Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-2-[2-(3-Fluorophenyl)ethenyl]quinolin-8-yl acetate

Yan-Ping Huo,* Xiao-Li Nie and Xiao-Ming Fang

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China Correspondence e-mail: tigerhuo1974@yahoo.com.cn

Received 14 May 2012; accepted 3 July 2012

Key indicators: single-crystal X-ray study; T = 110 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.134; data-to-parameter ratio = 15.3.

In the crystal of the title compound, $C_{19}H_{14}FNO_2$, the molecules are linked by $C-H\cdots O$ hydrogen bonds in translational chains along the *b* axis. The dihedral angles formed by the quinoline system with the fluorobenzene ring and the acetoxy group are 8.15 (3) and 77.42 (4)°, respectively.

Related literature

For the synthetic procedure, see: Zeng et al. (2006).

Experimental

Crystal data $C_{19}H_{14}FNO_2$ $M_r = 307.31$ Monoclinic, $P2_1/c$ a = 17.628 (3) Å

b = 5.2641 (9) Å

c = 16.062 (3) Å $\beta = 100.528 (2)^{\circ}$ $V = 1465.4 (4) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 110 K

Data collection

8139 measured reflections
3177 independent reflections
2663 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.017$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ 208 parameters $wR(F^2) = 0.134$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 0.67$ e Å⁻³3177 reflections $\Delta \rho_{min} = -0.26$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1 - H1D \cdots O2^{i}$	0.98 (1)	2.54 (1)	3.495 (2)	166 (2)

Symmetry code: (i) x, y + 1, z.

Data collection: *SMART* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (grant Nos. 20802010 and 21172047) and the 211 project of Guangdong Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2060).

References

Bruker (2008). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zeng, H., OuYang, X., Wang, T., Yuan, G., Zhang, G. & Zhang, X. (2006). Cryst. Growth Des. 6, 1697–1702.

Cre

 $0.35 \times 0.24 \times 0.18 \text{ mm}$

supporting information

Acta Cryst. (2012). E68, o2420 [https://doi.org/10.1107/S1600536812030255]

(E)-2-[2-(3-Fluorophenyl)ethenyl]quinolin-8-yl acetate

Yan-Ping Huo, Xiao-Li Nie and Xiao-Ming Fang

S1. Comment

The (*E*)-2-[2-(3-fluorophenyl)ethenyl]-8-acetoxyquinoline was prepared *via* a reaction of 2-methyl-8-hydroxyquinaldine with 3-fluorobenzaldehyde according to Zeng *et al.* (2006). The molecular structure is shown on Fig. 1. There are non-classical intermolecular hydrogen bonds C–H···O between carbonyl oxygen and the methyl group (C···O = 3.495 (2) Å; C–H···O = 166°) connecting molecules into chains along the *b* axis.

S2. Experimental

The title compound was prepared by a method reported in the literature, see: Zeng *et al.* (2006). The crystals were obtained by dissolving the compound (0.1 g) in dichloromethane (5 ml) and then evaporating the solvent slowly at room temperature for about 3 days.

S3. Refinement

All H atoms were refined as riding atoms with isotropic displacement parameters 1.2 times larger or 1.5 times larger (methyl H) than the corresponding host carbon atoms. The methyl H atoms' positions were set based using AFIX 33 instruction in *SHELXL97* (Sheldrick, 2008)). The C—H distances were kept at 0.95 Å (0.98 Å for methyl hydrogens).

Figure 1

The asymmetric unit of the title compound.

(E)-2-[2-(3-Fluorophenyl)ethenyl]quinolin-8-yl acetate

Crystal data

C₁₉H₁₄FNO₂ $M_r = 307.31$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 17.628 (3) Å b = 5.2641 (9) Å c = 16.062 (3) Å $\beta = 100.528$ (2)° V = 1465.4 (4) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.972, \ T_{\max} = 0.982$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.134$	neighbouring sites
S = 1.02	H-atom parameters constrained
3177 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0792P)^2 + 0.6625P]$
208 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.67 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 640

 $\theta = 2.4 - 27.1^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

Plate, colorless

 $0.35 \times 0.24 \times 0.18 \text{ mm}$

8139 measured reflections 3177 independent reflections 2663 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 27.1^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$ $h = -22 \rightarrow 22$

T = 110 K

 $R_{\rm int} = 0.017$

 $k = -6 \rightarrow 6$ $l = -20 \rightarrow 16$

 $D_{\rm x} = 1.393 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8139 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.34904 (6)	0.31492 (19)	0.74280 (6)	0.0242 (2)
N1	0.26746 (7)	-0.0961 (2)	0.66528 (7)	0.0220 (3)
F1	-0.13987 (6)	-0.95702 (19)	0.54984 (6)	0.0398 (3)
02	0.36690 (7)	0.0337 (2)	0.85047 (7)	0.0308 (3)

C9	0.22819 (8)	-0.2876 (3)	0.62482 (8)	0.0225 (3)
C8	0.34042 (8)	-0.0532 (3)	0.65088 (8)	0.0213 (3)
C19	-0.02215 (9)	-0.7381 (3)	0.58416 (9)	0.0279 (3)
H19A	0.0009	-0.8581	0.5523	0.033*
C7	0.37520 (8)	-0.2014 (3)	0.59403 (8)	0.0225 (3)
C14	0.02131 (8)	-0.5360 (3)	0.62403 (9)	0.0236 (3)
C17	-0.13480 (8)	-0.5983 (3)	0.63768 (9)	0.0279 (3)
H17A	-0.1874	-0.6201	0.6420	0.033*
C3	0.38386 (8)	0.1525 (3)	0.69226 (8)	0.0224 (3)
C12	0.14966 (8)	-0.3207 (3)	0.64139 (9)	0.0239 (3)
H12A	0.1314	-0.1968	0.6760	0.029*
C11	0.33106 (8)	-0.4031 (3)	0.55183 (8)	0.0248 (3)
H11A	0.3517	-0.5070	0.5131	0.030*
C4	0.45559 (8)	0.2107 (3)	0.67758 (9)	0.0254 (3)
H4A	0.4828	0.3519	0.7053	0.031*
C6	0.45038 (8)	-0.1410 (3)	0.58087 (9)	0.0263 (3)
H6A	0.4739	-0.2420	0.5436	0.032*
C5	0.48937 (8)	0.0617 (3)	0.62139 (9)	0.0277 (3)
H5A	0.5395	0.1021	0.6116	0.033*
C10	0.25884 (8)	-0.4474 (3)	0.56703 (9)	0.0248 (3)
H10A	0.2289	-0.5835	0.5394	0.030*
C16	-0.09130 (8)	-0.3979 (3)	0.67832 (9)	0.0279 (3)
H16A	-0.1146	-0.2810	0.7110	0.033*
C18	-0.09877 (9)	-0.7629 (3)	0.59126 (9)	0.0275 (3)
C15	-0.01447 (8)	-0.3665 (3)	0.67175 (9)	0.0252 (3)
H15A	0.0141	-0.2287	0.6999	0.030*
C13	0.10159 (8)	-0.5092 (3)	0.61214 (9)	0.0262 (3)
H13A	0.1211	-0.6386	0.5806	0.031*
C2	0.34043 (8)	0.2298 (3)	0.82022 (9)	0.0241 (3)
C1	0.29471 (9)	0.4184 (3)	0.86069 (11)	0.0334 (4)
H1B	0.2887	0.3564	0.9166	0.050*
H1C	0.2437	0.4403	0.8251	0.050*
H1D	0.3218	0.5818	0.8668	0.050*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0275 (5)	0.0202 (5)	0.0253 (5)	0.0016 (4)	0.0058 (4)	-0.0001 (4)
N1	0.0229 (6)	0.0225 (6)	0.0209 (6)	0.0027 (4)	0.0049 (4)	0.0021 (4)
F1	0.0423 (6)	0.0331 (5)	0.0408 (6)	-0.0137 (4)	-0.0008(4)	-0.0013 (4)
O2	0.0405 (6)	0.0254 (6)	0.0286 (5)	0.0033 (5)	0.0118 (5)	0.0030 (4)
C9	0.0236 (6)	0.0245 (7)	0.0190 (6)	0.0022 (5)	0.0028 (5)	0.0035 (5)
C8	0.0225 (6)	0.0221 (7)	0.0192 (6)	0.0030 (5)	0.0039 (5)	0.0043 (5)
C19	0.0344 (8)	0.0259 (7)	0.0238 (7)	-0.0037 (6)	0.0065 (6)	-0.0017 (6)
C7	0.0245 (7)	0.0250 (7)	0.0183 (6)	0.0044 (5)	0.0044 (5)	0.0046 (5)
C14	0.0273 (7)	0.0232 (7)	0.0198 (6)	-0.0022 (5)	0.0029 (5)	0.0034 (5)
C17	0.0227 (7)	0.0292 (8)	0.0302 (7)	-0.0035 (6)	0.0007 (6)	0.0087 (6)
C3	0.0254 (7)	0.0213 (7)	0.0207 (6)	0.0044 (5)	0.0050 (5)	0.0031 (5)

supporting information

C12	0.0245 (7)	0.0261 (7)	0.0213 (6)	0.0015 (6)	0.0050 (5)	0.0006 (5)
C11	0.0297 (7)	0.0269 (7)	0.0184 (6)	0.0051 (6)	0.0061 (5)	-0.0002 (5)
C4	0.0250 (7)	0.0252 (7)	0.0253 (7)	-0.0018 (5)	0.0025 (5)	0.0044 (5)
C6	0.0266 (7)	0.0313 (8)	0.0227 (7)	0.0052 (6)	0.0089 (5)	0.0040 (6)
C5	0.0232 (7)	0.0348 (8)	0.0259 (7)	0.0002 (6)	0.0065 (6)	0.0070 (6)
C10	0.0275 (7)	0.0252 (7)	0.0208 (6)	0.0009 (6)	0.0017 (5)	-0.0011 (5)
C16	0.0265 (7)	0.0267 (8)	0.0301 (7)	0.0028 (6)	0.0042 (6)	0.0021 (6)
C18	0.0319 (7)	0.0233 (7)	0.0244 (7)	-0.0082 (6)	-0.0025 (6)	0.0044 (5)
C15	0.0256 (7)	0.0220 (7)	0.0266 (7)	-0.0016 (5)	0.0015 (6)	0.0011 (5)
C13	0.0288 (7)	0.0260 (7)	0.0245 (7)	-0.0007 (6)	0.0070 (6)	-0.0008(5)
C2	0.0239 (6)	0.0222 (7)	0.0272 (7)	-0.0039 (5)	0.0070 (5)	-0.0016 (5)
C1	0.0351 (8)	0.0267 (8)	0.0424 (9)	0.0000 (6)	0.0177 (7)	-0.0047 (7)

Geometric parameters (Å, °)

01—C2	1.3561 (17)	C3—C4	1.3627 (19)	
O1—C3	1.3962 (17)	C12—C13	1.334 (2)	
N1—C9	1.3241 (19)	C12—H12A	0.9500	
N1—C8	1.3667 (17)	C11—C10	1.360 (2)	
F1-C18	1.3550 (17)	C11—H11A	0.9500	
O2—C2	1.1986 (18)	C4—C5	1.407 (2)	
C9—C10	1.430 (2)	C4—H4A	0.9500	
C9—C12	1.4669 (19)	C6—C5	1.368 (2)	
C8—C3	1.419 (2)	C6—H6A	0.9500	
C8—C7	1.4221 (19)	С5—Н5А	0.9500	
C19—C18	1.382 (2)	C10—H10A	0.9500	
C19—C14	1.396 (2)	C16—C15	1.387 (2)	
C19—H19A	0.9500	C16—H16A	0.9500	
C7—C11	1.414 (2)	C15—H15A	0.9500	
С7—С6	1.4157 (19)	C13—H13A	0.9500	
C14—C15	1.399 (2)	C2—C1	1.500 (2)	
C14—C13	1.469 (2)	C1—H1B	0.9800	
C17—C18	1.372 (2)	C1—H1C	0.9800	
C17—C16	1.394 (2)	C1—H1D	0.9800	
C17—H17A	0.9500			
C2—O1—C3	117.75 (11)	С5—С4—Н4А	120.0	
C9—N1—C8	117.80 (12)	C5—C6—C7	120.43 (13)	
N1-C9-C10	122.74 (13)	С5—С6—Н6А	119.8	
N1-C9-C12	115.29 (12)	С7—С6—Н6А	119.8	
C10—C9—C12	121.95 (13)	C6—C5—C4	120.35 (13)	
N1—C8—C3	119.39 (12)	С6—С5—Н5А	119.8	
N1—C8—C7	123.20 (13)	C4—C5—H5A	119.8	
C3—C8—C7	117.39 (12)	C11—C10—C9	119.54 (13)	
C18—C19—C14	119.78 (14)	C11—C10—H10A	120.2	
С18—С19—Н19А	120.1	C9—C10—H10A	120.2	
С14—С19—Н19А	120.1	C15—C16—C17	121.03 (14)	
C11—C7—C6	123.02 (13)	C15—C16—H16A	119.5	

C11—C7—C8	117.10 (12)	C17—C16—H16A	119.5
C6—C7—C8	119.87 (13)	F1-C18-C17	118.95 (14)
C19—C14—C15	118.19 (13)	F1-C18-C19	118.26 (14)
C19—C14—C13	118.33 (13)	C17—C18—C19	122.79 (14)
C15—C14—C13	123.46 (13)	C16—C15—C14	120.65 (14)
C18—C17—C16	117.54 (14)	C16—C15—H15A	119.7
C18—C17—H17A	121.2	C14—C15—H15A	119.7
C16—C17—H17A	121.2	C12—C13—C14	126.22 (14)
C4—C3—O1	118.91 (13)	С12—С13—Н13А	116.9
C4—C3—C8	121.92 (13)	C14—C13—H13A	116.9
O1—C3—C8	118.86 (12)	O2—C2—O1	123.76 (13)
C13—C12—C9	125.75 (14)	O2—C2—C1	126.49 (14)
C13—C12—H12A	117.1	O1—C2—C1	109.74 (12)
C9—C12—H12A	117.1	C2—C1—H1B	109.5
C10—C11—C7	119.61 (13)	C2—C1—H1C	109.5
C10-C11-H11A	120.2	H1B—C1—H1C	109.5
C7—C11—H11A	120.2	C2—C1—H1D	109.5
C3—C4—C5	120.02 (14)	H1B—C1—H1D	109.5
C3—C4—H4A	120.0	H1C—C1—H1D	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
C1—H1D····O2 ⁱ	0.98 (1)	2.54 (1)	3.495 (2)	166 (2)

Symmetry code: (i) x, y+1, z.