . This defines a function g : IRt1∩t2 → IR by

g(t12) = g1(t12, t1) = g2(t12, t2),

irrespective of the choice of t1 ∈ IRt1−t2 , t2 ∈ IRt2−t1 . Since g1 and g2 are densities,∫
z1∈IRt1−t2

g1(x, z1)dz1 = g(x)
∫
z1∈IRt1−t2

1dz1 < ∞

and ∫
z2∈IRt2−t1

g2(x, z2)dz2 = g(x)
∫
z2∈IRt2−t1

1dz2 < ∞,

so t1−t2 = t2−t1 = ∅, thus t1 = t2. This shows that g1 = g2. Hence, the semigroups
densities of the same support are indeed cancellative. �

It is now shown how quotients of such generalised fractions can be built.

Lemma 8.18. Let A = (Φ,D, d,⊗, ↓) be a valuation algebra with full marginalisa-
tion and let γ be an idempotent congruence in it such that the semigroups γ(φ) are
cancellative. Then, the relation ≡∗ in Φ∗ defined by

(φ, ψ) ≡∗ (φ′, ψ′) ⇐⇒ χ⊗ φ⊗ ψ′ = χ⊗ ψ ⊗ φ′ and γ(φ⊗ ψ) = γ(φ′ ⊗ ψ′)
(8.22)

for χ = φ⊗ ψ ⊗ φ′ ⊗ ψ′ is an equivalence relation. �
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Proof. Let (φ1, ψ1), (φ2, ψ2), (φ3, ψ3) ∈ Φ∗.

1. Reflexivity: Commutativity of ⊗ implies that φ1 ⊗ ψ1 = ψ1 ⊗ φ1. Hence,
(φ1, ψ1) ≡∗ (φ1, ψ1).

2. Symmetry: Assume (φ1, ψ1) ≡∗ (φ2, ψ2). Then,

ψ2 ⊗ φ1 = φ1 ⊗ ψ2 = ψ1 ⊗ φ2 = φ2 ⊗ ψ1

and γ(φ1 ⊗ ψ1) = γ(φ2 ⊗ ψ2). Hence, (φ2, ψ2) ≡∗ (φ1, ψ1).

3. Transitivity: Assume (φ1, ψ1) ≡∗ (φ2, ψ2) and (φ2, ψ2) ≡∗ (φ3, ψ3). Then,

χ1 ⊗ φ1 ⊗ ψ2 = χ1 ⊗ ψ1 ⊗ φ2, (8.23)
χ2 ⊗ φ2 ⊗ ψ3 = χ2 ⊗ ψ2 ⊗ φ3 (8.24)

where χ1 = φ1 ⊗ ψ1 ⊗ φ2 ⊗ ψ2, χ2 = φ2 ⊗ ψ2 ⊗ φ3 ⊗ ψ3 and γ(φ1 ⊗ ψ1) =
γ(φ2 ⊗ ψ2) = γ(φ3 ⊗ ψ3). Therefore, multiplying (8.23) by φ3 ⊗ ψ3 ⊗ ψ3 and
applying (8.24) yields

χ1 ⊗ φ1 ⊗ ψ2 ⊗ φ3 ⊗ ψ3 ⊗ ψ3 = χ1 ⊗ ψ1 ⊗ φ2 ⊗ φ3 ⊗ ψ3 ⊗ ψ3

= χ1 ⊗ ψ1 ⊗ ψ2 ⊗ φ3 ⊗ φ3 ⊗ ψ3.

Hence, using cancellativity, the term φ2 ⊗ ψ2 ⊗ ψ2 can be erased,

(φ1 ⊗ ψ1 ⊗ φ3 ⊗ ψ3)⊗ φ1 ⊗ ψ3 = (φ1 ⊗ ψ1 ⊗ φ3 ⊗ ψ3)⊗ ψ1 ⊗ φ3.

Together with γ(φ1⊗ψ1) = γ(φ3⊗ψ3), this shows that≡∗ is indeed transitive.ut

Corollary 8.19. Let A = (Φ,D, d,⊗, ↓) be a valuation algebra with full marginal-
isation and let γ be an idempotent congruence in it such that the semigroups γ(φ)
are cancellative. Then, the relation =∗ defined by

η1 =∗ η2 ⇐⇒ η1 ≡∗ η2 and d∗(η1) = d∗(η2) (8.25)

is an equivalence relation in Φ∗. �

Proof. The elements of the same domain of the equivalence classes modulo ≡∗
form a finer partition. ut

Remark 8.20. The term χ in the definition of ≡∗ in equation (8.22) is necessary
for the transitivity of =∗. Take the following example: Let (φ1, ψ1) ≡∗ (φ2, ψ2)
and (φ2, ψ2) ≡∗ (φ3, ψ3). It is then possible that γ(φ1) < γ(ψ1) = γ(φ1 ⊗ ψ1) and
γ(ψ3) < γ(φ3) = γ(φ3⊗ψ3). Here, < stands for “≤ and 6=.” However, it then holds
that γ(φ1⊗ψ3) < γ(φ3⊗ψ1). Hence, the term χ carries φ1⊗ψ3 and ψ1⊗φ3 to the
same equivalence class γ(φ1 ⊗ ψ1) = γ(φ3 ⊗ ψ3). �

It is now shown that probability densities have the Property (M).
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Example 8.21. Let f, f1, g be probability densities and let t = d(f1) and x = d(f).
Assume f↓t = f1 ⊗ g such that d(g) ⊆ t. Define the function f2 : IRx → IR by

f2(x) =
f(x)

g(x↓d(g))

whenever g(x↓d(g)) > 0 and to be 0 else. This convention will also be followed in the
following divisions. Then,∫

s∈IRx−t
f2(s, t)ds =

∫
s∈IRx−t f(s, t)ds

g(t↓d(g))
=

f↓t(t)
g(t↓d(g))

=
f1 ⊗ g(t)
g(t↓d(g))

= f1(t)

for t ∈ IRt. Hence,
∫
x∈IRx f2(x)dx =

∫
t∈IRt f1(t)dt, which shows that f2 is indeed a

probability density. Clearly, it holds that

f(x) =
f(x) · g(x↓d(g))

g(x↓d(g))
= f2(x) · g(x↓d(g)).

Since f↓t = f1⊗ g implies g(x↓d(g)) = 0 implies f(x) = 0, it follows that f = f2⊗ g.
Hence,

f↓t = (f2 ⊗ g)↓t = f2
↓t ⊗ g

by the combination axiom. This shows that probability densities have the Prop-
erty (M). �

Based on the example of probability densities, the concept of valuation algebras
can be generalised as follows.

Definition 8.22. A valuation algebra A = (Φ,D, d,⊗, ↓) is called separative if there
is an idempotent congruence γ in it such that

• the semigroups γ(φ) are cancellative and if

• A has the Property (M). �

These generalised separative valuation algebras can be embedded into a valuation
algebra of quotients modulo =∗ in essentially the same way as above.

Lemma 8.23. Let (Φ,D, d,⊗, ↓) be a separative valuation algebra. The relation =∗

is a domain-contained congruence in (Φ∗, D, d∗,⊗∗,M∗, ↓∗). �

Proof. The claim can be proved in the same way as Lemma 8.9. ut

Theorem 8.24. (Φ∗, D, d∗,⊗∗,M∗, ↓∗,=∗) forms a quotient valuation algebra with
division in the groups

γx(φ) = {(φ, ψ) ∈ γ(φ) : d∗(φ, ψ) = x}.

Furthermore, the mapping φ 7→ (φ, e) is an embedding. �

Proof. The claim can be proved in the same way as Theorems 8.10 and 8.11. ut

In this more general setting, Gaussian quotients form a subalgebra of the separative
extension of positive densities. More precisely, they are included in the group γ(φ)
of separative quotients of positive densities, which are at the bottom of the partial
order induced by supp.
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8.5 Conditionals in a Separative Extension

The notion of conditional Gaussian potentials from Chapter 5 can be generalised for
any separative extension.

Definition 8.25. An element η = (φ, φ↓t) ∈ Φ∗ is called a conditional in a separa-
tive extension A∗ = (Φ∗, D, d,⊗,M, ↓). The variables h = d(φ) − t are called head
of the conditional and the variables t are called tail. The set of all conditionals is
denoted Φ∗c . �

The following lemma gives a sufficient condition for the combination of two condi-
tionals to be a conditional. The situation is shown in Figure 8.1: An oval stands for
a conditional’s domain and its grey-shaded part stands for the head.

h1

h2

t2

t1

Figure 8.1: The combination of conditionals yields a conditional if head h2 does not overlap
with the other factor’s domain h1 ∪ t1.

Lemma 8.26. Let η1 = (φ1, φ1
↓t1) ∈ Φ∗ and η2 = (φ2, φ2

↓t2) ∈ Φ∗ be conditionals
with heads h1 = d(φ1)− t1 and h2 = d(φ2)− t2 such that

• the head h2 = d(φ2)− t2 and d(φ1) are disjoint, i.e. h2 ∩ d(φ1) = ∅, and

• γ(φ2
↓t2) ≤ γ(φ1

↓t1).

Then, η1 ⊗ η2 is a conditional with head h1 ∪ h2 and tail t1 ∪ (t2 − h1), i.e. there is
a φ ∈ Φ with domain d(φ) = d(φ1) ∪ d(φ2) such that η1 ⊗ η2 = (φ, φ↓t1∪(t2−h1)). �

Proof. Since η1⊗η2 = (φ1⊗φ2, φ1
↓t1⊗φ2

↓t2), it follows that t1∪ t2 ⊆ h1∪ t1∪ t2 ∈
M(η1 ⊗ η2). Then, in light of the combination axiom in A [since d(φ1) ∩ d(φ2) ⊆ t2
and since d(φ2) ∩ (h1 ∪ t1 ∪ t2) = t2],

(η1 ⊗ η2)
↓h1∪t1∪t2 = (φ1 ⊗ φ2

↓t2 , φ1
↓t1 ⊗ φ2

↓t2).

Then,

(φ1 ⊗ φ2
↓t2)⊗ (φ1

↓t1 ⊗ φ2
↓t2−h1) = (φ1

↓t1 ⊗ φ2
↓t2)⊗ (φ1 ⊗ φ2

↓t2−h1)
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and

γ(φ1 ⊗ φ2
↓t2 ⊗ φ1

↓t1 ⊗ φ2
↓t2−h1 ) = γ(φ1

↓t1 ⊗ φ2
↓t2−h1 ⊗ φ1 ⊗ φ2

↓t2−h1)

since γ(φ2
↓t2−h1) ≤ γ(φ2

↓t2 ≤ γ(φ1
↓t1) ≤ γ(φ1). Therefore,

(η1 ⊗ η2)
↓h1∪t1∪t2 = (φ1 ⊗ φ2

↓t2−h1 , φ1
↓t1 ⊗ φ2

↓t2−h1)

Hence, t1 ∪ (t2 − h1) ∈M((η1 ⊗ η2)
↓h1∪t1∪t2), and(

(η1 ⊗ η2)
↓h1∪t1∪t2

)↓t1∪(t2−h1)
= (φ1

↓t1 ⊗ φ2
↓t2−h1 , φ1

↓t1 ⊗ φ2
↓t2−h1).

Then, by the transitivity axiom in A∗, t1∪(t2−h1) ∈M(η1⊗η2), i.e. η1⊗η2 = (φ, ψ)
such that d(ψ) ⊆ t1 ∪ (t2 − h1) and

(φ1
↓t1 ⊗ φ2

↓t2−h1 , φ1
↓t1 ⊗ φ2

↓t2−h1) = (η1 ⊗ η2)
↓t1∪(t2−h1) = (φ↓d(φ)∩(t1∪(t2−h1)), ψ).

By cancellativity, ψ = φ↓d(φ)∩(t1∪(t2−h1)). Since d(φ) ∩ (t1 ∪ (t2 − h1)) = d(ψ) ⊆
t1 ∪ (t2 − h1), it also follows that t1 ∪ (t2 − h1) ⊆ d(φ). Hence,

η1 ⊗ η2 = (φ, ψ) = (φ, φ↓t1∪(t2−h1))

is a conditional. ut

Hence, conditional Gaussian potentials

G∗c = {(φ, φ↓t) ∈ G∗}. (8.26)

are the conditionals in the separative extension of Gaussian potentials. It has to be
remarked that not all representations of a conditional have the same form (φ, φ↓t),
for instance (φ⊗ φ, φ⊗ φ↓t).

Remark 8.27. Conditional Gaussian potentials are closed under combination (see
Theorem 7.8), whereas only Lemma 8.26 holds for conditionals in general. Further-
more, in contrast to Gaussian hints, conditional Gaussian potentials are not fully
marginalisable. On the one hand, a non-vacuous variable in a Gaussian hint corre-
sponds to a variable in the head of the corresponding conditional Gaussian potential.
On the other hand, by using Lemma 7.13, a vacuous variable Z corresponds to a
conditional Gaussian potential

(φ1, φ1
↓z−{Z})⊗∗ e{Z} (8.27)

such that Z 6∈ d(φ1). Therefore, in a separative extension, vacuous variables in the
sense of (8.27) cannot be eliminated. Would it be possible to extend marginalisation
so that vacuous-variables can be eliminated? The answer is negative: In general,
it is not possible to eliminate the tail variables t of a conditional η with head h.
However, when η is marginalised to t, the variables t become vacuous. In this
general situation, it is impossible to extend marginalisation to cover the elimination
of vacuous variables the transitivity axiom would require that ∅ ∈ M∗(η) implies
that all marginals are defined, i.e. that s ∈ M∗(η) for all s ⊆ h ∪ t. However, if
every variable is either vacuous or non-vacuous, there is no contradiction with the
transitivity axiom. It remains an open question whether this property is sufficient
for extending marginalisation in Φ∗ to cover vacuous variables. �
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Conditionals are kernels in a valuation algebra with division in the sense of Sec-
tion 4.6. The elements (φ, e) ∈ Φ∗ are densities in that terminology. If a sequence
of conditionals forms a construction sequence, it is factorisation of a density. This
is a reformulation of the Chain Rule of Bayesian Networks where a network of con-
ditional probability distributions is used to construct a full probability distribution.
Further, it has been shown in Section 4.6 that there is always a scheduling of the
collect algorithm if the factors of the join tree form a construction sequence.

Chapter Synopsis & Discussion

Separative valuation algebras offer an algebraic motivation for relating different con-
ditional Gaussian densities. Furthermore, the derived combination and marginalisa-
tion operations correspond to combination and elimination of non-vacuous variables
of conditional Gaussian densities and Gaussian hints as discussed in Chapter 7.
However, two aspects of the general algebraic approach must be pointed out:

• Conditional Gaussian potentials are closed under combination (see Theorem 7.8),
whereas conditionals in a separative extension are not generally closed under
combination;

• vacuous variables cannot be eliminated in the separative extension, whereas
Gaussian hints are fully marginalisable.

The notion of separative valuation algebras originates from (Kohlas, 2003), whose
presentation differs in some minor aspects.

1. The Property (M) is not required in the definition of a separative valuation al-
gebra, since the weaker transitivity axiom (A4)′′ is used (see also the discussion
at the end of Chapter 2).

2. A further minor difference is that he only considers pairs of valuations of the
same domain and the same equivalence class, i.e. the set

Φ′ = {(φ, ψ) : d(φ) = d(ψ), φ ≡ ψ (mod γ)}.

Obviously,
Φ′ ⊆ Φ∗.

However, every element of (φ, ψ) ∈ Φ∗ can be represented by (φ ⊗ φ ⊗ ψ, φ ⊗
ψ ⊗ ψ) ∈ Φ′. Indeed, by the commutativity of combination,

(φ⊗ φ⊗ ψ)⊗ ψ = (φ⊗ ψ ⊗ ψ)⊗ φ

and φ ⊗ φ ⊗ ψ ≡ φ ⊗ ψ ⊗ ψ (mod γ). This shows that the quotients defined
in this chapter have more representatives. However, the quotient algebra is
not essentially larger since quotients are in one-to-one correspondence. In
particular, an element φ ∈ Φ is represented by the pair (φ⊗ φ, φ) ∈ Φ′.
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3. The construction presented in this chapter is based on the quotient valuation
algebra theorem, whereas (Kohlas, 2003) gives a direct proof that the quotients
form a valuation algebra.

The theory of separative valuation algebras is rooted in semigroup theory. Hewitt
and Zuckerman (1956) have shown that a commutative semigroup (Φ,⊗) can be
embedded into a semigroup that is the union of disjoint groups if and only if the
semigroup satisfies

φ⊗ ψ = φ⊗ φ = ψ ⊗ ψ =⇒ φ = ψ.

Commutative semigroups satisfying this property have been called separative (Clif-
ford and Preston, 1967). On the one hand, Hewitt and Zuckerman (1956) have
shown that a separative semigroup always decomposes into disjoint cancellative sub-
semigroups. They then used the same construction as presented in this chapter to
construct a semigroup that is the union of disjoint groups. On the other hand, if a
semigroup Φ is embedded in the union of disjoint commutative groups Gi,

Φ =
⋃
i

Gi,

the separativity condition φ⊗ψ = φ⊗φ = ψ⊗ψ implies that φ, φ⊗φ, ψ, and ψ⊗ψ
are in the same group Gi (since it is closed under ⊗) and hence

φ = φ−1 ⊗ φ⊗ φ = φ−1 ⊗ φ⊗ ψ = ψ.

In the domain of local computation, Lauritzen and Jensen (1997) claim that
they investigated which extra assumptions are needed to introduce division in a
valuation algebra. However, they do not construct the extension from a cancellative
semigroup. In particular, they do not define marginalisation in the extension. They
essentially describe the Lauritzen-Spiegelhalter architecture for local computation in
valuation algebras which have been called domain-free in (Kohlas, 2003). However,
they presuppose a valuation algebra which already decomposes into disjoint groups
and whose unit elements form a semi-lattice.
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9
Symmetric Gaussian Potentials

As introduced in Chapter 5, a conditional Gaussian density φx|z can be represented
by a symmetric Gaussian potential: a vector and a symmetric matrix. The matrix
is a “pseudo-concentration matrix” since it is the difference of the two concentration
matrices of φ and φ↓z.

Chapter Outline

This chapter is devoted to the relation of symmetric Gaussian potentials to the
separative extension of Gaussian potentials and to Gaussian hints: In Section 9.1,
it is shown that there is a bijection between Gaussian Quotients and symmetric
Gaussian potentials. In Section 9.2, it is shown that there is an injection from
Gaussian hints into symmetric Gaussian potentials. Hence, equivalent Gaussian
fractions and equivalent Gaussian hints can be represented in a unique, canonical
way by a symmetric Gaussian potential.

In Sections 9.3 to 9.4, it is shown how the operations of marginalisation and
combination can be carried over from the separative extension of Gaussian potentials
and from Gaussian hints to symmetric Gaussian potentials. In Section 9.5, it is then
shown that symmetric Gaussian potentials form a valuation algebra extending both
Gaussian hints and the separative extension of Gaussian potentials.

Finally, it is shown in Section 9.6 how generalised moment matrices and sym-
metric Gaussian potentials corresponding to a Gaussian linear system are related.

9.1 Relating Gaussian Quotients to Symmetric Gaussian
Potentials

The following theorem shows that equivalent Gaussian fractions in G∗ are related to
the same symmetric Gaussian potential in ∆.

Lemma 9.1. Let (φ11, φ12) = (φ21, φ22) ∈ G∗ be equivalent Gaussian fractions,

φ11 = (µ11,K11), φ12 = (µ12,K12), φ21 = (µ21,K21), φ22 = (µ22,K22),

189
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and let x = d(φ11) ∪ d(φ12) = d(φ21) ∪ d(φ22). Then,

K11
↑x −K12

↑x = K21
↑x −K22

↑x

and
K11

↑xµ11
↑x −K12

↑xµ12
↑x = K21

↑xµ21
↑x −K22

↑xµ22
↑x. �

Proof. It follows from [φ11, φ12] = [φ21, φ22] that φ11 ⊗ φ22 = φ12 ⊗ φ21, i.e.

K11
↑x +K22

↑x = K12
↑x +K21

↑x

and

K−1
(
K11

↑xµ11
↑x +K22

↑xµ22
↑x
)

= K−1
(
K21

↑xµ21
↑x +K12

↑xµ12
↑x
)

for K = K11
↑x +K22

↑x = K12
↑x +K21

↑x. Then,

K11
↑x −K12

↑x = K21
↑x −K22

↑x

and

K11
↑xµ11

↑x +K22
↑xµ22

↑x = K21
↑xµ21

↑x +K12
↑xµ12

↑x,

hence also

K11
↑xµ11

↑x −K12
↑xµ12

↑x = K21
↑xµ21

↑x −K22
↑xµ22

↑x,

which proves the claim. ut

In light of this lemma, equivalent Gaussian fractions are mapped to the same
symmetric Gaussian potential. Therefore, a Gaussian quotient η = (φ1, φ2) with
φ1 = (µ1,K1) ∈ G, φ2 = (µ2,K2) ∈ G, x = d(φ1), and y = d(φ2) induces the
symmetric Gaussian potential i∗(η) by the mapping i∗ : G∗ → ∆ defined by

i∗(η) = (µ,K), (9.1)

where
µ = (K1µ1)

↑x∪y − (K2µ2)
↑x∪y, K = K1

↑x∪y −K2
↑x∪y. (9.2)

Notice that K is symmetric since both K1,K2 and thus K1
↑x∪y and K2

↑x∪y are
symmetric.

Remark 9.2. In particular, a Gaussian potential (µ,K) is represented by the pair

(Kµ,K). (9.3)

In this representation, combination only requires the addition of the pseudo-mean
vectors and of the pseudo-covariance matrices. �
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Surjectivity

It will now be proved that i∗ is surjective, i.e. that each symmetric Gaussian po-
tential is the image under i∗ of a Gaussian quotient. As a preliminary step, the
following lemma shows that any symmetric matrix can be written as the difference
of two symmetric positive definite matrices vacuously extended to the union of their
domains. The proof is constructive: Two symmetric positive definite matrices are
constructed whose difference is the given symmetric matrix.

Lemma 9.3. Any symmetric matrix Σ can be written as the difference of two sym-
metric positive definite matrices Σ1, Σ2,

d(Σ1) ∪ d(Σ2) = d(Σ),

such that

Σ = Σ1
↑d(Σ) −Σ2

↑d(Σ). �

Proof. If d(Σ) = ∅, then Σ1 = Σ2 = 0∅,∅ satisfy the claim since 0∅,∅ = 0∅,∅ − 0∅,∅.
If d(Σ) 6= ∅, let d(Σ) = {X1, . . . , Xn}, and define

Σ(k) = Σ↓{X1,...,Xk}

for 1 ≤ k ≤ n. The proof then goes by induction over k = 1, . . . , n, i.e. it will be
proved that

(a) there are symmetric positive definite matrices Σ(1)
1 , Σ

(1)
2 with

d(Σ(1)
1 ) = d(Σ(1)

2 ) = {X1}

such that

Σ(1) = Σ
(1)
1 −Σ(1)

2 ,

and

(b) if, for 1 ≤ k < n, there are symmetric positive definite matrices Σ(k)
1 , Σ

(k)
2

with
d(Σ(k)

1 ) = d(Σ(k)
2 ) = {X1, . . . , Xk}

such that

Σ(k) = Σ
(k)
1 −Σ(k)

2 ,

then there are symmetric positive definite matrices Σ(k+1)
1 , Σ

(k+1)
2 with

d(Σ(k+1)
1 ) = d(Σ(k+1)

2 ) = {X1, . . . , Xk+1}

such that

Σ(k+1) = Σ
(k+1)
1 −Σ(k+1)

2 .
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Let Σ(1) =
(
σ
)
, then define

Σ
(1)
1 =

(
|σ|+ σ + 1

)
,

Σ
(1)
2 =

(
|σ|+ 1

)
.

Since Σ(1)
1 and Σ(1)

2 are both positive definite, the claim (a) is proved.
Assume that, for some k, 1 ≤ k < n, there are positive definite matrices Σ(k)

1 , Σ(k)
2

with d(Σ(k)
1 ), d(Σ(k)

2 ) ⊆ {X1, . . . , Xk} such that

Σ(k) = Σ
(k)
1 −Σ(k)

2 .

The induction step (b) is now to construct fromΣ
(k)
1 , Σ

(k)
2 the matricesΣ(k+1)

1 , Σ
(k+1)
2 .

Let σij = Σ(i, j) be the elements of Σ. Then, define the diagonal matrix Σ
k,(k+1)
1

as
σ2

11 + k + 2
. . .

σ2
kk + k + 2 ∑k

j=1 σ
2
j(k+1) + k + k · |σ(k+1)(k+1)|+ σ(k+1)(k+1)


and

Σ
k,(k+1)
2 =

k∑
j=1

Σk,k+1,j
2

where, for j = 1, . . . , k,

Σk,k+1,j
2 =


Ij−1 0j−1,1 0j−1,k−j 0j−1,1

01,j−1 σ2
jj + 2 01,k−j −σj(k+1)

0k−j,j−1 0k−j,1 Ik−j 0k−j,1
0 −σ(k+1)j 01,k−j σ2

j(k+1) + 1 +
∣∣σ(k+1)(k+1)

∣∣
 .

Define

Σ
(k+1)
1 = Σk

1
↑{X1,...,Xk+1} +Σ

k,(k+1)
1 and

Σ
(k+1)
2 = Σk

2
↑{X1,...,Xk+1} +Σ

k,(k+1)
2 .

Then, it is readily verified that

Σ(k+1) = Σ(k)↑{X1,...,Xk+1} +Σk,k+1
1 −Σk,k+1

2

= Σ
(k)
1

↑{X1,...,Xk+1}
+Σk,k+1

1 − (Σk
2
↑{X1,...,Xk+1} +Σk,k+1

2 )

= Σ
(k+1)
1 −Σ(k+1)

2 .

It remains to be proved that Σ(k+1)
1 , Σ

(k+1)
2 are symmetric and positive definite. By

the induction hypothesis, Σ(k)
1 and Σ

(k)
2 are positive definite. Hence, according to
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Lemma A.5, it is sufficient to prove that Σk,(k+1)
1 and Σ

k,(k+1)
2 are symmetric and

positive definite. Even more, in order to prove that Σk,(k+1)
2 is symmetric and posi-

tive definite, it is sufficient to prove that the matrices Σk,(k+1),j
2 are symmetric and

positive definite. First, it is shown that the matrix Σk,(k+1)
1 is symmetric and posi-

tive definite. Since Σk,(k+1)
1 is diagonal, it is symmetric, and in light of Lemma 14.2.1

of (Harville, 1997; p.211), Σk,(k+1)
1 is positive definite since all diagonal elements are

positive (note that k ≥ 1 by assumption). Therefore, the matrix Σk,(k+1)
1 is positive

definite. It is now shown that the matrices Σk,(k+1),j
2 are symmetric and positive

definite. Symmetry follows by definition. For x ∈ IRk+1,

x′Σk,(k+1),j
2 x =(

k+1∑
i=1,i6=j

x2
i︸︷︷︸) + x2

j − 2xjσj(k+1)xk+1 + x2
k+1σ

2
j(k+1)︸ ︷︷ ︸

=(xj−σj(k+1)xk+1)2

+ x2
j (σ

2
jj + 1)︸ ︷︷ ︸+x2

k+1

∣∣σ(k+1)(k+1)

∣∣︸ ︷︷ ︸ .
For any values xi, σj(k+1), σ(k+1)(k+1) (i ∈ {1, . . . , k+1}), all underbraced summands
are non-negative. Furthermore, assuming xi 6= 0 for some i ∈ {1, . . . , k}, then the
summand x2

i is strictly positive and thus the sum as well. Therefore, the matrices
Σ
k,(k+1),j
2 are positive definite for j ∈ {1, . . . , k}, and thus their sum Σ

k,(k+1)
2 is

positive definite as well. This concludes the proof of the assertion (b), too. ut

Notice that the decomposition of a symmetric matrix into the difference of two
symmetric positive definite matrices need not be unique; for instance, the null matrix
0x = Kx −Kx for any domain x and symmetric and positive definite matrix Kx ∈
IR(x, x).
Using this decomposition, it can now be proved that i∗ is surjective.

Lemma 9.4. The mapping i∗ : G∗ → ∆ is surjective. �

Proof. It has to be shown that, for φ ∈ ∆, there is a (φ1, φ2) ∈ Φ∗ such that

i∗(φ1, φ2) = φ.

Let φ = (µ,K) ∈ ∆ and s = d(φ). By Lemma 9.3, there are symmetric positive
definite matrices K1 and K2 with d(K1) ∪ d(K2) = s such that

K = K1
↑s −K2

↑s.

Note that they are invertible by Corollary 14.2.11 (Harville, 1997; p.214). Let x =
d(K1) and y = d(K2). Define

µ1 = K1
−1µ↓x

and

µ2 = K2
−1
(
µ↓s−x

)↑y
.
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Then, since x ∪ y = s,

µ =
(
µ↓x

µ↓s−x

)
=

(
µ↓x
)↑s

+
((

µ↓s−x
)↑y)↑s

= (K1µ1)
↑s + (K2µ2)

↑s.

Define φ1 = (µ1,K1) and φ2 = (µ2,K2), which are both Gaussian potentials since
K1 and K2 are both symmetric and positive definite. It has been shown that

i∗(φ1, φ2) = φ,

hence i∗ is indeed surjective. ut

Injectivity

It will now be proved that i∗ is injective, i.e. that no more than one Gaussian
quotient is mapped to the same symmetric Gaussian potential. As a preliminary
step, the following lemma is needed.

Lemma 9.5. Let

Σ = Λ1
↑d(Σ) − Λ2

↑d(Σ), Σ = N1
↑d(Σ) −N2

↑d(Σ)

where Λ1, Λ2, N1 and N2 are symmetric positive definite matrices with d(Λ1), d(Λ2) ⊆
d(Σ) and d(N1), d(N2) ⊆ d(Σ). Then,

d(Λ1) ∪ d(N2) = d(Λ2) ∪ d(N1) ⊇ d(Λ1) ∪ d(Λ2), d(N1) ∪ d(N2).

If d(Λ1) ∪ d(Λ2) = d(N1) ∪ d(N2), then even

d(Λ1) ∪ d(N2) = d(Λ2) ∪ d(N1) = d(Λ1) ∪ d(Λ2) = d(N1) ∪ d(N2). �

Proof. Let Λ1, Λ2, N1, N2 as in the statement of the theorem, and let

S1 = d(Λ1) ∪ d(N2), S2 = d(Λ2) ∪ d(N1).

By Corollary 14.2.13 of (Harville, 1997; p.214), the diagonal elements of Λ1 and Λ2

are positive. By definition of matrix difference, for X ∈ d(Σ),

Σ(X,X) = (Λ1
↑d(Σ))(X,X)− (Λ2

↑d(Σ))(X,X) = (N1
↑d(Σ))(X,X)− (N2

↑d(Σ))(X,X).

First, Σ(X,X) > 0 implies that

X ∈ d(Λ1), d(N1), thus X ∈ S1, S2.

Second, Σ(X,X) < 0 implies that

X ∈ d(Λ2), d(N2), thus X ∈ S1, S2.

Third, Σ(X,X) = 0 implies that

X ∈ d(Λ1), d(Λ2)
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or
X ∈ d(N1), d(N2)

or
X ∈ d(Λ1), d(Λ2), d(N1), d(N2),

or
X 6∈ d(Λ1), d(Λ2), d(N1), d(N2),

thus X is either in both S1, S2 or in none of them. Since

S1, S2 ⊆ d(Λ1) ∪ d(Λ2) ∪ d(N1) ∪ d(N2) ⊆ d(Σ),

it follows that S1 = S2. Since

d(N2) ⊆ S1 = S2 = d(Λ2) ∪ d(N1)

implies
d(N1) ∪ d(N2) ⊆ S2,

and, similarly,
d(Λ2) ⊆ S2 = S1 = d(Λ1) ∪ d(N2)

implies
d(Λ1) ∪ d(Λ2) ⊆ S1,

it follows that

d(N1) ∪ d(N2), d(Λ1) ∪ d(Λ2) ⊆ d(Λ1) ∪ d(N2) = d(Λ2) ∪ d(N1).

Furthermore,
d(N1) ∪ d(N2) ∪ d(Λ1) ∪ d(Λ2) = S1 = S2.

If
d(N1) ∪ d(N2) = d(Λ1) ∪ d(Λ2),

then

d(N1) ∪ d(N2) = d(Λ1) ∪ d(Λ2) = d(N1) ∪ d(N2) ∪ d(Λ1) ∪ d(Λ2) = S1 = S2. ut

Lemma 9.6. The mapping i∗ : G∗ → ∆ is injective. �

Proof. It has to be shown that

i∗([φ11, φ12]) = η = i∗([φ21, φ22])

implies
[φ11, φ12] = [φ21, φ22].

Let

φ11 = (µ11,K11), φ12 = (µ12,K12), φ21 = (µ21,K21), φ22 = (µ22,K22) ∈ G,
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such that
i∗([φ11, φ12]) = η = i∗([φ21, φ22]).

Then,

K11
↑s −K12

↑s = K21
↑s −K22

↑s (9.4)

and

K11
↑sµ11

↑s −K12
↑sµ12

↑s = K21
↑sµ21

↑s −K22
↑sµ22

↑s (9.5)

for
s = d(φ11) ∪ d(φ21) = d∗(η1) = d∗(η2) = d(φ21) ∪ d(φ22).

On the one hand, in light of Lemma 9.5,

d(φ11) ∪ d(φ22) = d(φ12) ∪ d(φ21).

On the other hand, it follows from (9.4) that

K11
↑s +K22

↑s = K12
↑s +K21

↑s

and from (9.5) that

K11
↑sµ11

↑s +K22
↑sµ22

↑s = K21
↑sµ21

↑s +K12
↑sµ12

↑s.

Therefore,

φ11 ⊗ φ22 = ((K11
↑s +K22

↑s)
−1

((K11µ11)
↑s + (K22µ22)

↑s),K11
↑s +K22

↑s)

= ((K21
↑s +K12

↑s)
−1

((K21µ21)
↑s + (K12µ12)

↑s),K21
↑s +K12

↑s)
= φ12 ⊗ φ21.

It has been proved that [φ11, φ12] = [φ21, φ22]. It follows that i∗ is indeed injective.ut

In summary, Lemma 9.4 and Lemma 9.6 show that i∗ is a bijection.

Theorem 9.7. The mapping i∗ : G∗ → ∆ is a bijection. �

Relating CGPs to Symmetric Gaussian Potentials

The following theorem shows that a conditional Gaussian potential induces a sym-
metric Gaussian potential whose pseudo-concentration matrix is non-negative defi-
nite.

Theorem 9.8. Let (ν, C) ∈ ∆ be a symmetric Gaussian potential, C ∈ IR(x∪z, x∪
z), µ ∈ IRx∪z, x ∩ z = ∅. Then, there is a Gaussian potential φ = (µ,K) ∈ G,
d(φ) = x ∪ z, such that

i∗(φ, φ↓z) = (ν, C)

if and only if
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(1) C is non-negative definite of rank r(C) = |x|,

(2) C↓x is symmetric and positive definite, and

(3) ν ∈ C(C), i.e. ν is in the column space C(C) of C. �

Proof. On the one hand, assume i∗(φ, φ↓z) = (ν, C) for some φ = (µ,K), i.e.

C = K −
(
K↓z

)↑x∪z
+
(
K↓z,x(K↓x)

−1
K↓x,z

)↑x∪z
and

ν = Kµ−
(
(K↓z +K↓z,x(K↓x)

−1
K↓x,z)µ↓z

)↑x∪z
.

Then, since K↓x is symmetric and positive definite since it is a principal submatrix
of the symmetric and positive definite matrix K and since

C =

(
K↓x K↓x,z

K↓z,x K↓z,xK↓x−1
K↓x,z

)
,

it follows from Lemma A.9 that C is symmetric and non-negative definite of rank
r(K↓x) = |x|. Finally,

ν = Kµ−
(
K↓z +K↓z,x(K↓x)

−1
K↓x,z)

)↑x∪z
µ = Cµ

shows that ν ∈ C(C).
On the other hand, assume that (ν, C) satisfies (1)–(3) of the claim. Since every
principal submatrix C↓z of a symmetric and non-negative definite matrix C is sym-
metric and non-negative definite in light of Corollary 14.2.12 of (Harville, 1997;
p.214), it follows from Lemma A.10 that

C↓z = C↓z,xC↓x
−1
C↓x,z.

Define

K =
(
C↓x C↓x,z

C↓z,x Iz + C↓z

)
,

which is symmetric and positive definite in light of Lemma A.7 since C↓x and

K↓z −K↓z,xK↓x−1
K↓x,z = Iz + C↓z − C↓z,xC↓x−1

C↓x,z = Iz

are both symmetric and positive definite. On the one hand, it then holds that

K −
(
K↓z

)↑x∪z
+
(
K↓z,xK↓x−1

K↓x,z
)↑x∪z

=

(
C↓x C↓x,z

C↓z,x C↓z,xC↓x
−1
C↓x,z

)
= C.

On the other hand, since ν ∈ C(C), there is a µ such that

Cµ = ν.

Then,

Kµ−
(
K↓z +K↓z,x(K↓x)

−1
K↓x,z)

)↑x∪z
µ = Cµ = ν.

This shows that, for φ = (µ,K) ∈ G, indeed i∗([φ, φ↓z]) = (ν, C) where . ut
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9.2 Relating Gaussian Hints to Symmetric Gaussian Potentials

Gaussian linear systems can be related to symmetric Gaussian potentials by the
mapping eL : L→ ∆, ` 7→ eL(`), (A, z,K) 7→ eL(A, z,K), defined by

eL(A, z,K) = (A′Kz,A′KA). (9.6)

In a first step, the following lemma shows that the mapping eL maps equivalent
Gaussian hints to the same symmetric Gaussian potential. More generally, it will
be proved below that eL maps equivalent Gaussian linear systems to the same sym-
metric Gaussian potential.

Lemma 9.9. For h1, h2 ∈ H,

h1 =H h2 ⇐⇒ eL(h1) = eL(h2). �

Proof. Let h1, h2 ∈ H. Then, both conditions, h1 =H h2 and eL(h1) = eL(h2),
imply that d(h1) = d(h2). So let x = d(h1) = d(h2).
On the one hand, assume h1 =H h2. It has to be shown that eL(h1) = eL(h2). Let

h1 = (A1, z1,K1), A1 ∈ IR(m,x), z ∈ IRm, K ∈ IR(x, x),

for somem ∈ IN. Then, h1 =H h2 implies that there is a regular matrix T ∈ IR(m,m)
such that

h2 = (TA1, T z1, T
−1′K1T

−1) = (A2, z2,K2).

Then, in light of result (8.2.8) of (Harville, 1997; p.82), indeed

eL(h2) = (A′1T
′T−1′K1T

−1Tz,A′1T
′T−1′K1T

−1TA1)
= (A′1Kz,A

′KA1)
= eL(h1).

This shows the “only if” part of the lemma.
Conversely, assume eL(h1) = eL(h2). It has to be shown that h1 =H h2. Let
(µ,K) = eL(h1) = eL(h2),

h1 = (A1, z1,K1), A1 ∈ IR(m1, p), z ∈ IRm1 , K1 ∈ IR(m1,m1),

and

h2 = (A2, z2,K2), A2 ∈ IR(m2, p), z ∈ IRm2 , K2 ∈ IR(m2,m2), ,

for some m1,m2 ∈ IN and let
r = r(K).

Since A1 and A2 have full row rank m1 and m2, respectively, and since K1 and K2

are regular matrices of rank m1 and m2, respectively, and since A′1 and A′2 have
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full column rank m1 and m2, respectively, it follows in light of Lemma 8.3.2. of
(Harville, 1997; p.83) that

m1 = r(A1) = r(KA1) = r(A′1K1A1) = r(K)
= r(A′2K2A2) = r(K2A2) = r(A2)
= m2,

thus r = m1 = m2 and

R(A1) = R(A′1K1A1) = R(A′2K2A2) = R(A2),

i.e. the row spaces of A1 and A2 are equal. This means that every row of A2 is a
unique linear combination of the rows of A1, so there is a regular matrix T ∈ IR(r, r)
such that

A2 = TA1.

In light of Lemma A.3, there is a regular matrix B ∈ IR(r, r, ) such that

K2 = B′K1B.

Then, applying Lemma A.1 twice to

A′1IrK1IrA1 = A′1K1A1 = K = A′2K2A2 = A′1T
′B′K1BTA1

yields Ir = BT , hence
K2 = B′K1B = T−1′K1T

−1.

It remains to be proved that z2 = Tz1. Since A′1K1 has full column rank r,
Lemma A.1 can be applied to

A′1K1z1 = µ = A′2K2z2 = A′1T
′T ′

−1
K1T

−1z2 = A′1K1T
−1z2,

yielding that z1 = T−1z2, thus z2 = Tz1. In summary, T establishes that indeed
h1 =H h2. This also shows the “if” part of the lemma. ut

The following lemma shows that one can pass from a GLS to a symmetric Gaussian
potential either directly or via its associated hint.

Lemma 9.10. Let ` = (A, z,K) ∈ L be a Gaussian linear system of m ∈ IN equa-
tions on variables x ∈ D, where A ∈ IR(m,x) of rank r ≤ m, |x|, and z ∈ IRm,
and K ∈ IR(m,m) symmetric and positive definite. Let h = (Ã, z̃, K̃) be the in-
ferred Gaussian hint using the admissible basis B =

(
B1 B2

)
, B1 ∈ IR(m, r),

B2 ∈ IR(m,m− r). Then,
eL(`) = eL(h). �
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Proof. Define T = B−1 and partition

T =
(
T1

T2

)
, T1 ∈ IR(r,m), T2 ∈ IR(m− r,m).

In light of Theorem 6.12,

Ã = T1A,

z̃ = T1z +
(
B′

1KB1

)−1(B′
1KB2)T2z, and

K̃ = B′
1KB1.

Then, since T2A = 0m−r,x,

A′KA = (TA)′(B′KB)(TA)

=
(
(T1A)′ 0x,m−r

)(B′
1KB1 B′

1KB2

B′
2KB1 B′

2KB2

)(
T1A

0m−r,x

)
= (T1A)′(B′

1KB1)T1A

= Ã′K̃Ã

and

A′Kz = (TA)′(B′KB)Tz

=
(
(T1A)′ 0x,m−r

)(B′
1KB1 B′

1KB2

B′
2KB1 B′

2KB2

)(
T1z
T2z

)
= (T1A)′

(
(B′

1KB1)T1z +B′
1KB2T2z

)
= (T1A)′(B′

1KB1)
(
T1z + (B′

1KB1)
−1
B′

1KB2T2z
)

= Ã′K̃z̃.

This shows that indeed eL(`) = eL(h). ut

Gaussian linear systems are equivalent if and only if they induce the same symmetric
Gaussian potential, as shown by the following theorem.

Theorem 9.11. For `1, `2 ∈ G

eL(`1) = eL(`2) ⇐⇒ `1 =L `2,

and, in particular, for h1, h2 ∈ H

eL(h1) = eL(h2) ⇐⇒ h1 =H h2. �

Proof. Let `1, `2 ∈ L and let h1, h2 be associated Gaussian hints. Then, by
Lemma 9.10, eL(`1) = eL(h1) and eL(`2) = eL(h2). By Lemma 9.9, eL(h1) = eL(h2)
if and only if h1 =H h2. Therefore, eL(`1) = eL(h1) = eL(h2) = eL(`2) if and only
if h1 =H h2 if and only if `1 =L `2 by the definition of =L. The second assertion is
that of Lemma 9.9. ut
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L
eL

∆

H

eL

i

Figure 9.1: A symmetric Gaussian potentials can be either derived directly from a Gaus-
sian linear system or by passing via a Gaussian hint.

As a consequence of this lemma, the diagram of Figure 9.1 is commutative.
The following theorem shows that Gaussian hints correspond to symmetric Gaus-

sian potentials with non-negative definite pseudo-concentration matrix.

Theorem 9.12. Let (µ,C) ∈ ∆, µ ∈ IRx, K ∈ IR(x, x). Then, there is a Gaussian
hint h = (A, z,K), A ∈ IR(r, x), z ∈ IRr, K ∈ IR(r, r) symmetric and positive
definite such that

eL(h) = (µ,C)

if and only if

• C is non-negative definite of rank r, and

• µ ∈ C(C), that is µ is in the column space of C. �

Proof. First, the “only if” part is proved. Assume h is a Gaussian hint on x = d(h)
as stated above, and let (µ,C) = eL(h), i.e.

C = A′KA, µ = A′Kz.

Since A′ has full column rank and since K is regular, Lemma A.1 shows that
r(A′KA) = r(A′K) = r(A′) = r(A) = r, and hence C(A′KA) = C(A′K) = C(A′).
Therefore, C has rank r and µ ∈ C(A′K) = C(A′KA) = C(C). Since K is positive
definite,

x′A′KAx = (Ax)′K(Ax) ≥ 0

for every vector x ∈ IRx, thus C = A′KA is symmetric non-negative definite. This
shows the “only if” part.
Now the “if” part is proved. Assume (µ,C) ∈ ∆, C ∈ IR(x, x) symmetric and
positive definite of rank r, µ ∈ C(C). By Theorem 14.3.7 of (Harville, 1997; p.218),
a necessary and sufficient condition for a matrix K ∈ IR(x, x) to be symmetric
non-negative definite is that there is a matrix A ∈ IR(r, x) of rank r such that

K = A′A.

Since r(C) = r = r(A) = r(A′), it follows that C(C) = C(A′), hence, if µ ∈ C(C) =
C(A′), then there is a z ∈ IRr such that A′z = µ. Therefore, h = (A, z, Ir) is a
Gaussian hint such that

eL(h) = (A′Irz,A′IrA) = (A′z,A′A) = (µ,C).

This also shows the “if” part of the lemma. ut
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In light of these considerations, conditional symmetric Gaussian potentials are those
which correspond to a Gaussian hint or, equivalently, to a conditional Gaussian
quotient. The set of conditional symmetric Gaussian potentials is denoted ∆c,

∆c = {(ν, C) ∈ ∆ : C non-negative definite, ν ∈ C(C)}. (9.7)

This situation is shown in Figure 9.2.

H ∆c
eL

∆

Figure 9.2: Gaussian hints and conditional symmetric Gaussian potentials are in one-to-
one correspondence.

The following lemma shows that the focal sets of the Gaussian hints correspond-
ing to a symmetric Gaussian potential can be directly given in terms of the latter.

Lemma 9.13. Let (ν, C) ∈ ∆c be a conditional symmetric Gaussian potential on x.
Then, it a represents a Gaussian hint with assumptions

Ξ = {ξ ∈ IRx : ξ − ν ∈ C(C)}

and focal sets
Γ (ξ) = {x ∈ IRx : Cx + ξ = ν} (9.8)

for ξ ∈ Ξ. �

Proof. Let h = (A, z,K), A ∈ IR(m,x) be a Gaussian hint inducing (ν, C), i.e.
(ν, C) = eL(h) = (A′KA,A′Kz). Then, the focal sets of h are

Γh(ω) = {x : Ax + ω = z}

for ω ∈ IRm. Let ω ∈ IRm. Then, for ξ(ω) = A′Kω, it holds that

Γ (ξ(ω)) = {x : Cx + ξ(ω) = ν} = {x : A′KAx + ξ(ω) = A′Kz} = Γh(ω).

It remains to be proved that every ξ ∈ Ξ can be written as ξ = ξ(ω) for some
ω ∈ IRm. Indeed, ξ ∈ Ξ implies ξ = A′K(z − Ax) for some x ∈ IRx, hence
ξ ∈ C(A′K) and thus there is some ω ∈ IRm such that ξ = A′Kω = ξ(ω). ut
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Example 9.14. The situation of Lemma 9.13 is depicted in Figure 9.3 for A =
(1,−1), K = (1) and z = (1). Then, C = ( 1 −1

−1 1 ) and ν = ( 1
−1 ). For instance, the

assumption ω = −1 yields ξ(−1) = (−1
1 ), thus Γ (ξ(−1)) = {(x1,x2) : x1− x2− 1 =

1,−x1 + x2 + 1 = −1} = {(x1,x2) : x2 = x1 − 2} = Γh(−1). The second equation
in Cx + ξ = ν is obtained from the first one by changing the sign. Therefore, the
admissible assumptions are on the straight line Ξ = {(x1,x2) : x2 = −x1}. �

x1

x2

Ξ

1

0
1

Γ h
(1
) =

Γ(
ξ(
1)
)

Γ h
(0
) =

Γ(
ξ(
0)
)

ν = ξ(z)
Γ h

(−
1)

=
Γ(

ξ(
−

1)
)

Figure 9.3: Focal sets in terms of the associated symmetric Gaussian potential

9.3 Combination of Symmetric Gaussian Potentials

Symm. Gaussian Potentials and the Combination of Gaussian Quotients

The following theorem shows that the combination of Gaussian quotients corre-
sponds to the addition of the vector and the pseudo-concentration matrix of the
corresponding symmetric Gaussian potentials.

Theorem 9.15. Let (ν1, C1) and (ν2, C2) be symmetric Gaussian potentials on do-
mains x and y and let η1 = [φ11, φ12] ∈ G∗ and η2 = [φ21, φ22] ∈ G∗ be Gaussian
quotients such that

i∗(η1) = (ν1, C1), i∗(η2) = (ν2, C2).

Then,
i∗(η1 ⊗∗ η2) = (ν1

↑u + ν2
↑u, C1

↑u + C2
↑u) (9.9)

for u = x ∪ y. �
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Proof. Let

φ11 = (µ11,K11), φ12 = (µ12,K12), φ21 = (µ21,K21), φ22 = (µ22,K22) ∈ Φ.

Then,

ν1 = (K11µ11)
↑x − (K12µ12)

↑x, ν2 = (K21µ21)
↑y − (K22µ22)

↑y,

C1 = K11
↑x −K12

↑x, C2 = K21
↑y −K22

↑y.

On the other hand,
η1 ⊗∗ η2 = [φ11 ⊗ φ12, φ21 ⊗ φ22];

let
(µ1,K1) = φ11 ⊗ φ12, (µ2,K2) = φ21 ⊗ φ22,

where

µ1 = K1
−1
(
(K11µ11)

↑x1 + (K21µ21)
↑x1

)
, µ2 = K2

−1
(
(K21µ21)

↑x2 + (K22µ22)
↑x2

)
and

K1 = K11
↑x1 +K21

↑x1 , K2 = K12
↑x2 +K22

↑x2

for x1 = d(φ11) ∪ d(φ12) and x2 = d(φ21) ∪ d(φ22). Then, using the transitivity of
vacuous extension,

(K1µ1)
↑x∪y − (K2µ2)

↑x∪y

=(K11µ11)
↑x∪y + (K21µ21)

↑x∪y − (K21µ21)
↑x∪y − (K22µ22)

↑x∪y

=(K11µ11)
↑x∪y − (K21µ21)

↑x∪y + (K21µ21)
↑x∪y − (K22µ22)

↑x∪y

=ν1
↑x∪y + ν2

↑x∪y

and

K1
↑x∪y −K2

↑x∪y = K11
↑x∪y +K21

↑x∪y −K21
↑x∪y −K22

↑x∪y

= K11
↑x∪y −K21

↑x∪y +K21
↑x∪y −K22

↑x∪y

= C1
↑x∪y + C2

↑x∪y.

This shows that indeed i∗(η1 ⊗∗ η2) = (ν1
↑u + ν2

↑u, C1
↑u + C2

↑u). ut

The claim holds in particular for the combination of two conditional Gaussian po-
tentials.

Symmetric Gaussian Potentials and the Combination of Gaussian Hints

The following theorem shows that combination of two Gaussian linear systems or
their associated Gaussian hints induces the addition of the pseudo-mean and the
pseudo-concentration of the associated symmetric Gaussian potentials. Since the
combination of Gaussian hints and Gaussian quotients is compatible (see Theo-
rem 7.8), this yields the same combination rule for symmetric Gaussian potentials
as that carried over from Gaussian quotients in Theorem 9.15 above.
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Theorem 9.16. Let `1 = (A1, µ1,K1) ∈ L and `2 = (A2, µ2,K2) ∈ L be Gaussian
linear systems on domains x and y and let

eL(`1) = (ν1, C1), eL(`2) = (ν2, C2).

Then,
eL(`1 ⊕ `2) = (ν1

↑u + ν2
↑u, C1

↑u + C2
↑u) (9.10)

where u = x ∪ y. In particular, if `1, `2 ∈ H, then

eL(`1 ⊗ `2) = (ν1
↑u + ν2

↑u, C1
↑u + C2

↑u). (9.11)
�

Proof. Let A1 ∈ IR(m1, x), A2 ∈ IR(m2, y). Definem = m1+m2 and A ∈ IR(m,x),
z ∈ IRm, and K ∈ IR(m,m) by

A =
(
A1

↑x∪y

A2
↑x∪y

)
, z =

(
z1
z2

)
, K =

(
K1 0m1,m2

0m2,m1 K2

)
.

Then,

A′KA

=


(A1

↓x−y)′K1A1
↓x−y (A1

↓x−y)′K1A1
↓x∩y 0x−y,y−x

(A1
↓x∩y)′K1A1

↓x−y
[

(A1
↓x∩y)′K1A1

↓x∩y

+(A2
↓x∩y)′K2A2

↓x∩y

]
(A2

↓x∩y)′K2A2
↓y−x

0y−x,x−y (A2
↓y−x)′K2A2

↓x∩y (A2
↓y−x)′K2A2

↓m1,y−x


=(A′1K1A1)

↑u + (A′2K2A2)
↑u = C1

↑u + C2
↑u

and

A′Kz =

 (A1
↓x−y)′K1z1

(A1
↓x∩y)′K1z1 + (A2

↓x∩y)′K2z2
(A2

↓y−x)′K2z2


= (A′1K1z1)

↑u + (A′2K2z2)
↑u = ν1

↑u + ν2
↑u.

Finally, equation (9.11) follows since (A, z,K) = `1 ⊕ `2 and [`1 ⊕ `2]H = `1 ⊗ `2. ut

Notice that this theorem could have been derived directly from the results of Chap-
ter 7.4 and Theorem 9.15.

Combination of Symmetric Gaussian Potentials

Therefore, define combination ⊗ : ∆×∆, (δ1, δ2) 7→ δ1 ⊗ δ2, of symmetric Gaussian
potentials (ν1, C1) and (ν2, C2) on domains x and y by

(ν1,K1)⊗ (ν2,K2) =
(
ν1
↑x∪y + ν2

↑x∪y, C1
↑x∪y + C2

↑x∪y
)
. (9.12)

Combination of symmetric Gaussian potentials defined in this way is compatible
with the combination of Gaussian hints and Gaussian quotients. This generalises
the results from Chapter 7 for Gaussian quotients and Gaussian hints via the inter-
mediate step of symmetric Gaussian potentials.
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9.4 Marginalisation of Symmetric Gaussian Potentials

Symmetric Gaussian Potentials and Marginalisation of Gaussian
Quotients

Theorem 9.17. Let η ∈ G∗ and (ν, C) = i∗(η). If x ∈M∗(η), then

i∗(η↓
∗x) = (ν↓x − C↓x,yC↓y−1

ν↓y, C↓x − C↓x,yC↓y−1
C↓y,x). (9.13)

where y = d∗(η)− x. �

Proof. If x ∈ M∗(η), then there is a (φ1, φ2) ∈ η such that d(φ2) ⊆ x ⊆ d(φ1) ∪
d(φ2). Let (µ1,K1) = φ1, and (µ2,K2) = φ2.

By Corollary 14.2.12 of (Harville, 1997; p.214), every principal submatrix of
a symmetric positive definite matrix is symmetric positive definite, thus K1

↓y is
symmetric positive definite and hence also invertible. On the one hand,

C =
(
K1

↓y K1
→x,y

K1
→y,x K1

→x −K2
↑x

)
,

hence, for x′ = x ∩ d(φ),

C↓x − C↓x,y(C↓y)−1
C↓y,x = K1

→x −K2
↑x − (K1

→x,y(K1
↓y)

−1
K1

→y,x)
↑x

= (K1
↓x′ −K1

↓x′,y(K1
↓y)

−1
K1

↓y,x′)
↑x
−K2

↑x. (9.14)

On the other hand,

(K1µ1)
→x∪y =

(
K1

→y,xµ1
→x +K1

↓yµ1
↓y

K1
→xµ1

→x +K1
→x,yµ1

↓y

)
,

and

ν =
(

(K1µ1)
→y

(K1µ1)
→x − (K2µ2)

↑x

)
,

it holds that

ν↓x − C↓x,y(C↓y)−1
ν↓y =(K1µ1)

→x − (K2µ2)
↑x −K1

→x,y(K1
↓y)

−1
(K1µ1)

→y,x

=K1
→xµ1

→x +K1
→x,yµ1

↓y − (K2µ2)
↑x

−K1
→x,y(K1

↓y)
−1

(K1
→y,xµ1

→x +K1
↓yµ1

↓y)

=((K1
↓x′ −K1

↓x′,y(K1
↓y)

−1
K1

↓y,x′)µ1
↓x′)

↑x
− (K2µ2)

↑x.
(9.15)

Equations (86) and (9.15) show that indeed

i∗(η↓
∗x) = (ν↓x − C↓x,yC↓y−1

ν↓y, C↓x − C↓x,yC↓y−1
C↓y,x). ut
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Symmetric Gaussian Potentials and Marginalisation of Gaussian Hints

Since the columns in the design matrix of a GLS may be linearly dependent, elim-
inating a set of variables also eliminates the variables whose columns are linear
combinations of the eliminated variables; these variables become vacuous. The fol-
lowing theorem shows that this corresponds to finding a regular submatrix of the
pseudo-concentration matrix which makes the entries of the other variables to be
eliminated zero, both in the mean vector and in the pseudo-concentration matrix.

Theorem 9.18. Let h = (A, z,K) be a Gaussian hint and let (ν, C) = eL(h). For
x ⊆ d(h) there is a subset y2 ⊆ y = d(h) − x such that C↓y2 is regular of rank
r(C↓y2) = r(C↓y). For each such set,

eL(h↓x) = (ν↓x − C↓x,y2C↓y2−1
ν↓y2 , C↓x − C↓x,yC↓y2−1

C↓y,x). (9.16)
�

Proof. Notice that C is symmetric and non-negative definite in light of Theo-
rem 9.12. Then, by Corollary 14.2.12 of (Harville, 1997; p.214), the principal sub-
matrix C↓y is symmetric non-negative definite, too. Let r be the rank of C↓y. Then,
in light of Lemma A.11, there is a subset y2 ⊆ y of cardinality |y2| = r such that
C↓y2 is symmetric positive definite. This proves the first assertion of the theorem.
In order to prove the second assertion, let C↓y2 be a symmetric and positive definite
submatrix of C↓y of rank r = r(C↓y2) = r(C↓y). Furthermore, since K is symmetric
positive definite, in light of Corollary 14.3.13 of (Harville, 1997; p.219), there is a
regular matrix P ∈ IR(m,m) such that K = P ′P . Define Ã = PA and z̃ = Pz.
Then, since

P−1′(P ′P )P−1 = (P ′−1
P ′)(PP−1) = Im,

it holds that h =H (Ã, z̃, Im) = h̃ and, in light of Theorem 9.11,

C = Ã′Ã, ν = Ã′z̃.

Partition
Ã = (A1, A21, A22)

such that A1 ∈ IR(m,x), A21 ∈ IR(m, y1), A22 ∈ IR(m, y2) and let

A2 = (A21, A22).

Then, since C↓y = A′2A2, r(A2) ≤ r(C↓y) = r. However, since the principal subma-
trix C↓y2 = A′22A22 has rank r, it follows that r ≤ r(A22) ≤ r(A2), hence r(A2) = r.
Let B ∈ IR(m,m) be a regular matrix and partition

B =
(
B1

B2

)
such that B1 ∈ IR(r,m) is a projection matrix for the variables y in h̃, i.e. B1A2 =
0r,y. In light of Gram-Schmidt orthogonalisation (Theorem 6.4.1. and Corollary 6.4.2
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of (Harville, 1997; pp.63–65)), assume without loss of generality that B is orthonor-
mal. Then,

h̃↓x = (B1z̃, (B1A1), Ir).

and
eL(h↓x) = eL(h̃↓x) = ((B1A1)′B1z̃, (B1A1)′(B1A1)).

Then,

BÃ =
(
B1A1 0r,y1 0r,y2
B2A1 B2A21 B2A22

)
, (BÃ)′ = (

(B1A1)′ (B2A1)′

0y1,r (B2A21)′

0y2,r (B2A22)′

 ,

and, since B′B = Im,

C = Ã′Ã = Ã′B′BÃ = (BÃ)′BÃ

=

(B1A1)′B1A1 + (B2A1)′B2A1 (B2A1)′B2A21 (B2A1)′B2A22

(B2A21)′B2A1 (B2A21)′B2A21 (B2A21)′B2A22

(B2A22)′B2A1 (B2A22)′B2A21 (B2A22)′B2A22


and

ν = Ã′z̃ = Ã′B′Bz̃ = (BÃ)′Bz̃ = (BÃ)′
(
B1z̃
B2z̃

)
.

Then, since B2 has full row rank r and since A22 has full column rank r, in light of
Lemma 8.3.2 (Harville, 1997; p.83), B2A22 has full rank r, thus is regular. Therefore,
in light of results (8.2.8) and (8.2.4) of (Harville, 1997; p.82),

C↓x − C↓x,y2(C↓y2)−1
C↓y2,x

=((B1A1)′B1A1 + (B2A1)′B2A1)− (B2A1)′B2A22((B2A22)′B2A22)
−1(B2A22)′B2A1

=(B1A1)′B1A1 + (B2A1)′B2A1 − (B2A1)′B2A22(B2A22)
−1(B2A22)′

−1(B2A22)′B2A1

=(B1A1)′B1A1,

and, for z1 = B1z̃ and z2 = B2z̃,

ν↓x − C↓x,y2(C↓y2)−1
ν↓y2

=((B1A1)′z1 + (B2A1)′z2)− (B2A1)′B2A22((B2A22)′B2A22)
−1(B2A22)′z2

=(B1A1)′B1z̃. ut

By eliminating the variables y2 in h, the variables y1 = y − y2 become vacuous, i.e.

h↓x∪y1 = (
(
ν↓x − C↓x,yC↓y2−1

ν↓y2
)↑x∪y1

,
(
C↓x − C↓x,yC↓y2−1

C↓y,x
)↑x∪y1

).
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Marginalisation of Symmetric Gaussian Potentials

In light of these considerations, marginalisation of a symmetric Gaussian potential
(ν, C) ∈ ∆ to x is defined, denoted

x ∈M(ν, C), (9.17)

if and only if there are y1 ∪ y2 = d(ν, C)− x, y1 ∩ y2 = ∅ such that

1. C↓y2 is positive definite and

2. ν↓x∪y1 − C↓x∪y1,y2C↓y2−1
ν↓y2 =

(
0y1

ν↓x − C↓x,y2C↓y2−1
ν↓y2

)
and

3. C↓x∪y1 − C↓x∪y1,y2C↓y2−1
C↓y2,x∪y1 =

(
0y1 0y1,x
0x,y1 C↓x − C↓x,y2C↓y2−1

C↓y2,x

)
.

and then define

(ν, C)↓x = (ν↓x − C↓x,y2C↓y2−1
ν↓y2 , C↓x − C↓x,y2C↓y2−1

C↓y2,x). (9.18)

It has to be verified that marginalisation of symmetric Gaussian potentials is well
defined, i.e. that it does not depend on the particular choice of y2.

Lemma 9.19. Let φ = (ν, C) ∈ ∆ be a symmetric Gaussian potential with domain
d(φ) = x ∪ y, x ∩ y = ∅. Assume that the marginal of φ to x is defined,

(ν, C)↓x = (ν↓x − C↓x,y2C↓y2−1
ν↓y2 , C↓x − C↓x,y2C↓y2−1

C↓y2,x).

Then, for any ỹ2 ⊆ y such that C↓ỹ2 is positive definite and r(C↓ỹ2) = r(C↓y) =
r(C↓y2), it holds that

(ν, C)↓x = (ν↓x − C↓x,ỹ2C↓ỹ2−1
ν↓ỹ2 , C↓x − C↓x,ỹ2C↓ỹ2−1

C↓ỹ2,x). �

Proof. Notice that, in light of Lemma A.10, C↓y2 being symmetric and positive
definite and

C↓y1 − C↓y1,y2C↓y2−1
C↓y2,y1 = 0y1

imply that C↓y = C↓y1∪y2 is symmetric and non-negative definite and that r(C↓y2) =
r(C↓y). Define

C̃ =

(
C↓y C↓y,x

C↓x,y C↓x,y2C↓y2
−1
C↓y2,x

)
(9.19)

Then,

C̃↓x∪y1 − C̃↓x∪y1,y2C̃↓y2−1
C̃↓y2,x∪y1

=

(
C̃↓y1 − C̃↓y1,y2C̃↓y2−1

C̃↓y2,y1 C̃↓y1,x − C̃↓y1,y2C̃↓y2−1
C̃↓y2,x

C̃↓x,y1 − C̃↓y1,y2C̃↓y2−1
C̃↓y2,y1 C̃

↓x − C̃↓x,y2C̃↓y2
−1
C̃
↓y2,x

)

=

(
C↓y1 − C↓y1,y2C↓y2−1

C↓y2,y1 C↓y1,x − C↓y1,y2C↓y2−1
C↓y2,x

C↓x,y1 − C↓y1,y2C↓y2−1
C↓y2,y1 C↓x,y2C↓y2

−1
C↓y2,x − C↓x,y2C↓y2−1

C↓y2,x

)
=0x∪y1,x∪y1 .
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Hence, in light of Lemma A.10, C̃ is symmetric and non-negative definite. Define

ν̃ =
(
ν↓y

0x

)
. (9.20)

Then, (ν̃, C̃) is a symmetric Gaussian potential, which corresponds to a Gaussian
hint in light of Theorem 9.12. Therefore, in light of Theorem 9.18, choosing any
ỹ2 ⊆ y such that r(C↓ỹ2) = r(C↓y) leads to the same result (0x, 0x,x), i.e.

C̃↓x − C̃↓x,ỹ2C̃↓ỹ2−1
ν↓ỹ2 = 0x,x

and
ν̃↓x − C̃↓x,ỹ2C̃↓ỹ2−1

C̃↓ỹ2,x = 0x,

hence

C↓x,ỹ2C↓ỹ2
−1
ν↓ỹ2 = C̃↓x,ỹ2C̃↓ỹ2

−1
ν↓ỹ2 = 0x = C̃↓x,y2C̃↓y2

−1
ν↓y2

= C↓x,y2C↓y2
−1
ν↓y2

and

C↓x,ỹ2C↓ỹ2
−1
C↓ỹ2,x = C̃↓x,ỹ2C̃↓ỹ2

−1
C̃↓ỹ2,x = C̃↓x,y2C̃↓y2

−1
C̃↓y2,x

= C↓x,y2C↓y2
−1
C↓y2,x.

This shows that either y2 or ỹ2 can be chosen for the marginalisation of φ to x. ut

The following Lemma shows that marginalisation of symmetric Gaussian poten-
tials and of Gaussian hints correspond, i.e. that eL is compatible with marginalisa-
tion.

Lemma 9.20. Let φ = (ν, C) be a symmetric Gaussian potential on d(φ) = x ∪ y,
x ∩ y = ∅. Then, x ∈M(φ) if and only if

(ν, C) = (ν̃, C̃)⊗ (νx, Cx)

such that (ν̃, C̃) = eL(h) for some Gaussian hint on domain d(h) = x∪y and a sym-
metric Gaussian potential φx = (νx, Cx) ∈ ∆ on domain d(φx) = x. Furthermore,

(ν, C)↓x = eL(h↓x)⊗ (νx, Cx). �

Proof. On the one hand, assume x ∈ M(φ). Let (ν̃, C̃) as defined in (9.20) and
(9.19), which corresponds to a Gaussian hint. Define

νx = ν↓x, Cx = C↓x − C↓x,y2C↓y2−1
C↓y2,x.

Then,
(ν, C) = (ν̃, C̃)⊗ (νx, Cx).
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Conversely, assume (ν, C) = (ν̃, C̃) ⊗ (νx, Cx) such that (ν̃, C̃) = eL(h) for some
Gaussian hint on domain d(h) = x ∪ y and a symmetric Gaussian potential φx =
(νx, Cx) ∈ ∆ on domain d(φx) = x. Then, in light of Theorem 9.12, C̃ is symmetric
and non-negative definite and ν̃ ∈ C(C̃). Choosing any subset y2 ⊆ y such that
r(C↓y) = r(C↓y2), then, in light of Theorem 9.18,

eL(h↓x1∪y1) = (ν̃↓x∪y1 − C̃↓x∪y1,y2C̃↓y2−1
ν̃↓y2 , C̃↓x∪y1 − C̃↓x∪y1,y2C̃↓y2−1

C̃↓y2,x∪y1)

for y1 = y − y2. Furthermore, since C↓y, being a principal submatrix of a sym-
metric and non-negative definite matrix, is symmetric non-negative definite as well,
Lemma A.9 shows that C↓y2 is symmetric and positive definite. However, since
the variables y1 become vacuous in h↓x∪y1 by the definition of the marginalisation
of Gaussian hints, the corresponding entries in the associated symmetric Gaussian
potential are all 0, i.e.

ν̃↓x∪y1 − C̃↓x∪y1,y2C̃↓y2−1
ν̃↓y2 =

(
0y1

ν̃↓x − C̃↓x,y2C̃↓y2−1
ν̃↓y2

)
and

C̃↓x∪y1 − C̃↓x∪y1,y2C̃↓y2−1
C̃↓y2,x∪y1 =

(
0y1 0y1,x
0x,y1 C̃↓x − C̃↓x,y2C̃↓y2−1

C̃↓y2,x

)
.

Therefore, marginalising (ν, C) = (ν̃, C̃ ⊗ (νx, Cx) to x ∪ y1,

ν↓x∪y1 − C↓x∪y1,y2C↓y2−1
ν↓y2 = (ν̃↓x∪y1 +

(
ν↓x
)↑x∪y1

)− C̃↓x∪y1,y2C̃↓y2−1
ν̃↓y2

=

(
0y1

ν↓x + ν̃↓x − C̃↓x,y2C̃↓y2−1
ν̃↓y2

)

and

C↓x∪y1 − C↓x∪y1,y2C↓y2−1
C↓y2,x∪y1

=(C̃↓x∪y1 +
(
C↓x

)↑x∪y1
)− C̃↓x∪y1,y2C̃↓y2−1

C̃↓y2,x∪y1

=

(
0y1 0y1,x
0x,y1 C↓x + C̃↓x − C̃↓x,y2C̃↓y2−1

C̃↓y2,x

)
.

Hence, indeed

ν̃↓x∪y1 − C̃↓x∪y1,y2C̃↓y2−1
ν̃↓y2 =

(
0y1

ν↓x − C↓x,y2C↓y2−1
ν↓y2

)
and (

0y1 0y1,x
C↓x∪y1 − C↓x∪y1,y2C↓y2−1

C↓y2,x∪y1 = 0x,y1 C↓x − C↓x,y2C↓y2−1
C↓y2,x

)
.
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This shows that x ∈M(ν, C).
The second claim then follows from Theorem 9.18. ut

Marginalisation of symmetric Gaussian potentials defined in this way extends that
of both

• Gaussian quotients (since vacuous variables can be eliminated) and

• Gaussian hints (since Gaussian hints correspond only to ∆c ⊆ ∆).

Furthermore, the algebra of symmetric Gaussian potentials has inverses in contrast
to Gaussian hints; the only exception are vacuous Gaussian hints, which form a
one-element group since they are idempotent.

9.5 Valuation Algebra of Symmetric Gaussian Potentials

In order to prove that marginalisation of symmetric Gaussian potentials is transitive,
the following lemma will be needed.

Lemma 9.21. Let (ν, C) be a symmetric Gaussian potential with domain u such
that C↓y is positive definite. Let y be partitioned into y = y1 ∪ y2, y1 ∩ y2 = ∅. Let
x1 = u− y1 and let x = u− y = x1 − y2. Let

ν1 = ν↓x1 − C↓x1C↓y1
−1
ν↓y1

and
C1 = C↓x1 − C↓x1,y1C↓y1

−1
C↓y1,x1 .

Then,
ν↓x − C↓xC↓y−1

ν↓y = ν1
↓x − C1

↓xC1
↓y2−1

ν1
↓y2

and
C↓x − C↓x,yC↓y−1

C↓y,x = C1
↓x − C1

↓x,yC1
↓y−1

C1
↓y,x. �

Proof. Define

ν̃ =
(
ν↓y

0x

)
, C̃ =

(
C↓y C↓y,x

C↓x,y Ix + C↓x,yC↓y
−1
C↓y,x

)
, (9.21)

where C̃ is a symmetric and positive definite matrix according to Lemma A.7. Hence,
(ν̃, C̃) is a Gaussian potential. Define

ν̃1 = ν̃↓x1 − C̃↓x1,y1C̃↓y1
−1
ν̃↓y1

and
C̃1 = C̃↓x1 − C̃↓x1,y1C̃↓y1

−1
C̃↓y1,x1 .

By definition, it holds that
ν = ν̃ + ν↓x

↑u
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and

C = C̃ +
(
C↓x − Ix − C↓x,yC↓y

−1
C↓y,x

)↑u
,

and thus

ν1 = ν̃↓x1 +
(
ν↓x
)↑x1

− C̃↓x1,y1C̃↓y1
−1
ν̃↓y1 = ν̃1 +

(
ν↓x
)↑x1

(9.22)

and

C1 = C̃↓x1 +
(
C↓x − Ix − C↓x,yC↓y

−1
C↓y,x

)↑x1

− C̃↓x1,y1C̃↓y1
−1
C̃↓y1,x1 (9.23)

= C̃1 +
(
C↓x − Ix − C↓x,yC↓y

−1
C↓y,x

)↑x1

. (9.24)

Then, by the transitivity axiom holding in the valuation algebra of Gaussian poten-
tials, it follows that

ν̃↓x − C̃↓x,yC̃↓y−1
ν̃↓y = ν̃↓x1 − C̃

↓x,y2
1 C̃↓y21

−1
ν̃↓y21 (9.25)

and
C̃↓x − C̃↓x,yC̃↓y−1

C̃↓y,x = C̃↓x1 − C̃
↓x,y2
1 C̃↓y21

−1
C̃↓y2,x1 . (9.26)

Therefore, using (9.21), (9.25) and (9.22),

ν↓x − C↓x,yC↓y−1
ν↓y = ν̃↓x + ν↓x − C̃↓x,yC̃↓y−1

ν̃↓y

= ν↓x + ν̃↓x1 − C̃
↓x,y2
1 C̃↓y21

−1
ν̃↓y21

= ν1
↓x − C1

↓x,y2C1
↓y2−1

(ν1
↓y2 − (

(
ν↓x
)↑x1

)
↓y2

)

= ν1
↓x − C1

↓x,y2C1
↓y2−1

ν1
↓y2

and, using (9.21), (9.26) and (9.23),

C↓x − C↓x,yC↓y−1
C↓y,x

=C̃↓x + C↓x − Ix − C↓x,yC↓y
−1
C↓y,x − C̃↓x,yC̃↓y−1

C̃↓y,x

=C̃↓x1 − C̃
↓x,y2
1 C̃↓y21

−1
C̃↓y2,x1 + C↓x − Ix − C↓x,yC↓y

−1
C↓y,x

=C1
↓x − (C↓x − Ix − C↓x,yC↓y

−1
C↓y,x)− C1

↓x,y2C1
↓y2−1

C1
↓y2,x

+ (C↓x − Ix − C↓x,yC↓y
−1
C↓y,x)

=C1
↓x − C1

↓x,y2C1
↓y2−1

C1
↓y2,x. ut

Theorem 9.22. The algebraic structure (∆,D, d,⊗,M, ↓) (defined in equations
(9.12), (9.17), (9.18)) is a stable valuation algebra. It extends G∗ and H. �

Proof. The axioms are verified in turn.
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(A1) Associativity follows since vacuous extension and vector and matrix addition
are associative. Commutativity follows since vector and matrix addition are
commutative.

(A2) The labelling axiom is satisfied by definition.

(A3) The marginalisation axiom is satisfied by definition.

(A4) Let φ = (ν, C) be a symmetric Gaussian potential with domain d(φ) = x ∪ y,
x ∩ y = ∅. Let x1 be such that x ⊆ x1 ⊆ x ∪ y.
On the one hand, assume x ∈ M(φ). Let y1 = d(φ) − x1. Then, using
Lemma 9.20,

(ν, C) = eL(h)⊗ (νx, Cx)

for some Gaussian hint h with domain d(h) = x∪y and a symmetric Gaussian
potential φx = (νx, Cx) ∈ ∆ with domain x. Then,

(ν, C) = eL(h)⊗ (νx↑x1 , Cx
↑x1)

shows that x1 ∈M(φ) and

(ν, C)↓x1 = eL(h↓x1)⊗ (νx↑x1 , Cx
↑x1) = eL(h↓x1)⊗ (νx, Cx)

shows that x ∈ M(φ↓x1) and, by the transitivity of the marginalisation of
Gaussian hints,

(ν, C)↓x1
↓x

= eL(h↓x1
↓x

)⊗ (νx, Cx) = eL(h↓x)⊗ (νx, Cx) = (ν, C)↓x.

On the other hand, assume x1 ∈ M(φ) and x ∈ M(φ↓x1) with C↓y12 positive
definite and

ν1 = ν↓x1∪y11 − C↓x1∪y11,y12C↓y12
−1
ν↓y12 =

(
0y11

ν↓x1 − C↓x1,y12C↓y12
−1
ν↓y12

)

and

C1 = C↓x1∪y11 − C↓x1∪y11,y12C↓y12
−1
C↓y12,x1∪y11

=

(
0y11 0y11,x1

0x1,y11 C↓x1 − C↓x1,y12C↓y12
−1
C↓y12,x1

)

and, for
(ν, C)↓x1 = (νx1 , Cx1) = (ν1

↓x1 , C1
↓x1),

where Cx1
↓y22 positive definite and

νx1
↓x∪y21−Cx1

↓x∪y21,y22Cx1
↓y22−1

νx1
↓y22 =

(
0y21

νx1
↓x − Cx1

↓x,y22Cx1
↓y22−1

νx1
↓y22

)
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and

Cx1
↓x∪y21 − Cx1

↓x∪y21,y22Cx1
↓y22−1

Cx1
↓y22,x∪y21

=

(
0y21 0y21,x
0x,y21 Cx1

↓x − Cx1
↓x,y22Cx1

↓y22−1
Cx1

↓y22,x

)
.

Partition

C =


C↓y12 C↓y12,y22 C↓y12,y11 C↓y12,y21 C↓y12,x

C↓y22,y12 C↓y22 C↓y22,y11 C↓y22,y21 C↓y22,x

C↓y11,y12 C↓y11,y22 C↓y11 C↓y11,y21 C↓y11,x

C↓y21,y12 C↓y21,y11,y22 C↓y21,y11 C↓y21 C↓y21,x

C↓x,y12 C↓x,y11,y22 C↓x,y11 C↓x,y21 C↓x

 .

Then,
C1

↓y22 = C↓y22 − C↓y22,y12C↓y12−1
C↓y12,y22 .

Therefore, in light of Lemma A.7, C↓y12∪y22 is positive definite if and only if
C↓y12 and C1

↓y22 are both positive definite, where

C1 = C↓x1 − C↓x1,y12C↓y12
−1
C↓y12,x1 .

Let x1 = x ∪ y21 ∪ y22. Then, by the definition of the marginalisation of
symmetric Gaussian potentials,

(ν, C)↓x1∪y11 = (ν1, C1) = (νx1
↑x1∪y11 , Cx1

↑x1∪y11). (9.27)

Hence, using Lemma 9.21 and (9.27), (ν, C)↓x∪y11∪y21 = (νx∪y11∪y21 , Cx∪y11∪y21)
given by

νx∪y11∪y21 =ν↓x∪y11∪y21 − C↓x∪y11∪y21,y12∪y22C↓y12∪y22−1
ν↓y12∪y22

=ν1
↓x∪y11∪y21 − C1

↓x∪y11∪y21,y22C1
↓y22−1

ν1
↓y22

=νx1
↑x1∪y11↓x∪y11∪y21

− Cx1
↑x1∪y11↓x∪y11∪y21,y22Cx1

↑x1∪y11↓y22
−1
νx1

↑x1∪y11↓y22

=
(
νx1

↓x∪y21 − Cx1
↓x∪y21,y22Cx1

↓y22−1
νx1

↓y22
)↑x∪y11∪y12

=

(
0y11∪y21

νx1
↓x − Cx1

↓x,y22Cx1
↓y22−1

νx1
↓y22

)
and

Cx∪y11∪y21 = C↓x∪y11∪y21 − C↓x∪y11∪y21,y12∪y22C↓y12∪y22−1
C↓y12∪y22,x∪y11∪y21

= C1
↓x∪y11∪y21 − C1

↓x∪y11∪y21,y22C1
↓y22−1

C1
↓y22,x∪y11∪y21

=
(
Cx1

↓x∪y21 − Cx1
↓x∪y11∪y21,y22Cx1

↓y22−1
Cx1

↓y22,x∪y21
)↑x∪y11∪y21

=

(
0y11∪y21 0y11∪y21,x
0x,y11∪y21 Cx1

↓x − Cx1
↓x,y22Cx1

↓y22−1
Cx1

↓y22,x

)
.
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Hence, x ∈M(ν, C) and (ν, C)↓x = (ν, C)↓x1
↓x

.

(A5) Let φ = (ν1, C1) and ψ = (ν2, C2) be symmetric Gaussian potentials with
domains x = d(φ) and y = d(ψ) and let u = x ∪ y. Let

(ν̃, C̃) = φ⊗ ψ = (ν1
↑u + ν2

↑u, C1
↑u + C2

↑u).

Let s be such that x ⊆ s ⊆ u. Since

• C̃↓u−s = C2
↓u−s,

• C̃↓s,u−s =
(
C2

↓s∩y,u−s)↑s,u−s,
• ν̃↓u−s = ν2

↓u−s,

s ∈M(φ⊗ψ) if and only if s∩ y ∈M(ψ), and then also (φ⊗ ψ)↓s = φ⊗ψ↓s.

(A6) Let (ν, C) ∈ ∆ with domain d∆(ν, C) = x. Then,

• � = 0∅,∅ is symmetric and positive definite,

• ν↓x − C↓x,∅C↓∅−1
C↓∅,x =

(
0∅

ν↓x − C↓x,∅C↓∅−1
C↓∅,x

)
= ν and

• C↓x − C↓x,∅C↓∅−1
C↓∅,x =

(
0∅ 0∅,x
0x,∅ C↓x − C↓x,∅C↓∅−1

C↓∅,x

)
= C

shows that x ∈M(ν, C) and (ν, C)↓x = (ν, C).

(A7) e∗ = (�, �) is the identity element since, for (ν, C) ∈ ∆ with domain d∆(ν, C) =
x,

e∗ ⊗ (ν, C) = (�↑x + ν, �↑x + C) = (ν, C) = (ν + �↑x, C + �↑x) = (ν, C)⊗ ex.

(A8) The symmetric Gaussian potentials ex = (0x, 0x,x) are neutral elements since,
for (ν, C) ∈ ∆ with domain d∆(ν, C) = x,

ex ⊗ (ν, C) = (0x + ν, 0x,x + C) = (ν, C) = (ν + 0x, C + 0x,x) = (ν, C)⊗ e∗.

(A9) For ex = (0x, 0x,x) and y ⊆ x, it holds that ex = (0y↑x, 0y,y↑x), hence y ∈
M(ex) and

ex
↓y = (0y, 0y,y).

The extension properties follow from Theorems 9.15, 9.16, 9.17 and 9.18. ut
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9.6 Partially Swept Moment Matrices

As discussed in Section 3.5, the combination of moment matrices is the sum of their
fully swept forms. A “fully swept” matrix (0, 0) is thus the neutral element of combi-
nation. However, there is obviously no moment matrix which can be swept forward
to (0, 0), since its variance would have to be infinite. Therefore, (Dempster, 1990a)
suggests a generalisation of moment matrices to partially swept moment matrices,
which do neither need to have a fully swept nor a completely unswept form. It is
now shown that Gaussian linear systems can be represented by such partially swept
moment matrices. It turns out that such partially swept moment matrices have a
close resemblance to (conditional) symmetric Gaussian potentials.

Consider a Gaussian linear system

x1 = Ax2 + µ1 + ω (9.28)

where ω is a Gaussian term with variance Σ. Then, (Dempster, 1990a) suggests the
representation

M(x1, ~x2) =
((

µ1

0

)
,

(
Σ A
A′ 0

))
(9.29)

where the x1 are unswept and the components x2 are swept forward. Notice that
the components x2 cannot be unswept.

This representation is a semantically motivated extension of moment matrices
as follows (cf. the interpretation of moment matrices in Section 3.5).

• The conditional variance of x1 given “x2 = x2” is Σ and the conditional mean
is µ1+Ax2. Hence, the variables x1 are unswept and the corresponding entries
in the matrix are µ1 and Σ. The regression matrix A is put at x1, x2 in the
moment matrix.

• The knowledge on x2 is vacuous. Hence, the variables x2 are fully swept with
0 in the vector and the matrix.

The partially swept matrix M(x1, ~x2) can be fully swept forward, which results in

M( ~x1, ~x2) = .(M(x1, ~x2), x1 = 0)

=
((

Σ−1µ1

−A′Σ−1µ1

)
,

(
−Σ−1 Σ−1A
A′Σ−1 −A′Σ−1A

))
. (9.30)

The form (9.29) has been called maximally marginal representation (Dempster,
1990a) because no more variables can be unswept. However, since head and tail
need not be unique, there may be several maximally marginal representations. These
may be obtained by passing through the form (9.30), which has been called maxi-
mally conditioned representation (Dempster, 1990a) because no more variables can
be swept forward.

The symmetric Gaussian potential corresponding to the Gaussian linear system
(9.28) is

(ν, C) =
((

Σ−1µ1

−A′Σ−1µ1

)
,

(
Σ−1 −Σ−1A
−A′Σ−1 A′Σ−1A

))
,
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which is the same as M( ~x1, ~x2) up to the sign in the pseudo-concentration matrix,
i.e.

M( ~x1, ~x2) = (ν,−C).

This resemblance is remarkable since the derivation of symmetric Gaussian poten-
tials is analytically motivated, whereas that of generalised moment matrices is se-
mantically motivated. Furthermore, it is now shown that the combination and
marginalisation of generalised moment matrices as defined in (Dempster, 1990a)
and of symmetric Gaussian potentials are compatible. Define

∆(ν,−C) = (ν, C). (9.31)

For conditional symmetric Gaussian potentials (ν1, C1), (ν2, C2), it holds that

(ν1, C1)⊗ (ν2, C2) = (ν1 + ν2, C1 + C2) = (ν1 + ν2,−((−C1) + (−C2)

= ∆(∆−1(ν1, C1)⊕∆−1(ν2, C2)). (9.32)

Hence, combination is the sum ⊕ of fully swept moment matrices (after vacuous
extension if necessary). This corresponds to the combination of generalised moment
matrices as defined in (Dempster, 1990a).

Consider the conditional symmetric Gaussian potentials (ν, C) and decompose
according to variables x1 and x2,

(ν, C) =
((

ν1

ν2

)
,

(
C11 C12

C21 C22

))
,

Assume r(C22) = |x2|. Then

(ν, C)↓x1 =
(
ν1 − C12C22

−1ν2, C11 − C12C22
−1C21

)
In terms of the corresponding partially swept generalised moment matrix,∆−1(ν, C) =
(ν,−C), it holds that

/((ν,−C), x2 = 0) =
((

ν1 − C12C22
−1ν2

C22
−1ν2

)
,

(
−C11 + C12C22

−1ν2 −C12C22
−1

−C21C22
−1 C22

−1

))
,

Hence, marginalisation corresponds to the elimination of unswept components or
of swept vacuous components. Again, this corresponds to the marginalisation as
defined in (Dempster, 1990a).

This proves the following theorem.

Theorem 9.23. Generalised moment matrices corresponding to Gaussian linear
systems form a valuation algebra which is isomorphic to the valuation algebra of
conditional symmetric Gaussian potentials. �

The importance of the sweeping operator as a conceptual and computational
tool in classical statistics was pointed out by (Goodnight, 1979).
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Chapter Synopsis

By carrying the operations of combination and marginalisation over from Gaus-
sian quotients and Gaussian hints to symmetric Gaussian potentials, the following
correspondences are obtained:

• Precise Gaussian hints – Gaussian potentials – symmetric Gaussian potentials
with positive definite pseudo-concentration matrix – moment matrices;

• Gaussian hints – conditional Gaussian potentials – symmetric Gaussian poten-
tials with non-negative definite pseudo-concentration matrix (and mean vector
in its column space) – generalised moment matrices corresponding to a Gaus-
sian linear system;

• Gaussian quotients – symmetric Gaussian potentials.

Gaussian hints and Gaussian quotients are embedded in the valuation algebra of
symmetric Gaussian potentials. Although marginalisation is only partially defined,
conditional symmetric potentials are fully marginalisable as is the case for Gaussian
hints.

Discussion

The representation of Gaussian hints or Gaussian quotients by symmetric Gaussian
potentials is canonical : Equivalent Gaussian hints and equivalent Gaussian fractions
map to the same symmetric Gaussian potential. Furthermore, it is simple to infer
the symmetric Gaussian potential from a Gaussian linear system.

The following points highlight the naturalness of symmetric Gaussian potentials.

• For a GLS whose design matrix has full column rank, the inferred symmet-
ric Gaussian potential has close resemblance to the Gaussian hint (see Theo-
rem 6.23).

• Algebraically, the combination of Gaussian potentials corresponds to matrix
addition and division to matrix subtraction, respectively. In this view, sym-
metric Gaussian potentials are the closure of Gaussian potentials under these
two operations.

• Analytically, a symmetric Gaussian potential represents the quotient function
of two Gaussian densities.

On the other hand, only a subset of symmetric Gaussian potentials has a clear seman-
tic interpretation, namely conditional symmetric Gaussian potentials. However, the
inverses of conditional Gaussian potentials are used in the Lauritzen-Spiegelhalter
architecture for local computation.

Symmetric Gaussian potentials combine the advantages of both Gaussian hints
and Gaussian quotients:

• full marginalisation in Gaussian hints and
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• division in Gaussian quotients

are carried over to symmetric Gaussian potentials. A variable can be eliminated if

• the corresponding diagonal element of the pseudo-concentration matrix is pos-
itive, or if

• the corresponding element of the marginal mean vector and the corresponding
row and column in the pseudo-concentration matrix are all zero.

The first case corresponds exactly to the rule for Gaussian quotients; the second
case generalises the elimination of vacuous variables in Gaussian hints.

Finally, ordinary Gaussian potentials can be represented by symmetric Gaussian
potentials with different complexity of the operations. On the one hand, combination
is only the sum of the vectors and of two matrices with no inversion being required.
On the other hand, the computation of the mean vector is more expensive. However,
the required matrix has already to be computed for the marginal concentration
matrix, so the overhead is essentially only a matrix-vector product.
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Deterministic Knowledge





10
Deterministic Knowledge

Direct observations of variables are essential in the reasoning of Bayesian networks.
In a Gaussian linear model, this corresponds to linear equations without a Gaussian
term. Of course, assumption-based reasoning can then be applied to such Gaussian
linear systems with deterministic knowledge and a hint can be derived. Therefore,
algorithms for the assumption-based inference, for combination and for marginali-
sation will be developed in this chapter.

Chapter Outline

In Section 10.1, directly observed variables are introduced, taking a fixed value.
In Section 10.2, general linear systems without a Gaussian term are added to the
language of Gaussian linear information. The effect of both types of deterministic
knowledge is analysed in terms of Gaussian linear systems and their associated
symmetric Gaussian potentials. Symmetric Gaussian potentials with deterministic
knowledge are formally defined in Section 10.3. Furthermore, combination can be
defined in accordance with Dempster’s Rule, and marginalisation of these potentials
is derived from the projection of the corresponding focal sets (Section 10.4 and 10.5).
In Section 10.6, it is shown that symmetric Gaussian potentials with deterministic
linear equations form a valuation algebra.

In Section 10.7, the Gaussian linear belief function approach is presented in its
full generality, by generalising the partially swept moment matrices for probabilistic
and vacuous knowledge discussed in Section 9.6. First, moment matrices and deter-
ministic variables (Liu, 1996a; 1999) are sketched. Then, the approach of (Dempster,
1990a; Liu et al., 2003a;b; Srivastava and Liu, 2003) is briefly outlined; it also takes
deterministic equations into account. For this purpose, they use partially swept and
completely unswept moment matrices. Combination and marginalisation are then
only partially defined, namely if the necessary sweeping operations are defined.

223
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10.1 Deterministic Variables

Observing Variables

If a real-valued variable X is directly observed and reported to take the value x, this
information can be captured in a deterministic hint

Ox = (IR0,∆�, Γx, IRx) (10.1)

for x = {X} and Γx : IR0 → 2IRx
,

Γx(�) = {x}. (10.2)

Here follow two remarks about the combination of such deterministic hints by Demp-
ster’s Rule.

• Deterministic hints are idempotent, i.e. asserting the same piece of information
several times yields nothing new, Ox ⊗Ox = Ox.

• The combination of different observations of the same variable yields a contra-
diction since Γx(�) ∩ Γx′(�) = ∅ if x 6= x′. In order to close the combination
of such hints, null elements zx have to be added to the algebra for all domains
x ∈ D without specifying them further. Using this notation,

Ox ⊗Ox′ =
{
Ox if x = x′

zx otherwise.

This is something new: Without deterministic equations, the combination of Gaus-
sian hints never yields a contradiction, and the valuation algebra of Gaussian hints
does not need to be closed by contradictory elements.

A direct observation induces an event in a Gaussian hint. Technically, the ob-
served value has to be substituted in every equation for the placeholder variable
X. However, by doing so, the system may not have full row rank any more. For
instance, when a value x1 is substituted for X1 in the Gaussian linear equations

X1 + 0.5 ·X2 + ω1 = z1,

0.5 ·X1 +X2 + ω2 = z2

for Gaussian assumptions ω1, ω2 and some z1, z2 ∈ IR, the system becomes

0.5 ·X2 + ω1 = z1 − x1,

X2 + ω2 = z2 − 0.5 · x1.

The latter system (derived by substituting values for deterministic variables) has
not full row rank any more, i.e. it is not a Gaussian hint. Therefore, the joint
information of the Gaussian hint and the direct observation is captured in the pair
consisting of

• the Gaussian hint inferred from the system obtained by replacing all occur-
rences of a variable by the observed value together with
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• the information that X1 takes the value x1.

It is necessary to store the value x1 explicitly after it is plugged in, since it cannot
be retrieved from the modified system. In particular, when combining Gaussian
hints with deterministic variables, the value will have to be substituted into other
Gaussian linear system. This will be discussed in detail below.

Plugging in a value for a variable can be formalised using matrix notation as
follows. Let (A, z,K) be a Gaussian linear system with A ∈ IR(m,x) and assume
the values x1 have to be substituted for the variables x1 ⊆ x. In terms of the
matrices Dx|x1

∈ IR(x, x− x1),

Dx|x1
=
(
Ix−x1

0x1,x−x1

)
, (10.3)

and Ex|x1
∈ IR(x, x1),

Ex|x1
=
(

0x−x1,x1

Ix1

)
, (10.4)

the resulting Gaussian linear system is

(ADx|x1
, z −AEx|x1

x1,K) (10.5)

and the corresponding symmetric Gaussian potential is

φx1 = (D′
x|x1

A′K(z −AEx|x1
x1), D′

x|x1
A′KADx|x1

). (10.6)

The whole information can therefore be captured in the triplet

(x1, D
′
x|x1

A′K(z −AEx|x1
x1), D′

x|x1
A′KADx|x1

). (10.7)

Such values x1 can be substituted directly into the symmetric Gaussian potential
eL(A, z,K) = (A′Kz,A′KA) = (ν, C) since

φx1 = (D′
x|x1

A′Kz −D′
x|x1

A′KAEx|x1
x1), D′

x|x1
A′KADx|x1

)

= (D′
x|x1

(ν − CEx|x1
x1), D′

x|x1
CDx|x1

). (10.8)

Symmetric Gaussian Potentials with Deterministic Variables

Triplets as in equation (10.7) are captured and generalised by the following definition.

Definition 10.1. A triplet
(x, ν, C) (10.9)

where x ∈ IRx (for some x ∈ D) and (ν, C) ∈ ∆ is a symmetric Gaussian potential
with domain y = d(ν, C) such that x∩ y = ∅ is called a symmetric Gaussian potential
with deterministic variables. Its domain is denoted

d(x, ν, C) = x ∪ y. (10.10)
�
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On the one hand, a symmetric Gaussian potential (ν, C) without deterministic vari-
ables can be represented by the triplet

(�, ν, C);

on the other hand, a deterministic hint Ox can be represented by the triplet

(x, �, �).

If (ν, C) is a conditional symmetric Gaussian potential, then (x, ν, C) represents a
hint on IRx∪y with focal sets

Γ (ξ) = {x} × {y ∈ IRy : Cy + ξ = ν} (10.11)

for ξ ∈ Ξ = {ξ ∈ IRy : ξ − ν ∈ C(C)} (see Lemma 9.13). This situation is depicted
in Figure 10.1. The focal sets are the points in the x-plane obtained by intersection
with parallel straight lines perpendicular to the (y1, y2)-plane.

x

y1

y2

x

C
y

+
ξ

=
ν

Γ(ξ)

Figure 10.1: The focal sets Γ (ξ) of a conditional symmetric Gaussian potential with
deterministic variables.

Marginalisation

A conditional symmetric Gaussian potential (ν, C) with deterministic variables x
fixed at x represents a hint on x ∪ y. The marginal hint with respect to s ∪ t (for
s ⊆ x, t ⊆ y) has focal sets

{x↓s} × {y↓t : y ∈ IRy, Cy + ξ = ν}. (10.12)
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The second set in equation (10.12) correspond to the projection of (ν, C) to t. There-
fore, a symmetric Gaussian potential with deterministic variables p = (x, ν, C) can
be marginalised to u ⊆ x ∪ y if u ∩ y ∈M(ν, C), i.e.

M(x, ν, C) = {u ⊆ x∪ y : u∩ y ∈M(ν, C)} = {s∪ t : s ⊆ x, t ∈M(ν, C)}, (10.13)

and the marginal is then

p↓u = (x↓u∩x, (ν, C)↓u∩y). (10.14)

The right-hand side of equation (10.14) is short-hand notation for (x↓u∩x, ν̃, C̃) with
(ν̃, C̃) = (ν, C)↓u∩y.

Combination

The combination of symmetric Gaussian potentials with deterministic variables is
more involved. Let (x1, ν1, C1) and (x2, ν, C2) be symmetric Gaussian potentials
with deterministic variables x1 and x2, respectively. Let y1 and y2 be their non-
deterministic variables. However, x1 and x2 may be incompatible,

x1
�
./ x2 ⇐⇒ x1

↓x2∩x1 6= x2
↓x1∩x2 . (10.15)

If x1
�
./ x2, there is no non-empty intersection of focal sets of p1 and p2. Then,

the combination p1 ⊗ p2 is the contradictory potential zx1∪x2∪y1∪y2 on the domain
d(zx1∪x2∪y1∪y2) = x1 ∪ x2 ∪ y1 ∪ y2 ∈ D. Of course, combining a contradiction with
another piece of information yields a contradiction, hence define

zx ⊗ φ = φ⊗ zx = zx∪u (10.16)

for x ∈ D and a symmetric Gaussian potential with deterministic variables φ of
domain u = d(φ). Furthermore, a contradiction with respect to x is a contradiction
with respect to any subset y ⊆ x, i.e. define

zx
↓y = zy (10.17)

for y ⊆ x ∈ D. Thus, the contradictory elements zx are null elements and do not
represent a hint.
On the other hand, if x1 and x2 are not incompatible, i.e. if x1

↓x2∩x1 = x2
↓x2∩x1 ,

define

x1 ./ x2 = (x1
↓x1−x2 ,x1

↓x2∩x1 ,x2
↓x2−x1) = (x1

↓x1−x2 ,x2
↓x1∩x2 ,x2

↓x2−x1). (10.18)

Then, the combination is obtained by joining the deterministic variables, condi-
tioning the symmetric Gaussian potentials and by combining the remaining non-
deterministic symmetric Gaussian potentials, i.e.

(x1, ν1, C1)⊗ (x2, ν2, C2) = (x1 ./ x2, (ν1, C1)x2
↓y1∩x2 ⊗ (ν2, C2)x1

↓y2∩x1 ). (10.19)
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The neutral elements of this combination are

eu = (�, 0u, 0u,u) (10.20)

since for a symmetric Gaussian potential with deterministic variables (x, ν, C) with
domain u = x ∪ y it holds that

eu ⊗ (x, ν, C) = (� ./ x, 0x + ν, 0x,x + C) = (x, ν, C) (10.21)

and, by definition,
eu ⊗ zu = zu. (10.22)

Furthermore, these neutral elements are stable since M(eu) = 2u and

eu
↓s = (�↓s∩∅, (0u, 0u,u)↓s∩u) = (�, 0s, 0s,s) = es. (10.23)

In fact, symmetric Gaussian potentials with deterministic variables form a valu-
ation algebra. Instead of giving a direct proof, it will be shown below in Section 10.6
that they correspond to a subalgebra of symmetric Gaussian potentials with deter-
ministic equations.

10.2 Deterministic Equations

Consider the linear equations

X1 = X2,

X1 + ω = 0,

where the term ω is Gaussian with concentration matrix K. This system represents
the hint

(IRx1 , φ0,K , Γ, IRx1∪x2)

where
Γ (ω) = {(x1,x2) : x1 = x2,x1 + ω = 0}

and x1 = {X1}, x2 = {X2}. The focal sets are thus points on a diagonal straight
line as depicted in Figure 10.2. The defining equation of Γ can be decomposed as

Γ (ω) = Γcertain ∩ Γuncertain(ω) (10.24)

where

Γcertain = {(x1,x2) : x1 = x2}, Γuncertain(ω) = {(x1,x2) : x1 + ω = 0}.

Γcertain has been called the certainty space (Liu, 1996a; 1999). Notice that the
focal function Γ can be described in terms of other functions Γ ′uncertain instead of
Γuncertain, for instance in terms of

Γ ′uncertain(ω) = {(x1,x2) : x2 + ω = 0}.
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Figure 10.2: Different representations of the same singleton focal set

Notice that Γuncertain and Γ ′uncertain do not even involve the same variables. However,
Γ (ω) may be empty for some assumptions ω if Γcertain and Γuncertain(ω) are paral-
lel linear manifolds. In the spirit of assumption-based reasoning, the inadmissible
assumptions have to be eliminated. For instance, there are no empty intersections
if the sets Γuncertain(ω) lie perpendicular to Γcertain. Of course, perpendicularity is
not a necessary condition for non-empty intersections. In Figure 10.2, the function

Γ ′′uncertain(ω) = {(x1,x2) : 0.5 · x1 + 0.5 · x2 + ω = 0}

can be obtained by subtracting the first equation multiplied by 0.5 from the second
equation, where the rows (1,−1) and (0.5, 0.5) of the compound “design matrix”
are orthogonal. These preliminary considerations will now be generalised and for-
malised.

Gaussian Linear Systems with Deterministic Equations

Definition 10.2. Let k be a non-negative integer, x ∈ D, C ∈ IR(p, x) and c ∈ IRp.
Then, the pair (C, c) is called linear system on domain x. If c ∈ C(C), then (C, c)
is called consistent. Further, the operations ⊗, ⊕ and ↓ can be carried over from
Gaussian linear systems to (deterministic) linear systems in the obvious way (i.e.
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without considering the concentration matrix). Let (A, z,K) be a Gaussian linear
system on the same domain x. Then, the quintuple (C, c,A, z,K) is called a Gaussian
linear system with deterministic equations. �

Let (C, c,A, z,K) be a Gaussian linear system with deterministic equations with
domain x ∈ D, C ∈ IR(p, x), c ∈ IRp, A ∈ IR(m,x), z ∈ IRm, K ∈ IR(m,m), and let
r = r(C). Then, under an assumption ω ∈ IRm, the true parameter x∗ must be in
the set

Γ (ω) = {x : Ax + ω = z and Cx = c} = {x : Ax + ω = z} ∩ {x : Cx = c}. (10.25)

However, the event
Γcertain = {x : Cx = c} (10.26)

may rule out some assumptions as impossible, i.e. the intersection with some (or
even all) sets

Γuncertain(ω) = {x : Ax + ω = z} (10.27)

may be empty. Assumption-based reasoning suggests deriving the admissible as-
sumptions ω and conditioning to them. On the one hand, if the set Γcertain is
empty, i.e. if c 6∈ C(C), there are no possible assumptions and the information is
contradictory. On the other hand, assume Γcertain 6= ∅. Then, an assumption ω may
be inadmissible because of two different reasons, either because

(O1) Γuncertain(ω) = ∅, or because

(O2) Γuncertain(ω) 6= ∅, but Γuncertain(ω) ∩ Γcertain = ∅.

In order to eliminate the inadmissible assumptions, the assumption-based inference
may proceed in two steps as follows.

(1) In order to ensure the second condition, the deterministic knowledge is “ap-
plied” to the non-deterministic knowledge or “substituted into” the non-de-
terministic part. This induces a new function Γ̂uncertain such that Γ (ω) =
Γcertain ∩ Γ̂uncertain(ω). Technically, Γ̂uncertain is obtained by adding rows of
(C, c) to (A, z) yielding (Ã, z̃) such that the row space R(C) of C and that of
Ã become essentially disjoint, i.e. R(C) ∩ R(A) = {0}. Geometrically, this
corresponds to a projection and rotation of the sets Γuncertain(ω). Furthermore,
if the rows of A are even orthogonal to R(C), the non-deterministic knowledge
is represented in a unique way.

(2) Since the non-deterministic knowledge is now “independent” from the determin-
istic knowledge, a Gaussian hint can be derived from the Gaussian linear system
(Ã, z̃,K) by using the techniques of Chapter 6.

The first step (1) is illustrated in Figure 10.3: In 10.3(a), the sets Γuncertain(ω) 6=
∅ are straight lines parallel to a two-dimensional plane in the 3-dimensional space
x, y, z. Here, the focal sets are straight parallel lines in the certainty plane; those
ω for which Γuncertain(ω) lies outside the certainty plane are impossible. In 10.3(b),
the new sets Γ̂uncertain(ω) are planes whose intersection with Γcertain are the straight
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Figure 10.3: Applying deterministic knowledge to the non-deterministic part induces a
new representation of the focal sets in the certainty plane.
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lines Γ (ω) in the certainty plane. There are many different linear functions Γ̂ with
that property. However, one is free to choose the unique Γ̂ such that the sets Γ̂ (ω)
are perpendicular to Γcertain.

In the new representation Γ (ω) = Γcertain∩Γ̂uncertain(ω), there are no more inad-
missible assumptions of type (O2). Then, the impossible assumptions of type (O1)
can be ruled by inferring a hint from the Gaussian linear system (Ã, z̃,K) in the
usual way in step (2).

Applying Deterministic Knowledge to a Gaussian Linear System

In order to apply the deterministic knowledge, let n = |x|, r = r(C) and let B =
(B1
B2

) ∈ IR(n, x) be an orthonormal matrix, i.e. BB′ = In, such that the rows of C
are linear combinations of B1 ∈ IR(r, x), i.e. R(B1) = R(C). Since the rows of A
are linear combinations of the rows of B, there is a matrix N ∈ IR(m,n) such that
NB = A. Partition N into r and n − r columns, N =

(
N1, N2

)
, N1 ∈ IR(m, r),

N2 ∈ IR(m,n− r). Then,

A = NB = N1B1 +N2B2. (10.28)

Since the rows of B1 are linear combinations of the rows of C, there is a matrix
M ∈ IR(r, p) such that B1 = MC. Substituting Cx = c into Ax yields

z = Ax+ω = N1B1x+N2B2x+ω = N1MCx+N2B2x+ω = N1Mc+N2B2x+ω.

Define C̃ = B1 = MC, c̃ = Mc, Ã = N2B2, z̃ = z −N1Mc, and

Γ̂uncertain(ω) = {x : Ãx + ω = z̃}. (10.29)

Then, it holds that
Γcertain = {x : C̃x = c̃}

and
Γ (ω) = Γcertain ∩ Γ̂uncertain(ω).

Here, the linear manifolds Γ̂uncertain(ω) are orthogonal to Γcertain since ÃB′
1 =

N2B2B
′
1 = 0. Now, the deterministic part and the non-deterministic parts are

“independent”, so the techniques of Chapter 6 can be applied to derive a Gaussian
hint from the Gaussian linear system (Ã, z̃,K).

10.3 Symmetric Gaussian Potentials with Deterministic
Knowledge

Applying Deterministic Knowledge to Symmetric Gaussian Potentials

The symmetric Gaussian potential associated with the derived Gaussian linear sys-
tem (Ã, z̃,K) is (Ã′Kz̃, Ã′KÃ). However, this result can be derived directly from
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the deterministic linear system (C, c) and the symmetric Gaussian potential (ν, Λ) =
(A′Kz,A′KA) associated with (A, z,K) as follows. Since B is orthonormal,

Ã′KÃ = B′
2N

′
2KN2B2

= (B′
2B2)(B′

2N
′
2)K(N2B2)(B′

2B2)
= (B′

2B2)(B′
1N

′
1 +B′

2N
′
2)K(N1B1 +N2B2)(B′

2B2)
= (B′

2B2)A′KA(B′
2B2)

= (B′
2B2)Λ(B′

2B2) (10.30)

and

Ã′Kz̃ = B′
2N

′
2K(z −N1Mc)

= (B′
2B2)(B′

2N
′
2)K(z −N1Mc)

= (B′
2B2)(B′

1N
′
1 +B′

2N
′
2)K(z −N1Mc)

= (B′
2B2)A′Kz − (B′

2B2)A′KN1Mc

= (B′
2B2)ν − (B′

2B2)A′K(N1B1 +N2B2)B′
1Mc

= (B′
2B2)ν − (B′

2B2)ΛB′
1Mc. (10.31)

The following lemma shows that this result does not depend on the choice of B and
M .

Lemma 10.3. Let (C, c) be a linear system in x, C ∈ IR(p, x), c ∈ IRp such that
c ∈ C(C), and let (ν, Λ) be a symmetric Gaussian potential. Further, let B = (B1

B2
)

and B̃ = ( B̃1

B̃2
) be two orthonormal matrices such that R(B1) = R(C) = R(B̃1).

Then, there are M,M̃ such that B1 = MC, B̃1 = M̃C. It then holds that

(B′
2B2)Λ(B′

2B2) = (B̃′
2B̃2)Λ(B̃′

2B̃2)

and
(B′

2B2)ν − (B′
2B2)ΛB′

1Mc = (B̃′
2B̃2)ν − (B̃′

2B̃2)ΛB̃′
1M̃c. �

Proof. It suffices to prove that B̃′
2B̃2 = B′

2B2 and B̃′
1M̃c = B′

1Mc.
On the one hand, notice that (B1

B̃2
) is orthonormal since(

B1

B̃2

)(
B′

1, B̃
′
2

)
=
(
B1B

′
1 0

0 B̃2B̃
′
2

)
= I.

Then, by subtracting B′
1B1 from

I =
(
B′

1, B
′
2

)(B1

B2

)
= B′

1B1 +B′
2B2

and

I =
(
B′

1, B̃
′
2

)(B1

B̃2

)
= B′

1B1 + B̃′
2B̃2,
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it follows that indeed B̃′
2B̃2 = B′

2B2.
On the other hand, it can be proved in a similar way that B̃′

1B̃1 = B′
1B1. Hence,

B′
1MC = B′

1B1 = B̃′
1B̃1 = B̃′

1M̃C.

Since c ∈ C(C), there is an x ∈ IRx such that Cx = c. Hence,

B′
1Mc = B′

1MCx = B̃′
1M̃Cx = B̃′

1M̃c. ut

In light of the previous lemma, the following notation will be used.

Definition 10.4. The application of a consistent linear system (C, c) to a symmet-
ric Gaussian potential (ν, Λ) on the same domain is denoted

(ν, Λ)(C,c) = ((B′
2B2)ν − (B′

2B2)ΛB′
1Mc, (B′

2B2)Λ(B′
2B2)) (10.32)

where (B1
B2

) ∈ IR(n, x) is an orthonormal matrix such that R(B1) = R(C). �

Notice that Λ̃C ′ = 0 since N (B2) ⊇ C(B′
1) = C(C ′) and

Λ̃B′
1 = B′

2B2ΛB
′
2(B2B

′
1) = 0.

More generally, a consistent linear system may be coupled with a (not neces-
sarily conditional) symmetric Gaussian potential. This is captured in the following
definition.

Definition 10.5. Let p be a non-negative integer. Then, a quartuple

(C, c, ν, Λ) (10.33)

where

• C ∈ IR(p, x), c ∈ IRp such that c ∈ C(C),

• (ν, Λ) is a symmetric Gaussian potential on x ∈ D, and

• ΛC ′ = 0

is called a consistent symmetric Gaussian potential with deterministic equations. Fur-
ther, ∆• shall denote the set of all such consistent symmetric Gaussian poten-
tials with deterministic knowledge and all inconsistent or zero or null elements zx
(x ∈ D). Further, define labelling d : ∆• → D by d(C, c, ν, Λ) = x and d(zx) = x. �

Equivalent Symmetric Gaussian Potentials with Deterministic
Knowledge

There may be several symmetric Gaussian potentials with deterministic equations
representing the same hint.
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Lemma 10.6. Let (C, c) and (C̃, c̃) be consistent linear systems, C ∈ IR(m,x), c ∈
IRm, C̃ ∈ IR(m̃, x), c ∈ IRm̃, n = |x| such that

{x : Cx = c} = {x : C̃x = c̃}.

Then,
(ν, Λ)(C,c) = (ν, Λ)(C̃,c̃). �

Proof. It holds thatR(C) = R(C̃) in light of Lemma A.2. Let B = (B1
B2

) ∈ IR(n, n)
be an orthonormal matrix such that B1 is a basis of R(C) = R(C̃). Hence, in light
of Lemma 10.3, it follows that indeed (ν, Λ)(C,c) = (ν, Λ)(C̃,c̃).

Therefore, two symmetric Gaussian potentials with deterministic equations (C, c, ν, Λ)
and (C̃, c̃, ν̃, Λ̃) are called equivalent, denoted

(C, c, ν, Λ) ∼= (C̃, c̃, ν̃, Λ̃) (10.34)

if and only if

• {x : Cx = c} = {x : C̃ = x = c̃},

• ν = ν̃, and Λ = Λ̃.

Notice that the relation∼= is clearly an equivalence relation. In order to keep notation
simple, φ =id ψ will be used for φ = ψ and φ = ψ for φ ∼= ψ.

Computational Aspects

The matrix B can be computed using the singular-value decomposition of a matrix
C ∈ IR(m,x) of rank r(C) = r (see for instance (Golub and Van Loan, 1989)), i.e.

C = UΣV ′ (10.35)

where U ∈ IR(m,m) and V ∈ IR(n, x) for n = |x| are orthonormal matrices and

Σ =


σ1

. . .
σr

0


with singular-values σ1 ≥ · · · ≥ σr > 0. Partitioning

U =
(
U1, U2

)
, V ′ =

(
V ′

1

V ′
2

)
(10.36)

such that U1 ∈ IR(m, r), U2 ∈ IR(m,m− r), V ′
1 ∈ IR(r, x) and V ′

2 ∈ IR(n− r, x), and
defining

Σ1 =

σ1

. . .
σr

 , (10.37)
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it holds that
C = U1Σ1V

′
1 . (10.38)

The matrix
C+ = V1Σ1

−1U ′1 (10.39)

called a pseudo-inverse of C since CC+C = C and C+CC+ = C+. Using this
notation, substituting B2 = V ′

2 , B1 = V ′
1 and M = Σ1

−1U ′1 (since V ′
1 = B1 = MC =

Σ−1U ′1U1Σ1V
′
1),

Ã′KÃ = (B′
2B2)Λ(B′

2B2)
= (V2V

′
2)Λ(V2V

′
2)

and

Ã′Kz̃ = (B′
2B2)ν − (B′

2B2)ΛB′
1Mc

= (V2V
′
2)ν − (V2V

′
2)ΛV1Σ1

−1U ′1c

= (V2V
′
2)ν − (V2V

′
2)ΛC

+c.

Whether the combination yields a contradiction, can be checked by

c ∈ C(C) ⇐⇒ c ∈ C(U1) ⇐⇒ c ∈ N (U2) ⇐⇒ U ′2c = 0 ⇐⇒ U1U
′
1c = c.

(10.40)
Notice that

V2V
′
2 = Ix − V1V

′
1 . (10.41)

This can be obtained from

Ix = V V ′ =
(
V1, V2

)
=
(
V ′

1

V ′
2

)
= V1V

′
1 + V2V

′
2

Using equations (10.39), (10.40) and (10.41), applying deterministic knowledge only
requires to compute U1 and V1 and not the whole singular-value decomposition.

Properties of Applying Deterministic Knowledge to Symmetric
Gaussian Potentials

The following lemma shows that applying deterministic equations to a symmetric
Gaussian potential is idempotent.

Lemma 10.7. Let (ν, Λ) be a symmetric Gaussian potential and let (C, c) be a con-
sistent linear system on the same domain. Then,

((ν, Λ)(C,c))(C,c) = (ν, Λ)(C,c). (10.42)
�
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Proof. Let (ν̃, Λ̃) = (ν, Λ)(C,c). Let V , V1, V2, and C+
2 be as above. Since V is

orthonormal, V ′
2V2 = In−r and V ′

2V1 = 0n−r,r. Hence,

(V2V
′
2)Λ̃(V2V

′
2) = (V2V

′
2)(V2V

′
2)Λ(V2V

′
2)(V2V

′
2)

= V2(V ′
2V2)V ′

2ΛV2(V ′
2V2)V ′

2

= (V2V
′
2)Λ(V2V

′
2)

= Λ̃

and

(V2V
′
2)ν̃ − (V2V

′
2)Λ̃C

+c

=(V2V
′
2)
(
(V2V

′
2)ν − (V2V

′
2)ΛC

+c
)
− (V2V

′
2)(V2V

′
2)Λ(V2V

′
2)C

+c

=V2(V ′
2V2)V ′

2(ν − ΛC+c)− V2(V ′
2V2)V ′

2ΛV2(V ′
2V1)Σ1

−1U ′1c

=(V2V
′
2)ν − (V2V

′
2)ΛC

+c

=ν̃. ut

Therefore, for (C, c, ν, Λ) ∈ ∆•, it holds that (ν, Λ)(C,c) = (ν, Λ). Furthermore,
applying deterministic equations can be done step-wise.

Lemma 10.8. Let (C, c) be a consistent linear system (i.e. c ∈ C(C)) and let (ν, Λ)
be a symmetric Gaussian potential, both on domain x, C ∈ IR(p, x). Partition

C =
(
C1

C2

)
,

(
c1
c2

)
.

such that C1 ∈ IR(p1, x), C2 ∈ IR(p2, x), c1 ∈ IRp1, c2 ∈ IRp2. Then,

(ν, Λ)(C,c) =
(
(ν, Λ)(C1,c1)

)
(C2,c2)

. (10.43)
�

Proof. Let B1∩2 be an orthonormal basis of R(C1) ∩ R(C2). Then, there are
matrices B1−2, B2−1, B3 such that

B =

(
B1−2

B1∩2
B2−1

B3

)
, B1 = (B1−2

B1∩2
), B2 = ( B1∩2

B2−1
)

are orthonormal bases of IRx, R(C1) and R(C2), respectively. Further, let B13 =
(B1
B3

) and B23 = (B2
B3

). Since B3B
′
2 = 0, it holds that

(B′
13B13)(B′

23B23) = (B′
1, B

′
3)
(

0 0
0 B3B3′

)(
B2

B3

)
= B′

3B3B
′
3B3 = B′

3B3. (10.44)

Since, R(B1) = R(C1) and R(B2) = R(C2), there are matrices M1 and M2 such
that

M1C1 = B1, M2C2 = B2.
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Define M12 = (M1 0
0 M2

). It holds that

M12C =
(
M1C1

M2C2

)
=
(
B1

B2

)
= B12.

Notice that

B′
23B23B

′
2 = B′

23

(
B2

B3

)
B′

2 = (B′
2, B

′
3)
(
B2B

′
2

0

)
= B′

2B2B
′
2 = B′

2. (10.45)

Let (ν̃, Λ̃) = (ν, Λ)(C1,c1), where

ν̃ = (B′
23B23)(ν − ΛB′

1M1c1), Λ̃ = (B′
23B23)Λ(B′

23B23),

and let (ν̂, Λ̂) =
(
(ν, Λ)(C1,c1)

)
(C2,c2)

, where

ν̂ = (B′
13B13)ν̃ − (B′

13B13)Λ̃B′
2M2c2, Λ̂ = (B′

13B13)Λ̃(B′
13B13).

Then, applying equations (10.44) and (10.45),

ν̂ = (B′
13B13)ν̃ − (B′

13B13)Λ̃B′
2M2c2 =

= (B′
13B13)(B′

23B23)
(
ν − ΛB′

1M1c1 − Λ(B′
23B23)B′

2M2c2
)

= (B′
3B3)ν − (B′

3B3)
(
ΛB′

1M1c1 − ΛB′
2M2c2

)
= (B′

3B3)ν − (B′
3B3)ΛB′

12M12c

and

Λ̂ = (B′
13B13)Λ̃(B′

13B13) = (B′
13B13)(B′

23B23)Λ
(
(B′

13B13)(B′
23B23)

)′ = (B′
3B3)Λ(B′

3B3).

Finally, since (B1
B2

) is an orthonormal basis of R(C) and M12C = B12, it holds that
(ν, Λ)(C,c) = (ν̂, Λ̂) =

(
(ν, Λ)(C1,c1)

)
(C2,c2)

. ut

The following lemma shows that applying deterministic knowledge depends only
on the variables shared with the symmetric Gaussian potential.

Lemma 10.9. Let (ν, Λ) be a conditional symmetric Gaussian potential on domain
x and let (C, c) be a consistent linear system on domain y. Then, it holds that

(ν, Λ)↑x∪y(C,c)↑x∪y = (ν, Λ)↑x∪y
((C,c)↓x∩y)

↑x∪y . (10.46)
�

Proof. Assume without loss of generality that C has full row rank (since (C, c)
is consistent and since applying deterministic knowledge does not depend on the
representation in light of Lemma 10.3). Let (A, z,K) be a Gaussian linear system
inducing (ν, Λ) and let T1 be a projection matrix for C to x ∩ y and let T2 be such
that T = ( T1

T2
) is regular. Then, (TC, Tc) is an equivalent linear system, where

TC =
(
T1C

↓x∩y 0
T2C

↓x∩y T2C
↓y−x

)
.
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Hence, since applying deterministic knowledge does not depend on the representation
in light of Lemma 10.3, it suffices to show that

(ν, Λ)↑x∪y(TC,Tc)↑x∪y = (ν, Λ)↑x∪y
((TC,Tc)↓x∩y)

↑x∪y .

and
(ν, Λ)↑x∪y

(T1C↓x∩y ,T1c)
↑x∪y .

Let B2 be a matrix such that ( TC↑x∪y

B2
) is regular. Then, there are matrices N1, N2

such that A↑x∪y = N1TC
↑x∪y +N2B2. Partition N1 into N11 and N12 such that

N1TC = N11T1C +N12T2C.

Since T1C
↓y−x = 0 and since T2C

↓y−x must therefore have full row rank, it follows
that N12 = 0 and thus N1TC

↑x∪y = N11T1C
↑x∪y = N11T1(C↓x∩y)

↑x∪y. Hence,
applying (TC, Tc)↑x∪y to (A, z,K)↑x∪y yields the Gaussian linear system

(A↑x∪z −N11T1(C↓x∩y)
↑x∪z

, z −N11T1c,K).

However, the same Gaussian linear system is obtained by applying (C, c)↓x∩y =
(T1C

↓x∩y, T1c) to (A, z,K)↑x∪y. This proves the claim. ut

The following lemma shows that applying deterministic knowledge to a symmet-
ric Gaussian potential and then extending it vacuously yields the same Gaussian
linear system as first extending it vacuously and then applying the vacuously ex-
tended deterministic knowledge to that.

Lemma 10.10. Let (ν, Λ) be a conditional symmetric Gaussian potential on domain
x and let (C, c) be a consistent linear system on the same domain x. Then, for u
such that x ⊆ u, it holds that

(ν, Λ)↑u(C,c)↑u =
(
(ν, Λ)(C,c)

)↑u
. (10.47)

�

Proof. Assume without loss of generality that C has full row rank (since (C, c)
is consistent and since applying deterministic knowledge does not depend on the
representation in light of Lemma 10.3). Let (A, z,K) be a Gaussian linear system
inducing (ν, Λ) and let B2 be a matrix such that ( C

B2
) is regular. Then, there are

matrices N1 and N2 such that A = N1C +N2B2. Applying (C, c) to (A, z,K) thus
yields the Gaussian linear system (A−N1C, z−N1c,K), and extending it to u yields

((A−N1C)↑u, z −N1c,K).

On the other hand, let (
C↑u

B̃2

)
be a regular matrix. Then, A↑u = (A, 0m,u−x) = N1C

↑u+ Ñ2B̃2 for some matrix Ñ2

of appropriate dimensions. Hence, applying (C, c)↑u to (A, z,K)↑u yields

(A↑u −N1C
↑u, z −N1c,K) = ((A−N1C)↑u, z −N1c,K).

This proves the claim. ut
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10.4 Combination

Let (C1, c1, ν1, C1) and (C2, c2, ν2, C2) be two consistent symmetric Gaussian poten-
tials with deterministic equations and let Γ (i)

certain and Γ (i)
uncertain be the decomposition

of their focal functions

Γ (i)(ω(i)) = Γ
(i)
certain ∩ Γ

(i)
uncertain(ω

(i)), i ∈ {1, 2}.

Assume without loss of generality that they refer to the same domain x. According
to Dempster’s Rule, the combination of these two focal functions is the restriction
of

Γ (ω(1), ω(2)) = (Γ (1)
certain ∩ Γ

(1)
uncertain(ω

(1))) ∩ (Γ (2)
certain ∩ Γ

(2)
uncertain(ω

(2)))

to the admissible assumptions. If there are no amissible assumptions, the two hints
are contradictory and the result of the combination the inconsistent or contradictory
element zx. If the two hints are not contradictory,

Γ (ω(1), ω(2))

=(Γ (1)
certain ∩ Γ

(2)
certain) ∩ (Γ (1)

uncertain(ω
(1)) ∩ Γ (2)

uncertain(ω
(2)))

={x : C1x = c1, C2x = c2} ∩
(
Γ

(1)
uncertain(ω

(1)) ∩ Γ (2)
uncertain(ω

(2))
)

=
(
{x : Cx = c} ∩ Γ (1)

uncertain(ω
(1))
)
∩
(
{x : Cx = c} ∩ Γ (2)

uncertain(ω
(2))
)

where

C =
(
C1

C2

)
, c =

(
c1
c2

)
.

Therefore, the techniques developed so far can be used to define the combination of
two consistent symmetric Gaussian potentials by

(C1, c1, ν1, Λ1)⊗ (C2, c2, ν2, Λ2)

=
{

(C, c, (ν1, Λ1)(C,c) ⊗ (ν2, Λ2)(C,c)) if (C, c) is consistent,
zx else.

(10.49)

Here, (C, c, (ν1, C1)(C,c) ⊗ (ν2, C2)(C,c)) is short-hand notation for (C, c, ν, Λ) with
(ν, Λ) = (ν1, C1)(C,c) ⊗ (ν2, C2)(C,c). Notice that combination is well defined, i.e.
(C1, c1, ν1, Λ1) = (C̃1, c̃1, ν1, Λ1) and (C2, c2, ν2, Λ2) = (C̃2, c̃2, ν2, Λ2) imply

(C1, c1, ν1, C1)⊗ (C2, c2, ν2, C2) = (C̃1, c̃1, ν1, Λ1)⊗ (C̃2, c̃2, ν2, Λ2). (10.50)

This is a consequence of Lemma 10.6. As in the case of deterministic variables,
define the combination of φ ∈ ∆• of domain x = d(φ) with a null element zy by

φ⊗ zy = zy ⊗ φ = zx∪y. (10.51)

The following lemma provides an alternative combination rule: it suffices to apply
the deterministic knowledge coming from the other factor and then to combine these
two symmetric Gaussian potentials.
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Lemma 10.11. Let (C1, c1, ν1, Λ1) and (C2, c2, ν2, Λ2) be symmetric Gaussian poten-
tials with deterministic knowledge and let (C, c) be the combined system of (C1, c1)
and (C2, c2). If (C, c) is consistent,

(C1, c1, ν1, Λ1)⊗ (C2, c2, ν2, Λ2) = (C, c, (ν1, Λ1)(C2,c2) ⊗ (ν2, Λ2)(C1,c1)). (10.52)
�

Proof. Since applying deterministic equations is transitive and idempotent in light
of Lemmata 10.8 and 10.7, it holds that

(C1, c1, ν1, Λ1)⊗ (C2, c2, ν2, Λ2)

=
(
C, c,

(
(ν1, Λ1)(C1,c1)

)
(C2,c2)

⊗
(
(ν2, Λ2)(C2,c2)

)
(C1,c1)

)
=
(
C, c, (ν1, Λ1)(C2,c2) ⊗ (ν2, Λ2)(C1,c1)

)
. ut

Furthermore, the following lemma shows that combining symmetric Gaussian po-
tentials and applying deterministic knowledge commute.

Lemma 10.12. For symmetric Gaussian potentials (ν1, Λ1), (ν2, Λ2) ∈ ∆ and a con-
sistent linear system (C, c) on the same domain, it holds that

(ν1, Λ1)(C,c) ⊗ (ν2, Λ2)(C,c) =
(
(ν1, C1)⊗ (ν2, C2)

)
(C,c)

. (10.53)
�

Proof. Let (ν, Λ) = (ν1, Λ1)(C,c)⊗ (ν2, Λ2)(C,c). Using the singular-value decompo-
sition of C, it holds that

Λ = (V2V
′
2)Λ1(V2V

′
2) + (V2V

′
2)Λ2(V2V

′
2)

= (V2V
′
2)(Λ1 + Λ2)(V2V

′
2)

and

ν = ((V2V
′
2)ν1 − (V2V

′
2)Λ1C

+c) + ((V2V
′
2)ν2 − (V2V

′
2)Λ2C

+c)
= (V2V

′
2)(ν1 + ν2)− (V2V

′
2)(Λ1 + Λ2)C+c. ut

10.5 Marginalisation

The marginalisation of conditional symmetric Gaussian potentials with deterministic
knowledge ought to correspond to the projection of focal sets. As an example,
consider again the linear equations

X1 = X2,

0.5 ·X1 + 0.5 ·X2 + ω = 0,
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Figure 10.4: Projection of singleton focal sets on a straight line by “rotation” of Γuncertain

where the term ω is Gaussian with concentration K. The focal sets, which are
points on a diagonal straight line, have to be projected onto the x1-axis as depicted
in Figure 10.4. In the decomposition (10.24),

Γ (ω) = {(x1,x2) : x1 − x2 = 0} ∩ {(x1,x2) : x1 + ω = 0}.

the straight lines Γuncertain(ω) = {(x1,x2) : x1 +ω = 0} stand orthogonal to the x1-
axis. Since x2 does not occur in Γuncertain, Γcertain and Γuncertain can be projected
independently to x1,

Γ ↓x1(ω) = {x1 : ∃x2 s.t. x1 − x2 = 0, 2 · x1 + ω = 0}
= {x1 : ∃x2 s.t. x1 − x2 = 0} ∩ {x1 : 2 · x1 + ω = 0}
= {x1 : 2 · x1 + ω = 0} ∩ {x1 ∈ IRx1}
= Γuncertain

↓x1(ω) ∩ Γcertain↓x1 .

Here, the projection Γcertain↓x1 of the straight line Γcertain is the whole x1-axis and
Γuncertain

↓x1 corresponds to the usual projection of the associated Gaussian linear
system.

This two-step procedure can be generalised as follows.
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• In a first step, the non-deterministic part is rotated and projected such that

• the deterministic and the modified non-deterministic part can then be treated
independently in the second step.

The following lemma provides a sufficient condition for projecting two subsystems
of a linear system independently.

Lemma 10.13. Let A1 ∈ IR(m1, x) and A2(m2, x), and let x1 ∪ x2 = x such that
x1 ∩ x2. Decompose A1 = (A11, A12) and A2 = (A21, A22) according to x1 and x2,
i.e. A11 ∈ IR(m1, x1) and A21 ∈ IR(m2, x2). Let P1 be a projection matrix for x1 in
A1 and let P2 be a projection matrix for x1 in A2. If the rows of A12 and A22 are
linearly independent,

P =
(
P1

P2

)
(10.54)

is a projection matrix for x1 in A = (A1
A2

) ∈ IR(m,x), m = m1 +m2. �

Proof. Decompose A = (Ax1 , Ax2) such that Ax1 ∈ IR(m1 + m2, x1). Let k1 =
r(A12) and k2 = r(A22). Then,

PA =
(
P1A11 P1A12

P2A21 P2A22

)
= (PAx1 , 0).

Furthermore, since P is block-diagonal and since the rows of A12 and A22 are linearly
independent,

r(P ) = r(P1)+r(P2) = (m1−k1)+(m2−k2) = (m1 +m2)− (k1 +k2) = m− r(Ax2).

This shows that P is a indeed a projection matrix for x1 in A. ut

In order to use this lemma, a non-deterministic part Γuncertain(ω) will be “rotated”
and “projected” to Γ̃uncertain(ω) by substituting parts of the deterministic knowledge
into the non-deterministic part. Let (A, z,K) be a Gaussian linear system with A ∈
IR(m,x) and let (C, c) be a consistent linear system with C ∈ IR(p, x). Decompose
x = x1 ∪ x2 such that x1 ∩ x2 = ∅ and C = (C1, C2) such that C2 ∈ IR(p, x2).
Further, let r = r(C2) and n2 = |x2|. Then,

Γ (ω) = {x : Cx = c, Ax + ω = z}

Let V ′ ∈ IR(n2, x2) be a regular matrix. Partition

V ′ =
(
V ′

1

V ′
2

)
such that R(V ′

1) = R(C2), i.e. V ′
1 ∈ IR(r, x2), V ′

2 ∈ IR(n2 − r, x2). Since R(A2) ⊆
R(V ′), there are matrices M1 ∈ IR(m, r),M2 ∈ IR(m,m− r) such that

A2 = M1V
′
1 +M2V

′
2 .
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Since R(C2) = R(V ′
1), there is a matrix M∗ ∈ IR(m, p) such that

M1V
′
1 = M∗C2.

Then, since

S =
(

Ip
−M∗ Im

)
is regular, it holds that

Γ (ω) = Γcertain ∩ Γ̃uncertain(ω)

for
Γcertain = {x : Cx = c}

and

Γ̃uncertain(ω) = {x : −M∗Cx +Ax + ω = z −M∗c} = {x : Ãx = z̃}

for Ã = A−M∗C and z̃ = z−M∗c. Partition Ã = (Ã1, Ã2) such that Ã2 ∈ IR(m,x2).
Observe that Ã2 = M2V

′
2 . Hence, Ã and C satisfy the condition of Lemma 10.13:

let PC be a projection matrix for x1 in C and let PÃ be a projection matrix for x1

in Ã; then,

Γ ↓x1(ω) = {x1 : ∃x2 s.t. x = (x1,x2), Cx = c, Ãx + ω = z̃}
= {x1 : PCC1x1 = PCc} ∩ {x1 : PÃÃ1x + PÃω = PÃz̃}.

The last set corresponds to ordinary marginalisation of the Gaussian linear system
(Ã, z̃,K) to x1 as discussed in Section 6.4.

These considerations are now carried over to symmetric Gaussian potentials. Let

(ν, Λ) = (A′KA,A′Kz)

be the symmetric Gaussian potential corresponding to the non-deterministic part
before the “rotation.” Notice that

A′KA =
(
A′1KA1 A′1KA2

A′2KA1 A′2KA2

)
.

For the “rotation”, assume that the singular-value decomposition of C2 is C2 =
UΣV ′ and C+

2 = V1Σ1
−1U ′1. Then, the non-deterministic part after the “rotation”

corresponds to the symmetric Gaussian potential (ν̃, Λ̃) where

ν̃ = (A′ − C ′M∗′)K(z −M∗c) (10.55)

and
Λ̃ = (A′ − C ′M∗′)K(A−M∗C). (10.56)

Then, since V ′
1V1 = Ir and V ′

2V1 = 0,

M1V
′
1 = M1(V ′

1V1)V ′
1 = (M1V

′
1 +M2V

′
2)V1V

′
1 = A2V1V

′
1 ,
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and hence

M∗ = M∗C2C
+
2 = M1V

′
1C

+
2 = M1V

′
1C

+
2 = A2V1(V ′

1V1)Σ−1U ′1 = A2V1Σ
−1U ′1

= A2C
+
2 . (10.57)

Therefore, applying (10.57) to (10.55) and (10.56),

ν̃ = (A′ − C ′C+
2
′
A′2)K(z −A2C

+
2 c) (10.58)

= ν − C ′C+
2
′
ν↓x2 − Λ↓x1∪x2,x2C+

2 c+ C ′C+
2
′
Λ↓x2C+

2 c (10.59)

and

Λ̃ = (A′ − C ′C+
2
′
A′2)K(A−A2C

+
2 C) (10.60)

= Λ− C ′C+
2
′
Λ↓x2,x1∪x2 − Λ↓x1∪x2,x2C+

2 C + C ′C+
2
′
Λ↓x2C+

2 C. (10.61)

Definition 10.14. Let (C, c, ν, Λ) ∈ ∆• be a consistent symmetric Gaussian po-
tential on the domain x. Define the “rotation” for x1 ⊆ x by

(ν, Λ)⊥x1 (C,c) = (ν̃, Λ̃) (10.62)
�

The following lemma shows that the result of this “rotation” does not depend on
the particular linear system used for the deterministic knowledge.

Lemma 10.15. Let (C, c, ν, Λ) = (C̃, c̃, ν, Λ) on domain x. Then,

(ν, Λ)⊥x1 (C,c) = (ν, Λ)⊥x1 (C̃,c̃) (10.63)

for x1 ⊆ x. �

Proof. It suffices to show that C+
2 C1 = C̃+

2 C̃1, and C+
2 c = C̃+

2 c̃.
Since R(C) = R(C̃) in light of Lemma A.2, there is a matrix M such that

C̃ = MC and C̃1 = MC1 and C̃2 = MC2. Then,

C+
2 = C̃2

+
C̃2C

+
2 = C̃+

2 MC2C
+
2 = C̃2

+
M. (10.64)

Then, using (10.64),
C̃2

+
C̃1 = C̃2

+
(MC1) = C+

2 C1

and, similarly,
C̃2

+
C̃2 = C̃2

+
(MC2) = C+

2 C2.

Thence,

C̃2
+
c̃ = C̃+

2 C̃x

= C̃+
2 MCx

= C+
2 c

for any x = (x1,x2) ∈ {x : Cx = c} = {x : C̃x = c̃}. Such an x exists since, by
assumption, c ∈ C(C) and c̃ ∈ C(C̃). ut
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These considerations lead to the following (partial) definition of marginalisation
of symmetric Gaussian potentials with deterministic equations.

Definition 10.16. Let (C, c, ν, Λ) be a consistent symmetric Gaussian potential
with deterministic knowledge. Let T ∈ IR(k, k) be a regular matrix such that T1 ∈
IR(k − r, k) is a projection matrix for the variables x1 in C,(

T1

T2

)
C =

(
T1C1 0
T2C1 T2C2

)
. (10.65)

Notice that T2C2 has full row rank r. The marginals of (C, c, ν, Λ) with domain x
are defined for the subdomains

M(C, c, ν, Λ) =


M(ν, Λ) if C = 0, c = 0,
{y : y ⊆ x} if (ν, Λ) is a conditional SGP,
{x} else

(10.66)

by

(C, c, ν, Λ)↓y =


(0, 0, (ν, Λ)↓y),(
T1C1, T1c, (ν, Λ)⊥y(C,c)

↓y),
(C, c, ν, Λ),

(10.67)

respectively. On the other hand, define marginalisation of the contradictory elements
by

zx
↓y = zy (10.68)

for y ⊆ x ∈ D, i.e. M(zx) = 2x. �

The definition ofM is sound since, if (ν, Λ) is a conditional symmetric Gaussian
potential, then equations (10.58) and (10.60) show that (ν, Λ)⊥x = (ν̃, Λ̃) is a con-
ditional symmetric Gaussian potential as well and thus x ∈M(ν, Λ).
It has to be verified that marginalisation is well defined. The marginals defined for
inconsistent elements, for empty deterministic knowledge or a non-conditional sym-
metric Gaussian potential with non-empty deterministic knowledge is are clearly ele-
ments of∆• again. Finally, in the case of a conditional symmetric Gaussian potential
with deterministic knowledge (C, c, ν, Λ), it has to be verified that (C, c, ν, Λ)↓y =
(Cy, cy, νy, Λy) is in ∆•, i.e. that CyΛ′y = 0. Let (A, z,K) be a Gaussian linear
system inducing (ν, Λ) and let (A, z,K)↓y = (PA1, P z,Ky), Ky = (PK−1P ′)−1.
Further, let Cy = T1C1, and Λy = L′KyL for

L = P (A−A2C
+
2 C).

It suffices to prove that

CyL
′ = T1C1A

′ − T1C1C
′C+

2
′
A′2 = 0.

First, CΛ′ = CA′KA implies that CA′ = 0 since N (C) ⊇ C(A′) = C(A′KA). Then,
since CA′ = 0 implies C1A

′ = 0 and since R(C+
2
′) = R(C2) implies N (C+

2
′) =

N (C2) ⊇ C(A′2). Finally, CyL′ = 0 implies CyL′KL = CyΛ
′
y = 0. Hence, marginali-

sation is indeed well defined.
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10.6 VA of Symmetric Gaussian Potentials with Deterministic
Equations

It will now be shown that symmetric Gaussian potentials form a valuations algebra.
As a preparation, the following three lemmata will be proved. They will be used

in the demonstration of the combination axiom holds for symmetric Gaussian po-
tentials with deterministic equations. The first lemma shows that the deterministic
equations of domain smaller than the target domain of the marginalisation are ir-
relevant for the rotation. The second lemma shows that the rotation does not affect
a symmetric Gaussian potential whose domain is smaller than the target domain of
the marginalisation. The third lemma shows that deterministic knowledge of do-
main smaller than the target domain of the marginlisation can be applied before or
after the marginalisation.

Lemma 10.17. Let (ν, Λ) be a conditional symmetric Gaussian potential on domain
x, and let (C1, c1) and (C2, c2) be consistent linear systems on y ⊆ x and x, respec-
tively. Then, for z such that y ⊆ z ⊆ x, it holds that

(ν, Λ)⊥z(C1,c1)↑x⊕(C2,c2) = (ν, Λ)⊥z(C2,c2). (10.69)
�

Proof. Let (A, z,K) be a Gaussian linear system inducing (ν, Λ). Let (C, c) =
(C1, c1)

↑x ⊕ (C2, c2). Let k1 and m be such that C1 ∈ IR(k1, y) and C2 ∈ IR(m,x).
Partition C2 = (C21, C22) such that C22 corresponds to the variables x − z. Let
( V

′
1

V ′2
) be a regular matrix such that R(V ′

1) = R(C22). Then, there are matrices

M1, M2 such that A↓x−z = M1V
′
1 +M2V

′
2 . Hence, there is a matrix M∗ such that

M1V
′
1 = M∗C2. Then, the rotation of (A, z,K) for z according to (C2, c2) is

(A, z,K)⊥z(C2,c2)(A−M∗C2, z −M∗c2,K)

[the same notation is temporarily used here for the rotation of Gaussian linear
systems as for symmetric Gaussian potentials] Further, R(V ′

1) = R(C↓x−z). Define
M∗∗ = ( 0m,k1

M∗ ). Then, it holds that M1V
′
1 = M∗∗C. Therefore, the rotation of

(A, z,K) for z according to (C, c) is

(A, z,K)⊥z(C1,c1)↑x⊕(C2,c2)(A−M
∗∗C, z −M∗∗c,K) = (A−M∗C2, z −M∗c2,K).

This proves the claim. ut

Lemma 10.18. Let (ν1, Λ1) and (ν2, Λ2) be conditional symmetric Gaussian poten-
tials on domain x and y, respectively. Let (C2, c2) be a consistent linear system on
domain y. Then, for z such that x ⊆ z ⊆ x ∪ y, it holds that

((ν1, Λ1)⊗ (ν2, Λ2))⊥z(C2,c2)↑x∪y = (ν1, Λ1)⊗ (ν2, Λ2)⊥z∩y(C2,c2). (10.70)
�
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Proof. Let (A1, z1,K1) and (A2, z2,K2) be Gaussian linear systems inducing (ν1, Λ1)
and (ν2, Λ2), respectively. Let V ′

1 and V ′
2 be a matrices of full row rank such that

R(V ′
1) = R(C2

↓y−z) and such that ( V
′
1

V ′2
) is regular. Then, there are matrices M1,

M2 such that
A2

↓y−z = M1V
′
1 +M2V

′
2

Further, there is a matrix M∗ such that M∗C2
↓y−z = M1V

′
1 . Then,

(A2, z2,K2)⊥z∩y(C2,c2) = (A2 −M∗C2, z2 −M∗c2,K).

On the other hand, let (A, z,K) = (A1, z1,K1)⊕ (A2, z2,K2) where

A =

(
A1

↑z 0
A2

↓z∩y↑z A2
↓y−z

)
.

Therefore, define M∗∗ such that

A↓(x∪y)−z =
(

0
M1

)
V ′

1 +
(

0
M2

)
V ′

2 =
(

0
M∗

)
C2

↓y−z +
(

0
M2

)
V ′

2 .

Further,
C2

↑x∪y = (C2
↓z∩y↑x∪y, C2

↓y−z).

Hence,
(A, z,K)⊥z(C2,c2)↑x∪y = (A−M∗∗C2, z2 −M∗∗c2,K).

Finally, it holds that

A−M∗∗C2 =
(

A1
↑x∪y

(A2 −M∗C2)
↑x∪y

)
, z −M∗∗c2 =

(
z1

z2 −M∗z2

)
.

This concludes the proof. ut

Lemma 10.19. Let (C2, c2, ν, Λ) be a conditional symmetric Gaussian potential with
deterministic knowledge on domain x, and let (C1, c1) be a consistent linear system
on y ⊆ x such that (C1, c1)

↑x⊕(C2, c2) is consistent. Then, for z such that y ⊆ z ⊆ x,
it holds that

((ν, Λ)(C1,c1)↑x⊥z(C2,c2))
↓z = ((ν, Λ)⊥z(C2,c2))

↓z
(C1,c1)↑z . (10.71)

�

Proof. Since (C1, c1) is consistent and since applying deterministic knowledge does
not depend on the representation in light of Lemma 10.3, it can be assumed without
loss of generality that C1 has full row rank. Since (C1, c1)

↑x and (C2, c2) are assumed
compatible and in light of the idempotency of applying deterministic knowledge
(Lemma 10.7), assume without loss of generality that the row spaces of C1

↑x and
C2 are essentially disjoint, i.e. that R(C1

↑x) ∩ R(C2) = {0}. Let B3 be a matrix

such that
(
C1

↑x

C2
B3

)
is regular. It is now shown that it can be assumed without loss of
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generality that the row spaces of C1
↑z and B3

↓z are essentially disjoint. Let B2 be a
matrix such that ( C1

↑z

B2
) is regular. Then, B3

↓z = S1C1
↑z + S2B2 for some matrices

S1, S2. Then, the matrix (
C1

↑x

C2

B3−S1C1
↑x

)
is regular as well. Therefore, it can indeed be assumed without loss of generality
that C1

↑z and B3
↓z are essentially disjoint. On the one hand, there then are matrices

N1, N2 and N3 such that

A = N1C1
↑x +N2C2 +N3B3.

Since (C2, c2) is already applied to (A, z,K) by assumption, it follows that N2 = 0,
i.e.

A = N1C1
↑x +N3B3.

Hence,
(A, z,K)(C1,c1)↑x = (A−N1C1

↑x, z −N1c1,K).

Let then M∗ be a matrix such that

(A, z,K)(C1,c1)↑x⊥z(C2,c2) = ((A−N1C1
↑x)−M∗C2, (z −N1c1)−M∗c2,K).

Let T1 be a projection matrix such that

((A, z,K)(C1,c1)↑x⊥z(C2,c2))
↓z

=
(
T1(A↓z −N1C1

↑z −M∗C2
↓z), T1(z −N1c1 −M∗c2), (T1K

−1T ′1)
−1
)
.

On the other hand, since A↓x−z = (A−N1C1
↑x)

↓x−z
, it also holds that

(A, z,K)⊥z(C2,c2) = (A−M∗C2, z −M∗c2,K).

Further, since (A−M∗C2)
↓x−z = (A−N1C1

↑x −M∗C2))
↓x−z

, it also holds that T1

is a projection matrix such that

(A, z,K)⊥z(C2,c2)
↓z = (T1(A−M∗C2), T1(z −M∗c2), (T1K

−1T ′1)
−1).

Then,
T1A

↓z = T1N1C1
↑z + T1N3B3

↓z.

Here, the row spaces of N1C1
↑z and of N3B3

↓z are essentially disjoint since those of
C1

↑z and of B3
↓z are essentially disjoint, as observed above. It then follows that

(A, z,K)⊥z(C2,c2)
↓z

(C1,c1)↑z

=
(
T1(A↓z −M∗C2

↓z)− (T1N1)C1
↑z, T1(z −M∗c2)− (T1N1)c1, (T1K

−1T ′1)
−1
)
.

This concludes the proof. ut
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Theorem 10.20. Symmetric Gaussian potentials with deterministic equations ∆•

form a valuation algebra with division in the groups of the valuations of the same
domain and the same deterministic knowledge. Symmetric Gaussian potentials with
deterministic variables form a valuation algebra which can be embedded into the
valuation algebra of symmetric Gaussian potentials with deterministic knowledge by
the mapping

(x, ν, C) 7→ (A, In,xx, ν↑x∪y, C↑x∪y) (10.72)
�

where A = (In,x, 0n,y) ∈ IR(k, x ∪ y) and n = |x|.

Proof. The axioms of valuation algebras are verified in turn.

(A1) In order to prove the commutativity of combination, let φ1, φ2 ∈ ∆•. Then,
if φ1 or φ2 is null, so is the product irrespective of the order. Else, let φ1 =
(C1, c1, ν1, Λ1), φ2 = (C2, c2, ν2, Λ2) and

Γcertain = {x : C1x = c1, C2x = c2} = {x : C2x = c2, C1x = c1}.

If Γcertain = ∅, then φ1 ⊗ φ2 = zx = φ2 ⊗ φ1. Hence, it remains to prove that
the combination is commutative if φ1 ⊗ φ2 are not contradictory. Using the
commutativity of combination of symmetric Gaussian potentials,

((ν1, Λ1)⊗ (ν2, Λ2))(C,c) = ((ν2, Λ2)⊗ (ν1, Λ1))(C,c) .

In order to prove the associativity of combination, let φ1, φ2, φ3 ∈ ∆•. Then,
the result of (φ1⊗) ⊗ φ3 = φ1 ⊗ (φ2 ⊗ φ3) is null if one of the three factors
is inconsistent. Else, let φ1 = (C1, c1, ν1, Λ1), φ2 = (C2, c2, ν2, Λ2), and φ3 =
(C3, c3, ν3, Λ3). Then, the deterministic part

Γcertain = {x : C1x = c1, C2x = c2, C3x = c3}

does not depend on the associations. Let (C, c) = (C1, c1)⊕ (C2, c2)⊕ (C3, c3).
Then, using the commutativity of applying deterministic knowledge and of
combining symmetric Gaussian potentials (Lemma 10.8), the idempotency of
applying deterministic knowledge (Lemma 10.7), and the associativity of the
combination of symmetric Gaussian potentials,

((ν1, Λ1)(C1,c1)⊕(C2,c2) ⊗ (ν2, Λ2)(C1,c1)⊕(C2,c2))(C,c) ⊗ (ν3, Λ3)(C,c)
=(((ν1, Λ1)⊗ (ν2, Λ2))(C1,c1)⊕(C2,c2))(C,c) ⊗ (ν3, Λ3)(C,c)
=((ν1, Λ1)⊗ (ν2, Λ2))(C,c) ⊗ (ν3, Λ3)(C,c)
= [((ν1, Λ1)⊗ (ν2, Λ2))⊗ (ν3, Λ3)](C,c)
= [(ν1, Λ1)⊗ ((ν2, Λ2)⊗ (ν3, Λ3))](C,c)
= . . .

=(ν1, Λ1)(C,c) ⊗ ((ν2, Λ2)(C2,c2)⊕(C3,c3) ⊗ (ν3, Λ3)(C2,c2)⊕(C3,c3))(C,c).
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(A2) The labelling axiom holds by the definition of combination (10.49) and (10.51).

(A3) The marginalisation axiom holds by the definition of marginalisation (10.66)
and (10.68).

(A4) The transitivity axiom clearly holds for inconsistent symmetric Gaussian po-
tentials with deterministic equations. So let (C, c, ν, Λ) ∈ ∆• be a consistent
potential on the domain x. Let (A, z,K) be a Gaussian hint with domain
x inducing (ν, Λ). Partition A = (A1, A2, A3) such that A1 ∈ IR(m,x1),
A2 ∈ IR(m,x2) and A3 ∈ IR(m,x3). It has to be shown that

(((A, z,K)⊥x1∪x2(C,c))
↓x1∪x2

⊥x1(C̃,c̃)
)
↓x1 = ((A, z,K)⊥x1(C,c))

↓x1 (10.73)

for (C̃, c̃) = (C, c)↓x1∪x2 . Here, the same notation for the rotation is used on the
associated Gaussian linear system instead of symmetric Gaussian potentials.

1. First, projection matrices for the deterministic part are defined. Let C =
(C1, C2, C3) such that C1 ∈ IR(k, x1), C2 ∈ IR(k, x2) and C3 ∈ IR(k, x3) and
let C23 = (C2, C3) and r3 = r(C3) and r23 = r(C23). Let S = ( S12

T3
) be a

regular matrix such that S12 is a projection matrix of rank k− r3 for C3 in
C. Since S is regular, the matrix(

S12

T3

)
(C2, C3) =

(
S12C2 0
T3C2 T3C3

)
preserves the rank r23 of (C2, C3). Since T3C3 has full row rank r3, it follows
that S12C2 has rank r23 − r3. Further, let R = (R1

R2
) be a regular matrix

such that R1 is projection matrix of rank k − r23 for S12C2. Hence, define
the regular matrix T ∈ IR(k, k)

T =

R1

R2
0

0 Ir3

(S12

T3

)
=

R1S12

R2S12

T3

 =

T1

T2

T3

 ,

T1 ∈ IR(k − r23, k), T2 ∈ IR(r23 − r3, k), T3 ∈ IR(r3, k). Then, it holds that

TC =

T1C1

T2C2 T2C2

T3C1 T3C2 T3C3

 .

2. Now, the non-deterministic parts can be “rotated” to get (A, z,K)⊥x1∪x2(C,c)

and (A, z,K)⊥x1(C,c). There is a matrix W ′
2 ∈ IR(w, k) for w = |x2 ∪ x3| −

r23 such that T2C2

T3C2 T3C3

W ′
2


is regular. Then, there are matrices N1 ∈ IR(m, r23), N2 ∈ IR(m,w) such
that

(A2, A3) = N1

(
T2C2

T3C2 T3C3

)
+N2W

′
2.
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Decompose N1 = (N11, N12) and N2 = (N21, N22) such that

A2 = N11T2C2 +N12T3C2 +N21W
′
2, A3 = N12T3C3 +N22W

′
2.

Define

M23 = N1

(
T2

T3

)
, M3 = N12T3 and M2 = P3(N11, 0).

Therefore, rotating the Gaussian hint (A, z,K) with respect to (C, c) for x1

yields the Gaussian linear system

(A, z,K)⊥x1(C,c)(A−M23C, z −M23z,K);

similarly, rotating for x1 ∪ x2 yields the Gaussian linear system

(A, z,K)⊥x1∪x2(C,c) = (Ã, z̃,K) = (A−M3C, z −M3z,K).

3. Now, (A, z,K)⊥x1∪x2(C,c) = (Ã, z̃,K) can be dealt with. Let P3 be a pro-
jection matrix for (Ã, z̃,K) eliminating the variables x3 such that

P3(A3 −M3C3) = 0.

Define
(C̃, c̃) = (T12(C1, C2), T12c)

for T12 = ( T1
T2

). Then, it holds that

P3(A2 −M3C2) = P3(N11T2C2 +N21W
′
2).

Therefore, M2 rotates the Gaussian linear system (Ã, z̃,K)
↓x1∪x2 for x1

with respect to (C̃, c̃). Let P2 be a projection matrix to x1 such that

P2

(
Ã2 −M2C̃2 = 0

)
where Ã2 and C̃2 are the columns of Ã and C̃ corresponding to the variables
x2.

4. It has can now be verified that (10.73) holds. Define P23 = P2P3. It holds
that

P23(A2 −M23C2) = P2P3

(
A2 −N1

(
T2C2

T3C2

))
= P2P3 (A2 −N12T3C2 −N11T2C2)
= P2P3 (A2 −N12T3C2 −N11T2C2)
= P2 (P3(A2 −M3C3)−M2T12C2)

= P2

(
P3(A2 −M3C3)−M2C̃2

)
= P2(Ã2 −M2C̃2)
= 0
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and

P23(A3 −M23C3) = P2P3(A3 −N1

(
0

T3C3

)
)

= P2P3(A3 −M3C3)
= 0.

By the same reasoning as above for T , it can be verified that P23 has full row
rank m−r(A23−M23C23). Hence, P23 is a projection matrix for (A−M23C)
to x1. Further,

P2(P3(A1 −M3C1)−M2C̃1) = P2((P3(A1 −M3C1)− P3N11T2C1)
= P2P3(A1 −N12T3C1 −N11T12C1)
= P23(A1 −M23C1).

Finally,

(P23K
−1P23)

−1 = (P2((P3K
−1P ′3)

−1)
−1
P ′2)

−1

= (P23K
−1P ′23).

(A5) On the one hand, the combination trivially holds if at least one of the factors
is null since the result is then null in every case.

On the other hand, let φ1 = (C1, c1, ν1, Λ1) and φ2 = (C2, c2, ν2, Λ2) be sym-
metric Gaussian potentials with deterministic equations on domains s and t
respectively. Let m1 and m2 be such that C1 ∈ IR(m1, s) and C2 ∈ IR(m2, t).

Let z ∈M(φ1⊗φ2) such that s ⊆ z ⊆ s∪ t. Let (C, c) be the combined linear
system where C = ( C1

↑s∪t

C2
↑s∪t ). Let P2 be a projection matrix to t∩z for (C2, c2),

i.e. a matrix of full row rank m2 − r(C2
↓t−z) such that P2C

↓t−z = 0m2,t−z.
Define m = m1 +m2 and the regular matrix P ∈ IR(m,m) by

P =
(

Im1 0m1,m2

0m2,m1 P2

)
.

Observe that (C, c) is inconsistent if and only if (PC↓z, P c) is inconsistent.
This holds since

{u↓z : Cu = c} = {u↓z : C1
↑s∪tu = c1} ∩ {u↓z : C2

↑s∪tu = c2}
= {z : C1

↑zz = c1} ∩ {z : P2C2
→zz = Pc2}

= {z : PC↓zz = Pc}.

Observe that (φ1 ⊗ φ2)
↓z = zz only if φ1 ⊗ φ2 = zs∪t. Therefore,

(φ1 ⊗ φ2)
↓z = zz ⇐⇒ φ1 ⊗ φ2

↓t∩z = zz.
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Assume that (C, c) is consistent. In order to prove the combination axiom in
this case, it will now be shown that(

PC↓z, P c,
(
(ν1, Λ1)⊗ (ν2, Λ2)

)
(C,c)⊥z(C,c)

↓z
)

=(C1, c1, ν1, Λ1)⊗ (C2, c2, ν2, Λ2)
↓t∩z.

It holds that

PC =

(
C1

↑z 0m1,t−z(
P2C2

↓t∩z)↑z 0m2,t−z

)
.

Hence, P is a projection matrix for C since it has full row rank m−r(C↓t−z) =
m1 +m2 − r(C2

↓t−z) and since (PC)↓t−z = 0m,t−z. Therefore,

(C, c)↓z = (C1, c1)
↑z ⊕ (C2, c2)

↓t∩z↑z.

Furthermore,(
(ν1, Λ1)⊗ (ν2, Λ2)

)
(C,c)⊥z(C,c)

↓z

(1)
=
(
(ν1, Λ1)

↑s∪t
(C2,c2)↑s∪t ⊗ (ν2, Λ2)

↑s∪t
(C1,c1)↑s∪t

)
⊥z(C,c)

↓z

(2)
=
(
(ν1, Λ1)

↑s∪t
(C2,c2)↑s∪t ⊗ (ν2, Λ2)

↑s∪t
(C1,c1)↑s∪t

)
⊥z(C1,c1)↑s∪t⊕(C2,c2)↑s∪t

↓z

(3)
=
(
(ν1, Λ1)

↑s∪t
(C2,c2)↑s∪t ⊗ (ν2, Λ2)

↑s∪t
(C1,c1)↑s∪t

)
⊥z(C2,c2)↑s∪t

↓z

(4)
=
(
(ν1, Λ1)

↑s∪t
(C2,c2)↓s∩t↑s∪t ⊗ (ν2, Λ2)

↑s∪t
(C1,c1)↓s∩t↑s∪t

)
⊥z(C2,c2)↑s∪t

↓z

(5)
=
(
(ν1, Λ1)(C2,c2)↓s∩t↑s

↑s∪t ⊗ (ν2, Λ2)(C1,c1)↓s∩t↑t
↑s∪t)

⊥z(C2,c2)↑s∪t

↓z

(6)
=
(
(ν1, Λ1)(C2,c2)↓s∩t↑s ⊗ (ν2, Λ2)(C1,c1)↓s∩t↑t

)
⊥z(C2,c2)↑s∪t

↓z

(7)
=
(
(ν1, Λ1)(C2,c2)↓s∩t↑s ⊗ (ν2, Λ2)(C1,c1)↓s∩t↑t⊥z∩t(C2,c2)

)↓z
(8)
=(ν1, Λ1)(C2,c2)↓s∩t↑s ⊗

(
(ν2, Λ2)(C1,c1)↓s∩t↑t⊥z∩t(C2,c2)

)↓z∩t
(9)
=(ν1, Λ1)(C2,c2)↓s∩t↑s ⊗

(
(ν2, Λ2)⊥z∩t(C2,c2)

)↓z∩t
(C1,c1)↓s∩t↑z∩t

(10)
= (ν1, Λ1)

↑z
(C2,c2)↓z∩t↑z ⊗

(
(ν2, Λ2)⊥z∩t(C2,c2)

)↓z∩t↑z
(C1,c1)↓s∩t↑z

(11)
= (ν1, Λ1)

↑z
(C2,c2)↓z∩t↑z ⊗

(
(ν2, Λ2)⊥z∩t(C2,c2)

)↓z∩t↑z
(C1,c1)↑z

(12)
=
(

(ν1, Λ1)
↑z ⊗

(
(ν2, Λ2)⊥z∩t(C2,c2)

)↓z∩t↑z)
(C,c)↓z

,

using the definition of vacuous extension and Lemma 10.11 in (1) and (12),
using Lemma 10.17 in (3), using Lemma 10.9 in (4) and (11) [observing that
s ∩ (z ∩ t)= (s∩z)∩ t = s∩ t], using the definition of vaucous extension and of
neutral elements, the transitivity of vacuous extension, and Lemma 10.10 in (5)
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and (10), using the definition of vacuous extension in (6), using Lemma 10.18
in (7), using the combination axiom of symmetric Gaussian potentials in (8),
and using Lemma 10.19 in (9) [observing that s ∩ t ⊆ z ∩ t].

(A6) On the one hand, since the deterministic part does not change and since
(ν, Λ)(C,c) = (ν, Λ) in light of Lemma 10.7, it holds that x ∈ M(ν, Λ) =
M(C, c, ν, Λ) and (C, c, ν, Λ)↓x = (C, c, (ν, Λ)↓x) = (C, c, ν, Λ). On the other
hand, x ∈M(zx) and zx↓x = zx. This shows that the domain axiom holds.

(A7) The element e = (�, �, �, �) with d(�, �, �, �) = ∅ is the identity element.

(A8) The elements ex = (0x, 0x, 0x, 0x) are neutral elements for the domain x ∈ D.
Since ex ⊗ ey = (0x∪y, 0x∪y, 0x∪y, 0x∪y) = ex∪y, the neutrality axioms holds,
too.

(A9) Stability holds since y ∈M(ex) =M(0x, 0x) for y ⊆ x and

ex
↓y = (0x, 0x, 0x, 0x)

↓y = (0y, 0y, 0y, 0y) = ey.

(A10) The nullity axiom follows from the definition of marginalisation of null ele-
ments, equation (10.68).

The symmetric Gaussian potentials of the same domain with the same deterministic
knowledge (up to equivalence) form a group.
It can be verified that the mapping (10.72) is injective and compatible with combi-
nation and marginalisation. ut

10.7 Gaussian Belief Functions

Gaussian belief functions (GBF) or linear belief functions (LBF) are moment matri-
ces with deterministic knowledge (Dempster, 1990a; Liu, 1996a;b; 1999; Liu et al.,
2003a;b; Srivastava and Liu, 2003). Two representations are going to be discussed:
moment matrices with deterministic variables and partially swept moment matrices.

Moment Matrices with Deterministic Variables

In (Liu, 1996a;b; 1999), variables are assumed to fall in three categories:

• deterministic variables,

• uncertain variables, and

• vacuous variables.

The knowledge about the deterministic variables is represented by the vector of their
fixed values and the knowledge about the uncertain variables by a moment matrix.
In the terminology of the preceding sections, this means that the sets Γcertain and
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Γuncertain(ω) are spanned by different sets of variables and that the uncertain vari-
ables form a precise Gaussian hint (or, equivalently, a symmetric Gaussian potential
with positive definite concentration matrix). See Figure 7.2.

Formally, moment matrices with deterministic variables are quadruples

M = (x, µ,Σ, s) (10.74)

where

• x ∈ IRx,

• µ ∈ IRy, Σ ∈ IR(y, y) symmetric and positive definite,

• x ∩ y = ∅, and

• x ∪ y ⊆ s ∈ D.

The variables x are deterministic, the variables y uncertain, and the variables
s− (x ∪ y) are vacuous. M corresponds to a symmetric Gaussian potential with
deterministic variables

(x,
(
Σ−1µ

)↑s−x
,
(
Σ−1

)↑s−x). (10.75)

The rules of combination and marginalisation derived in Section 10.1 can be easily
carried over to moment matrices. The marginal of M with respect to t ⊆ s is then

(x↓t∩x, µ↓t∩y, Σ↓t∩y, t). (10.76)

The combination of (x1, µ1, Σ1, s1) and (x2, µ2, Σ2, s2) is given by

• the deterministic vector x1 ./ x2 (if x1 and x2 are compatible),

• the moment matrix
[
.(M1,x2

↓y1∩x2)
]↓My1−x2⊗M

[
.(M2,x1

↓y2∩x1)
]↓My2−x1 for

M1 = (µ1, Σ1), M2 = (µ2, Σ2), and

• the label s1 ∪ s2.

Notice that for M = σ(φ), it holds that

σ(φx|z) = .(M, z)↓Mx. (10.77)

These rules for combination and marginalisation reproduce those in (Liu, 1996a;
1999), where combination was derived directly from Dempster’s Rule.

Partially Swept Moment Matrices with Deterministic Knowledge

As discussed in Section 9.6, Gaussian linear systems can be represented by partially
swept moment matrices, which can neither be fully swept nor completely unswept.
Furthermore, (Dempster, 1990a) claims that even deterministic linear equations
without Gaussian term can be fitted into this framework. In fact, he implicitly
defines partially swept moment matrices as the combination of building blocks of
three types:
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• deterministic knowledge,

• probabilistic Gaussian knowledge, and

• vacuous knowledge.

The approach is taken up in (Liu et al., 2003a;b; Srivastava and Liu, 2003).
Consider a linear system

x1 = Ax2 + µ1. (10.78)

(Dempster, 1990a) suggests representing such such a linear system by

M(x1, ~x2) =
((

µ1

0

)
,

(
0x1 A
A′ 0x2

))
,

where the variables x1 are unswept and the variables x2 are swept forward. As
it stands, such a matrix M(x1, ~x2) can neither be fully swept nor fully unswept.
However, regarding M(x1, ~x2) as the limit

M(x1, ~x2) = lim
ε→0

((
µ1

0

)
,

(
ε · Ix1 A
A′ 0x2

))
,

The corresponding fully swept matrices are

M( ~x1, ~x2)ε =
((

ε−1 · µ1

−ε−1 ·A′µ1

)
,

(
ε−1 · Ix1 ε−1 ·A
ε−1 ·A′ −ε−1 ·A′A

))
for ε > 0. He conjectures that such a matrixM( ~x1, ~x2)ε can be combined in the usual
way with another partially swept moment matrix: by taking the sum, by sweeping
backwards, and by replacing the ε’s by 0. In this way, he defines generalised mo-
ment matrices implicitly as combinations of these building blocks: (regular) moment
matrices, vacuous variables, and deterministic equations.

As shown above, the representation of probabilistic and of vacuous knowledge
has a close resemblance to symmetric Gaussian potentials. In contrast, the rep-
resentation of deterministic knowledge is tricky as discussed in the following two
conjectures.

Conjecture 10.21. Only the forms without ε are a unique representation of the
Gaussian linear information. Therefore, the combination of generalised moment ma-
trices with deterministic knowledge is not always well defined. However, Dempster’s
ε-trick works fine for switching between these representations. �

Consider the following linear equation

Y = −0.5 ·X + 1

Multiplying it by −2, one obtains the equivalent linear equation

X = −2 · Y + 2.
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The corresponding partially swept matrices are

M( ~X, Y ) =
((

0
1

)
,

(
0 −0.5
−0.5 0

))
and

M̃(X, ~Y ) =
((

2
0

)
,

(
0 −2
−2 0

))
.

Then, the ε-swept matrices are not the same:

M( ~X, ~Y )ε =
((

ε−1 · 0.5
ε−1·

)
,

(
−ε−1 · 0.25 −ε−1 · 0.5
−ε−1 · 0.5 −ε−1

))
and

M̃( ~X, ~Y )ε =
((

2ε−1·
4ε−1·

)
,

(
−ε−1 −ε−1 · 2
−ε−1 · 2 −ε−1 · 4

))
(notice that M( ~X, ~Y )ε is a multiple of M̃( ~X, ~Y )ε). However, sweeping backwards
yields

M(X, ~Y ) = M̃(X, ~Y )

and
M̃( ~X, Y ) = M( ~X, Y ).

Conjecture 10.22. If the common variables are swept forward without Dempster’s
ε-trick, the combined information is the sum of these matrices. �

As shown in Section 3.5, the combination of moment matrices only requires sweeping
forward on the common variables. Furthermore, (Dempster, 1990a) gives an example
of a partially swept moment matrix (without fully swept representation) where the
combination works if the common variables are swept forward. For instance, a
Gaussian linear system x1 = Ax2 + µ1 + ω with covariance Σ discussed above can
be built from the probabilistic knowledge about x1 and the deterministic knowledge
about x1 given x2: Combining

Mprob(~ω) =
[(
Σ−1µ1

)
,
(
−Σ−1

)]
and

Mdet(x1, ~x2, ~ω) =

0
0
0

 ,

 0 A I
A′ 0 0
I 0 0

 .
Then, sweeping vacuously extendingMprob(~ω) and building the sum withMdet( ~x1, ~x2, ~ω)ε
yields

M( ~x1, ~x2, ~ω)ε =

 0
0

Σ−1µ1

 ,

−ε−1 · I ε−1 ·A ε−1 · I
ε−1 ·A′ −ε−1 ·A′A −ε−1 ·A′
ε−1 · I −ε−1 ·A −ε−1 · I −Σ−1

 .
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Then, sweeping backwards on x1

M(x1, ~x2, ~ω)ε =

 0
0

Σ−1µ1

 ,

ε · I A I
A′ 0 0
I 0A −Σ−1


and, letting ε = 0,

M(x1, ~x2, ~ω) =

 0
0

Σ−1µ1

 ,

 0 A I
A′ 0 0
I 0 −Σ−1


Here, it holds that

M(x1, ~x2, ~ω) = Mdet(x1, ~x2, ~ω)⊕Mprob(~ω)

Finally, sweeping backwards on ω,

M(x1, ~x2, ω) =

 µ1

0
Σ−1µ1

 ,

Σ A Σ
A′ 0 0
Σ 0 Σ

 ,
and eliminating ω yields the same partially swept moment matrix as above in equa-
tion (9.29).

If marginalisation corresponds to retaining the pertinent entries of a fully unswept
matrix, similar inconsistencies arise as in the case of combination, i.e. the fully
unswept form is not well defined in general.

Chapter Synopsis & Discussion

Two approaches to deterministic knowledge have been discussed in this chapter:

• Either some variables may take a fixed value or, more generally,

• linear combinations of variables may take a fixed value.

(Liu, 1996a; 1999) showed how Dempster’s Rule of combination can be applied to
moment matrices with variables taking a fixed value. The restriction to this setting
was motivated by problems with Dempster’s more general approach of partially
swept moment matrices (Dempster, 1990a).

In this chapter, algorithms for the general case of deterministic equations have
been developed for Gaussian hints and symmetric Gaussian potentials as follows.

• Application of deterministic knowledge: Deterministic equations induce an
event in Gaussian linear equations since some assumptions are ruled out by
the deterministic knowledge. Technically, the deterministic knowledge has to
be “substituted into” the Gaussian linear system. Geometrically, this cor-
responds to a projection and a rotation of the non-deterministic part. The
overall Gaussian linear information can be represented by a symmetric Gaus-
sian potential with deterministic knowledge. This representation is unique up
to equivalence in the deterministic part.
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• Combination amounts to applying the joint deterministic knowledge to both
symmetric Gaussian potentials and their combination. This complies with
Dempster’s Rule of intersection of focal sets.

• Marginalisation: Geometrically, marginalisation corresponds to the projection
of focal sets. This projection can be achieved by first rotating and projecting
the non-deterministic part. Then, the deterministic and the modified non-
deterministic part can be treated independently.



Part IV

Applications and Implementation





11
Kalman Filter Models and

Local Computation

Temporal Gaussian linear models are widely used, for instance in control theory
(Kalman, 1960) and coding theory (MacKay, 2003). The basic model is often the
following: The state of a system cannot be monitored directly but only through
measurements with additive Gaussian noise at discrete moments of time. The state
evolves over time according to a linear transition function of the previous state and
additive Gaussian noise only.

Although terminology and interpretation in these different fields vary consider-
ably, the basic model and inference algorithms turn out to be essentially the same
(Roweis and Ghahramani, 1999). As shown in (Monney, 2003), assumption-based
reasoning reproduces the results of inference based on the least squares or the max-
imum likelihood principle or by applying Bayes’ rule. However, the interpretation is
completely different. The application of the theory of Gaussian belief functions to
these Kalman filter models has already been discussed in (Dempster, 1990a;b), and
the application to that of Gaussian hints in (Monney, 2003; Kohlas and Monney,
2008).

Based on the noisy observations, there are three basic inference tasks in such
a model: filtering the current value, smoothing past values, and predicting future
values. These three poblems can be formulated as projection problems, which can
be solved by local computation using the techniques developed in parts I and II.

Chapter Outline

The Kalman filter model as well as the filtering, smoothing, and prediction problems,
will be formally defined in Section 11.1. The recursion in the Kalman filter, smooth-
ing and prediction algorithms can easily be translated into the message-passing
scheme of the collect algorithm. This is the topic of Sections 11.2 to 11.4. The
different parts of the Kalman filter model are represented by symmetric Gaussian
potentials.

263
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11.1 The Kalman Filter Model

According to (Roweis and Ghahramani, 1999), the basic model of discrete time linear
dynamical systems with additive Gaussian noise is as follows:

xk+1 = Akxk + ωk, (11.1)
yk = Hkxk + νk, (11.2)
yk = yk, (11.3)
x1 = ω0 (11.4)

for k ∈ {1, 2, . . .} and where the disturbances ωk and νk are distributed normally
with mean 0 and variance-covariance Qk and Rk, respectively. Such a Gaussian
linear system is often called a Kalman filter model. Here, equation (11.1) defines
a first-order Markov state evolution process, where the matrix Ak ∈ IR(xk+1, xk) is
called transition matrix and the state vector xk of real-valued variables. Furthermore,
equations (11.3) and (11.2) define the observation process: At each time step k, an
output or observation yk ∈ IRyk is obtained from the unknown state xk through
the observation matrix (also measurement or generative matrix) Hk ∈ IR(p, k). Both
noise sources are independent from each other as well as from time step to time
step. Finally, the initial state x1 in equation (11.4) is given by the Gaussian noise
ω0 which is assumed Gaussian with mean µ0 and covariance Q0. Notice that the
restriction to zero-mean noise sources does not infringe upon generality as observed
by (Roweis and Ghahramani, 1999; p.307) since a non-zero mean can always be
simulated by adding a dimension to the state or the observation model. Of course,
the equations of the Kalman filter model can be brought into the standard form of
a Gaussian linear system as follows:

(Ak,−I)
(
xk
xk+1

)
+ ωk = 0, (11.5)

Hkxk + νk = yk, (11.6)
x1 = ω0 (11.7)

Notice that the deterministic equation 11.3 has been directly substituted into (11.2)
without using the theory of Chapter 10. This is possible since the variable yk only
occurs here (see Figures 11.2 and 11.3 below).

Figure 11.1 shows the block diagram of the functional model of equations (11.1)
and (11.2): Boxes represent functions and arrows input and output of these func-
tions; branching points are denoted by a black dot.

If the state and the observation model are not entirely known, a full model which
best explains the observed data has first to be discovered. The problem here is to
learn the model or to identify the system. Typically, this is the case in speech
recognition or in social sciences, where economical and performative models have be
found. However, this is not an inference task, and it will therefore not be discussed
here.
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xkxk−1 xk+1

yk yk+1

xk
xk+1

yk

+

+

ωk

νk

Ak

Hk

xk+2

Figure 11.1: A block diagram for the Kalman filter model
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The whole model can be decomposed into independent factors. Let O(k) be the
symmetric Gaussian potential inferred from equations (11.2) and (11.3) on xk, which
is

O(k) = (H ′
kRk

−1Hk,H
′
kRk

−1yk). (11.8)

On the other hand, the state transition equation (11.1) yields

S(k, k + 1) = (
(
A′kQk

−1Ak −A′kQk
−1

−Qk−1Ak Qk
−1

)
, 0). (11.9)

If an initial distribution (µ0, Q0) is given for x1, then define

S(0) = (Q0
−1, Q0

−1µ0); (11.10)

on the other hand, if no initial distribution is given on x1, define

S(0) = ex1 . (11.11)

Notice that
S(k, k + 1)↓k = ek. (11.12)

Assume that the elements Ai, Hi, Qi and Ri are all known for k ∈ {1, 2, . . .}.
Further, assume the measurements yi are given up to time k, i.e.

O(l) = e

for l > k. What can be inferred on some xi from this information? There are three
different cases:

• i = k: filtering about the current value,

• i < k: smoothing about past values, and

• i > k: prediction of future values.

All three cases are projection problems of the form

H(k, i) =

S(0)⊗ (
max(k,i)−1⊗

s=1

S(s, s+ 1))⊗ (
k⊗
l=1

O(l))

↓xi

, (11.13)

It can be verified for the filtering and smoothing cases i ≤ k that S(s, s + 1) for
s ≥ k give no information about xi.

The valuation network (Shenoy, 1992) or factor graph (Kschischang et al., 2001)
of the factorisation is shown in Figure 11.2: A valuation network is a bipartite graph
with a box for each factor and a circle for each variable; edges are drawn from a factor
to every variable occurring in its domain. The picture is simplified by drawing only
one edge between the sets yk and xk and the corresponding factors. This is justified
since these variables only occur together. Finally, a covering join tree and a possible
assignment mapping is shown in Figure 11.3. All these graphical representations
show a linear backbone, which is the transition model, and a series of equidistant
pins attached to that backbone, which are the observations.
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S(k − 1, k) S(k, k + 1) S(k + 1, k + 2)

O(k) O(k + 1)

yk yk+1

xk xk+1xk−1 xk+2

Figure 11.2: A valuation network for the Kalman filter model

xk ∪ xk+1 xk+1 ∪ xk+2xk−1 ∪ xk

xk ∪ yk xk+1 ∪ yk+1

S(k − 1, k)

O(k)

S(k, k + 1) S(k + 1, k + 2)

O(k + 1)

Figure 11.3: A join tree for the Kalman filter model



268 Chapter 11. Kalman Filter Models and Local Computation

11.2 Filtering

The filter solution H(k, k) can be solved by an execution of the collect algorithm in
the subtree rooted at the node containing S(k, k+ 1) and a final marginalisation to
xk. According to Theorem 4.18, after the collect algorithm in that subtree up, the
root node contains

Hk =

[
S(0)⊗ (

k⊗
s=1

S(s, s+ 1))⊗ (
h⊗
l=1

O(l))

]↓xk∪xk+1

(11.14)

=

[
S(0)⊗ (

k−1⊗
s=1

S(s, s+ 1))⊗ (
h⊗
l=1

O(l))

]↓xk∪xk+1

⊗ S(k, k + 1)↓xk

=

[
S(0)⊗ (

k−1⊗
s=1

S(s, s+ 1))⊗ (
h⊗
l=1

O(l))

]↓xk∪xk+1

(11.15)

using Lemma 2.4 and (11.12). Then, using the transitivity axiom, a final marginal-
isation yields Hk

↓xk = H(k, k). This scheme can also be described recursively by

H(k, k) = H(k − 1, k)⊗O(k) (11.16)

= (H(k − 1, k − 1)⊗ S(k − 1, k)⊗O(k))↓xk . (11.17)

The messages of this execution of the collect algorithm are shown in Figure 11.4. The
messages H(k− 1, k) are called one-step forward prediction. They can be computed
from the filter solution for k − 1 and from the state model from k − 1 to k,

H(k − 1, k) =
(
H(k − 1, k − 1)⊗ S(k − 1, k)

)↓xk . (11.18)

Let H(k−1, k−1) = (ν(k−1, k−1),K(k−1, k−1)). Then, the one-step prediction
H(k − 1, k) = (ν(k − 1, k),K(k − 1, k)) is given by

ν(k − 1, k) = Ak−1ν(k − 1, k − 1) (11.19)

and

K(k − 1, k) = Qk−1
−1 −Qk−1

−1Ak−1

(
A′k−1Qk−1

−1Ak−1 +K(k − 1, k − 1)
)−1·

A′k−1Qk−1
−1 (11.20)

using equations (11.8) and (11.9). From the one-step prediction H(k − 1, k) =
(ν(k − 1, k),K(k − 1, k)), it is easy to compute the filter solution for k by

H(k, k) =
(
ν(k − 1, k) +H ′

kRk
−1yk,H ′

kRk
−1Hk +K(k, k + 1)

)
. (11.21)

If A is regular, as is usually assumed, then

K(k − 1, k)−1 =Qk−1
−1−

Qk−1
−1
(
Qk−1

−1 +Ak−1
−1K(k − 1, k − 1)A′k−1

−1)−1
Qk−1

−1

=Qk−1 +
(
Ak−1

−1K(k − 1, k − 1)A′k−1
−1)−1

=Qk−1 +A′k−1K(k − 1, k − 1)−1Ak−1 (11.22)
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since for regular matrices A and B it holds that A−A(A−B)−1A = (A−1 −B−1)−1

in light of Theorem 18.2.4 of (Harville, 1997; p.420). This corresponds to the usual
computation of the one-step prediction in terms of variance-covariance matrices.

The initial distribution on x1 is technically not needed for the assumption-based
inference; in contrast, it is needed when the Kalman filter is derived by using Bayes’
rule or the least-squares principle. (Monney, 2003) points out that a precise filter
solution may be found even without an initial distribution. Assume that all matrices
Ak are regular. Then, if H(k, k) corresponds to a precise Gaussian hint, so do
H(k, k + 1), H(k + 1, k + 1), H(k + 1, k + 2),... This follows from equations (11.22)
and (11.21), since the sum of a positive definite and a non-negative definite matrix is
positive definite and since the inverse of symmetric positive definite matrix is positive
definite. A sufficient condition for H(k, k) to be precise is that Hk is regular. Hence,
the filter H(k, k) may become precise after a few steps without an initial distribution
on x1.

11.3 Prediction

The prediction problem H(k, k + t) can be solved by propagating further towards
the node containing xk+t ∪ xk+t+1. It holds that

H(k, k + t) =

[
S(0)⊗ (

k+t−1⊗
s=1

S(s, s+ 1))⊗ (
k⊗
l=1

O(l))

]↓xk+t

=

[S(0)⊗ (
k+t−1⊗
s=1

S(s, s+ 1))⊗ (
k⊗
l=1

O(l))

]↓Sk+t
l=k+1 xl


↓xk+t

=

[S(0)⊗ (
k⊗
s=1

S(s, s+ 1))⊗ (
k⊗
l=1

O(l))

]↓xk+1

⊗ (
k+t−1⊗
s=k+1

S(s, s+ 1))

↓xk+t

=

(
H(k, k + 1)⊗ (

k+t−1⊗
s=k+1

S(s, s+ 1))

)↓xk+t

using the transitivity axiom and the combination axioms. Here, H(k, k + 1) =
Hk↓xk+1 is the first message sent from the old root node containing Hk to the next
node. This scheme is shown in Figure 11.5.

11.4 Smoothing

The smoothing problem H(k, k− t) can be solved by first using the collect algorithm
to compute the filter solution at k and then distribute to propagating outwards,
resp. backwards to k − t. Of course, the messages involved are exactly those from
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the collect algorithm towards the root node containing S(k − t, k − t + 1). Define
the backward filter at time k − t as

B(k, k − t) =

[
(
k−1⊗
s=k−t

S(s, s+ 1))⊗ (
k⊗

l=k−t
O(l))

]↓xk−t

. (11.23)

It contains the information on the time k − t from the times k − t to k. Then, it
holds that

H(k, k − t)

=

[
S(0)⊗ (

k−1⊗
s=1

S(s, s+ 1))⊗ (
k⊗
l=1

O(l))

]↓xk−t

=

([
S(0)⊗ (

k−t−1⊗
s=1

S(s, s+ 1))⊗ (
k−t−1⊗
l=1

O(l))

]
⊗

[
(
k−1⊗
s=k−t

S(s, s+ 1))⊗ (
k⊗

l=k−t
O(l))

])↓xk−t

=

([
S(0)⊗ (

k−t−1⊗
s=1

S(s, s+ 1))⊗ (
k−t−1⊗
l=1

O(l))

]↓xk−t

⊗

[
(
k−1⊗
s=k−t

S(s, s+ 1))⊗ (
k⊗

l=k−t
O(l))

]↓xk−t)↓xk−t

=

H(k − t− 1, k − t)⊗

[
(
k−1⊗
s=k−t

S(s, s+ 1))⊗ (
k⊗

l=k−t
O(l))

]↓xk−t∪xk−t+1
↓xk−t

=

(
H(k − t− 1, k − t)⊗ S(k − t, k − t+ 1)⊗O(k − t)⊗

[
(

k−1⊗
s=k−t+1

S(s, s+ 1))⊗ (
k⊗

l=k−t+1

O(l))

]↓xk−t+1)↓xk−t

=
(
H(k − t− 1, k − t)⊗

(
S(k − t, k − t+ 1)⊗O(k − t)

)
⊗ B(k, k − t+ 1)

)↓xk−t

=
(
Hk−t ⊗O(k − t)⊗ B(k, k − t+ 1)

)↓xk−t

using the combination and the transitivity axioms. Here, H(k − t − 1, k − t) is the
message from the earlier times to k−t, S(k−t, k−t+1)⊗O(k−t) is the information
on state t − k and B(k, k − t + 1) is the information on k − t + 1 from the times
k − t+ 1 to k. The backward filters can be computed recursively as

B(k, i) =

[
(
k−1⊗
s=i+1

S(s, s+ 1))⊗ (
k⊗

l=i+1

O(l))

]↓xi

=

[( k−1⊗
s=i+1

S(s, s+ 1))⊗ (
k⊗

l=i+1

O(l))

]↓xi∪xi+1
↓xi
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=

S(i+ 1, i+ 2)⊗O(i+ 1)⊗

[
(
k−1⊗
s=i+2

S(s, s+ 1))⊗ (
k⊗

l=i+2

O(l))

]↓xi+1
↓xi

=
(
S(i+ 1, i+ 2)⊗O(i+ 1)⊗ B(k, i+ 1)

)↓xi

using the transitivity and the combination axioms. Notice that

B(k, k) = O(k) = O(k)⊗ ek = O(k)⊗ S(k, k + 1)↓xk =
(
O(k)⊗ S(k, k + 1)

)↓xk

using equation (11.12) and the combination axiom. Therefore, the backward filters
correspond to the messages of the backward distribute phase after collect towards
the root node containing S(k, k + 1) or, equivalently, to the messages of the collect
algorithm towards the node containing S(k− t, k− t+ 1) as shown in Figure 11.6.

Chapter Synopsis & Discussion

It has been shown that the Kalman filter, prediction and smoothing algorithms fit
nicely into the framework of assumption-based reasoning and local computation:
At the end of the Shenoy-Shafer algorithm, the corresponding nodes contain the
solution of the filtering, the prediction, and the smoothing problem, respectively.
This sheds new light on the original algorithms, which were intended for optimal
estimation with respect to the expected quadratic loss (Kalman, 1960).

The assumptions of an initial distribution and on the ranks of the state transi-
tion and observation matrices can be dropped for the assumption-based inference.
The filter solution may still be precise. Furthermore, the computation of the filter
solution from the one-step predictions is very easy in terms of symmetric Gaussian
potentials, whereas the one-step forward predictions are more complicated. In con-
trast, if Gaussian hints are represented by the variance-covariance matrix instead of
the concentration matrix, it is more expensive to compute the filter solution from
the one-step forward predictions than to compute the one-step forward predictions.
See (Monney, 2003; Kohlas and Monney, 2008).
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12
Implementation

Introduction and Chapter Outline

In this chapter, a prototypical architecture for analysing Gaussian linear systems is
presented as an application and illustration of the theoretical concepts presented so
far, in particular of symmetric Gaussian potentials. An assumption-based analysis
of Gaussian linear systems may proceed in the following steps:

1. Gaussian linear systems and queries are expressed in a human-readable way;

2. a knowledge base of symmetric Gaussian potentials is generated;

3. the queries are answered by local computations;

4. the results are presented in a human-readable form.

In this chapter, such an architecture is presented: Models and queries formulated
in Abel (assumption-based evidential language) (Anrig et al., 1997; Haenni et al.,
1998; Lehmann, 2005) are passed on to the Gauss solver, which uses the Nenok
framework for local computation (Pouly, 2004; 2006; 2008) to solve the projection
problems. This architecture is shown in Figure 12.1. Here, arrows represent actions,
and boxes stand for the intermediate representations of the processed input; the
dashed boxes group the actions performed by the same software unit. Abel and
the Gauss solver communicate via file exchange, whereas the Gauss solver uses the
Nenok framework by passing objects in JAVA method calls. This implementation
is going to be discussed as follows: How Gaussian linear models can be formulated in
Abel and how this input is passed on to the Gauss solver is discussed in Section 12.1.
How the Gauss solver parses generates the knowledge base and the queries in the
Nenok framework, is the subject of Section 12.2.

12.1 Model Formulation in Abel

The Abel language (Anrig et al., 1997; Haenni et al., 1998; Lehmann, 2005) is
an extension of the Common Lisp language1 by several commands which allow to

1ANSI standard INCITS 226-1994 (R2004) Information Technology – Programming Language –
Common Lisp; see also (Steele, 1990).

275



276 Chapter 12. Implementation

Linear G
aussian 

system
 form

ulated in 
ABEL

.kbs,
.qry

know
ledge base,

queries

query answ
ers

.res
Textual representation 

of a G
aussian hint

com
pile

ABEL
G

auss solver
NENO

K

join tree

parsewrite 

call

return
read

F
ig

u
r
e

1
2
.1

:
O

verview
of

the
architecture



12.1. Model Formulation in Abel 277

manage a knowledge base. Abel can be integrated in XEmacs2 and run in an
interactive way from there.

In the following paragraphs, the Abel-specific commands are going to be dis-
cussed. The formal syntax for Abel is written in a simple extended BNF3:

• Although not mandatory, non-terminal symbols are marked by angle brackets
(<some-non-terminal-symbol>);

• "string" and ’string’ match the literal string given inside double and single
quotes, respectively;

• (expression) matches expression, which is treated as a unit and may be
combined as described below;

• A? matches the expression A or nothing (i.e. A is optional);

• A B matches expressions A followed by B (concatentation);

• A | B matches A or B (alternation);

• A+ matches one or more occurrences of A;

• A* matches zero or more occurrences of the expression A.

Here, + and * have higher precedence than concatenation and concatenation higher
precedence than alternation, i.e.

• A B | C D is identical to (A B) | (C D), and

• A+ | B+ and A* | B* are identical to (A+) | (B+) and (A*) | (B*), respec-
tively.

The formal syntax declarations will abstract from the lexical structure of programs,
i.e. how they are tokenised. Abel’s lexical structure is inherited from the underlying
Common Lisp language.4

Knowledge Assertion: the tell and observe Commands

First, the knowledge base is defined using the commands tell and observe. They
add variable and assumption declarations, relations and observations to the (global)
knowledge base. They allow to distinguish between static knowledge of the model
(such as rules, relations or dependencies) and facts or observations in an actual
situation, which may change over the time:

2http://www.xemacs.org/, accessed 2009/2/27
3The version used is adapted from http://www.w3.org/TR/REC-xml/#sec-notation, accessed

2009/2/27.
4There is an exception: Indexed variables (for instance var[25]) are not Common Lisp identi-

fiers and are only valid in the body of Abel assertions (which are Lisp macros and not ordinary
functions).

http://www.xemacs.org/
http://www.w3.org/TR/REC-xml/#sec-notation
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The Syntax
<assertion> ::=

<tell> | <observe>;
<tell> ::=

"(" "tell"
( "(" <key> ")" )?
<declaration or statement>+
")" ;

<observe> ::=
"(" "observe"
( "(" <key> ")" )?
<declaration or statement>+

")";
<key> ::=

<identifier>

The <key> is an optional Lisp identifier and can be used for partial retraction of
knowledge (see the empty command). Notice that tell and observe differ only on
the syntactical level; internally, they are treated completely identically. Therefore,
the Gauss solver will not be able to distinguish between knowledge asserted using
the tell and the observe commands (see also Section 12.1 below for details).

The knowledge assertions are either declarations or statements:

The Syntax <declaration or statement> ::= <declaration> | <statement>

Declarations

In the case of Gaussian linear models, (arrays of) <variable>s, (arrays of) <assumption
variable>s, <indexing set>s, and covariances can be declared in a <declaration>:

The Syntax
<declaration> ::=

<variable declaration> | <assumption declaration> |
<covariance declaration> |Ê<indexing set declaration>;

<variable declaration> ::=
"(" "var" <identifier> ("[" <indexing set>+ "]")? "real" ")";

<assumption declaration> ::=
"(" "ass" <identifier> ("[" <indexing set>+ "]")? "real"

"(" "gauss" <number>+ ")"
")";

<indexing set declaration> ::=
"(" "type" <indexing set>
"(" "integer" "1" <positive integer>")"

")"
<covariance declaration> ::=

"(" "cov" <assumption variable> <assumption variable>
<covariance> ")"
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<variable> ::=
<identifier>("[" ( <integer> | <integer-bound variable> )+ < "]")?

<assumption variable> ::=
<identifier>("[" ( <integer> | <integer-bound variable> )+ "]")?

<indexing set> ::=
<identifier>

<array of variables> ::=
<identifier>

<array of assumption variables> ::=
<identifier>

In an assumption declaration, the <number>s are the variance of the declared as-
sumption variables:

• Either there is only one <number>, in which case all the indexed assumption
variables have the same variance <number>, or

• there are exactly as many <number>s as indexed assumption variables, in which
case the assumption variable <identifier>[<i>]s has the ith variance from
the <number>s.

Example 12.1. As an example, the following tell assertion declares a real-valued
variable V and Gaussian assumptions O1 with variance 100 and O2 with variance 200,
both with mean 0; the Abel macros added to basic Lisp as well as some keywords
are boldfaced:

( t e l l
(var V rea l )
(ass O1 O2 rea l (gauss 100 200))

)

Alternatively,

( t e l l
(type some-indexing-set (integer 1 3))

)

defines the indexing set some-indexing-set with integer values from 1 to 3. Indexed
variables and assumption variables can be defined in the following way:

( t e l l
(var some-indexed-var[some-indexing-set] rea l )
(ass some-indexed-assumption[some-indexing-set]

rea l (gauss 50))
5 (ass some-other-indexed-assumption[some-indexing set ]

rea l (gauss 1 2 3))
)

This declares the array of variables some-indexed-var containing the variables
some-indexed-var[1] to some-indexed-var[3]. For Gaussian assumptions, two
forms are possible: The assumptions some-indexed-assumption[1] to some-indexed-
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assumption[3] all have the same variance 50, whereas in the second form the as-
sumptions some-other-indexed-assumption[1] to some-other-indexed-assump-
tion[3] have the individual variances 1, 2, 3, respectively. Doubly indexed variables
and assumptions can be declared as follows:

( t e l l
(type another-indexing-set (integer 1 5))
(var doublette[some-indexing-set another-indexing-set]

rea l )
5 )

This defines the 3 · 5 = 15 variables doublette[1 1], doublette[1 2], ...,
doublette[3 5] in the doubly indexed array doublette. �

Statements

Statements containing Gaussian linear equations have the following form:

The Syntax
<statement> ::=

<equation> | <forall>;
<forall> ::=

"(" "forall" <identifier> <indexing set> ")"
<statement>+;

<equation> ::=
"(" "=" <sum> <sum> ")";

<sum> ::=
("(" <identifier> <indexing set> ")")?

"(" ( "+" | "-" ) <sum>+ ")" |
<term>;

<term> ::=
<real number> | <observed variable> | <product> |
<assumption variable>;

<product> ::=
"(" "*" <observed variable> <variable> ")" |
"(" "*" <variable> <observed variable> ")"

Of course, at most one of the terms in every equation must be an assumption variable,
and the order of the terms is irrelevant semantically. An <observed variable> is
one having a <direct observation>, i.e. an <equation> of the form

The Syntax
<direct observation> ::=

"(" "=" <variable> <number> ")" |
"(" "=" <number> <variable> ")"

Notice that directly observed variables are treated as constants in an equation with
a Gaussian term and do not appear in that equation’s domain.

Example 12.2. Indexed statements can be formulated using forall. For instance,
the price for all vendors can be fixed at 20 for all 5 vendors:
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( t e l l
(type vendors (integer 1 5))
(var vendor[vendors] rea l )
( f o r a l l (vendor vendors)

5 (= price[vendor] 20)))

Here, 5 statements are generated, one for each value 1, . . . , 5, and the occurrences
of the local variable vendor are replaced by that value. This is of course equivalent
to

( t e l l
(type vendors (integer 1 5))
(var vendor[vendors] rea l )
(= price [1] 20)

5 (= price [2] 20)
(= price [3] 20)
(= price [4] 20)
(= price [5] 20)

)

Similarly, indexed sums can be expressed using sum. For instance,

(sum (factor factors)
impact[factor ]))

sums up the impacts over all factors in the indexing set factors. �

Querying: the ask Command

Then, queries about the knowledge base can be formulated using the command ask.

The Syntax
<ask> ::=

"(" "ask" <query>+ ")";
<query> ::=

<variable> | "(" <variable>+ | <array of variables> ")";

A query on a Gaussian linear model is either a single variable or a list of variables.
For instance,

The Syntax
(ask price)

solves the projection problem for the single variable price. However, several queries
can be asked in the same ask statement.

Knowledge Retraction: the empty Command

Finally, the knowledge base can be deleted (partially or completely) using empty:
Either it is emptied completely, or only parts can be retracted from the knowledge
base:

The Syntax
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(empty)
(empty observe)
(empty tell)
(empty <key>)

The first form clears the whole knowledge base, the second one all observations, the
third everything added using the tell command, and the fourth the statements
corresponding to the key <key>.

Example 12.3. The Gaussian linear system

Zi = ai1X1 + ai2X2 + oi, i ∈ {1, 2} �

where o1 and o2 are Gaussian with mean 0 and variances 50 and covariance 30 can
be expressed in Abel in the following way:

(empty)
( t e l l

(type I-set (integer 1 2))
(type J-set (integer 1 2))

5 (var a[I-set J-set] REAL)
(var X[J-set] REAL)
(var Z[I-set] REAL)
(ass o[I-set] REAL (GAUSS 50))
(cov o[1] o[2] 30)

10 )

( t e l l
( f o r a l l (i I-set)

(= Z[i]
15 (+ (sum (j J-set)

(* a[i j] X[j]))
o[i]))))

(observe
20 (= 5 a[1 1])

(= 6 a[1 2])
(= 7 Z[1])
(= 8 a[2 1])
(= 9 a[2 2])

25 (= 10 Z[2])
)

The .kbs and .qry Files

When an ask statement is evaluated, Abel’s knowledge base is written in a .kbs
(knowledge base) file, which is an ordinary ASCII text file with the following struc-
ture:
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• the ID section just contains the marker KBS;

• the VARIABLES section declares all variables and

• the ASSUMPTIONS section all assumptions.

• The covariance of two Gaussian assumptions is given in the COVARIANCES sec-
tion.

• Then, the equations and the observed variables are given in the CLAUSES sec-
tion.

• Finally, the end of the knowledge base is marked by the END tag.

Example 12.4. The model of Example 12.3 produces the following .kbs file:

{ID} KBS

{VARIABLES}
A[1 1] REAL

5 A[1 2] REAL
A[2 1] REAL
A[2 2] REAL
X[1] REAL
X[2] REAL

10 Z[1] REAL
Z[2] REAL

{ASSUMPTIONS}
O[1] REAL (GAUSS 50)

15 O[2] REAL (GAUSS 50)

{COVARIANCES}
O[1] O[2] 30

20 {CLAUSES}
| (= (- Z[1] (+ (* A[1 1] X[1]) (* A[1 2] X[2]) O[1])) 0)
| (= (- Z[2] (+ (* A[2 1] X[1]) (* A[2 2] X[2]) O[2])) 0)
| (= A[1 1] 5)
| (= A[1 2] 6)

25 | (= Z[1] 7)
| (= A[2 1] 8)
| (= A[2 2] 9)
| (= Z[2] 10)

30 {END}

The reason for the name CLAUSES is that Abel was originally designed for assumption-
based reasoning on logical models. However, Abel can also be used in a natural
way to cover Gaussian linear models. �

The queries are encoded in a separate .qry file, which contains the domains.
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Example 12.5. When asking

(ask X)

on the model of Example 12.3, the following .qry file is passed on to the Gauss
solver:

{ID} QRY

{QUERY} MARGINAL
{CLAUSES}

5 (X[1] X[2])

{END}

With Gaussian linear models, only MARGINAL queries can be asked. When dealing
with logical models, Abel can also be used for other queries evaluating hypotheses
(quantitatively and qualitatively). �

12.2 Implementing an Algebra of Gaussian Linear Information in
Nenok

When the Gauss solver gets the .kbs and .qry files from Abel, it has to extract
the knowledge base and answer the queries. For this purpose, the Gauss solver
extends the Nenok framework (Pouly, 2004; 2006; 2008) for local computation and
uses the Jama library5 for matrix computations. These dependencies are shown
in the UML package diagram of Figure 12.2. Further, Figure 12.3 shows how a

gauss

nenok Jama

<<uses>><<extends and uses>>

Figure 12.2: The Gauss solver package gauss depends on the packages Jama and nenok.

valuation algebra of Gaussian linear information can be integrated in the Nenok
framework: The class GLI implements Nenok’s Valuation interface, and the class
GaussVariable implements the Variable interface. Thereby, Nenok will recognise
the generated symmetric Gaussian potentials as valuations with the operations of a
valuation algebra.

5version 1.0.2, http://math.nist.gov/javanumerics/jama/, accessed 2009/2/27

http://math.nist.gov/javanumerics/jama/
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<<Interface>>
gauss.va.AbstractGLI

Domain label()
Valuation combine( Valuation )
Valuation marginalize( Domain )

<<Interface>>
nenok.va.Valuation

Valuation inverse()

<<Interface>>
nenok.va.Separativity

nenok.va.Domain <<Interface>>
nenok.va.Variable

*

gauss.va.GaussVariable

1

Figure 12.3: Integrating symmetric Gaussian potentials in the Nenok framework (sim-
plified UML class diagram)

Applying Deterministic Equations to a Symmetric Gaussian Potential

The method applyDeterministicEquations is called in the constructor of the class
GLI, which implements the interface AbstractGLI. In Listing 12.1, the symmetric
Gaussian potential is stored in the fields nu and Lambda.

Combination

The combination is implemented by component-wise addition of the mean vector
and the pseudo-concentration matrix, as shown in Listing 12.2.

Marginalisation

Listings 12.3 and 12.4 show only extracts of the marginalize method of the class
GLI. The buffers nu_buf and C_buf contain the mean and the pseudo-covariance
matrix such that lines and columns corresponding to the domain of marginalisation
are top and left, respectively. Then, the symmetric Gaussian potential has first to
be “rotated” and the variables are then eliminated one by one from bottom to top
and from right to left in the outmost loop until the lower bound mMarg (i.e. the
cardinality of the domain of marginalisation) is reached. For every variable index l,
the variable elimination requires a loop over the lines (cf. running variable i) and a
nested loop over the columns (cf. running variable j); since the pseudo-concentration
matrix remains symmetric at every step, only the diagonal and the upper part are
used (condition j<i).

After that, the top left parts of the buffers are used to instantiate the marginal
valuation.
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�
private void applyDeterministicEquations (){

int k = c.getRowDimension ();

int n = varArr.length;

5 i f (k>0 && n>0){

// apply
Matrix U,V; double[] s; int r;

i f (k>=n){ // svd algor i thm works only f o r k>=n
SingularValueDecomposition svd = C.svd ();

10 r = svd.rank (); U = svd.getV (); V = svd.getU ();

s = svd.getSingularValues ();

} else {
SingularValueDecomposition svd = C.transpose (). svd ();

r = svd.rank (); U = svd.getV (); V = svd.getU ();

15 s = svd.getSingularValues ();

}

// check whether f o r c on t r ad i c t i on : U 1 U 1 ’ c = c?
i f (r==0){

20 i f (c.get(0, 0)!=0) { // con t r ad i c t i on
throw new IllegalArgumentException("contradiction (rank 0)");

}

} else {

Matrix U_1 = U.getMatrix (0, k-1, 0, r-1);

25 Matrix U_1prime = U_1.transpose ();

Matrix U_1U_1primec = U_1.times(U_1prime.times(c));

for( int i=0; i<k; i++){

i f (! DhbMath.equals(U_1U_1primec.get(i, 0),c.get(i, 0))){

throw new IllegalArgumentException("contradiction at line " + i);

30 }

}

}

// compute V2 V2 ’ = I n − V 1 V 1 ’ (V2 i s not computed in the svd )
Matrix V_1 = V.getMatrix (0, n-1, 0, r-1); // V i s n x n , V 1 i s n x r

35 Matrix V_1TimesV1prime = V_1.times(V_1.transpose ());

double[][] buf = new double[n][n];
for( int i=0; i<n; i++){

for( int j=0;j<n;j++){

buf[i][j] = - V_1TimesV1prime.get(i, j);

40 }

buf[i][i] += 1;

}

Matrix V_2TimesV_2prime = new Matrix(buf);

45 // compute C+
Matrix Cplus = svdUtil.pseudoinverse(U,s,V,r);

Cplus.print(Logger.getOutputStream (), 5, 5);

C.times(Cplus.times(C)). print(Logger.getOutputStream (), 5, 5);

50 // LambdaTilde = (V 2 V 2 ’ ) Lambda (V 2 V 2 ’ )
// nuTilde = (V 2 V 2 ’ ) nu − (V 2 V 2 ’ ) Lambda C+ c
Matrix temp = V_2TimesV_2prime.times(Lambda );

Matrix LambdaTilde = temp.times(V_2TimesV_2prime );

Matrix nu_1 =

55 V_2TimesV_2prime.times(nu);

Matrix nu_2 = temp.times(Cplus.times(c));

Matrix nuTilde = nu_1.minus(nu_2);

nu = nuTilde;

60 Lambda = LambdaTilde;

}

}� �
Listing 12.1: Applying deterministic knowledge to a symmetric Gaussian potentials
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�
public stat ic SymmetricGaussianPotential

combine(SymmetricGaussianPotential val1 ,

SymmetricGaussianPotential val2){

/∗
5 ∗ ( nu1 ,C1) x (nu2 ,C2) = (nu1+nu2 ,C1+C2)

∗/

// prepare domain and empty vec to r and matrix . . .
Domain newDomain = Domain.union(val1. label (), val2. label ());

10 int m = newDomain.size ();

List <GaussVariable > newVarsList = new ArrayList <GaussVariable >();

for(Variable v : newDomain ){

newVarsList.add(( GaussVariable) v);

15 }

GaussVariable [] newVarsArr = new GaussVariable[m];

newVarsList.toArray(newVarsArr );

Matrix newK = new Matrix(m,m);

20 Matrix newmu = new Matrix(m,1);

// . . . and sum up everyth ing in to them
for( int i=0; i<m; i++){

GaussVariable v_i = newVarsArr[i];

25 newmu.set(i, 0, val1.getMu(v_i) + val2.getMu(v_i ));

for( int j=0; j<m; j++){

GaussVariable v_j = newVarsArr[j];

newK.set(i, j, val1.getK(v_i , v_j) + val2.getK(v_i , v_j ));

}

30 }

return new SymmetricGaussianPotential(

newVarsList.toArray(new GaussVariable[newVarsList.size ()]),

newK , newmu );

}

35 public Valuation combine(Valuation val) {

return combine( this , (SymmetricGaussianPotential) val);

}� �
Listing 12.2: The combination of GLIs
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�
// ro t a t e
Matrix margC = new Matrix(0,mMarg );

Matrix margc = new Matrix (0,0);

i f (k>0 && m>0){

5 Matrix U,V; double[] s; int r;

i f (k>=m-mMarg){ // svd algor i thm works only f o r k>=m−mMarg
Matrix U,V; double[] s; int r;

try{

/∗ in order to get U2 .
10 ∗ However , svd a lgor i thm may not work i f k>=m−mMarg .

∗/
SingularValueDecomposition svd = C2.transpose (). svd ();

r = svd.rank ();

U = svd.getV ();

15 V = svd.getU ();

s = svd.getSingularValues ();

} catch(Exception e){

try{

SingularValueDecomposition svd = C2.svd();

20 r = svd.rank ();

U = svd.getU ();

V = svd.getV ();

s = svd.getSingularValues ();

} catch(Exception e2){

25 throw new RuntimeException("Cannot compute the svd. I give up.");

}

}

// ro t a t e i f nece s sa ry
30 i f (r>0){

Matrix C2plus = svdUtil.pseudoinverse(U,s,V,r);

Matrix C2plusC = C2plus.times(C_buf );

Matrix C2plusc = C2plus.times(c);

35 Matrix Lambda22 = Lambda_buf.getMatrix(mMarg ,m-1, mMarg ,m-1);

Matrix Lambda2 = Lambda_buf.getMatrix (0,m-1, mMarg ,m-1);

Matrix nu2 = nu_buf.getMatrix(mMarg ,m-1, 0,0);

Matrix CprimeC2plusprime = C2plusC.transpose ();

40 Matrix CprimeC2plusprimeLambda22 = CprimeC2plusprime.times(Lambda22 );

Matrix Lambda2CplusC = Lambda2.times(C2plusC );

// nu −> nu − C ’ C 2+’ nu 2 − Lambda 2 C 2+ c + C ’ C 2+ ’ Lambda22 C 2+ c
45 nu_buf.minusEquals(CprimeC2plusprime.times(nu2));

nu_buf.minusEquals(Lambda2.times(C2plusc ));

nu_buf.plusEquals(CprimeC2plusprimeLambda22.times(C2plusc ));

// Lambda −> Lambda − C ’ C 2+’ Lambda 2 − Lambda2 ’ C 2+ C −
50 // C ’ C 2+’ Lambda 22 C 2+ C

Lambda_buf.minusEquals(Lambda2CplusC.transpose ());

Lambda_buf.minusEquals(Lambda2CplusC );

Lambda_buf.plusEquals(CprimeC2plusprimeLambda22.times(C2plusC ));

}

55

// s e t t i n g up the d e t e rm i n i s t i c system o f the marginal
i f (k-r>0){

Matrix U_2 = U.getMatrix (0, k-1, r, k-1);

Matrix U_2prime = U_2.transpose ();

60 margC = U_2prime.times(C1);

margc = U_2prime.times(c);

}

}� �
Listing 12.3: “Rotation” of a symmetric Gaussian potential in preparation of marginali-

sation
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�
// e l im ina t e the v a r i a b l e s in the p r o b a b i l i s t i c part
int cuts = 0;

// e l im ina t e va r i a b l e l
/∗

5 ∗ (nu ,C)ˆ{\ downarray s } = (nu [ i ] − C[ i , l ] C[ l ]ˆ{−1} nu [ l ] , C[ i , j ] −
∗ C[ i , l ] C[ l ]ˆ{−1} C[ l , j ] )
∗/

for( int l=m-1; l>= mMarg; l--){

i f (DhbMath.equals(Lambda_buf.get(l, l), 0)){

10 for( int i=0;i<l;i++){

i f (! DhbMath.equals(Lambda_buf.get(l, i),0) ||

!DhbMath.equals(nu_buf.get(l, 0) ,0)){

throw new VAException("Cannot marginalise non -vacuous variable with "

+ "concentration 0 at var "+l + " while marginalisation to "

15 + margDom + "\n" + this .toString ());
}

}

} else {

double c_ll_inv = 1 / Lambda_buf.get(l,l);

20 double nu_l = nu_buf.get(l, 0);

for( int i=0;i<l;i++){

double c_il = Lambda_buf.get(l, i);

nu_buf.set(i, 0, nu_buf.get(i, 0) - c_il * nu_l * c_ll_inv );

Lambda_buf.set(i, i, Lambda_buf.get(i, i)- c_il * c_il * c_ll_inv );

25 for( int j=0; j<i; j++){

Lambda_buf.set(i, j, Lambda_buf.get(i, j) -

c_il * Lambda_buf.get(l, j) * c_ll_inv );

}

}

30 }

}� �
Listing 12.4: Marginalisation of GLIs by variable elimination
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12.3 Implementing the Gauss Solver

In order to answer the queries, the Gauss solver proceeds in 8 steps:

1. parse the .kbs file;

2. build the Gaussian linear systems;

3. build the symmetric Gaussian potentials from them;

4. read the .qry file;

5. generate the join tree;

6. put the deterministic knowledge on the appropriate nodes;

7. propagate and answer queries;

8. generate the .res file.

In the parsing steps 1 and 4, the files are read line by line in order to extract the
necessary information and details are omitted here (see the source code for details6).
Some further information is now given on the other steps.

Step 2: Building the Gaussian Linear systems

In order to answer the queries using local computations, a knowledge base with a
set of labelled valuations is required. However, in the .kbs file, the whole model
is “flat” in the sense that the .kbs file does not specify which equations can and
should be grouped together in the same system. The equations which must be
grouped together without transforming the system are those whose assumptions
are correlated. Algorithm 3 groups together these equations in the following way:
At the beginning of the algorithm, every assumption (variable) is its one and only
neighbour. For every covariance entry of two assumptions, their neighbourhoods are
joined, and that new neighbourhood is assigned to all members. Thus, by iterating
over the covariance entries, the neighbourhoods are transitively closed in each step.

Step 3: Building Symmetric Gaussian Potentials and Neutral Elements
for the Deterministic Equations

From these Gaussian linear systems, symmetric Gaussian potentials without deter-
ministic equations are generated.

Step 5: Generating the Join Tree

Once the Symmetric Gaussian Potentials are built from the corresponding equations,
a covering join tree is generated by a Nenok heuristics, and the queries are answered
in Nenok, as shown in Listing 12.6.

6The source code is available under http://diuf.unifr.ch/tcs/christian.eichenberger/GLI.

http://diuf.unifr.ch/tcs/christian.eichenberger/GLI
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�
/∗
∗ 3 . bu i ld the p o t e n t i a l s ( neu t ra l f o r d e t e rm i n i s t i c )
∗/

5 AbstractGLI [] potentials = new GLI[GLSs.length+detEqs.length ];

{

int i=0;

for (GaussianLinearSystem g : GLSs){

potentials[i] = g.convertToGLI ();

10 Logger.log(Logger.DEBUG , " -- Built symmetric GP: ");

i f (Logger.logDEBUG ()){
potentials[i].print(Logger.getOutputStream ());

}

i++;

15 }

for( int k=0;k<detEqs.length;k++,i++){

Domain dom = detEqs[k]. getDomain ();

potentials[i] = new NeutralGLI(dom);

}

20 }� �
Listing 12.5: Building symmetric Gaussian potentials and neutral elements for the deter-

ministic equations

�
/∗
∗ 5 . generate the j o i n t r e e based on the domains
∗/

5 Knowledgebase <?> kb = Knowledgebase.create(potentials , "the knowledgebase");

LCFactory factory = new LCFactory(Architecture.Lauritzen_Spiegelhalter );

JoinTree jt = factory.create(kb , queries );� �
Listing 12.6: Join tree generation using Nenok in the main class gauss.GaussSolver
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�� ��Algorithm 3: GroupEquations

→ input:
A set<assumption> assumptions,
a set<unordered-pair<assumption,assumption>> covariances

← output: a class table<assumption,set<assumption>>

neighbours := new table<assumption,set<assumption>>

loop for ass in assumptions
do

neighbours.put(ass,{ass})
done

loop for (ass1, ass2) in covariances
do

1. fillIn := neighbours.get(ass1) ∪ neighbours.get(ass2)

2. for ass in fillIn
neighbours.put(ass,fillIn)

done

done
return neighbours

Step 6: Applying the Deterministic Knowledge

Every deterministic equation is added to a covering node: First, a covering node is
looked up for every deterministic equation, and the equation is added to a linear
system associated with that node. Finally, the resulting linear system is converted
to a deterministic GLI and combined into the corresponding node content. In this
way, the deterministic linear equations do not have to be applied individually, which
may reduce the number of required singular-value decompositions.

Step 7: Propagation

Now, the generic local computation algorithms of the Nenok framework can be
used to answer the queries as shown in Listing 12.7.

Step 8: The .res File

Finally, a textual representation of the query answers are printed to a .res file. The
.res file is then read by Abel and printed on the screen as is. Some examples are
shown in Chapter 13.
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�
/∗
∗ 7 . propagate and answer qu e r i e s
∗/

5 Logger.log(Logger.INFO ,

"\n\n=== 7. Answer the Queries using Local Computation ==========");

jt.propagate ();

AbstractGLI answers [] = new AbstractGLI[queries.size ()];

10 Domain [] queryArr = new Domain[queries.size ()];

queries.toArray(queryArr );

for( int i=0; i<answers.length; i++){

Logger.logINFO("Answering query " + queryArr[i]);

answers[i] = (AbstractGLI) jt.answer(queryArr[i]);

15 }� �
Listing 12.7: Propagation using Nenok in the main class gauss.GaussSolver

Chapter Synopsis & Discussion

The choice of Nenok reflects the fact that Gaussian linear models fit into the
generic algebraic and algorithmic framework of valuation algebras. The realisation
of symmetric Gaussian potentials adds a further item to the catalogue of instances
(Pouly, 2004; Eichenberger, 2004; Langel, 2004; Schneuwly, 2007; Pouly, 2008).

On the one hand, (Eichenberger, 2004; Lehmann et al., 2005) proposed an en-
vironment for the inference of Gaussian hints from Gaussian linear models writ-
ten in the language LPL (linear programming language) (Kohlas and Hürlimann,
1988); this mathematical modelling language is equipped with a powerful indexing
mechanism. LPL was designed for optimisation problems in linear models and not
for assumption-based reasoning and the administration of a knowledge base. On
the other hand, Abel (assumption-based evidential language) was developed for
assumption-based reasoning on logical and discrete models. However, it had lacked
an indexing mechanism till version 3.0. With this modification, Abel became usable
for Gaussian linear models with only slight extensions.7

Although LPL could just as well have served as the modelling language for Gaussian
linear models, Abel was chosen in order to have an independent all-in-one tool for
assumption-based reasoning.

As it stands, the implementation is not truly interactive: Whenever an ask ex-
pression is evaluated, the whole current knowledge base is passed on to the Gauss
solver, and the queries are answered on a new join tree. However, since symmetric
Gaussian potentials have inverses, non-deterministic information could be retracted
from the knowledge base on the join tree by updating the join tree using the tech-
niques from (Schneuwly, 2007). Furthermore, (Schneuwly, 2007) also proposes tree
modification algorithms for queries which are not covered by the current tree. These
extensions would make the environment truly interactive.

7In particular, the sum construct has been added and the ask command extended for indexed
sets by Norbert Lehmann.
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13
Examples

In the previous chapter, it has been shown how Abel can be used to formulate Gaus-
sian linear models and queries about variables in the model. Four simple Gaussian
linear models will now be discussed and analysed in the spirit of assumption-based
reasoning, using Abel as inference machine.

Chapter Outline

The following four examples will be discussed.

• A simple measurement model: An unknown quantity is measured several times.

• A wholesale price estimation model (Pearl, 1988; Lehmann et al., 2005; Kohlas
and Monney, 2008): On the one hand, mean profits and asking prices of the
vendors can be used for diagnostic estimation. On the other hand, expert’s
knowledge on production costs and marketing costs can be used for predictive
estimation. Finally, both types of knowledge can be combined.

• A porfolio estimation example (Liu et al., 2003a): A portfolio is modelled as
a linear combination of asset variables, whose mean return has a Gaussian
distribution.

• A 2-D tracking model (Russell and Norvig, 2003; p.555ff.): Noisy observations
of a trajectory in a plane are filtered and smoothed.

13.1 A Simple Measurement Model

The simple measurement model from Example 6.14 can be formulated in Abel as
follows:

(empty)
( load "~/ Desktop/cl-statistics.lisp")

( t e l l
5 (const n 300)

295
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)

( t e l l
(type I (integer 1 n))

10 )

( t e l l
(var x rea l )
(var z[I] rea l )

15 (ass o[I] rea l (gauss 1))
)

( t e l l
( f o r a l l

20 (k I)
(= z[k] (+ x o[k]))
))

(defmacro sample-observations (n)
25 (defun observation-iter (i)

(if (= i 0)
nil
(cons ‘(= z ,(values (read-from-string

(concatenate
30 ’ str ing "[" (write-to-string i) "]")))

,(random-normal :mean 0 :sd 1))
(observation-iter (- i 1)))))

‘(observe
,@(observation-iter n)))

35

(sample-observations 300)

(ask x)

Here, 300 values are sampled from independent Gaussian variables with mean 0 and
variance 1.1 By applying assumption-based reasoning, this Gaussian linear model
then yields the sample mean

∑300
i=1 zi and the variance 1

300 . Therefore, Abel gives
the following output:

[X]
C =

c =

Sigma =

1The function random-normal is used from the package cl-statistics.lisp. See http://

compbio.uchsc.edu/Hunter lab/Hunter/cl-statistics.lisp, accessed 2009/2/20.

http://compbio.uchsc.edu/Hunter_lab/Hunter/cl-statistics.lisp
http://compbio.uchsc.edu/Hunter_lab/Hunter/cl-statistics.lisp
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0.00333

mu =

-0.00666

Lambda =

300.00000

nu =

-1.99697

This output has to be interpreted in the following way: The information concerns
the vector of variables x = (X); the deterministic part is given by the system Cx = c
(which is empty in this case); the non-deterministic part is given by the symmet-
ric Gaussian potential (Λ, ν) and the corresponding mean vector µ and variance-
covariance matrix Σ if they exist.

13.2 A Wholesale Price Estimation Model

This example considers a small causal model for estimating the wholesale price of a
car (Pearl, 1988; Lehmann et al., 2005; Kohlas and Monney, 2008).

In this model, there are observations of quantities that influence this wholesale
price (like production cost and marketing cost) and quantities that are influenced
by the wholesale price (like dealer asking prices). Besides, each observation has
an associated Gaussian random term simulating the variation that estimation and
profits can have. Then, inferences are made on the wholesale price, i.e. what is the
wholesale price of the car given the costs or/and the final selling prices asked by
dealers.

More precisely, the wholesale price is influenced by the production cost, the
marketing cost, and the industry profit. On the other hand, the wholesale price
influences the asking prices on the market; the wholesale price is thus estimated on
the basis of two dealers’ asking prices. In summary, the following variables are used:

Main variable to be inferred on

X: Wholesale price

Quantities influencing the wholesale price

U1: Production cost

U2: Marketing cost

U3: Industry profit

Quantities influenced by the wholesale price

Y1: Dealer-1 asking price
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Y2: Dealer-2 asking price

Furthermore, there is information about how some of these quantities can be com-
puted, namely the production and marketing costs and the dealer asking prices:

• There are two independent experts’ estimations for both the production cost
and the marketing cost;

• the mean profit of each dealer over the past few years and its variance are
known;

• there is a known mean of the industry profit.

In summary, the following observations will be used:

Estimates by experts for the production cost

I1: Expert 1

I2: Expert 2

Estimates by experts for the marketing cost

J1: Expert 1

J2: Expert 2

Dealers mean profit over past years

Z1: Dealer-1

Z2: Dealer-2

Some of the quantities defined above may have a certain degree of error or im-
precision. Their degree of reliability is measured by attributing a Gaussian random
variable with each estimation. This then induces the following system of equations:

W = U1 + U2 + U3 +ΩW
Y1 = X + Z1 +ΩY1

Y2 = X + Z2 +ΩY2

I1 = U1 +ΩI1
I2 = U1 +ΩI2
J1 = U2 +ΩJ1

J2 = U2 +ΩJ2 ,

(13.1)

Here, the assumption variables are distributed normally with zero mean and variance
as following:

Variable ΩW ΩI1 ΩI2 ΩJ1 ΩJ2 ΩX ΩY1 ΩY2

Standard deviation σW σI1 σI2 σJ1 σJ2 σX σY1 σY2
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I1 I2 J1

U1  : Production
cost

U2  : Marketing
cost

U3  : Industry
profit

W  : Wholesale
price

ΩI1 ΩJ1ΩI2
ΩJ2

J2

Z2  : Mean
profit

Z1  : Mean
profit

Y2  : Dealer-2
asking price

Y1  : Dealer-1
asking price

ΩY2  : Profit
variation

ΩY1  : Profit
variation

ΩW  : Profit
variation

Figure 13.1: A causal model used for estimating the wholesale price X of a car



300 Chapter 13. Examples

This is illustrated in Figure 13.1 by a directed acyclic graph where a variable in
a node is the sum of all the variables in the in-going nodes. The model described
here will be used to infer on the wholesale price W (i.e. the value of W will be
estimated in the light of different observations) in three ways: a diagnostic estima-
tion, using information observed on variables influencing the wholesale price W ; a
predictive estimation, using information observed on variables which are influenced
by the wholesale price W ; combined diagnostic and predictive estimates, using all
the available information.

In Abel, the inference about W can be set up in the following way:

(defun wholesale-setup ()
(empty)
( t e l l

(var W rea l )) ; the p r i c e to be e s t ima t ed
5 )

Here, a function setup is defined which calls the Abel macros empty and tell:
First, the knowledge base is emptied and the real-valued variable W is declared in
the Abel knowledge base.

Diagnostic Estimation

In the first case of diagnostic estimation, there are observations of the variables
which are influenced by the wholesale price, thus the name diagnostic. Figure 13.2
shows the values of the observed variables and a graphical representation. Here,
the nodes of the variables which have been observed are shaded. The query that
computes the diagnostic estimation of the variable W can be formulated in Abel in
the following way:

(defun diagnostic-model ()
( t e l l

(const number-of-vendors 2))
( t e l l

5 (type vendors (integer 1 number-of-vendors )))
( t e l l

(var Z[vendors] rea l ) ; mean p r o f i t
(var Y[vendors] rea l ) ; a s k i n g p r i c e s
(ass o_y[vendors] rea l (gauss 90000 1000000)))

10 ( t e l l
( f o r a l l
(vendor vendors)
(= Y[vendor]

(+ W Z[vendor] o_y[vendor ]))))
15 (observe

(= Y[1] 8000)
(= Y[2] 10000)
(= Z[1] 1000)
(= Z[2] 1000))

20 )

(defun ask-diagnostic ()
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Variable Value
Y1 8000 $
Y2 10000 $
Z1 1000 $
Z2 1000 $
σY1 1000 $
σY2 300 $

(a) Data in the diagnostic problem

I1 I2 J1

U1  : Production
cost

U2  : Marketing
cost

U3  : Industry
profit

W  : Wholesale
price

ΩI1 ΩJ1ΩI2
ΩJ2

J2

Z2  : Mean
profit

Z1  : Mean
profit

Y2  : Dealer-2
asking price

Y1  : Dealer-1
asking price

ΩY2  : Profit
variation

ΩY1  : Profit
variation

ΩW  : Profit
variation

(b) Graphical representation

Figure 13.2: Diagnostic estimation
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(wholesale-setup)
(diagnostic-model)

25 (ask W)
)

(ask-diagnostic)

Since the first dealer is less shaky about in the asking price, the first estimation
should be given more importance in the combined estimation. Intuitively, the price
estimate should be between the two asking prices, but closer to the value of the
second dealer. But what about the reliability of this combined estimation? Since
the first dealer is much less reliable than the second, the reliability of the combined
estimate cannot be much greater than that of the second dealer. More technically,
the Gaussian linear system corresponding to the diagnostic case is{

W +ΩY1 = Y1 − Z1

W +ΩY2 = Y2 − Z2.
(13.2)

Then, the first equation can be subtracted from the second to form the equivalent
system {

W +ΩY1 = Y1 − Z1

ΩY2 −ΩY1 = (Y2 − Z2)− (Y1 − Z1).
(13.3)

This corresponds to a transformation of (13.2) by the regular matrix

B =
[

1 0
−1 1

]
.

Let

ΩY =
[
ΩY1

ΩY2

]
∼ N (0, ΣY ), Σ =

[
σ2
Y1

0
0 σ2

Y2

]
.

Then, the transformed disturbance variable Ξ = BΩY is distributed normally ac-
cording to N (0, BΣB′). However, since the second component Ξ2 of Ξ is constant,
the distribution can be conditioned on this event. This yields an estimated price

µ(W ;Y1, Y2, Z1, Z2) = Σ(W ;Y1, Y2, Z1, Z2)

(
Y1 − Z1

σ2
Y1

+
Y2 − Z2

σ2
Y2

)
(13.4)

with

Σ(W ;Y1, Y2, Z1, Z2) =

(
1
σ2
Y1

+
1
σ2
Y2

)−1

=
σ2
Y1
σ2
Y2

σ2
Y1

+ σ2
Y2

. (13.5)

For the given numbers, the Abel output for the diagnostic problem is:

[W]
C =
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c =

Sigma =

82568.80734

mu =

7165.13761

Lambda =

0.00001

nu =

0.08678

Predictive Estimation

The variables U1, U2, U3 all influence the wholesale price. Therefore, the following
model is called predictive. The production cost U1 and the marketing cost U2 are
estimated by two experts; one estimation is given for the industry profit U3:

I1 = U1 +ΩI1
I2 = U1 +ΩI2
J1 = U2 +ΩJ1

J2 = U2 +ΩJ2 ,
W = U1 + U2 + U3 +ΩW

(13.6)

Figure 13.3 shows the values of the observed variables in a graphical representation
where the nodes of the variables which have been observed are shaded.

The query that computes the predictive estimation of the variable W can be
formulated in Abel in the following way:

(defun predictive-model ()
( t e l l

(const number-of-experts 2))
( t e l l

5 (type experts (integer 1 number-of-experts )))

( t e l l
(var I[experts] rea l ) ; p r oduc t i on c o s t e s t ima t i o n
(var J[experts] rea l ) ; market ing c o s t e s t ima t i o n

10 (var U3 rea l ) ; manu fac ture r p r o f i t e s t ima t i o n
(var U1 rea l ) ; p r oduc t i on c o s t
(var U2 rea l ) ; market ing c o s t
(ass o_i[experts] rea l
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Variable Value Standard deviation Value
U3 1000 $ σW 300 $
I1 5000 $ σI1 200 $
I2 6500 $ σI2 300 $
J1 500 $ σJ1 50 $
J2 600 $ σJ2 20 $
(a) Data in the predictive estimation problem

I1 I2 J1

U1  : Production
cost

U2  : Marketing
cost

U3  : Industry
profit

W  : Wholesale
price

ΩI1 ΩJ1ΩI2
ΩJ2

J2

Z2  : Mean
profit

Z1  : Mean
profit

Y2  : Dealer-2
asking price

Y1  : Dealer-1
asking price

ΩY2  : Profit
variation

ΩY1  : Profit
variation

ΩW
  

: Profit
variation

(b) Graphical representation

Figure 13.3: Predictive estimation
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(gauss 40000 90000)) ; p r oduc t i on c o s t e s t ima t i o n
15 (ass o_j[experts] rea l

(gauss 2500 400)) ; market ing c o s t e s t ima t i o n
(ass o rea l (gauss 90000))) ; manu fac ture r p r o f i t

( t e l l
( f o r a l l

20 (expert experts)
(= I[expert]

(+ U1 o_i[expert ])
))

( f o r a l l
25 (expert experts)

(= J[expert]
(+ U2 o_j[expert ])))

(= W
(+ U1 U2 U3 o)))

30 (observe
(= I[1] 5000)
(= I[2] 6500)
(= J[1] 500)
(= J[2] 600)

35 (= U3 1000))
)

(defun ask-diagnostic ()
40 (wholesale-setup)

(diagnostic-model)
(ask W)

)

45 (defun ask-predictive ()
(wholesale-setup)
(predictive-model)
(ask W)

50 (ask-predictive)

This problem is analysed similarly, so the respective estimates for U1 and U2 are in
this case

µ(U1; I1, I2) = Σ(U1; I1, I2)

(
I1
σ2
I1

+
I2
σ2
I2

)
, (13.7)

µ(U2;J1, J2) = Σ(U2;J1, J2)

(
J1

σ2
J1

+
J2

σ2
J2

)
(13.8)

with

Σ(U1; I1, I2) =
σ2
I1
σ2
I2

σ2
I1

+ σ2
I2

, (13.9)
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Σ(U2;J1, J2) =
σ2
J1
σ2
J2

σ2
J1

+ σ2
J2

. (13.10)

These results can then be used to deal with the Gaussian linear system
W − U1 − U2 +ΩW = U3

U1 +ΞI1 = µ(U1; I1, I2)
U2 +ΞU2 = µ(U2;J1, J2),

(13.11)

where ΩW ∼ N (O, σ2
W ), ΞU1 ∼ N (O,Σ(U1; I1, I2) and ΞU2 ∼ N (O,Σ(U2; I1, I2).

The result of the predictive estimation is then

µ(W ; I1, I2, J1, J2, U3) = µ(U1; I1, I2) + µ(U2;J1, J2) + U3, (13.12)

Σ(W ; I1, I2, J1, J2, U3) = Σ(U1; I1, I2) +Σ(U2;J1, J2) + σ2
W . (13.13)

For the given numbers, the Abel output for the predictive problem is:

[W]
C =

c =

Sigma =

118037.13528

mu =

7047.74536

Lambda =

0.00001

nu =

0.05971

Combined Diagnostic and Predictive Estimation

Here, the values of all the variables are observed, of those which influence the whole-
sale price, as well as of the ones influenced by it. Figure 13.4 shows a graphical rep-
resentation where the nodes of the variables which have been observed are shaded.
Then, inference can be either made from the whole model or by combining the two
submodels, and both methods yield the same result. The former case can be handled
by Abel by the following query:
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I1 I2 J1

U1  : Production
cost

U2  : Marketing
cost

U3  : Industry
profit

W  : Wholesale
price

ΩI1 ΩJ1ΩI2
ΩJ2

J2

Z2  : Mean
profit

Z1  : Mean
profit

Y2  : Dealer-2
asking price

Y1  : Dealer-1
asking price

ΩY2  : Profit
variation

ΩY1  : Profit
variation

ΩW  : Profit
variation

Figure 13.4: Combined diagnostic and predictive estimation
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(defun ask-combined ()
(wholesale-setup)
(diagnostic-model)
(predictive-model)

5 (ask W)
)

(ask-combined)

In terms of the intermediate results, the combined estimate is

µ(W ;Y1, Y2, Z1, Z2, I1, I2, J1, J2)
=Σ(W ;Y1, Y2, Z1, Z2, I1, I2, J1, J2)(

µ(W ;Y1, Y2, Z1, Z2)
Σ(W ;Y1, Y2, Z1, Z2)

+
µ(W ; I1, I2, J1, J2, U3)
Σ(W ; I1, I2, J1, J2, U3)

)
(13.14)

with

Σ(W ;Y1, Y2, Z1, Z2, I1, I2, J1, J2)

=
Σ(W ;Y1, Y2, Z1, Z2)Σ(W ; I1, I2, J1, J2, U3)
Σ(W ;Y1, Y2, Z1, Z2) +Σ(W ; I1, I2, J1, J2, U3)

(13.15)

The Abel output looks as follows:

[W]
C =

c =

Sigma =

48583.73264

mu =

7116.81931

Lambda =

0.00002

nu =

0.14649

13.3 Portfolio Estimation

This model describes a portfolio estimation based on the expected performance of
the stocks it is composed of (Liu et al., 2003a).
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i αi βiG βiM σi

1 0.03 0.60 0.40 0.08
2 0.03 0.45 0.25 0.04
3 0.03 0.50 0.30 0.05

i µi σi

G -5% 2%
M 1% 8%

Table 13.1: Sample data for multiple regression

A financial asset is characterised by a mean return and a Gaussian error term.
A portfolio is modelled as a linear combination of asset variables. Then, for a given
portfolio composition, one can infer on the expected return and on the reliability
of this estimation. Liu et al. (2003a) analyse this problem in terms of linear belief
functions. Here, assumption-based reasoning is applied, which leads to the same
results. In particular, since the model is Gaussian linear, this leads to a Gaussian
hint (Monney, 2003).

A portfolio is evaluated using a multifactor regression model for stocks i and
factors k,

ri = α+
∑
k

βikFk + εi (13.16)

where ri is the return on stock i, βik the responsiveness of the stock i to factor k, and
the εi ∼ N (0, σ2

i ) are stochastically independent random components. Furthermore,
information available for the individual factors Fk can be given by Fk = µFk

+
Ωk, Ωk ∼ N (0, σ2

Fk
) or just Fk = µFk

.
Consider the following scenario from (Liu et al., 2003a): A portfolio consists of

three gold mining stocks S1, S2 and S3. Each stock Si (i = 1, . . . , 3) is given by a
mean αi and is assumed to be influenced by three factors: by the forecast of the
change of the market return M , by the forecast of the price of gold G, and by a firm
specific unknown term Fi ∼ N (0, σ2

i ). The modelled percentage of change of the
gold price is denoted by µG with a tolerance FG ∼ N (0, σ2

G). Similarly, the relative
change of the stock market return is given by µM with a tolerance FM ∼ N (0, σ2

M ).
The responsiveness of stock i to the gold price is given by βiG and to the stock
market return by βiM . This induces the following model:

G = µG + FG
M = µM + FM
Si = αi + βiGG+ βiMM + Fi, i = 1, . . . , 3.

(13.17)

A central bank is selling a large amount of gold. Based on historical data or personal
experience, it can be expected that this transaction negatively impacts the gold
price by µG = 5% on the average. However, the actual rate of change could vary
with standard deviation σG = 2%. Before China joined the WTO, one might have
speculated that this could boost the stock market by µM = 10% on the average
with a wide spread σM = 8%. The data of this regression model is summarised in
Table 13.1. This can be written in Abel as follows:

(empty)
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( t e l l
(const number-of-stock-items 3)

5 (const number-of-factors 2)
)

( t e l l
(type stock (integer 1 number-of-stock-items ))

10 (type factors (integer 1 number-of-factors ))
)

( t e l l
(var mean-return[stock] rea l )

15 (var responsiveness[stock factors] rea l )
(var portfolio[stock] rea l )
(var mean-impact[factors] rea l )
(var impact[factors] rea l )
(var stock-return[stock] rea l )

20 (var P rea l )
(ass eS[stock] rea l (gauss 0.0064 0.0016 0.0025))
(ass eI[factors] rea l (gauss 0.0004 0.0064))

)

25

(observe
(= mean-return [1] 0.03)
(= mean-return [2] 0.03)
(= mean-return [3] 0.03)

30 (= mean-impact [1] -0.05)
(= mean-impact [2] 0.1)
(= portfolio [1] 0.2)
(= portfolio [2] 0.7)
(= portfolio [3] 0.1)

35 (= responsiveness [1 1] 0.60)
(= responsiveness [2 1] 0.45)
(= responsiveness [3 1] 0.50)
(= responsiveness [1 2] 0.40)
(= responsiveness [2 2] 0.25)

40 (= responsiveness [3 2] 0.30)
)

( t e l l
( f o r a l l

45 (factor factors)
(= impact[factor] (+ mean-impact[factor] eI[factor ])))

( f o r a l l (stock-item stock)
(= stock-return[stock-item]

50 (+ mean-return[stock-item]
(sum (factor factors)

(* responsiveness[stock-item factor]
impact[factor ]))

eS[stock-item ])))
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µi
i \ j S1 S2 S3 P

S1 0.0400 0.0076 0.0007 0.0009 0.0021
S2 0.0325 0.0021 0.0006 0.0017
S3 0.0350 0.0032 0.0009
P 0.0343 0.0017

Table 13.2: The result of the portfolio estimation

55 (= P
(sum (stock-item stock)

(* portfolio[stock-item]
stock-return[stock-item ])))

)

Applying assumption-based reasoning leads to the results summarised in Ta-
ble 13.2. In Abel, the corresponding query is for the marginal on S1, S2, S3 is:

(ask (stock-return ))

The output is given in Table 13.2:

[STOCK-RETURN[2], STOCK-RETURN[1], STOCK-RETURN[3]]
C =

c =

Sigma =

0.00208 0.00075 0.00057
0.00075 0.00757 0.00089
0.00057 0.00089 0.00318

mu =

0.03250
0.04000
0.03500

Lambda =

517.76836 -41.63738 -81.28274
-41.63738 139.96564 -31.66127
-81.28274 -31.66127 338.30176

nu =

12.31708
3.13727
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7.93242

If one is only interested in P , one can ask the query

(ask P)

and gets

[P]
C =

c =

Sigma =

0.00168

mu =

0.03425

Lambda =

595.61747

nu =

20.39990

If one asks about all four variables by

(ask (stock-return P))

then the pseudo-concentration matrix of the resulting symmetric potential is not
regular and the potential can thus not be converted into a Gaussian potential:

[STOCK-RETURN[2], STOCK-RETURN[1], P, STOCK-RETURN[3]]
C =

-0.70000 -0.20000 1.00000 -0.10000

c =

0.00000

Lambda =

252.49200 -70.53463 154.30253 -83.34936
-70.53463 145.10814 -22.90784 -25.55230
154.30253 -22.90784 100.51595 -29.14250
-83.34936 -25.55230 -29.14250 343.12510
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nu =

7.75224
1.83303
6.52120
7.28030

13.4 Kalman Filtering and Smoothing for a Simple Tracking
Problem

The following example is inspired by (Russell and Norvig, 2003; p.555ff.)2: An object
moves in a two-dimensional plane; its position is measured at constant intervals, but
the measurements are noisy. Further, it is assumed that the accelerations in both
directions are constant in each interval and follow a Gaussian distribution. This can
be modelled in Abel as follows:

( t e l l
(const k 10)
(const n 15)

)
5

( t e l l
(type T (integer 1 n))
(type T-observed (integer 1 k))
(type T-without-last (integer 1 (- n 1)))

10 (type T-observed-without-last (integer 1 (- k 1)))
)

( t e l l
(var x[T] rea l )

15 (var x-vel[T] rea l )
(var y[T] rea l )
(var y-vel[T] rea l )
(var x-obs[T-observed] rea l )
(var y-obs[T-observed] rea l )

20 (ass omega-x[T-without-last] rea l (gauss 3))
(ass omega-y[T-without-last] rea l (gauss 3))
(ass x-acc[T-without-last] rea l (gauss 2))
(ass y-acc[T-without-last] rea l (gauss 2))
(var noise-x[T] rea l )

25 (var noise-y[T] rea l )
)

( t e l l
30 ; ; movement model

( f o r a l l
(i T-without-last)
(= x[(+ i 1)] (+ x[i] x-vel[i]))

2See also http://en.wikipedia.org/wiki/Kalman Filter#Example, accessed 2009/3/9.

http://en.wikipedia.org/wiki/Kalman_Filter#Example
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(= y[(+ i 1)] (+ y[i] y-vel[i]))
35 (= x-vel [(+ i 1)] (+ x-vel[i] x-acc[i]))

(= y-vel [(+ i 1)] (+ y-vel[i] y-acc[i]))
)

; ; o b s e r v a t i o n model
40 ( f o r a l l

(i T-without-last)
(= noise-x [(+ i 1)]

(+ (* 0.50 noise-x[i]) omega-x[i]))
(= noise-y [(+ i 1)]

45 (+ (* 0.50 noise-y[i]) omega-y[i]))
)

( f o r a l l
(i T-observed)
(= x-obs[i]

50 (+ x[i] noise-x[i]))
(= y-obs[i]

(+ y[i] noise-y[i]))
)

)
55

(observe
(= x-obs [1] 5) (= y-obs [1] 100)
(= x-obs [2] 13) (= y-obs [2] 90)

60 (= x-obs [3] 23) (= y-obs [3] 86)
(= x-obs [4] 32) (= y-obs [4] 77)
(= x-obs [5] 41) (= y-obs [5] 78)
(= x-obs [6] 52) (= y-obs [6] 60)
(= x-obs [7] 63) (= y-obs [7] 48)

65 (= x-obs [8] 75) (= y-obs [8] 51)
(= x-obs [9] 86) (= y-obs [9] 44)
(= x-obs [10] 100) (= y-obs [10] 60)

)

70

; ; smoothing
(ask (x[1] y[1]))
(ask (x[2] y[2]))

75 (ask (x[3] y[3]))
(ask (x[4] y[4]))
(ask (x[5] y[5]))
(ask (x[6] y[6]))
(ask (x[7] y[7]))

80 (ask (x[8] y[8]))
(ask (x[9] y[9]))
; ; f i l t e r i n g
(ask (x[10] y[10]))
; ; p r e d i c t i o n

85 (ask (x[11] y[11]))
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(ask (x[12] y[12]))
(ask (x[13] y[13]))
(ask (x[14] y[14]))
(ask (x[15] y[15]))

The fictitious data and the inferred values are shown in Figure 13.5: The filled
dots are the data points, the inner small circles are the smoothed, filtered and
predicted values, and the radius of the outer circles around them is the standard
deviation.
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14
Synopsis and Discussion

Chapter Outline

In this chapter, a synopsis and a discussion of this thesis are given. In Section 14.1,
the theoretical results of this thesis are reconsidered. In Section 14.2, the computa-
tional aspects are discussed. Finally, in Section 14.3, open questions for future work
are briefly summarised.

14.1 Theoretical Considerations

Abstracting from deterministic knowledge and general Gaussian linear systems, the
exposition of this thesis is summarised in Figure 14.1: The white, the bright and

H

∆

∆c

H0

G∗

Gc

∆0 G0

Figure 14.1: Gaussian hints, symmetric Gaussian potentials and separative extension of
Gaussian potentials

dark grey-shaded areas denote corresponding subsets of Gaussian hints, symmetric
Gaussian potentials and the separative extension of Gaussian potentials. An arrow
indicates that the corresponding valuation (sub-)algebra is embedded in the one
pointed to.

1. Precise Gaussian hints H0, Gaussian potentials G and symmetric Gaussian
potentials ∆0 with positive definite pseudo-covariance matrix are isomorphic.
The isomorphicity of precise Gaussian hints and Gaussian potentials was es-
tablished in Section 6.7; since G0 is the image of Gaussian potentials in the

319
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separative extension, this establishes the isomorphicity of H0 and G0. Further-
more, since G∗ can be embedded in ∆ (Theorem 9.22) with ∆0 being the image
of G0 in ∆ and since the elements of G0 are fully marginalisable, it also follows
that G0 and ∆0 are isomorphic valuation algebras with full marginalisation.

2. Gaussian hints H and conditional symmetric Gaussian potentials ∆c are iso-
morphic and extend conditional Gaussian potentials Gc with respect to marginal-
isation. Gaussian hints and conditional Gaussian potentials correspond to
symmetric Gaussian potentials with non-negative definite pseudo-covariance
matrix: The one-to-one correspondence of Gaussian hints and conditional
Gaussian potentials was established via the intermediate of conditional Gaus-
sian densities in Section 7.3; the one-to-one correspondence of conditional
Gaussian potentials and their symmetric counterparts was established in Chap-
ter 9. Furthermore, since Gaussian hints and conditional symmetric Gaussian
potentials are both fully marginalisable, they are isomorphic. However, the
elimination of vacuous variables has not been explained within the algebraic
theory of separative valuation algebras.

3. Symmetric Gaussian potentials ∆ extend the separative extension of Gaussian
potentials G∗ with respect to marginalisation. The one-to-one correspondence
of Gaussian quotients and symmetric Gaussian potentials was established in
Section 9.1. Further, these valuation algebras both have inverses, which is not
the case for Gaussian hints (except in the case of neutral Gaussian hints, which
are idempotent).

It is remarkable that the algebraic approach of separative valuation algebras reflects
the geometric approach of Gaussian hints regarding equivalence and combination.
However, marginalisation is weaker in the algebraic approach; more precisely, the
elimination of vacuous variables is not explained. Symmetric Gaussian potentials are
therefore a generalisation of both Gaussian hints and conditional Gaussian poten-
tials, since they embody a counterpart for every element in the separative extension
and since marginalisation of conditional Gaussian potentials is fully defined. Sym-
metric Gaussian potentials are thus the most general of all three representations. In
particular, conditional symmetric Gaussian potentials are fully marginalisable, and
they also have inverses (although marginalisation of general symmetric Gaussian
potentials is only partially defined). The latter property can be exploited in the
Lauritzen-Spiegelhalter architecture. Furthermore, the representation of Gaussian
linear information by a symmetric Gaussian potential is unique, which is not the
case for Gaussian hints and Gaussian quotients.

Because of the aforementioned correspondences, it is argued that conditional
Gaussian potentials contain the full information of a corresponding Gaussian linear
system up to equivalence. This is remarkable since, in general, there are multiple
functional models and hints inducing the same parametric distributional model.
However, in the Gaussian linear case,

• the focal sets form a partition and
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• these partitioning elements and singleton hypotheses are in one-to-one corre-
spondence.

Therefore, in this particular case, the plausibility density values of the singleton
hypotheses determine the full plausibility function.

Moreover, in the Gaussian linear case, conditional Gaussian densities are related
to the same Gaussian hint (if they are equal up to a positive constant factor).
Consider the example in the 2-dimensional xy-plane in Figure 14.2: The same focal

ω

x

z

x1

z1

Γ(ω1)

ω1

Figure 14.2: Indexing focal sets in different ways

sets are the parallel straight lines which could be indexed by the ω-, the x- and the
z-axis; for instance, the indices ω1, x1 and z1 on the corresponding axis could be
used to index the straight line Γ (ω1). In general, a conditional Gaussian density can
be seen as a distribution over the focal sets (which form a partition); the constant
positive factor only depends on the tail variables or the ω-axis, respectively. This
stems from the fact that the focal sets of Gaussian hints contain points of the same
conditional Gaussian density (with respect to the same fixed set of tail variables).

14.2 Computational Aspects

The representation of Gaussian linear information by symmetric Gaussian potentials
is computationally attractive.

• Combination is only addition of the pseudo-mean vector and the pseudo-
concentration matrix. Marginalisation by iterative variable elimination is fast
and allows to easily detect and reduce vacuous variables.
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• Furthermore, it is easy to derive the symmetric Gaussian potential from a
Gaussian linear system, whereas the algorithms for the inference of a Gaussian
hint are more expensive (Monney, 2003; Eichenberger, 2004).

• However, if the Gaussian distributions in the model are given in terms of co-
variance matrices instead of concentration matrices, these matrices have first
to be inverted in order to get a Gaussian linear system as defined in this thesis.
This may be worthwhile if the model can initially be split into “independent”
factors with small domains by using the GroupEquations Algorithm 3 of Sec-
tion 12.3.

14.3 Future Work

The following issues were not covered in detail in this thesis and could be analysed
in future work.

• Discrete variables: The Gaussian linear information may depend on discrete
variables. The resulting mixed distribution can be approximated by a CG-
potential as discussed in (Lauritzen and Wermuth, 1984; Lauritzen, 1992; Cow-
ell et al., 1999; Lauritzen and Jensen, 2001).

• Numerical stability : The numerical stability of the algorithms has not been
investigated.

• Interactive environment : The implementation is not truly interactive: When
answering a new query set, the whole current knowledge base is passed on
to the Gauss solver, and a new join tree is built. Instead, information could
be retracted from the knowledge base on the join tree by updating the join
tree, using the techniques from (Schneuwly, 2007). Furthermore, (Schneuwly,
2007) also proposes tree modification algorithms for queries which are not
covered by the current tree. These extensions would make the environment
truly interactive.

• Hypothesis evaluation: No algorithms have been developed for the numerical
evaluation of hypotheses.
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A
Some Results from Matrix Algebra

In this chapter, some basic results on regular and symmetric positive definite matri-
ces are loosely collected for reference from the text. Integer- and variable-indexed
matrices are used at the author’s convenience.

Lemma A.1. Let A,B ∈ IR(m,n). Then, for any matrix C ∈ IR(r,m) of full column
rank r(C) = m and any matrix D ∈ IR(n, p) of full row rank r(D) = n,

(1) CA = CB implies A = B,

(2) AD = BD implies A = B, and

(3) CAD = CBD implies A = B. �

Proof. (1) Let Ci denote the ith column of C (i = 1, . . . ,m), let Ej denote the
jth column of CA = CB, let aij = A(i, j), and bij = B(i, j) (i ∈ {1, . . . ,m}, j ∈
{1, . . . , n}). Then, every column of E is a linear combination of the columns of
C,

Ej =
m∑
i=1

aijCi =
m∑
i=1

bijCi, j ∈ {1, . . . , n}.

Since the columns of C are linearly independent, it follows by Lemma 4.3.5 of
(Harville, 1997; p.34) that aij = bij for all i and for all j, hence A = B.

(2) D having full row rank p implies that D′ has full row rank p. Notice that
AD = BD ⇐⇒ (AD)′ = (BD)′ ⇐⇒ D′A′ = D′B′. Then, by (1), A′ = B′,
hence A′ = A′′ = B′′ = B.

(3) From (CA)D = (CB)D, it follows by (2) that CA = CB and then by (1) that
A = B. ut

Lemma A.2. (1) Let A ∈ IR(m,n). Then, the set

N (A) = {x ∈ IRn : Ax = 0} (A.1)

is a linear subspace of dimension dim(N (A)) = n− r(A), called null space.

325
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(2) Let A ∈ IR(m,n) and z ∈ IRm. Let

Γ = {x ∈ IRn : Ax = z}

and
Γp = {x ∈ IRn : x = p + x∗,x∗ ∈ N (A)}

for p ∈ IRn. Then, Γ = Γp for all p ∈ IRn such that Ap = z.

(3) Let A1 ∈ IR(m1, n), A2 ∈ IR(m2, n), z1 ∈ IRm1 and z2 ∈ IRm2 such that

Γ1 = {x ∈ IRn : A1x = z1} = {x ∈ IRn : A2x = z2} = Γ2.

Then, R(A1) = R(A2).

(4) Let A1, A2 ∈ IR(m,n) be matrices of full row rank m and let z1, z2 ∈ IRm and
let

Γ1 = {x : A1x = z1}, Γ2 = {x : A2x = z2}.

Then,
Γ1 = Γ2

if and only if
A2 = TA1, z2 = Tz1

for some regular matrix T ∈ IR(m,m). �

Proof. (1) See Lemma 11.4.1 of (Harville, 1997; p.143f.).

(2) On the one hand, assume p ∈ IRn such that Ap = z and x∗ ∈ N (A), then
A(p+x∗) = Ap+ 0m = z shows that Γ ⊇ Γp. On the other hand, if x ∈ Γ and
p ∈ IRn such that Ap = z, i.e. Ax = z, then A(x−p) = Ax−Ap = z− z = 0m
shows that x∗ = (x− p) ∈ N (A) and x = p + x∗, hence also Γ ⊆ Γp.

(3) Let p ∈ Γ1 = Γ2. Then, according to (2),

{x ∈ IRn : x = p + x∗,x∗ ∈ N (A1)} = Γ1 = Γ2 = {x ∈ IRn : x = p + x∗,x∗ ∈ N (A2)}.

Hence, N (A1) = N (A2) by (1). Assume x ∈ R(A1) and x 6∈ R(A2). Then,
A1x = 0 and A2x 6= 0 implies that N (A1) 6= N (A2). This shows that R(A1) =
R(A2).

(4) On the one hand, if there is a regular matrix T such that A2 = TA1 and
z2 = Tz1, then x ∈ Γ1 implies that z2 = Tz1 = T (A1x) = A2x, i.e. x ∈ Γ2,
hence Γ1 ⊆ Γ2; the converse implication follows since T−1 is regular and A1 =
T−1TA1 = T−1A2 and z1 = T−1Tz1 = z2.
On the other hand, assume that Γ1 = Γ2. Then, R(A1) = R(A2) by (3).
Hence, there is a matrix T ∈ IR(m,m) such that TA1 = A2. Furthermore, since
r(T ) ≤ n and n = r(A2) = r(TA1) ≤ r(T ), it follows that T is regular. ut
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Lemma A.3. Let K1,K2 ∈ IR(m,m) be symmetric and positive definite matrices.
Then, there is then a regular matrix T ∈ IR(m,m) such that K2 = T ′K1T . �

Proof. In light of Corollary 14.3.13 of (Harville, 1997; p.219), there are regular
matrices P1, P2 ∈ IR(m,m) such that

K1 = P ′1P1, K2 = P ′2P2.

Since P1 and P2 are regular, C(P1) = IRm = C(P1), hence there is a matrix T ∈
IR(m,m) such that P2 = P1T ; since m = r(P2) = r(P1T ) ≤ r(T ) ≤ m, it follows
that r(T ) = m, i.e. T is regular and

K2 = P ′2P2 = T ′P ′1P1T = T ′K1T. ut

Lemma A.4. Let K1,K2 ∈ IR(m,m) be symmetric matrices. Then

x′K1x = x′K2x

for all x ∈ IRm implies
K1 = K2. �

Proof. Assume x′K1x = x′K2x for all x ∈ IRm. Then, for all x,y ∈ IRm,

x′K1x + y′K1y + 2x′K1y =(x + y)′K1(x + y)
=(x + y)′K2(x + y)
=x′K2x + y′K2y + 2x′K2y

=x′K1x + y′K1y + 2x′K2y,

hence indeed x′K1y = x′K2y for all x,y ∈ IRm. Since K1(i, j) = e′iK1ej = e′iK2ej =
K2(i, j) for x = ei (the ith column of Im) and ej (the jth column of Im) (i = 1, . . . ,m;
j = 1, . . . , n), indeed K1 = K2. ut

Lemma A.5. Let A : x × x → IR and B : y × y → IR, x, y ∈ D be symmetric non-
negative definite matrices. Then, A = A↑x∪y + B↑x∪y is symmetric non-negative
definite. Furhermore, if A or B is positive definite, then A is positive definite. �

Proof. Let u = x ∪ y. For every vector u ∈ IRu, u 6= 0u, (u↓x)′Au↓x ≥ 0 and
(u↓y)′Bu↓y ≥ 0, and hence

u′Au = u′(A↑u +B↑u)u = (u↓x)′Au↓x + (u↓y)′Bu↓y ≥ 0.

A similar argument shows that if A or B is positive definite, then A is positive
definite. ut
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Lemma A.6. The inverse of a symmetric positive definite matrix K ∈ IR(m,m),
partitioned

K =
(
K11 K12

K21 K22

)
is

K−1 =
(

c11 −c11K12K22
−1

−c22K21K11
−1 c22

)
(A.2)

where

c11 =(K11 −K12K22
−1K21)

−1 (A.3)

and

c22 =(K22 −K21K11
−1K12)

−1
.

Furthermore,

c11K12K22
−1 =(c22K21K11

−1)′. (A.4)
�

Proof. According to Corollary 14.2.11 of (Harville, 1997; p.214), a symmetric posi-
tive definite matrix is invertible, and its inverse is symmetric positive definite. There-
fore, according to Theorem 8.5.11 of (Harville, 1997; p.99), the Schur complements
c11 and c22 exist. Then,(

c11 −c11K12K22
−1

−c22K21K11
−1 c22

)(
K11 K12

K21 K22

)
=
(
c11K11 − c11K12K22

−1K21 c11K12 − c11K12K22
−1K22

−c22K21K11
−1K11 + c22K21 −c22K21K11

−1K12 + c22K22

)
=
(
c11c11

−1 0
0 c22c22

−1

)
= Im,

which proves (A.2). According to Corollary 14.2.11 of (Harville, 1997; p.214), the
inverse of a symmetric positive definite matrix exists and is symmetric positive
definite, hence K−1 is symmetric, thus equation (A.4) holds as well. ut

Lemma A.7. Let K : x×x→ IR be a matrix, x ∈ D finite, x = x1∪x2, x1∩x2 = ∅,

K =
(
K↓x1 K↓x1,x2

K↓x2,x1 K↓x2

)
,

such that the principal submatrix K↓x1 is symmetric and positive definite. Then, K
is symmetric and positive definite if and only if K↓x2 −K↓x2,x1(K↓x1)−1

K↓x1,x2 is
symmetric positive definite. �
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Proof. First, the “if” part is proved. By Corollary 14.2.11 of (Harville, 1997;
p.214), any symmetric positive definite matrix is invertible and the inverse is sym-
metric positive definite, so K−1 must be symmetric positive definite. By Corollary
14.2.12 (Harville, 1997; p.214), every principal submatrix of a symmetric positive
definite matrix is symmetric positive definite, so (K−1)↓x2 is symmetric positive

definite, and so is its inverse ((K−1)↓x2)
−1

. At the same time, by Lemma A.6,

((K−1)↓x2)
−1

=K↓x2 −K↓x2,x1(K↓x1)
−1
K↓x1,x2 .

This proves the “if” part.
In order to prove the “only if” part, the fact is needed that a matrix Σ ∈ IR(x, x) is
symmetric positive definite if and only if there exists a regular matrix P ∈ IR(x, x)
such that Σ = P ′P (Corollary 14.3.13 of (Harville, 1997; p.219)). In light of this
and the necessity of the condition in the assertion of the theorem, there are regular
matrices A ∈ IR(x, x) and B ∈ IR(x, x) such that

K↓x1 =A′A,

K↓x2 −K↓x2,x1(K↓x1)
−1
K↓x1,x2 =B′B.

Define

C =
(

A A′−1K↓x1,x2

0x2,x1 B

)
.

Since A and B are regular, C is regular by Lemma 8.5.4 (Harville, 1997; p.90).
Since, in light of result (8.2.8) of (Harville, 1997; p.82),

A−1A′
−1 = (A′A)−1 = (K↓x1)

−1
,

also K = C ′C. Therefore, by Corollary 14.3.13 of (Harville, 1997; p.219), K is
symmetric and positive definite. This concludes the proof of the “only if” part. ut

Corollary A.8. Let K11 : x1 × x1 → IR be a symmetric positive definite matrix,
x1 ∈ D finite, and K12 : x1 × x2 → IR, x2 ∈ D finite such that x1 ∩ x2 = ∅. Let
x = x1 ∪ x2. Then, there are symmetric positive definite matrices K ∈ IR(x, x) and
K22 ∈ IR(x2, x2) such that

K =
(
K11 K12

K ′
12 K22.

)
. �

Proof. Define
K22 = Ix2 +K ′

12K11
−1K12.

By Lemma A.7, it is sufficient and necessary for K to be positive definite that

K22 −K ′
12K11

−1K12 = Ix2

is symmetric positive definite, which is the case. ut
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Lemma A.9. Let K : x × x → IR be a symmetric positive definite, x ∈ D finite,
x = x1 ∪ x2, x1 ∩ x2 = ∅,

K =
(
K↓x1 K↓x1,x2

K↓x2,x1 K↓x2

)
.

Then

K =

(
K↓x1 K↓x1,x2

K↓x2,x1 K↓x2,x1(K↓x1)−1
K↓x1,x2

)
�

is a symmetric non-negative definite matrix of rank |x1|.

Proof. By Corollary 14.2.12 of (Harville, 1997; p.214), every principal submatrix
of a symmetric positive definite matrix is symmetric positive definite, so (K−1)↓x1

is symmetric and positive definite. By Corollary 14.2.12 of (Harville, 1997; p.214),
any symmetric positive definite matrix is invertible and the inverse is symmetric
positive definite, so (K↓x1)−1 is symmetric and positive definite. Then, (K↓x1)−1

being positive definite implies that for every vector y ∈ IRx,

y′K↓x2,x1(K↓x1)
−1
K↓x1,x2y = (K↓x1,x2y)′(K↓x1)

−1
(K↓x1,x2y) ≥ 0,

thus K↓x2,x1(K↓x1)−1
K↓x1,x2 is symmetric and non-negative definite. Furthermore,

since (K↓x1)−1 is symmetric positive definite, in light of Corollary 14.3.13 of (Harville,
1997; p.219), there is a regular matrix A ∈ IR(x1, x1) such that

K↓x1 =A′A.

Then, by result (8.2.8) and (8.2.4) of (Harville, 1997; p.82),

(K↓x1)
−1

=A−1(A−1)′.

Define C ∈ IR(x1, x),

C =
(
A, (A−1)′K↓x1,x2

)
.

Since A is regular, C has full row rank |x1|. Then, by results (8.2.8) and (8.2.4) of
(Harville, 1997; p.82), K = C ′C. For K to be symmetric non-negative definite, by
Theorem 14.3.7 of (Harville, 1997; p.218), it is necessary and sufficient that there
exists a matrix P ∈ IR(r, x) such that K = P ′P and r = r(K). ut

Lemma A.10. Let K ∈ IR(x∪z, x∪z) be a symmetric matrix of rank r(K) = |x| = r,
x ∩ z = ∅, such that K↓x is symmetric and positive definite. Then, K is symmetric
and non-negative definite if and only if K↓z = K↓z,xK↓x−1

K↓x,z. �
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Proof. On the one hand, assume that K is symmetric and non-negative definite.
Then, in light of Theorem 14.3.7 of (Harville, 1997; p.218), there is a matrix A ∈
IR(x ∪ z, r) of full column rank r such that

K = A′A.

Then,
K↓x = A↓x,r

′
A↓x,r.

Since K↓x is symmetric and positive definite, it is regular of rank r(K↓x) = r. Hence,
r ≥ r(A↓x,r) ≥ r shows that A↓x,r is regular as well. Therefore, the other columns
of A are linear combinations of the columns of A1 = A↓x,r, i.e. there is a matrix
Λ ∈ IR(x, y) such that

A =
(
A1 A1Λ

)
.

Then,

K =
(
A′1A1 A′1A1Λ
Λ′A′1A1 Λ′A′1A1Λ

′

)
.

Hence, indeed

K↓z,xK↓x−1
K↓x,z = Λ′A′1A1(A′1A1)

−1
A′1A1Λ = Λ′A′1A1Λ = K↓z.

On the other hand, assume K↓z = K↓z,xK↓x−1
K↓x,z. Then, since K↓x−1 is sym-

metric and positive definite,

z′K↓zz = (K↓x,zz)′K↓x−1
K↓x,zz ≥ 0

for all z ∈ IRz. Hence, K↓z is symmetric and non-negative definite. Furthermore,
since K↓x is symmetric and positive definite, it follows by Corollary 14.3.13 of
(Harville, 1997; p.219) that there is a regular matrix A1 ∈ IR(r, x) such that

K↓x = A′1A1.

Then,

K =
(
A′1A1 K↓x,z

K↓z,x K↓z,xA′1
−1A1

−1K↓x,z

)
=
(

A′1
K↓z,xA1

−1

)(
A1 A′1

−1K↓z,x) .
The matrix

A =
(
A1 A′1

−1K↓z,x)
has rank r(A) = r(A1) = r. Since K = A′A, Theorem 14.3.7 of (Harville, 1997;
p.218) shows that K is indeed a symmetric and non-negative definite matrix of rank
r. ut
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Lemma A.11. Let K ∈ IR(p, p) be a symmetric non-negative definite matrix of rank
r. Then, there is a subset x1 ⊆ p of cardinality |x1| = r such that K↓x1 is symmetric
positive definite. Furthermore, given any such subset x1 ⊆ p such that K↓x1 is
symmetric positive definite of rank r,

K =

(
K↓x1 K↓x1,x2

K↓x2,x1 K↓x2,x1(K↓x1)−1
K↓x1,x2

)

for x2 = p− x1. �

Proof. By Theorem 14.3.7 of (Harville, 1997; p.218), for K to be symmetric non-
negative definite, it is necessary and sufficient that there exists a matrix P ∈ IR(r, p)
of rank r such that K = P ′P .

Then, there is a subset x1 ⊆ p of cardinality |x1| = r such that the submatrix
P1 = P ↓r,x1 is regular. The matrix

P ′1P1 =K↓x1

is symmetric positive definite by Corollary 14.3.13 of (Harville, 1997; p.219). This
proves the first assertion of the lemma.

Furthermore, let x1 ⊆ p such that K↓x1 is symmetric positive definite of rank r.
Then, K↓x1 = (P ↓r,x1)′P ↓r,x1 . Further, in light of Corollary 8.3.2 and Lemma 4.4.3
of (Harville, 1997; p.83;p.37), r ≤ r(P ↓r,x1) ≤ r. Hence, r(P ↓r,x1) = r. Define
P1 = P ↓r,x1 and P2 = P ↓r,x2 . Since P1 is regular, C(P1

−1)′ = C(P1) ⊇ C(P2), i.e. the
columns of P2 are linear combinations of the columns of (P1

−1)′. Therefore, there
is a matrix K12 ∈ IR(x1, x2) such that P2 = (P1

−1)′K12, and

P =
(
P1 (P1

−1)′K12

)
.

Then, in light of results (8.2.8) and (8.2.4) of (Harville, 1997; p.82),

K =P ′P =
(
P ′1P1 K12

K ′
12 K ′

12(P
′
1P1)

−1K12

)
.

This concludes the proof that K is of the claimed form. ut
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Gaussian Densities

In this chapter, a brief review of Gaussian densities is given.

B.1 The Gaussian Distribution as Large Quincunx

Consider the quincunx or bean machine in Figure B.1:1 Assume that a ball (grey
dot) dropped at the top funnel has equal probability 0.5 of falling left or right when
hitting a pin (black dots). If there are n junction levels, the probability of a ball
falling into box k ∈ {0, . . . , n} is equal to the probability of falling right k times out
of n. If the outcome xi of the decision at level i is 0 (if the ball flips to the left) or
1 (if it flips to the right), then the number of times falling right is equal to the sum
Sn =

∑n
i=0 xi of these outcomes, and its distribution is binomial,

Pr(Sn = k) =
(
n
k

)
· 0.5k · 0.5n−k.

Since most of the time, a ball will flip right and left about the same number of times,
most experiments will end in the ball landing somewhere in the middle; most paths
from top to bottom end somewhere in the middle. For n = 5, in the long run, 20

32
will end in the middle boxes 2 or 3, as shown by the grey dots at the bottom of
Figure B.1.
In this quincunx setup, the decisions of falling left or right are identical and inde-
pendent of each other:

• (identical): It is always the same decision. The ball either flips one position
to the left or the right, never further away.

• (independent of each other): The probability of these decisions is always the
same. A decision does not affect the probabilities of other decisions. Each
decision has expected value µ =

∑1
i=0

1
2 i = 1

2 and variance σ2 =
∑1

i=0
1
2(i −

µ)2 = 1
4 .

1The device is alleged to have been invented by Sir Francis Galton, see http://en.wikipedia.

org/wiki/Francis Galton, accessed 2008/6/9.

333

http://en.wikipedia.org/wiki/Francis_Galton
http://en.wikipedia.org/wiki/Francis_Galton


334 Appendix B. Gaussian Densities

0 1 2 3 4 5

Figure B.1: Galton’s Quincunx
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Under these two assumptions, the central limit theorem says that, for large n, these
probabilities can be approximated by the standard normal distribution,

lim
n→∞

Pr
(√

n(Sn − nµ)
σ

≤ z
)

= Φ(z).

As shown in Figure B.22, the “68–95–99.7% rule” of the normal distribution says
0
.0

0
.1

0
.2

0
.3

0
.4

−2σ −1σ 1σ−3σ 3σµ 2σ

34.1% 34.1%

13.6%
2.1%

13.6% 0.1%0.1%
2.1%

Figure B.2: Standard deviation

that, in the long run, 68% of outcomes lie within one standard deviation σ from
the mean µ (dark blue), 95% of outcomes within 2σ (medium and dark blue), and
99.7% within 3σ (light, medium, and dark blue). Extreme values, deviating from
the mean, are negligible.

If the decisions are not independent (for instance, if they aggregate or clot), the
Gaussian distribution is not suited.

B.2 Relocating and Scaling the Standard Gaussian Density

The univariate standard density function of Φ is

φ0,1(x) =
1√
2π
e−

1
2
x2
, (B.1)

whose graph is bell-shaped. It is a probability density function since it is a non-
negative real-valued function such that∫

IR
φ(x)dx = 1.

2Source: http://commons.wikimedia.org/wiki/Image:Standard deviation diagram.svg, ac-
cessed 2008/6/9, licensed under Creative Commons Attribution 2.5 by Petter Strandmark

http://commons.wikimedia.org/wiki/Image:Standard_deviation_diagram.svg
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Notice that

(
∫

IR
φ(x)dx)2 =

∫
IR
φ(x)dx ·

∫
IR
φ(y)dy

=
∫

IR

1√
2π
e−

x2

2 dx ·
∫

IR

1√
2π
e−

y2

2 dy

=
∫

IR2

1
2π
e−

x2+y2

2 dxdy

=
1
2π

∫ ∞

0

(∫ 2π

0
e−

r2(cos2(α)+sin2(α))
2 · |J(x,y),(r,α)|dα

)
dr

=
1
2π

∫ ∞

0

(∫ 2π

0
e−

r2

2 rdα

)
dr

=
∫ ∞

0
e−

r2

2 rdr = [−e−
r2

2 ]∞r=0 = 0− (−1) = 1

for
(x,y) = T−1(r, α) = (r · cos(α), r · sin(α))

since the Jacobian of the transformation

T : IR× IR→ [0,∞[×[0, 2π[

to polar coordinates

(r, α) = T (x,y) = (
√

x2 + y2, arccos(
x

r
))

is

J(x,y),(r,α) =det(
(
∂x
∂r

∂y
∂r

∂x
∂α

∂y
∂α

)
) = det(

(
cos(α) sin(α)
−r · sin(α) r · cos(α)

)
)

=r · cos2(α) + r · sin2(α) = r.

Hence, since φ is non-negative and therefore also
∫
IR φ(x)dx, this implies that indeed∫

IR φ(x)dx = 1. The transformation from Euclidean to polar coordinates is shown
in Figure B.3. Notice that

cos(α) =
x
r
, sin(α) =

y
r
.

The multivariate standard density function is the product

φ0,In(x1, . . . ,xn) =φ0,1(x1) · . . . · φ0,1(xn) (B.2)

=
1√

(2π)n
e−

1
2

Pn
i=1 x2

i

=
1√

(2π)n
e−

1
2
x′x =

1√
(2π)n

e−
1
2
x′Inx,
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r
=

√ x
2 +

y
2

x

y

α

Figure B.3: Transformation of Euclidean to polar coordinates

whose points of equal density c form circles centered around the origin of the coor-
dinate system since

n∑
i=1

x2
i =− 2 · ln(c ·

√
(2π)n).

This density φ0,In can be expressed with respect to a different basis B ∈ IR(n, n)
of IRn. This means transforming x to ξ = Tx by T = B−1 or substituting x for
x = T−1ξ. Since the Jacobian of this substitution is

Jx,Tx = det(T−1),

it holds that

φ0,In(x)dx =|Jx,Tx| · φ0,In(x)d(Tx)

=|Jx,Tx| · φ0,In(T−1ξ)dξ

=|det(T−1)| · 1√
(2π)n

e−
1
2
(T−1ξ)′(T−1ξ)dξ

=|det(T−1)| · 1√
(2π)n

e−
1
2
ξ′(T−1′T−1)ξdξ

=

√
|det(K)|

(2π)n
· e−

1
2
x′Kxdξ = φ0,K(ξ)dξ

for
K = T−1′T−1

since √
|det(K)| =

√
|det(T−1′T−1)| =

√
|det(T−1′) det(T−1)|

=
√
|det(T−1) det(T−1)| = |det(T−1)|

in light of Theorem 13.3.4 and Lemma 13.2.1 of (Harville, 1997; p.187;p.181). Notice
that the matrix K is symmetric and positive definite since T−1 being regular implies
that for all x ∈ IRn

x′Kx = x′T−1′T−1x = (T−1x)′(T−1x)
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equals zero if and only if Tx = 0n. The points of equal density in the graph of φ0,K

lie on ellipsoids around the origin of the coordinate system.
Furthermore, the density can be expressed with respect to a new origin µ ∈ IRn

of coordinates with respect to the basis B. This means transforming x to ξ = Tx+µ
or substituting x for x = T−1(ξ − µ). Here, again Jx,Tx = det(T−1) and

φ0,In(x)dx =|Jx,Tx| · φ0,In(x)d(Tx + µ)

=|Jx,Tx| · φ0,In(T−1(ξ − µ))dξ

=

√
|det(K)|

(2π)n
· e−

1
2
(x−µ)′K(x−µ)dξ = φµ,K(ξ)dξ

for K = T−1′T−1.
Conversely, in light of Theorem 14.3.7 of (Harville, 1997; p.218), every symmetric

and positive definite matrix K ∈ IRn is of the form T ′T for some regular matrix
T ∈ IR(n, n). Therefore, every Gaussian density

φµ,K(x) =

√
|det(K)|

(2π)n
· e−

1
2
(x−µ)′K(x−µ) (B.3)

for some µ ∈ IRn, K ∈ IR(n, n) symmetric and positive definite is the result of re-
locating by µ and scaling by T a random vector of n independent standard normal
variables with density φ0,In . Notice that T needs not be unique.

B.3 Marginalising a Multivariate Gaussian Density

Any random vector x with values in IRn with Gaussian density φµ,K is the product
of re-locating and scaling a random vector y of density φ0,In by µ ∈ IRn and some
regular T ∈ IR(n, n) such that (TT ′)−1 = T−1T = K. Let T1 ∈ IR(n1, n), T2 ∈
IR(n2, n) such that

T =
(
T1

T2

)
and n1 + n2 = n, i.e.

x = T (y − µ) =
(
T1

T2

)
(y − µ) =

(
T1(y − µ)
T2(y − µ)

)
.

Since T is regular, T1 has full row rank n1 and T2 full row rank n2. In light of
Lemma 11.3.1 of (Harville, 1997; p.142), the null space

N (T1) = {x ∈ IRn : T1x = 0}

has dimension n− r(T1) = n−n1 = n2. Let T̃2 ∈ IR(n2, n) such that the columns of
T̃ ′2 form a basis of N (T1), i.e. N2 has full row rank n2. Then, the rows of

T̃ =
(
T1

T̃2

)
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are linearly independent and T̃ is thus regular. Then,

Σ̃ = T̃ T̃ ′ =
(
T1T

′
1 T1T̃

′
2

T̃2T
′
1 T̃2T̃

′
2

)
=
(
T1T

′
1 0n1,n2

0n2,n1 T̃2T̃
′
2

)
,

and hence, since the block-diagonal matrix Σ̃ is regular, T1T
′
1 and T̃2T̃

′
2 must be

regular in light of Lemma 8.5.1 of (Harville, 1997; p.88), and

K̃ = (T̃ T̃ ′)
−1

=

(
(T1T

′
1)
−1 0n1,n2

0n2,n1 (T̃2T̃
′
2)
−1

)
.

Then,

T̃ (y − µ) =
(
T1(y − µ)
T̃2(y − µ)

)
has density

φT̃ µ,K̃ = φT1µ,(T1T ′1)−1 · φ
T̃2µ,(T̃2T̃ ′2)

−1 ,

which shows that the marginal density of x1 = T1(y − µ) is∫
x2∈IRn2

φT̃ µ,K̃(x1,x2)dx2 =
∫
x2∈IRn2

φT1µ,(T1T ′1)−1(x1) · φT̃1µ,(T̃1T̃ ′1)
−1(x2)dx2

=φT1µ,(T1T ′1)−1(x1) ·
∫
x2∈IRn2

φ
T̃1µ,(T̃1T̃ ′1)

−1(x2)dx2

=φT1µ,(T1T ′1)−1(x1). (B.4)

Notice that
(T1T

′
1)
−1 = Σ11

−1

in

K−1 = Σ =
(
Σ11 Σ12

Σ21 Σ22

)
= TT ′ =

(
T1T

′
1 T1T

′
2

T2T
′
1 T2T2′

)
even if T1T

′
2 6= 0n1,n2 , and in light of Lemma A.6

(T1T
′
1)
−1 = K11 −K12K22

−1K21

for

K =
(
K11 K12

K21 K22

)
,

partitioned according to n1 and n2 rows and columns, respectively.
In summary, the marginal of a Gaussian density φµ,K with respect to x is given

by
φ
µ↓x,((K−1)↓x)

−1 . (B.5)
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B.4 Conditioning a Multivariate Gaussian Density

Let φµ,K be a Gaussian density on IRn for some µ ∈ IRn, K ∈ IR(n, n) symmetric
and positive definite. Partition

µ =
(
µ1

µ2

)
,

and

K =
(
K11 K12

K21 K22

)
according to the first n1 and n2 = n− n1 rows and columns, respectively. Then, for
x1 ∈ IRn1 and x2 ∈ IRn2 :

(x′1 − µ′1,x′2 − µ2
′)K

(
x1 − µ1

x2 − µ2

)
(B.6)

=(x′1 − µ′1)K11(x1 − µ1)
+ (x′2 − µ2

′)K21(x1 − µ1) + (x′1 − µ′1)K12(x2 − µ2)
+ (x′2 − µ2

′)K22(x2 − µ2)

=(x′1 − µ′1 + (x′2 − µ2
′)K21K11

−1)K11(x1 − µ1 +K11
−1K12(x2 − µ2))

− (x′2 − µ2
′)K21K11

−1K12(x2 − µ2) + (x′2 − µ2
′)K22(x2 − µ2).

=(x′1 − µ′1 + (x′2 − µ2
′)K21K11

−1)K11(x1 − µ1 +K11
−1K12(x2 − µ2))

+ (x′2 − µ2
′)(K22 −K21K11

−1K12)(x2 − µ2). (B.7)

The last term does not depend on x1 and thus becomes a constant factor in equa-
tion (B.3). Furthermore, K11, being a principal submatrix of the symmetric pos-
itive definite matrix K, is symmetric and positive definite by Corollary 14.2.12 of
(Harville, 1997; p.214). Therefore, observing that K11

−1 = K ′
11
−1, the conditional

distribution of fixing x2 is Gaussian with mean

µ1 −K11
−1K12(x2 − µ2) (B.8)

and concentration
K11. (B.9)

Alternatively, the conditional distribution can be given in terms of the variance-
covariance matrix

Σ = K−1 =
(
Σ11 Σ12

Σ21 Σ22

)
where Σ11 ∈ IR(n1, n1).

Lemma B.1. The conditional Gaussian mean and concentration are

µ1 −K11
−1K12(x2 − µ2) =µ1 +Σ12Σ22

−1(x2 − µ2) (B.10)

K11 =(Σ11 −Σ12Σ22
−1Σ21)

−1
. (B.11)

�
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Proof. Since Σ = K−1, being the inverse of the symmetric and positive definite
matrix K, is symmetric and positive definite, Lemma A.6 shows that

K11 =(Σ11 −Σ12Σ22
−1Σ21)

−1 (B.12)

and

−K11
−1K12 =−K11

−1(−K11Σ12Σ22
−1)

=Σ12Σ22
−1. (B.13)

ut
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Index

2r, 16
A/θ, 24
∆, 100
∆•, 232
∆c, 200
G∗c , 183
H : Gc → H, 152
N (A), 323
Φ∗, 170
Φ∗c , 181
Φs, 21
∼=, 154
�, 48
⊕ : L× L→ L, 140
⊕, 140
φµ,K , 54
φx|z, 95
φx|z, 95
es, 21
eL : L→ ∆, 196
h1
∼= h2, 112

i∗ : G∗ → ∆, 188
p : H0 → G, 147
p : H → G, 147
pl : 2Θ → [0, 1], 110
sp : 2Θ → [0, 1], 110
H(h), 120
H : L→ H/ ∼=, 126
H0, 146
G∗, 177
L, 114
Abel, 273
Nenok, 273
Gc, 97

absorbing element, 22
adjacency matrix, 83
adjacent, 73
admissible assumptions, 106
admissible matrix, 122
ancestors, 81
assignment mapping, 74
assumption, 108
assumption-based reasoning, 106

backward filter, 268
Bayes’ Theorem, 105
Bayesian network, 183
belief function, 110
bijective, 24

cancellative, 172
certainty space, 226
CGD, see conditional Gaussian density
CGP, see conditional Gaussian potential
chain rule, 183
child, 81
clique tree, see join tree
closed under vacuous reduction, 35
collect phase, 86
compatible

with combination, 23
with labelling, 23
with marginalisation, 23

compatible with combination, 24
compatible with marginalisation, 25
complete under marginalisation, 25
concentration matrix, see Gaussian po-

tential, 114
conditional, 97, 181
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head, 181
tail, 181

conditional Gaussian density, 95
conditional Gaussian potential, 97, 183

denominator, 97
numerator, 97

conditioned Gaussian potential, 65
confidence region, 105
configuration, 48
congruence, 24
construction sequence, 89, 183
cover, 74
covering join tree, 74

for a projection problem, 76

degree of support, 109
Dempster’s Rule, see hint, combination
denominator, see conditional Gaussian

potential
density, 89, 183
descendants, 81
design matrix, 114
distribute phase, 86
distribution model, 105
division, see valuation algebra
domain, 16, 48, 76
domain-contained, 25
domain-free valuation algebra, 38

with full marginalisation, 38

edge, 73
eliminiation sequence, 77
embedding, 23
equivalence class, 24
equivalence relation, 24
error of type I, 112
error of type II, 112
extended matrix, 64
extension, 23

factor graph, 264
factorisation, 72
filtering, 264
focal mapping, 108
forward sweep, 65
frame, 48
frame of discernment, 108

functional model, 106, 114
fusion algorithm, 77

Gaussian belief functions, 64
Gaussian fraction, 177
Gaussian hint, 118

equivalence of, 120
precise, 146

Gaussian linear system, 114
joining, 140
with deterministic equations, 228

Gaussian potential, 54
concentration matrix, 54
mean vector, 54
variance-covariance matrix, 54

Gaussian quotient, 177
graph

connected, 73
undirected, 72

head, 97, see conditional
hint, 108

combination, 113
equivalence, 112
precise, 112

homomorphism, 23
homomorphism theorem, 27
hypertree, see join tree
hypothesis, 109

idempotent, 29, 43
inadmissible assumptions, 106
indiffidence region, 105
inference operator, 126
information algebra, 43
injective, 23
inner measure, 110
inward propagation, 86
isomorphism, 24

join tree, 73
join tree property, 73
join-semilattice, 29
junction tree, see join tree

Kalman filter, 262
kernel, 89, 183
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knowledge base, 72

label, 73
label of the node, 75
labelled tree, 73
leaf (node), 81
least support, 36
likelihood function, 96
linear system, 227

consistent, 227

Markov property, 73
Markov tree, 73
matrix-matrix product, 50
matrix-vector product, 50
mean vector, see Gaussian potential

neighbour, 73
neutral element, 21
neutrality axiom, 22
node, 72
non-vacuous, 161
null element, 22
null set, 107
null space, 323
nullity axiom, 22
numerator, see conditional Gaussian po-

tential

observation matrix, 262
observation process, 262
observation vector, 114
outer measure, 107
outward propagation, 86

parent, 81
partition, 24
path, 73
permissible basis, 117
permutation matrix, 128
plausibility function, 110
post-data predictive, 105
postdictive, 105
postdictive probability statement, 104
posterior distribution, 105
powerset, 16
prediction, 264

predictive probability statement, 104
prior distribution, 105
projection matrix, 131
projection problem, 72

simple, 72
Property (M), 173
pseudo-inverse, 234

qualitative Markov tree, see join tree
query, 72
quotient set, 24
quotient valuation algebra, 26, 143

real matrix, 50
determinant, 51
identity matrix, 51
inverse, 51
non-singular, 51
partitioned, 53
positive definite, 51
projection, 52
regular, 51
symmetric, 50
transport, 52
transpose, 50
vacuous extension, 52

real vector, 49
incompatible, 225
projection, 51
transport, 52
vacuous extension, 52

reduct, 36
relation, see relational algebra
relational algebra, 43

relation, 43
tuple, 43

reverse sweep, 65
root node, 79
running intersection property, 73

separative extension, 175
separative fraction, 172
separative quotient, 173
separative semigroup, 184
separative valuation algebra, 173, 181
significance, 105
smoothing, 264
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sparse matrix, 83
stability axiom, 31
state evolution process, 262
state vector, 262
statistical specification, 95, 105
subalgebra, 24
support, 36, 37, 109, 178
support function, 110
surjective, 24
symmetric Gaussian potential, 100

conditional, 200
equivalence of, 233
pseudo-concentration matrix, 100
pseudo-mean vector, 100

symmetric Gaussian potential with de-
terministic equations, 232

symmetric Gaussian potential with de-
terministic variables, 223

tail, 97, see conditional
transition matrix, 262
tree, 73

directed, 79
tree width, 91
tuple, see relational algebra

vacuous, 36, 161
vacuous extension, 33
valuation, 16
valuation algebra

division, 42
labelled, 17
stable, 31
with full marginalisation, 17
with neutral elements, 22
with null elements, 22

valuation network, 264
variable, 16, 48
variable elimination, 19
variance-covariance matrix, see Gaussian

potential
vertex, 72

weak embedding, 23
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