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Abstract

An enhanced cascading failure model integrating data mining technique is proposed in this paper. In order to
better simulate the process of cascading failure propagation and further analyze the relationship between failure
chains, in view of a basic framework of cascading failure described in this paper, some significant improvements in
emerging prevention and control measures, the subsequent failure search strategy as well as the statistical analysis
for the failure chains are made elaborately. Especially, a sequential pattern mining model is employed to find out
the association pertinent to the obtained failure chains. In addition, a cluster analysis model is applied to evaluate
the relationship between the intermediate data and the consequence of obtained failure chain, which can provide
the prediction in potential propagation path of cascading failure to reduce the risk of catastrophic events. Finally,
the case studies are conducted on the IEEE 10-machine-39-bus test system as benchmark to demonstrate the
validity and effectiveness of the proposed enhanced cascading failure model. Some preliminary concluding remarks
and comments are drawn.

Keywords: Cascading failure, Emerging prevention and control measures, Subsequent search strategy, Sequential
pattern mining, Cluster analysis
Introduction
In recent years, many blackouts occurred around the
world due to the increasing complexity and immensity
of modern power systems. So far, there have been over
10 large-scale blackout events, such as the US-Canadian
blackout of August 14th, 2003 [1], the UCTE blackout
of November 4th, 2006 [2], the blackout in Brazil power
grid on November 10th, 2009 [3], the India blackouts of
July 30 and July 31, 2012 [4] etc., occurred since 2000. It
has been generally acknowledged that the cascading fail-
ure is one of the main root causes which leads to the se-
vere blackout events.
Several kinds of theories and methods have been pro-

posed to investigate cascading failure: some of them are
based on self-organized critically (SOC) theory, includ-
ing the OPA model [5], which considers the SOC of the
growth of load demand and power supply, the CAS-
CADE model [6, 7], which simulates cascading failure
from initial disturbance and load growth, and the
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branching process model [8] etc.; some theories based
on network topology analysis [9–12], which analyze cas-
cading failure through distinguishing the topological fea-
ture of power system, like small-world network, scale-
free network and so on; pattern search strategy [13–19],
which aims to reveal cascading failure directly through
searching failure chains in accordance with previously
given strategy, etc. Among these pattern search strat-
egies, the traditional ways can already simulate the
process of cascading failure to a certain extent. However,
some problems disclosed from important procedures
make them hard to fully reflect the actual process and
reaction of cascading failure. Firstly, the emerging pre-
vention and control measures applied in traditional
models only consider one means commonly, and the op-
erability of measures taken is usually poor. Besides, the
restriction of subsequent failure search is quite strict as
well as some key factors are not considered, like the dur-
ation time of overload state and the distance to previous
failures. What’s more, the obtained data from the statis-
tical methods can only describe some basic characteris-
tics of cascading failure to some extent. However, some
key information such as the correlation between the
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former event chain and the subsequent one is difficult to
be revealed. At the same time, data from intermediate
process in cascading has not been used at all. Therefore,
it is imperative for the inherently existed and generated
data during cascading failure analysis to be explored and
exploited elaborately further.
In this paper, an enhanced cascading failure model is

proposed. In this model, a new kind of emerging preven-
tion and control measures considering both effect and
operation are proposed to make sure these actions close
to practical situation as could as possible. Additionally,
an improved subsequent search strategy including over-
load failure and hidden failure is introduced to search
failure more realistically. Especially, a kind of sequence
pattern mining model is employed to analyze the
obtained failure chains comprehensively, from which the
association of failure lines can be obtained. Besides, a
kind of cluster analysis model is employed to analyze
the relationship between the intermediate data and
the result data. These relationships obtained are
beneficial to cascading failure predictions. Finally
based on IEEE 10-machine-39-bus test system, the
simulations are conducted to demonstrate the effect-
iveness of the proposed model. The relevance of cas-
cading failure is also analyzed as well as some useful
information is drawn.
The rest of the paper is organized as follows: In

Section 2, the basic framework of cascading failure
search is introduced. The detailed enhanced cascading
failure model, including emerging prevention and con-
trol measures, subsequent failure search strategy and
data mining technique (including sequential pattern
mining model and cluster mining model) is discussed in
Section 3. The case studies with different simulation sce-
narios are carried out in Section 4. Finally, conclusions
can be found in Section 5.

Basic framework of cascading failure
In order to simulate the specific processes of cascad-
ing failure, a basic model of cascading failure [13–18]
is introduced in this paper. The basic model mainly
includes 3 parts, which are initial line outage, emer-
ging prevention and control measures and subsequent
failure search, respectively. The flowchart of this
model is shown in Fig. 1, and the detailed procedures
are described as follows:

1) Initial line outage: Set a line as an initial failure
chain under normal operating condition. The initial
outage line can be generated randomly or set
specifically.

2) System partition and power flow calculation: Divide
the system into several sub-regions based on current
network topology and choose these regions which
can operate independently. Calculate power flow in
each region.

3) Emerging prevention and control measures: If the
power flow calculated in any sub-regions diverged,
the stability measures are activated, the most com-
mon of which is load shedding. Currently, the widely
used load shedding methods mainly involve overall
load shedding strategy [14] and under specific volt-
age load shedding strategy [15].

4) Blackout judgement: Calculate load losses of the
whole test system. If all loads are lost, the search is
stopped. That means a blackout event occurred.

5) Subsequent failure search: Identify and determine
whether there exist the subsequent failures,
including overload failure and hidden failure. If there
are no failures, stop searching.
a) Overload failure: Choose part of the overload

lines as failure lines in the next layer.
b) Hidden Failure: A kind of failures existed in

protection system, commonly these lines near
failures in the previous layer are more likely to
be selected [18, 19].

6) Cascading failure record: Record this search process
when it has been finished. Conduct the statistical
analysis pertinent to the simulation results.

Discussion and Methods
Based on the aforementioned basic framework of cas-
cading failure, an enhanced model is proposed in this
section. Compared with the basic model, the corre-
sponding improvements mainly focus on emerging pre-
vention and control measures, subsequent failure search
strategy and results analysis.

Emerging prevention and control measures
In this paper, both load shedding and generator tripping
are considered during analysis. For the situation of
power flow diverged, the generator tripping or load
shedding strategy will be activated, and the correspond-
ing strategy selection is due to the total generation out-
puts and loads. These two strategies are both based on a
kind of power flow tracing technique [20]. Given that
the applied stability and control measures for the two
strategies are similar, here only the load shedding strat-
egy is taken as the example to illustrate the implementa-
tion details.
Power flow tracing technique is an effective method to

obtain the relationship between power sources and
loads. Through this method, the source generations and
destination loads of failure lines can be distinguished
and the specific influence degree can be calculated,
which is significant to specify the influenced nodes.
In the proposed load shedding strategy, the power flow

tracing technique is used to find such nodes which are



Fig. 1 Flowchart of cascading failure framework
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influenced by the failures positioned in previous layer,
and an index named “Degree of Failure Impact (DFI)” is
defined to evaluate the degree of influence:

DFI ¼ ω1
P
Pl

þ ω2
P
Pf

ð1Þ

where P and Pl are the influenced load power and
the current load power of studied node respectively;
Pf is the total load power of the previous failure line;
ω1 and ω2 are coefficient values related to power
system. They can be determined by using variation
coefficient method. It can be seen that the physical
meanings of Eq.(1) denotes the proportion of the in-
fluenced load power accounted for by the total
amount of load power and all influenced load powers
of the studied node, respectively.
In this strategy, if the DFI index of a node reaches
a given threshold, the “influenced node” will perform
load shedding firstly. All nodes will be divided into
several groups according to the DFI level, and such
group with lager value of DFI will perform load shed-
ding firstly. After performing load shedding for all in-
fluenced nodes, the under specific voltage load
shedding strategy will be applied for remaining nodes.
In addition, considering the reactions of actual power

system, the action of load shedding should be divided
into several rounds instead of shedding all loads once.
Operations in each round have exactly the same form,
and the detailed procedures shown in Fig. 2 can be de-
scribed as follows:

1) Subgroup: Divide load nodes into groups
according to DFI value from large to small at
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regular intervals, the first of which is defined as
the current “Shedding Group”.

2) Shedding load: For nodes in the current
“Shedding Group”, perform the load shedding
strategy as a preset proportion and calculate
power flow. If the power flow is still diverged, go
to 3), else go to 4).

3) Change Shedding Group: Check whether all
groups in this round have finished the load
shedding, if so, go to the next round and set the
first group as the current “Shedding Group”, if all
rounds are over but the system is still diverged,
that means this sub-region collapses, go to 4); if
not, change the next group as the current
“Shedding Group”, continue to 2).

4) Record: Save load shedding record, stop process.
Fig. 2 Flowchart of the proposed load shedding strategy
In our work, total 3 rounds are set, proportion of
which are 50, 30 and 20%, respectively, and the load
shedding has a 5% minimum restriction at each time
period. In each round, the load shedding will be per-
formed according to the order mentioned above until
the power system returns to the normal operating
condition.
The corresponding simulation results can prove the ef-

fectiveness of this proposed strategy. For example, re-
garding the obtained failure chain l1, l14, l44, l26, l6, l7
and l8 in IEEE-39 test system, if using under specific
voltage load shedding strategy, the load losses will be
1138.2 MW, while when using the proposed load shed-
ding strategy, the load losses are only 446.5 MW.
Besides, the stability of power system is also improved.
For the previous example, the voltage variance after
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shedding load is used to evaluate the system stability,
and the value when using the proposed strategy is only
10% of the value when using under specific voltage load
shedding strategy.

Subsequent failure search strategy
In most conventional cascading failure models, the num-
ber of failure lines in the same layer is mainly restricted
to 1 or 2. However the number of failures occurred at
the same time is uncertain. Considering the actual black-
out events, the number of failures occurred at the same
time is still limited. Hence in this section only the prob-
ability of failure lines is discussed. The number of fail-
ures in the same layer can be restricted to an
appropriate number according to the needs of the stud-
ied power system.
In this model, if the number of failures in the

same layer is restricted, the failure lines can be se-
lected according to the probability sorted in de-
scending order. When the number of selected lines
reaches the restriction or all possible lines are de-
cided whether they are selected, the procedure of
failure line selection is stopped.
For the overload failure, an index named “Line Load

Ratio (LLR)” is defined to evaluate the degree of
overload:

LLR ¼ Tlo=Tlr ð2Þ

where Tlo and Tlr are the normal and rated transmission
power of studied line respectively.
In the conventional models, only the degree of over-

load in the current layer is considered during analysis. In
fact, the possibility of overloading for line is closely re-
lated to both the overload degree and the duration time
of overload. In this case the following piecewise function
is proposed to describe the overload probability:

Pn ¼
Pn−1 þ 0:2 L0≤LLR≤L1
Pn−1 þ 0:4 LLR≥L1
0 LLR≤L0

8<
: ð3Þ

where Pn is the overload probability of the n-th layer
(The initial P0 is 0, and if Pn is greater than 1, the failure
occurs certainly), and L0 and L1 are LLR thresholds re-
lated to the system. In such way it can be seen that the
overload possibility increases with the increase of over-
load time.
For hidden failure, in the enhanced model, the power

transfer will be taken into account to extend the possible
line selection.
In regard to the distance, considering a line which

may be near several previous failures, an index named
“Equivalent Distance (ED)” is defined as:
ED ¼ 1
1
D1

þ 1
D2

þ⋯
ð4Þ

where D1 and D2 are the distances between the line and
failures nearby (only such distance which is less than 3
is considered).
Here an example as shown in Fig. 3 is given to explain

the equivalent distance. Suppose that the previous line is
line 3–5 and line 1–2 (which is marked with thick line
in Fig. 3). Accordingly the equivalent distance of line 2–
3 is 1/2 and the equivalent distance of line 4–5 is 2/3.
The shift amount of power flow is used to evaluate the

degree of power transfer as given in following:

S ¼ P−Pnormj j
Pnorm

X ð5Þ

where P and Pnorm are the power flows of the current
and previous layer. Considering the power system (espe-
cially for the studied line) will be affected much more
when the power flow increases. The coefficient of power
flow change X is introduced. In this model, it will be 2
when the power flow increases and 1 when the power
flow decreases.
The final probability is defined as the ratio of shift

amount of power flow to the equivalent distance. It is
also be restricted to an upper limit Phm considering hid-
den failures.

Ph ¼ S
ED

ð6Þ

Sequential pattern mining model
As mentioned above, the conventional statistical
methods for the simulation results are hard to reveal
some key information. In this paper, the sequential pat-
tern mining technique [21] will be employed to analyze
the failure chains.
Sequential mining technique is a kind of association

analysis, which is mainly used to find sequential pat-
terns. By sorting all the events associated with an object
in increasing order of their timestamps, a sequence for
the object is obtained.
Actually, the failures have time sequence. Therefore in

this model, the failure chains are thought to be se-
quences so that the sequence pattern mining technique
can be introduced.
Subsequences obtained are usually measured in terms

of their support and confidence. For subsequence X-Y
(that means failure line X will trigger failure line Y),
support determines how often this subsequence ap-
pears, while confidence determines how frequently this
subsequence appears in failure chains that contains line
X. Considering actual situation of cascading failure, the



Fig. 3 Example system to illustrate the equivalent distance
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confidence value will be mainly employed to measure,
while the support value will be used to make sure that
the number of studied subsequence will not be less.
The traditional confidence value can be defined like

following:

Cij ¼ Nij=Ni ð7Þ

where Cij is the confidence value of subsequence i-j, Nij

and Ni are the appearance number of this subsequence
and line i.
Considering the propagation process of cascading fail-

ure, this subsequence cannot happen in some cases of
which line j has already in failure chains before failure
line i occurs. After removing this situation, the associ-
ation probability of a subsequence is proposed to evalu-
ate the correlation of lines:

Pij ¼ Nij=Ni
0 ð8Þ

where Ni
’ is the appearance number of line i after remov-

ing this situation.
In order to evaluate the losses of related lines, an

index named “Sequence Load Loss (SLL)” is defined as
the average load loss of failure chains which include the
studied sequence. This proposed index can help to iden-
tify some key sequences.
In addition to the conventional sequence pattern

search, the relation between subsequences and results is
also be researched. Here, a kind of result relation search
strategy is proposed. After classification, the load loss
will be added to the sequence as the last sub-item so
that the relation can be revealed directly.

Cluster analysis model
In data analysis of cascading failure, a large part of data
is ignored actually, which mainly involves the intermedi-
ate data. In this paper, the cluster analysis technique [21]
will be employed to analyze the relationship between the
intermediate data and result data.
Cluster analysis groups data objects based only on
information found in the data that describes the
objects and their relationships. This technique can
group and evaluate data without knowing possible re-
lationship in advance.
For data of cascading failure, the relationship be-

tween the intermediate data and result data cannot be
obtained in advance. Through using cluster analysis
technique, this kind of relationship can be found and
evaluated.
Firstly, all studied data should be determined. For the

result data, the load loss amount can be determined ab-
solutely. For the intermediate amount, in this paper the
indices which are related to a single failure layer are
considered. Here, the load loss, the offset of low voltage
and the shift amount of power flow of a single layer are
introduced to evaluate its state.
The load loss of a single layer is the difference of

remaining load between the previous layer and the stud-
ied layer:

PLi ¼ Pi−1−Pi ð9Þ
where Pi is the remaining load of the i-th layer (The ini-
tial P0 is the load of the initial state).
The offset of low voltage is used to measure the degree

of low voltage in the studied power system:

UOi ¼
Xn
i¼1

ΔUi ð10Þ

where n is the number of nodes operated currently, and
ΔUi is the offset of low voltage to a single node, which is
defined as: (expressed in p.u. value)

ΔUi ¼ 0 Ui≥0:95
0:95−Ui Ui < 0:95

�
ð11Þ

The shift amount of power flow in a single layer is the
sum of shift amount in all operated lines which are
positive.



Table 1 Simulation parameters

Parameter L0 L1 Phm

Value(p.u.) 1.3 1.6 0.3

Fig. 4 Overall statistics of failure chain groups
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Secondly, the method of cluster analysis should be de-
termined. In this model, the agglomerative hierarchical
clustering method will first be used to determine the
number of clusters and initial centroids, and K-means al-
gorithm will be used to implement the classification in
detail. Consider that the result of K-means algorithm is
related to initial centroids, the program will be run re-
peatedly and the optimal solution will be chosen from
multiple initial centroids.
Finally, the clusters obtained need to be evaluated.

Commonly the silhouette coefficient, which combines
both cohesion, and the separation is used. The silhouette
coefficient can evaluate an individual point in terms of
its closeness to its cluster. In this model, the average
value of silhouette coefficients of all nodes is used to
evaluate cluster results, and the number of larger silhou-
ette coefficients is also a good reference.

Case studies
In this paper, the simulations are carried out on IEEE
39-bus test system, which contains 10 generators, 46
lines and 19 loads of 6150.1 MW, to illustrate the
effectiveness and validity of the proposed enhanced
model. The corresponding simulation parameters are
listed in Table 1.
In order to reveal the effects of layer failure restric-

tion, 2 similar simulation scenarios named S1 and S2
are designed. In S1, only one overload failure and one
hidden failure are studied in failure chains, while in
S2 the number is set to be 3. Considering the actual
propagation of cascading failure, in S1 and S2, the
upper limit of failure layer is limited to 6 and 5,
respectively.
Total 10,000 trials are conducted in these 2 simulation

scenarios and some meaningful conclusions can be
drawn with following analysis results.

Results
Total 20,000 failure chains are searched based on
simulation scenarios S1 and S2. In this paper, there
are 3 groups divided according to load losses: failure
chains with no load losses are called as A-chain; fail-
ure chains leading to load losses (except for black-
outs) are called as B-chain; while failure chains
leading to blackouts are called as C-chain. The overall
statistical results are shown in Fig. 4. (groups marked
with blue color are results from S1, while marked
with read color are results from S2, hereinafter the
same).
From Fig. 4, it can be found that the results from

S1 and S2 are similar, which indicate that the failure
chain group is not related to layer failure number.
Additionally, most chains belong to B-chain while a
few chains belong to C-chain. Such results are
consistent with the actual situation as the blackout
events are hard to occur.
Statistical analysis
In order to analyze the failure chains in detail, the statis-
tical analysis is used to obtain the basic information of
failure chains. From this section, only failure chains be-
longing to B-chain and C-chain are considered for the
statistical results.
Firstly, the load losses caused by failure chains are

counted in Fig. 5. From Fig. 5, it can be seen that the
results from S1 and S2 are different: the load loss
proportions in S1 are mainly from 10 to 30%; while
in S2, the corresponding proportions are mainly from
30 to 50% and even excess over 50%. This kind of re-
sults show that the layer failure number has a certain
impart on load losses.
Besides, the statistical analysis results pertinent to

failure type are listed in Table 2. From the table, it
can be seen that the layer numbers of most failure
chains reach the restriction. What’s more, the severe
accidents are likely to cause more failures in a layer,
especially for the hidden failures. This is consistent
with the actual situation.
Sequence pattern mining analysis
In this section, the association probability and index SLL
as mentioned above are used to identify the related lines
and evaluate the corresponding losses respectively. Only



Table 2 Statistical data pertinent to failure type

Item Value

S1 S2

Averge layers of failure chains 5.873 4.933

Average number of overload failure in a layer of
failure chains

0.931 1.984

Average number of overload failure in a layer of
failure chains whose load losses are over 50%

0.978 2.240

Average number of hidden failure in failure chains 0.936 2.546

Average number of hidden failure in failure chains
whose load losses are over 50%

0.959 2.648

Average number of hidden failure in failure chains
whose load losses are over 90%

0.965 2.767
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when association probability is greater than 0.5, the sub-
sequence can be thought as related lines.
Here two cases involving the hidden failure as a

kind of failure and the normal failure are studied dur-
ing analysis. For the first case, the association prob-
ability is set to 0.4. Some simulation results are given
in Tables 3 and 4, respectively (“I” denotes the initial
failure, “O” denotes the overload failure, “H” denotes
the hidden failure).
From Tables 3 and 4, it can be seen that various

kinds of related lines can be found, including the fail-
ures in different layers, even in multiple layers, and
all types of failures including initial failure, overload
failure and hidden failure can be found in Case 1. In
addition, the related failures from S1 and S2 show up
some differences, however they are generally consist-
ent. Besides, the association probability and the se-
quence load loss obtained from related failures can
help to identify the importance of sequences. For ex-
ample, the failure chain 44(I)-22(O) in S1 should be
handled most carefully from Table 3.
On the other hand, the sequence pattern mining

method can also be performed according to special
needs. For example, suppose that the hidden failure
of line 10 is very important in failure chains. In order
to get more information of this failure, the chains
containing this failure can be analyzed specially. It
can be found that the sequences 3(I)-9(H), 10(H)-
5(O), 37(H) appear frequently when the failure 10(H)
happens. This kind of conclusion has a certain guid-
ance in making counter-measures to the blackout
events.
Finally, the simulation parameters given in Table 1 are

changed to further verify this sequence pattern mining
model. Parameters L0, L1 and Phm are changed to 1.4,
1.8 and 0.2 so that the failures are hard to occur. The se-
quence pattern mining analysis results show that the
most related lines whose relevancy is high are still kept,
like sequence 46–6, 1–14, etc. The association
Fig. 5 Statistics of load loss in failure chains
probability of some disappeared lines, like 20(H)-26(O),
is not high originally. We can conclude that the related
failure lines which have strong correlation are not af-
fected by the simulation parameters.
Cluster mining analysis
In this section, the layer whose load losses are the high-
est is chosen to conduct the analysis.
Firstly, the layer number of the chosen layer is ana-

lyzed, and it can be found from results that the higher of
the layer number, the more the selected times. This re-
sult shows that the cascading failures are more likely to
evolve the serious condition.
Before starting clustering analysis, the data obtained

should be pretreated. In our work, the normalized
method is used. For the convenience of subsequent
analysis and emphasizing the importance of final
chain results, the final load loss results are divided by
1000 directly. In this paper, the silhouette plot is used
to describe the simulation results. The cluster analysis
results from S1 and S2 are given in Figs. 6 and 7
respectively.
Table 3 Partial results of related lines (Case 1)

Related Failures P SLL/MW Source

1(O)-14(O) 0.678 1535 S1

44(I)-22(O) 0.995 2202 S1

44(I)-16(O)-22(O) 0.833 2017 S1

44(I)-22(O) 0.982 3789 S2

20(H)-26(O) 0.434 1704 S1

20(H)-26(O) 0.432 3034 S2

1(O)-30(O) 0.459 2792 S2

6(O),5(H)-14(O) (compared with 6(O),
5(H) in same layer)

0.561 1744 S1



Table 4 Partial results of related lines (Case 2)

Related failures P SLL/MW Source

46–6 0.848 1644 S1

46–6 0.809 3034 S2

9–19 0.551 1706 S1

9–19 0.649 2778 S2

1–14 0.657 1368 S1

1–14 0.608 2867 S2

42-19-14(compared with 42–19) 0.702 3958 S2

Fig. 7 Cluster analysis results from S2
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From Figs. 6 and 7, it can be found that most points
studied are suited to their clusters. In fact, the silhouette
values of nearly half of points reach 0.8, and over 75%
points reach 0.6. These results show that there exists a
strong relationship between the layer of the highest load
losses and the whole failure chain. The cluster results
from S1and S2 are similar, which show that this relation-
ship is not related to simulation sets.
Besides, the cluster centers should also be paid atten-

tion. In this paper, taken S2 as an example, The coordi-
nates of 5 centers are shown in Table 5.
From Table 5, it can be found that the higher of the

final load losses, the higher of intermediate amount of
the studied layer.
The sequence pattern mining analysis and the cluster

mining analysis show that the interiors of cascading fail-
ures have some relevance. This kind of relevance can
provide some useful suggestions and guidance for the
prevention and cure of cascading failure.

Conclusion
An enhanced cascading failure model integrating data
mining technique is proposed in this paper. Some
Fig. 6 Cluster analysis results from S1
significant improvements including the emerging pre-
vention and control measures and the subsequent fail-
ure search strategy are proposed to try to simulate
the actual situation. Furthermore, a sequence pattern
mining model and a cluster mining model are applied
to make the anatomy of the failure chains deeply and
comprehensively. By performing simulations on IEEE
39-bus test system, some related failure lines are ob-
tained based on the proposed model and method.
The relationship between the layer of the highest load
losses and the whole chains is studied and analyzed.
Additionally, some useful conclusions are drawn, in-
cluding that the proposed emerging prevention and
control measures can decrease load losses and im-
prove system stability, and the severe failure chains
are more likely to involve much more hidden failures.
Comparative analysis shows that the related failure
lines and the cluster relationships are not influenced
by simulation parameters. Future work is under way
to further improve the proposed enhanced model.
Table 5 Coordinates of cluster centers (S2)

Number Layer load
loss

Voltage
offset

Shift amount
of power flow

Final load
loss

1 0.2841 0.0041 0.0086 4.2552

2 0.7150 0.2389 0.0191 5.8845

3 0.2344 0.0037 0.0131 3.2814

4 0.1344 0.0029 0.0058 1.5841

5 0.1907 0.0034 0.0125 2.4884
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