
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1989

Estimating the reliability of systems subject to
imperfect repair

Whitaker, Lyn R.; Samaniego, Francisco J.

Journal of the American Statistical Association, March 1989, Vol. 84, No. 405, Theory
and Methods
http://hdl.handle.net/10945/41702

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



Estimating the Reliability of Systems Subject to 
Imperfect Repair 

LYN R. WHITAKER and FRANCISCO J. SAMANIEGO* 

This study of statistical inference for repairable systems focuses on the development of estimation procedures for the life 
distribution F of a new system based on data on system lifetimes between consecutive repairs. The Brown-Proschan imperfect­
repair model postulates that at failure the system is repaired to a condition as good as new with probability p, and is otherwise 
repaired to the condition just prior to failure. In treating issues of statistical inference for this model, the article first points 
out the lack of identifiability of the pair (p, F) as an index of the distribution of interfailure times T1, T2, •••• It is then shown 
that data pairs (T,, Z,) (i = 1, 2, ... ) render the parameter pair (p, F) identifiable, where Z, is a Bernoulli variable that 
records the mode of repair (perfect or imperfect) following the ith failure. Under the assumption that data of the form {(T,, 
Z,)} are drawn via inverse sampling until the occurrence of the mth perfect repair, the problem of estimating the parameter 
pair (p, F) of the Brown-Proschan model is studied. It is demonstrated that the nonparametric maximum likelihood estimator 
of F exists only in special cases, but that a neighborhood maximum likelihood estimator P (using the language of Kiefer and 
Wolfowitz 1956) always exists and may be derived in closed form. Under mild assumptions, the strong uniform consistency of 
Pis demonstrated, as is the weak convergence of an appropriately scaled version of P to a Gaussian process. It is noted that 
these results apply to other experimental designs, such as renewal testing, and that they can be extended to the age-dependent 
imperfect-repair model of Block, Borges, and Savits (1985). 

1. INTRODUCTION 

A frequently cited example (e.g., see Ascher and Fein­
gold 1979; Hollander and Wolfe 1973, p. 248) of data on 
systems under repair is the set of successive interfailure 
times of air conditioners on a fleet of Boeing aircraft. In 
the article in which he introduced the air conditioner data, 
Proschan (1963) tested the null hypothesis of indepen­
dence against a trend alternative. Such an alternative 
might be motivated, for example, by the expectation that 
a system, degenerating as a result of successive repairs, 
would tend to have decreasing interfailure times. At a 5% 
level of significance, the Mann test for trend fails to reject 
the null hypothesis of independence in each of the 13 air­
conditioning systems tested. The interfailure times of the 
air conditioner on a particular aircraft are reproduced in 
Table 1. For this aircraft, the Mann test for trend yields 
a p value of .19. 

Although the Mann test for independence has good 
power against trend alternatives, it is well known that its 
power is poor against other formulations of data depen­
dence. Among such alternatives are some that appear to 
be realistic models for repairable systems. A closer look 
at Table 1 reveals a cyclic pattern in the interfailure times. 
The pattern of times above ( +) and below ( - ) the median 
41.5 of these data is as follows: + + + + - - - -
+ + + + + - - - - + + + - - - - . The small number 
of runs in these data is surprising. With only 6 runs in 24 
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observations, the runs test has ap value of .0028, providing 
strong evidence against the iid assumption. We return to 
this data set after describing a plausible alternative to the 
iid hypothesis and developing estimation procedures in this 
alternative setting. 

The iid framework assumes that a repaired system func­
tions as well as a new system, that is, that all repairs are 
"perfect." Alternatively, one might reasonably hypoth­
esize that a sequence of superficial repairs is interspersed 
with periodic overhauls, creating a cyclic pattern such as 
that apparent in Table 1. Realistic models would allow the 
quality of repair to vary, possibly depending on the con­
dition of the system at failure. Using age as an indicator 
of the condition of the system, these features can be in­
corporated into an imperfect-repair model as follows. Let 
Ti. T2, ••• be a sequence of interfailure times. At the ith 
failure the system is repaired to age A;, with A; = 0 cor­
responding to a perfect repair and A; > 0 to a repair that 
is less than perfect. Further, the distribution of A; may 
depend on the age A;_ 1 + T; of the system at failure. In 
its most general form, this imperfect-repair model does 
not have enough structure to shed light on the stochastic 
properties of systems under repair, much less allow for 
statistical inference from repair data. 

Brown and Proschan (1983) introduced a form of this 
imperfect-repair model and deri.ved many of its interesting 
stochastic properties. Their model also permits a reason­
ably comprehensive statistical treatment. The Brown­
Proschan (BP) model postulates that at failure the system 
is repaired to a condition as good as new (A; = 0) with 
probability p, and is otherwise repaired to its condition 
just prior to failure (A; = A;_ 1 + T;). The parameter of 
this model is the pair (p, F), where Fis the distribution 
on (0, oo) governing the age at failure of a new system. 
The survival function corresponding to Fis denoted by S; 
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Table 1. Intervals Between Failures: Plane 7914 

T, T, T, T, 

1 50 7 3 13 46 19 210 
2 44 8 15 14 5 20 97 
3 102 9 197 15 5 21 30 
4 72 10 188 16 36 22 23 
5 22 11 79 17 22 23 13 
6 39 12 88 18 139 24 14 

that is, S(t) = Pr(T > t) 1 - F(t). Throughout this 
article we tacitly assume that the distribution F is contin­
uous. Conditional distributions based on F govern the re­
sidual lifetime of an item of any given age. Implicit in the 
BP model is the assumption that the choice of mode of 
repair following any given failure depends solely on ex­
ternal factors, such as the availability of a replacement, 
and not on the condition (i.e., age) of the system at failure. 
The model also assumes that these external factors are 
stable over time; the probability of perfect repair is thus 
taken to be constant. An extension of the BP model, in 
which the probability of perfect repair depends on the age 
at failure, was studied by Block, Borges, and Savits (1985), 
and is discussed in Section 4. 

A brief review of the properties of the BP model is in 
order. Renewals, or perfect repairs, restore a system to 
its condition when new. With this in mind, the repair re­
cord of systems governed by the BP model can be thought 
of as a sequence of independent repair epochs (i.e., pe­
riods between two successive perfect repairs), each with 
the same stochastic properties. To study the properties of 
the BP model, we restrict attention to the first repair ep­
och. This is reflected in the following propositions, both 
employed in the sequel. 

Proposition 1.1 (Brown and Proschan 1983). Let Y1 be 
the system age at the first perfect repair under the BP 
model with parameter (p, F). The survival function Sy of 
Yi is given by 

S.v(t) = (S(t))P V t > 0. (1.1) 

A second result sheds light on the conditional behavior of 
imperfect-repair times, given the occurrence or nonoc­
currence of a complete repair. 

Proposition 1.2 [Savits (1985)]. Let N(t) be the num­
ber of failures under the BP model in the time interval [O, 
t], and let R(t) = - ln S(t) and Ry(t) = - ln Sy(t). Then, 

E[N(t) I Yi > t] = R(t) - Ry(t) 

E[N(t) I Yi = t] = R(t) - Ry(t) + 1. (1.2) 

We now turn to the treatment of statistical inference for 
the BP model. 

2. ESTIMATING THE PARAMETER PAIR ( p, F} 

We first examine the identifiability of the BP model, 
seeking to answer the following question: Do the distri­
butions of interfailure times have a one-to-one correspond-
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ence with the collection of possible parameter pairs (p, 
F)? The subject of identifiability has been studied by 
several authors, notably Teicher (1961) for mixtures of 
distributions and Sclove and Van Ryzin (1969) for 
convolution models. A good example of the problems 
caused by lack of identifiability occurs in the context of 
competing-risks methodology (see Tsiatis 1975). In the BP 
model, the immediate answer to our question is negative: 
(p, F) is not an identifiable parameter of the distribution 
of Ti, T2, •••• To see this, denote the distribution of Ti, 
T2, ••• , given (p, F), by '.f(p.F)(T). Assume, for distinct 
(pi, Fi) and (p2 , F2), that 

(2.1) 

Since (2.1) implies that the distribution of Ti is the same 
under both parameter pairs, we infer that Fi = F2 a.e.; 
however, (2.1) does not imply that Pi = Pz· Indeed, we 
may only infer either that Pi = Pz or that Pi ""Pz but S(t) 
= S(s + t)!S(s) Vs, t ~ 0. This derivation confirms that 
the memoryless property of the exponential distribution 
is at the core of the lack of identifiability of the Brown­
Pros<;han model. If Fis exponential, each interfailure time 
T has the same exponential distribution, regardless of the 
value of p. 

This development shows that the pair (p, F) is not an 
identifiable parameter of the distribution of T. The main 
consequence of this is our inability to estimate p from a 
sequence of interfailure times. That F can be estimated 
from Tis clear; the indicator function of the event {T1 :5 

t} is an unbiased estimator of F(t). Nevertheless, the sub­
sequent interfailure times T2, T3 , ••• are difficult to in­
terpret without information on the type of repair made 
following each failure. Whether F can be estimated con­
sistently from the sequence Ti, T2, T3 , ••• is at this point 
an open question. Still, the ambiguity inherent in inter­
failure-time data when information on the mode of repair 
is missing suggests that estimators of F based on Ti, T2 , 

T3 , • • • alone will be woefully imprecise. We therefore 
examine what can be done when additional information is 
available. 

If we are to augment the data Ti, T2, ••• to ensure that 
the parameter (p, F) is identifiable, the most natural so­
lution is to record the mode of repair, perfect or imperfect, 
in addition to the interfailure times. The augmented data 
are represented by the sequence of pairs (T;, Z;) (i = 1, 
2, ... ), where Z; is the Bernoulli variable defined as 

Z; = 1 if the ith repair is perfect 

= 0 if the ith repair is imperfect. 

For each i, P(Z; = 1) = p. Augmenting T by Z renders 
the problem of inference well defined, because the distri­
bution of the modes of repair Zi, Z 2, ••• is uniquely 
determined by p and the first failure time T1 serves to 
identify F. It is important to note that in situations where 
the possible modes of repair are restricted to a finite set, 
it is realistic to expect that both T and Z would be available 
from standard maintenance records on a repairable sys­
tem. 
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Throughout this section and the next, we assume that 
data are collected under the inverse-sampling scheme in 
which the system is observed until the mth perfect repair. 
We also. assume that p > 0, Fis continuous, and F(O) = 
0, a restriction that precludes the possibility of instanta­
neous failure following repair. 

Let n be the total number of repairs in the available 
sample, where m are perfect repairs and the remaining n 
- m are imperfect repairs. If F is absolutely continuous 
with density f, the likelihood associated with the observed 
interfailure times T; = t; and corresponding modes of re­
pair Z; = Z; (1 :5 i :5 n), is given by 

L(p, F) = J(ti)Pz'(l - p)l-z,f(t~(:i)a1) pz2(l _ p)l-z2 

f(tn + lln-1) ( )I x . . . x Pz" 1 - p - z,., 
S(an-1) 

where a; represents the age of the system following the ith 
repair, and S = 1 - F. We note that the sequence {a;} is 
completely determined by the (t;, Z;) pairs. Rearranging 
the product and rewriting L (p, F) as a function of the age 
X; just prior to the ith failure, we obtain 

L(p, F) = pm(l - p)n-mf(x1) S~~~)-z, 

X • · • X f(xn) (2 2) 
S(xn-1)1-z,,_, . . 

It is apparent from (2.2) that the maximum likelihood 
estimator (MLE) ft of pis min, the proportion of repairs 
that are perfect. It is convenient to r~write the product 
(2.2) as a function of the ordered ages x(i)· Here, z(il 
denotes the mode of repair following the failure at age 
x(i)· Thus zc1i, zc2i, ... , Zcnl are not ordered, but are the 
so-called "induced order statistics" generated by ordering 
the x;'s. In the new notation, 

L(p, F) = pm(l - p)n-m IT J(x(i:~z ' (2.3) 
i=I S(x(i-1)) ,,_,, 

where Xcoi = 0 and zcoi = 1. The variable Zcnl does not 
appear in (2.3) because Zeni = 1. This is because the largest 
age must occur immediately before a perfect repair, or 
when the experiment is terminated. 

Henceforth, we restrict attention to the nonparametric 
framework. Finding the nonparametric MLE of F (see 
Kiefer and Wolfowitz 1956) is equivalent to maximizing 

l(F) = IT (F(x(il) - l~z(X(fi)) (2.4) 
i=I S(x(i-1)) ,,_,, 

over FE Jn, the class of distribution functions with positive 
probability on the ages xc1i, Xczi, ... , x(n)· A simple ex­
ample illustrates that the maximum of l(F) in (2.4) is not 
always attainable. 

Example. A system is observed until the first perfect 
repair, resulting in T1 = 1, Z 1 = 0, T2 = 1, and Z 2 = 1. 
The first repair is imperfect, so the two ages at failure are 
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X 1 = 1 and X 2 = 2. Thus 

l(F) = [F(l) - F(l -)) [F(2) - F(2-)) (2.5) 
S(l) . 

To maximize (2;5), F must place its mass on the values 1 
and 2; thus we write 

_. [F(2) - F(2-)) 
l(F) = [F(l) - F(l )) [F(2) _ F(2_)) . (2.6) 

Letting F(l) - F(l -) = 1 - e and F(2) - F(2-) = e, 
we see that the stipremum of l(F) in (2.6) is 1. Since l(F) 
is undefined for F(l) - F(l -) = 1, the nonparametric 
MLE does not exist. 

In general, unless Z(n-ll = 1, the supremum of l(F) in 
(2.4) is not attainable. Insight into this problem can be 
gained by considering the likelihood as a product of con­
ditional probabilities. Let</>; = S(x(ii)/S(x(i-iJ); </>;is the 
conditional probability of surviving beyond age x(il• given 
survival beyond age X(i-t)· Then, among candidates for 
maximizing l(F), that is, for distributions placing mass 
only at x(ll• ... , Xcnl• we write 

F(x(iJ) - F(xui -) 
S(xu-1)) 

1 - </>; 

and 

i-1 
F(x(iJ) - F(xui-) = (1 - </>;) I1 <Pi, 

i=l 
l:5i:5n, 

where the empty product is defined as 1. Thus maximizing 
l ( F) with respect to F is equivalent to maximizing l (cl>) 
with respect to cl>, where 

, n 

l(cl>) = IJ(l - </>;)</>7; (2.7) 
i= I 

and k; = "i.j;:/ Zen is the number of failure ages greater 
than Xui for which the system was repaired perfectly (with 
the empty sum defined as 0). It is clear that l (cl>) is max­
imized by <f>: 

A k 
</>; = (k; ~ 1)' 1 :5 i :5 n - 1, (2.8) 

with ¢n = 0. If Zen-I) = 1, the nonparametric MLE of the 
survival function S is thus given by 

S(t) 1, t < x(ll 
i 

I1 ¢i, x(il :5 t < xu+ 1i (i = 1, ... , n - 1) 
i=I 

0, t ~ X(n)· (2.9) 

If Zcn-iJ = 0, l((f>) is still maximized by cl> given in (2.8), 
but now ¢; = 0 for J + 1 :5 i < n, where J = max{i : 
zcil = 1, 1 :5 i :5 n - 1}. This implies that the correspond­
ing estimator S, given in (2.9), is equal to 0 for x ~ x(J+ll• 
and that l(F) in (2.4) is undefined. Furthermore, there is 
no member of :in maximizing l ( F). Thus the nonparametric 
MLE does not exist when Zen-I) = 0. 
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Anticipating the occurrence of such anomalies, Kiefer 
and Wolfowitz (1956) introduced the more general concept 
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of neighborhoo~ MLE. In an appro~ri~t~ topology, le~ 11, o.s 
C '.fn be an e neighborhood of F. P 1s said to be a neigh­
borhood MLE if for any e > 0, however small, SUPFen, 
l(F) = supFe:•n l(F). Informally, an estimator P of Fis a o.s 
neighborhood MLE if every neighborhood of Pis a good 
neighborhood, in the sense that every neighborhood of F 
contains distributions whose likelihood is arbitrarily close 0 ·4 

to the supremum of the likelihood. It is easy to show that 
in the topology induced by the sup norm, the estimator 0.2 

P = 1 - S, where Sis specified in (2.9), is a neighborhood 
MLE of the distributibn F. 

We return to the air conditioner interfailure times of o.o-l-----...... -----=:;:==~=--ii11111•:a 
Table 1. Since actual observed Z;'s are unavailable, we 
have assigned arbitrary (but seemingly reasonable) values 
to the Z;'s. Table 2 reproduces each interfailure time T; 
from Table 1 along with an imputed mode of repair in­
dicator Z;, and each age X; at which the system fails. Fot 
comparison, both estimated survival curves, the neigh­
borhood MLE S and G,;(x) = e-x162·i4 [the MLE of S 
computed from the interfailure times alone, assuming that 
they are iid exponential (A.)], are graphed in Figure 1. By 
taking into account the imperfect repairs, the nonpara­
metrie estimator S gives a much different view of the 
chances of survival for a new system. In computing S, small 
interfailure times (e.g., T7 = 1, Ti4 = 5, Tis = 5, and T23 
= 13) provide information about the tail behavior of S 
through the corresponding ages at failure (X7 = 238, Xi4 
= 603, Xis = 608, and X 23 = 512). This results in much 
more optimistic estimates of the chances of survival for a 
new system than those obtained when the iid assumption 
is made. 

It is easy to construct alternative nonparametric esti­
mators for Fbased on the (T;, Z;) pairs. The most obvious 
estimator is the empirical distribution of the collection {T; 
I Z;-i = 1, 1 s; i s; n}, that is, the set of m interfailure 
times including the first failure time and the interfailure 
times following each perfect repair. These interfailure 
times are iid with distribution F, so the estimator has all 
of the properties of the usual empirical distribution in the 
iid setting. One could also restrict attention to the empir-
ical distribution Py of Yi. Y2, ••• , Ym, the times between 
successive perfect repairs. The corresponding estimator of 
the survival function, Sy(t), converges to [S(t)]P as m ~ 

Table 2. Intervals Between Failures Augmented 
With Mode of Repair: Plane 7914 

z, T, x, z, T, x, 
1 0 50 50 13 0 46 598 
2 1 44 94 14 0 5 603 
3 0 102 102 15 0 5 608 
4 0 72 174 16 0 36 644 
5 0 22 196 17 1 23 666 
6 0 39 235 18 0 139 139 
7 0 3 238 19 0 210 349 
8 1 15 253 20 0 97 446 
9 0 197 197 21 0 30 476 

10 0 188 385 22 0 23 499 
11 0 79 464 23 0 13 512 
12 0 88 552 24 1 14 526 

0 100 200 300 

Figure 1. The Neighborhood Nonparametric MLE Sand the Expo­
nential MLE G1• 

oo. Thus, s;1m is another easily computable consistent es­
timator of S. Neither of these estimators fully use the 
information contained in the (T;, Z;) pairs, so one might 
expect that they are less efficient than the neighborhood 
MLE, S. In Section 4, the large-sample properties of these 
three estimators are identified and compared. 

We examine one more intuitive estim,ator, P*, which 
has a convenient integral representation that plays a cen­
tral role in studying the asymptotic properties of ft. To 
motivate the estimator P*, we establish an integral rep­
resentation of the theoretical hazard function R(t). This 
representation draws our attention to the sample analogue 
of R, which (as we shall see) plays an important role in 
further developments. The estimator R* of R provides the 
desired estimator of F through the relationship P* = 1 -
e-1r. We have asSU'med that a system is observed until the 
mth perfect repair is made. Let N;(t) be the number of 
failures in the interval [O, t] for the ith repair epoch, with 
N;(t) = N;(Y;) fort~ Y;, and define N(t) and Sy(t) by 

1 m 

N(t) = - L N;(t) 
m;=i 

(2.10) 

and 
1 m . 

Sy(t) = - L /(1,"') (Y;), 
m i=I 

(2.11) 

where IA(x) is the indicatorfunction of the set A. We now 
state and prove a useful representation of the hazard func­
tion R. 

Lemma 2.1. Let Fbe a continuous lifetime distribution 
on (0, co) governing the Brown-Proschan imperfect-repair 
model with parameter (p, F). Let N and SY be as in (2.10) 
and (2.11). Let T <co satisfy F(T) < 1. Then, V x E (0, 
T), 

R(x) = I: {E[Sy(u)]}-i dEN(u). (2.12) 

Proof. Fix x E (0, T]. Note that E[N(x)] = E[Ni(x)]. 
We therefore have 

E[N(x)] = E[N1(x) I Yi > x]Sy(x) 

+ J: E[Ni(u) I Y1 = u] dFy (u). (2.13) 
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Using Proposition 1.2 of Section 1, we rewrite (2.13) as 

E[N(x)] = [R(x) - Ry(x)]Sy(x) 

+ I: [R(u) - Ry(u)] dFv (u) + Fy(x). 

Integrating by parts, we obtain 

E[N(x)] = J: Sy(u) dR (u) 

- J: Sy(u) dRy (u) + Fv(x) 

= J: Sy(u) dR (u). (2.14) 

Since Sy = SP is positive and continuous on [O, x] by as­
sumption, and E[N( ·)]is increasing, the Reimann-Stieltjes 
integral JB [1/ Sy(u)] dE [N(u)] exists. Let e > 0 be arbi­
trary, and let 0 = u0 < u 1 < ··· < Un = x be a partition 
of [O, x]. For maxlu; - u;-il sufficiently small, we can 
guarantee [with the help of (2.14)] that 
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We note that, for each k E {l, 2, ... , m - l}, at the 
most (m - k) of the differences {N;(Y(k+iJ) - N;(Y(kJ)} 
can be nonzero. Thus each term in Expression (2.15) for 
R* may be viewed as an estimate of the average number 
of failures between successive perfect repairs. Moreover, 
since S is to be estimated by S* = r 1r, we may think of 
each term in (2.15) as an estimate of a conditional qazard 
function, given the perfect repair times. That this approach 
to estimating R and F is efficacious is borne out in 
the sequel. We show that R* is asymptotically equiva­
lent to R = - In S, and that R* (and hence R) is a con­
sistent estimator of R. Combiµing (2.8) and (2.9), we see 
that 

"'n-1 Z 
L.Jk=i (k) 

R(t) = - In TI "'n-I 
ll(r) L.Jk=i z(k) + 1 

2:~:: z<k> + 1 
= L In .· Ln-I (2.16) 

ll(r) k=i z(k) 

where Cf(t) = {i : Xu> $ t}. To rewrite R in terms com-

1 lx 1 [ - ( ] ~ 1 parable to R*, note that the sum in (2.16) can be subdi-
0 Sy(u) dE N u) - ,L..J·=ci Sy(;:,·) .,, vided into partial sums, each with a constant summand. 

f I For Yu> < t $ Yu+ tl• 
x U; Sy(u) dR (u) < i' n-1 

u,_, A Lk=i z(k) + 1 
wh_ere~;E[u~_"_u;]\fi.Moreover,becauseoftheassumed · R(t) = L In Ln-1 Z 
umform contmmty of Sy on [O, x] we also have, for max; 8 ' k= 1 <kl 

lu; - u;-il sufficiently small, that 

2:- ' Sy(u) dR (u) - 2: -I n 1 Ju· n 1 

i=O Sy(~;) U;_, i=O Sy(~;) 

x Sy(¢;)[R(u;) - R(u;_ 1)] I < i . 
Noting that R(O) = -lnS(O) = 0 and Sy(u) = E[Sy(u)], 
we combine the aforementioned two inequalities to obtain 

~ J: {E[Sv(u)]}- 1 dE [N(u)] - R(x) I < e. 

Since e is arbitrary, the desired result follows. 

The expression for R(') in (2.12) suggests an ad hoc 
estimator of R. Let Yo» Y!2» ... , Y(m) be the order sta­
tistics corresponding to the times Y1, Y2, ••• , Ym between 
perfect repairs. We define the estimator R* as the sample 
analogue of R; that is, fort E (Yul• Yu+ 1i), 

R*(t) = J: [Sy(x)]- 1 dN (x) 

1 m 

= - L N;(Y0 i) 
m i=I 

1 m 

+ m - 1 ~ [N;(Y<2i) - N;(YoiH 

1 m 

+ ··· + -. L [N;(t) - N;(Yrn)]. (2.15) 
m-J i=I 

n-1 

2:k=i z(k) + 1 
+ ... + L In _"'_" __ -1 Z--

B, L.Jk=i (k) 

where Bk = {i: Y(k-1) <Xu>$ Y(k)} (k = 1, ... , j) and 
B1 = {i : Y(i) < Xu> $ t}. Thus 

R(t) = m N(Y(l)) ln(m ~ 1) 

+ m(N(Y(2)) - N(Y(l))) In(: = D 
+ ··· + m(N(t) - N(Yrn)) In( m ~ j 1) . (2.17) 

m - J -

The expressions for R in (2.17) aµd R.* in (2.15) are very 
similar; it is not surprising t)lat the two functions are 
asymptotically equivalent. Actually, a stronger result 
(needed in our proof of we~k convergence) is established 
in tbe following. 

Lemma 2.2. Let T < oo satisfy F(T) < 1. Then, as m 
~ 00 , sup0,,1,,T m 112IR(t) - R*(t)I~ 0 w. p. 1. 

Proof. Without loss of generality, we restrict attention 
to the event { Y<m- l) > 7}, ensuring that both Rand R* are 
well defined in the interval [O, T]. Subtracting (2.15) from 
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(2.17) yields 

R(t) - R*(t) 

j 

= 2°: m(N(Yul) - N(Yu-1))) 
i=l 

x [In( m :i ~: 1) - m - li + 1 J 
+ m(N(t) - N(Y(j))) [in( m ~ j 1) - - 1-.] 

m-1- m-1 

for Yul < t =S Yu+ 1l, where Y(o) = 0. Applying the in­
equality 

1 < ln(m - i ~ 1) 
m-i+l m-1 

1 1 
< +-------

m - i + 1 (m - i)(m - i + I) 

to each term in the sum, we obtain 

o < R(t) - R*(t) 

~ - - 1 
< L.J m(N(Yul) - N(Y(i-1))) · ( _ ")( _ . + l) 

1=1 m l m l 

- - 1 
+ m(N(t) - N(Yul)) · ( . l)( ') . (2.18) m-1- m-1 

Since (m - j - 1)2 < (m - i)(m - i + 1) for each i E 
{l, ... , j + l}, we bound the sum in (2.18) as follows: 

/R(t) - R*(t)/ < ( "! l)2 N(t) m - 1 -

1 ( 
. )2 m - 1 _, -= - . 1 (Sr(t)) - N(t). 

m m-1- · 

Because (Sv(t))- 2 N(t) is a nondecreasing function oft, it 
follows tha·t 

sup /R(t) - R*(t)/ 
Ost:5.T 

< ! (m _ ~ _ 1)2<$v<rn- 2 N(T). c2.19) 

where Yul < T =o; Yu+i>· By the strong Jaw of large num­
bers, we have (as m - oo) 

sup m112 /R(t) - R*(t)/ - 0 w. p. 1, 
Osr:s.T 

since the last three terms on the right side of (2.19) con­
verge almost surely to finite limits. 

3. LARGE SAMPLE PROPERTIES OF F 
We first provide a straightforward but detailed argument 

showing strong uniform convergence of F to F. 

Theorem 3.1. Let F be a continuous lifetime distri­
bution on (0, oo) defining the Brown-Proschan imperfect­
repair model, and let F be the neighborhood MLE of 
F given in (2.9), based on inverse sampling until the mth 
perfect repair. Then, F converges uniformly to F w. p. 1 
asm- oo. 
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Proof. Let T < oo satisfy F(T) < l. We first demon­
strate the convergence of R to R in the interval [O, T]. 
Again, without loss of generality, we restrict attention to 
the event {Y<m-ll > n. Applying the triangle inequality, 

/R(t) - R(t)/ $ /R(t) - R*(t)/ 

+ /R*(t) -11 s_; 1(x) dN (x)/ 
0 

+ 11: S_; 1(x) dN (x) - R(t) I· (3.1) 

Strong convergence of the first term to Q on [O, T] is a 
direct consequence of Lemma 2.2. Replacing R* with its 
integral representation, the second term becomes 

IR*(t) - 1: sy- 1(x) dN (x)I 

= 11: s_; 1(x) dN (x) - 1: Sy- 1(x) dN (x) I 
=o; sup /S; 1(t) - s; 1(t)/N(T), O=St=S T. (3.2) 

Os1,,;T 

The Glivenko-Cantelli lemma, combined with uniform 
continuity of g(x) = x- 1 in the interval [Sv(T), 1], implies 
strong Qniform convergence of Sy- 1 to Sy-i on (0, :ZJ This 
fact, along with strong convergence of N(T) to E[N(T)] 
(by the strong law of large numbers), forces the second 
term in (3.1) to converge to 0 w. p. l. 

We now demonstrate that the third term on the right 
side of (3.1) converges strongly to 0. We note that the 
desired result is analogous to a well-known convergence 
theorem for Riemann-Stieltjes integrals, and we approach 
its proof in the usual way. For each integer k ;:::: 1, let to.k 
=S tl.k =S ··· =o; tu be a partition of the interval (0, t), and 
assume that max1,,;sk/t;.k - t;-1.k/- 0 ask- oo. Using the 
uniform continuity of S; 1 in the interval [O, t] and the 
finiteness of EN(t), it can be shown via the Moore-Osgood 
Theorem (see Olmsted 1959, p. 313) that w. p. 1, 

lim lim g(k, m) = lim Jim g(k, m), • (3.3) 
m-"'':N k-+x, k-+Xi m-+Xi 

where 

k 

g(k, m) = 2: sy- 1(ti.k) [N(ti.k) - N(t;-1.k)]. 
i=l 

Invoking Lemma 2.1, (3.3) may be rewritten as 

lim 11 S_; 1(x) dN (x) = R(t) w. p. 1, 
m-+"' 0 

(3.4) 

establishing the strong convergence of R to R on (0, T]. 
By virtue of the relationship F(t) = 1 - e-R(t), we also 
have that P- F w. p. 1 on (0, T]. Moreover, it follows 
from a lemma by Chung (1974, p. 133) that this conver­
gence is uniform on (0, T]. Using the continuity of F, one 
may choose T sufficiently large to ensure that both sup1,,r 
/F(t) - F(t)/ and sup1,,r/F(t) - F(t)/ are bounded by an 
arbitrarily small e > 0. Thus the uniform strong conver­
gence of ft to F obtains on the entire real line. 
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We now turn to the development of the large-sample 
distribution theory for F. We first establish the weak con­
vergence of the normalized hazard-function process {m112 
(R(t) - R(t)) : Os ts 7}, where T < oo is such that F(n 
< 1. Let D[O, T] be the space of right-continuous functions 
on [O, T] with left-hand limits, and let D[O, T] be equipped 
with the Skorohod topology (see Billingsley 1968, chap. 
3). Using the result from Lemma 2.2 and the fact that 
uniform convergence in [O, T] implies convergence in the 
Skorohod topology, we see that the processes {m112(R*(t) 
- R(t)) : Osts 7} and {m112(R{t) - R(t)) : Os ts 7} have 
the same limiting distribution, which is identified in the 
following theorem. 

Theorem 3.2. Let F be as in Theorem 3.1, and let T 
< oo satisfy F(T) < 1. Then, the process m112(R* - R) 
converges weakly to a zero-mean Gaussian process Z, with 
convariance structure given by 

rs/\t 
cov(Z(s), Z{t)) = Jo s;1(x) dR (x), 0 s s, ts T. 

(3.5) 

Remark. Theorem 3.2 is proven in detail in Whitaker 
and Samaniego {1988). An outline of the proof is as fol­
lo~s. Define Um = m112(Fy - Fy) and Vm = m112(N -
EN). The sequence of distributions induced by {(Um, Vm)} 
is shown to be tight, and the weak convergence of this 
sequence to a bivariate Gaussian process Z is established. 
Using the integral representations of the hazard functions 
R and R* in (2.12) and (2.15), it is then shown that 
m112(R* - R) converges weakly to a zero-mean Gaussian 
process. We demonstrate the applicability of theorem I.2 
of Anderson and Gill (1982) in our context, and derive 
the covariance structure of the limiting process from that 
result. 

Using the aforementioned result, we apply the o method 
to identify the limiting distribution of P. Since m112(F -
F) = m112(e-R - e-A), we apply the Taylor expansion e-Y 
- e-x = e-x(x - y) + ie-'(x - y)2,wherezliesbetween 
x and y, to get 

m112(F - F) = m112e-R(R - R) 

+ ! m112 e-R(R - R)2 

= m112 S(R - R) 

+ ! m 112 e-R(R - R)2, (3.6) 

where R(t) lies between R(t) and R(t)for Os ts T. The first 
term on the right side of (3.6) converges weakly to Z*(t) 
= S(t)Z(t), a zero-mean Gaussian process. To get weak 
convergence of m112(F - F) to Z*, it remains to be shown 
that the second term on the right side of (3.6) converges 
to 0 in the supremum metric on [O, T], w. p. 1. This follows 
since the process m- 112e-R converges to 0 in probability 
uniformly on [O, T], and the process [m112(R - R)]2 con­
verges weakly to V(t) by Theorem 3.2. Since, w. p. 1, 
for each realization of the sequence Yt> Y2, ... the in­
equality Y(m-t) > Tis satisfied form sufficiently large, this 
proves the following theorem. 
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Theorem 3.3. Let F be as in Theorem 3.1, and let T 
< oo satisfy F(T) <1. Then the random process {m112(F -
F) : Os ts 7} converges weakly to a zero-mean Gaussian 
process Z*(t) with covariance given by 

S(s)S(t) J:/\1sy-1(x) dR (x), Os s, ts T. (3.7) 

4. DISCUSSION 

In Section 2, we identified two simple competitors to 
the neighborhood nonparametric MLE as estimators of 
the survival function S of the Brown-Proschan model. We 
can now compare the performance of these three esti­
mators in detail. Led1 = 1 - Fm, whereFmistheempirical 
cdf of "new lifetimes," that is, the m interfailure times 
including the first failure time and the interfailure times 
f?llowing each perfect repair, and let S2 = S~tm, where 
Fy is the empirical cdf of the times between successive 
perfect repairs. 

We denote the neighborhood MLE of S by S3. Because 
Fm and P.v are empirical distributions, the asymptotic dis­
tributions of S1 and S2 can be obtained by standard meth­
ods. For i = 1, 2, m112(S;(t) - S(t)) converges in law to 
a normal random variable with mean zero and asymptotic 
variance AV(S;), where 

AV{S1) = S(t){l - S(t)) (4.1) 

and 

1 
AV(S2) = 2 s2-P(t){l - SP(t)) - (1 - p )S2(t)R2(t). 

p 

(4.2) 

From Theorem 3.3 and Proposition 1.1, we identify the 
large-sample variance of S3 as 

1 it - S2(t) Sy- 1(x) dR (x) 
m o 

1 fl = - S2(t) u-p-I du 
m S(t) 

1 = - s2-P(t){l - SP(t)). (4.3) 
mp 

From (4.3), we obtain the approximate standard error of 
S3(t), 

asJ(r) = (mp)-112 si-pl2(t)(l - .9)(t))ll2, (4.4) 

an expression useful in forming approximate confidence 
intervals for S(t) when m is large. Using the previous 
computations, we examine the asymptotic relative effi­
ciency (ARE) of S3 with respect to the two competitors, 
and show that s3 is superior to both. In comparing S3 with 
S 1' we obtain 

(4.5) 

The inequality ARE{S3/S1) ;;;::: 1 is a consequence of the 
following lemma. Plotting ARE {S3/ S 1) reveals that the 
superiority of S3 over S1 is strongest when p is small and 
t is in the right-hand tail of the distribution F. 
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Lemma 4.1. For all (x, p) E (0, 1)2, 

p(l - x)/x 1-P(l - xP) > 1. 

Proof. The inequality in (4.6) is equivalent to 

f(x) = x 1-p - x - p(l - x) < 0. 

(4.6) 

(4.7) 
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time. Because Fis continuous, the last interfailure time 
of each system on test is, w. p. 1, a censored observation. 
To keep track of the censored observations, let <5;.i = 1 if 
the jth interfailure time of the ith system is uncensored, 
and <5;.i = 0 otherwise. Under the Brown-Proschan model 
the likelihood function, given (p, F), is 

Foranyfixedp E (0, 1),f(x)isastrictlyincreasingfunction L(p, F) = pm(l _ p)n-m 
for x E (0, 1]. Since f(O) = -p and f(l) = 0, we have 
f(x) < 0 for x E (0, 1). 

The estimators S3 and S2 admit to a similar comparison. 
The inequality ARE(S3/ S2) ~ 1 may be reduced to the 
fact that the function g(x) = 1 - xP - p 2xP(ln x)2 is 
positive for all (p, x) E (0, 1)2, a result that is easily 
established using arguments similar to those in the proof 
of Lemma 4.1. 

We now turn to extensions of the results derived in 
Section 3. A generalization of the BBS model was intro­
duced by Block et al. (1985). The BBS model stipulates 
that on failure at age t the system is repaired perfectly 
w. p. p(t); otherwise, repair is imperfect. Thus Z; I X; = 
tis a Bernoulli variable with parameter p(t), where X; is 
the system age at the ith failure. The parameter to be 
estimated is the pair (p(·), F). 

To get a meaningful estimator of (p, F) in the BBS 
model, we need to ensure that the number of observable 
perfect repairs can grow to infinity. This is guaranteed by 
the condition 

{"' p(y) dR (y) = + oo, 
Jo 

(4.8) 

which Block et al. (1985) showed is equivalent to Pr(Y1 

< oo) = 1. Hereafter, we assume that the parameter pair 
(p(·), F) satisfies (4.8). The likelihood of observing T = 
t and Z = z [or equivalently X = x and Z = z, given 
(p(·), F)], is obtained by successive conditioning, as in 
Section 2. 

n 

L(p(·), F) = TI p(x;)'•(l - p(x;))l-z, 
i=l 

x fI t(x;) 
S(x )J-z,_ 1 ' 

i=l i-1 

(4.9) 

where x0 = 0, z0 = 1, and S = 1 - F. 
It is evident from ( 4. 9) that the neighborhood MLE 

(p(·), F) of the parameter pair (p(·), F) is given by ft= 
1 - S, where S is displayed in (2.9), and any function 
p:[O, oo) - [O, 1] for which p(x;) = Z; (i = 1, ... , n). 

Assuming suitable regularity conditions, the asymptotic 
properties of ft under inverse sampling from the BBS 
model are identical to those of Funder the BP model; that 
is, the strong uniform consistency of ft and the weak con­
vergence of m 112(F - F) to a zero-mean Gaussian process 
are also valid for the BBS model. Whitaker (1985) dis­
cusses the use of other approaches (including logistic 
regression) for estimating p(·) (see Cox 1969). 

Results similar to ours may be developed for alternative 
sampling schemes. Consider, for example, renewal testing: 
Put k new systems on test, observing each for r units of 

x Ilk nll,-1 f(x;.i) S(x;.n) 
S( )1-z S( )J-z. ' ·-1 '=I X· ·-1 1.1-J X· l.111-I 

I- J l,j 1.n1_1 

(4.10) 

where X;.i is the age of the ith system just prior to the jth 
failure (x;.o = O); z;.i is 1 or 0 if the ith system is repaired 
perfectly or imperfectly at the jth failure (z;.o = 1); n; -
1 is the number of observed failures of the ith system; n 
= L7= 1 (n; - 1); and mis the observed number of perfect 
repairs, that is, m = Lf= 1 L}-'-\ 1 z;.i· To keep notation 
consistent, X;.n, represents the age of the ith system at the 
renewal-testing time horizon r rather than the age at an 
actual failure time. Also, define z;. 11 , = 1 for l-::5i-::5k. The 
likelihood ( 4.10) can be rewritten as 

L( F) = m(l - )11-m . Ilk Iln, f(xi.i)'l•.1S(x;.i)l-c\., . 
p, P P S( )1-z 

i=l j=I Xi.j-1 ,,,-I 

Let X(J)• x<2l, ... , x(n+kl be the order statistics of x;.i 
(l-::5i-::5k, l-::5j-::5n;) and Z(l)' ... , Z(n+k) and <5ol' <5(2)• ... , 
<5<n+kl be the induced order statistics of the Z;,/s and the 
<5;Js. Then, 

L( F) = m(l - p)n-m . nll+k f(xui)ouiS(xul)1-h,,i 
p, p . S(x. )l-zc,-1i ' 

1= I (1-l) 

where x(o) = 0 and Z(o) = 1. The neighborhood MLE for 
(p, F) is given by p = min and 

[ 2:;:/- 1 Zrn ]JUl 
S(t) = II -"-n-+k---1 ---

1;1x,,i"''1 L..ij=i z(j) + 1 
(4.11) 

Under this renewal-testing sampling scheme, nonpara­
metric estimation for F, in the special case when the in­
terfailure times of each system are iid with distribution F, 
was studied by Gill (1981). He showed that as k - oo, 
k 112(F - F) converges weakly to a zero-mean Gaussian 
process. The Brown-Proschan model with p = 1 corre­
sponds to the iid setting. When p = 1, the estimator ft in 
( 4.11) reduces to the product limit estimator considered 
by Gill. For system lifetimes governed by the Brown­
Proschan model, one may establish the weak convergence 
of the process {k 112(F - F) I 0-::5t-::5 T}, where F(T) < 1, 
to a zero-mean Gaussian process. Details of this devel­
opment are given in Whitaker (1985). 

[Received August 1986. Revised August 1988.J 
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