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Abstract
This note aims to present some scalar inequalities and operator inequalities on a
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1 Introduction
Let B(H) be the C∗-algebra of all bounded linear operators on a complex separable Hilbert
space H . I stands for the identity operator. B++(H) denotes the cone of all positive invert-
ible operators on H . As a matter of convenience, we use the following notations to define
the μ-weighted arithmetic mean (AM), geometric mean (GM), and harmonic mean (HM)
for scalars and operators:

a∇μb = ( – μ)a + μb, a!μb =
(
( – μ)a– + μb–)–,

A∇μB = ( – μ)A + μB, A#μB = A


(
A– 

 BA– 

)μA


 ,

A!μB =
(
( – μ)A– + μB–)–,

where a, b > , A, B ∈ B++(H), and μ ∈ [, ]. When μ = 
 , we write a∇b, a!b, A∇B, A#B

and A!B for brevity, respectively.
It is well known that the famous μ-weighted A-G-H mean inequalities hold,

a∇μb ≥ a–μbμ ≥ a!μb (.)

for a, b >  and μ ∈ [, ] with equalities if and only if a = b. The first inequality of (.) is
the classical Young inequality.

An operator version of (.) proved in [] says that if A, B ∈ B++(H) and μ ∈ [, ], then

A∇μB ≥ A#μB ≥ A!μB.
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In recent years, the study of the A-G-H mean inequalities has received increasing atten-
tion in the literature (see [–]).

Zuo et al. (see []) refined the Young inequality with the Kantorovich constant and ob-
tained the following results:

a∇μb ≥ K(h, )ra–μbμ, (.)

where a, b > , μ ∈ [, ], r = min{μ,  – μ}, and h = b
a . In addition, they also refined the

μ-weighted arithmetic-harmonic mean inequality and extended it to an operator version
as follows:

a∇μb ≥ a!μb + r(a∇b – a!b), (.)

A∇μB ≥ A!μB + r(A∇B – A!B), (.)

where a, b > , A, B ∈ B++(H), μ ∈ [, ], and r = min{μ,  – μ}. By (.) and (.), we are
encouraged to investigate whether there exist reverse forms of the μ-weighted arithmetic-
harmonic mean inequality, so we give an affirmative answer to this question in our paper.

Moreover, mixed mean inequalities are also extremely attractive. Sagae and Tanabe []
establish a mixed A-G mean inequality for a finite number of strictly positive operators.
Mond and Pečarić [] establish a mixed A-G and G-H mean inequalities for two noncom-
mutative strictly positive operators as follows: Let A and B be positive invertible operators.
The mixed arithmetic-geometric and geometric-harmonic mean inequalities are valid:

A#(A∇B) ≥ A∇(A#B), (.)

A#(A!B) ≤ A!(A#B). (.)

In this paper, we are concerned with the weighted arithmetic-harmonic, mixed arithme-
tic-geometric and mixed geometric-harmonic mean inequalities. In Section , we present
direct reverse weighted arithmetic-harmonic mean inequalities by the Kantorovich con-
stant and deduce some auxiliary results. In Section , we extend inequalities proved in
Section  from the scalars setting to a Hilbert space operator setting. In Section , we
establish mixed weighted arithmetic-geometric and geometric-harmonic means inequal-
ities for two positive operators which are the refinements of (.) and (.).

2 Reverse arithmetic-harmonic mean inequalities
In this section, we mainly present the direct reverse forms of the μ-weighted arithmetic-
harmonic mean inequality for two positive numbers a, b.

First of all, we recall the classical Kantorovich inequality in [].

Lemma . Let  < a = x < x < · · · < xn = b be given positive numbers, λ,λ, . . . ,λn ≥ 
and

∑n
i= λi = . Then

( n∑

i=

λixi

)( n∑

i=

λix–
i

)

≤ AG–, (.)

where A = 
 (a + b), G =

√
ab are the arithmetic and geometric means, respectively.
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The inequality (.) is the Kantorovich inequality and the number (a+b)

ab is called the
Kantorovich constant. For convenience, we write the Kantorovich constant as K(t, ) =
(t+)

t (t = b
a ), which has the properties K(, ) = , K(t, ) = K( 

t , ) ≥  (t > ), and K(t, ) is
monotone increasing on [,∞), and monotone decreasing on (, ].

When n = , we can get a special form for the inequality (.) as follows.

Proposition . Let a, b >  and μ ∈ [, ]. Then

a∇μb ≤ K(h, )a!μb, (.)

where h = b
a . Equality holds if and only if a = b.

Remark . The inequality (.) is a direct reverse of the μ-weighted arithmetic-
harmonic mean inequality. It is very interesting that by the inequality (.) and (.) we
can get a reverse of Young inequality (it is also a reverse of the inequality (.)):

a∇μb ≤ K(h, )a!μb ≤ K(h, )–ra–μbμ = K(h, )Ra–μbμ, (.)

where a, b > , μ ∈ [, ], r = min{μ,  – μ}, and R = max{ – μ,μ}. Replacing a, b by a–,
b–in the above inequalities, respectively, we have

a–μbμ ≤ K(h, )Ra!μb. (.)

Next, we deduce a direct reverse of the inequality (.) by the following lemma.

Lemma . [] Let xi (i = , , . . . , n) belong to a fixed closed interval I, pi ≥  with
∑n

i= pi =
 and p̄ = max{p, p, . . . , pn}. If f is a convex function on I, then

n∑

i=

pif (xi) – f

( n∑

i=

pixi

)

≤ np̄

[ n∑

i=


n

f (xi) – f

( n∑

i=


n

xi

)]

. (.)

It is easy to see that if we take f (x) = x– in the inequality (.), then we have the following.

Proposition . If x, x, . . . , xn >  and pi ≥  (i = , , . . . , n) with
∑n

i= pi = , then

n∑

i=

pix–
i –

( n∑

i=

pixi

)–

≤ np̄

[ n∑

i=


n

x–
i –

( n∑

i=


n

xi

)–]

, (.)

where p̄ = max{p, p, . . . , pn}.
In particular, when n =  in the inequality (.), we can get

a∇μb ≤ a!μb + R(a∇b – a!b), (.)

where a, b > , μ ∈ [, ], R = max{ – μ,μ}. Equality holds if and only if a = b.

Note that (.) is a reverse of the inequality (.) with a similar form.
The following three theorems are our main reverse forms of the μ-weighted arithmetic-

harmonic mean inequality for scalars.
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Theorem . Let a, b > , and μ ∈ [, ]. Then the inequality

a∇μb ≤ r(a∇b – a!b) + K(
√

h, )R′
K(h, )Ra!μb (.)

holds, where h = b
a , r = min{μ,  – μ}, R = max{μ,  – μ}, and R′ = max{r,  – r}. Equality

holds if and only if a = b.

Proof By the inequalities (.) and (.), firstly, we consider the case μ ∈ [, 
 ],

a∇μb – μ(a∇b – a!b) ≤ a∇μb – μ(a∇b –
√

ab)

= ( – μ)a + μ
√

ab

≤ K(
√

h, )R′
a–μbμ

≤ K(
√

h, )R′
K(h, )Ra!μb.

If μ ∈ ( 
 , ], then we have

a∇μb – ( – μ)(a∇b – a!b) ≤ a∇μb – ( – μ)(a∇b –
√

ab)

= (μ – )b + ( – μ)
√

ab

≤ K(
√

h, )R′
a–μbμ

≤ K(
√

h, )R′
K(h, )Ra!μb.

By the above discussion, for any μ ∈ [, ], the inequality (.) always holds. �

Note that (.) can also be considered as a reverse ratio inequality of (.):

 < a!μb ≤ a∇μb – r(a∇b – a!b) ≤ K(
√

h, )R′K(h, )Ra!μb.

Theorem . Let a, b > , μ ∈ [, ], and h = b
a .

(I) If  ≤ μ ≤ 
 , then

a∇μb – μ(a∇b – a!b) ≤ K(
√

h, )a!μ

√
ab.

Equality holds if and only if a = b.
(II) If 

 < μ ≤ , then

a∇μb – ( – μ)(a∇b – a!b) ≤ K(
√

h, )b!–μ

√
ab.

Equality holds if and only if a = b.

Proof By the inequality (.), firstly, we consider the case μ ∈ [, 
 ], then we have

a∇μb – μ(a∇b – a!b) ≤ a∇μb – μ(a∇b –
√

ab)

= ( – μ)a + μ
√

ab

≤ K(
√

h, )a!μ

√
ab.
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If μ ∈ ( 
 , ], then we have

a∇μb – ( – μ)(a∇b – a!b) ≤ a∇μb – ( – μ)(a∇b –
√

ab)

= (μ – )b + ( – μ)
√

ab

≤ K(
√

h, )b!–μ

√
ab.

The proof is completed. �

Theorem . Let a, b >  and μ ∈ [, ].
(I) If  ≤ μ ≤ 

 , then

a∇μb – μ(a∇b – a!b) ≤ a!μ

√
ab + R′(a∇√

ab – a!
√

ab).

Equality holds if and only if a = b.
(II) If 

 < μ ≤ , then

a∇μb – ( – μ)(a∇b – a!b) ≤ b!–μ

√
ab + R′(b∇√

ab – b!
√

ab).

Equality holds if and only if a = b.

Proof Firstly, we consider the case μ ∈ [, 
 ], by the inequality (.), then we have

a∇μb – μ(a∇b – a!b) ≤ ( – μ)a + μ
√

ab

≤ a!μ

√
ab +  max{ – μ, μ}(a∇√

ab – a!
√

ab).

If μ ∈ ( 
 , ], by the inequality (.), then we have

a∇μb – ( – μ)(a∇b – a!b)

≤ (μ – )b + ( – μ)
√

ab

≤ b!–μ

√
ab +  max{ – μ, μ – }(b∇√

ab – b!
√

ab).

The proof is completed. �

Note that the inequalities proved in Theorem .-. are all the reverses of the inequality
(.).

3 Reverse arithmetic-harmonic mean operator inequalities
In this section, we present the operator versions of these reverse arithmetic-harmonic
mean inequalities proved in Section . The techniques are based on the monotonicity
property of operator functions described in the following lemma (for more details, see
[, ]).

Lemma . Let X ∈ B(H) be self-adjoint operator and if f and g are both continuous func-
tions with f (t) ≥ g(t) for t ∈ Sp(X) (the spectrum of X), then f (X) ≥ g(X) with equality if
and only if f (t) = g(t) for all t ∈ Sp(X).
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Based on Proposition ., we can deduce the operator inequality which is also the non-
commutative Kantorovich inequality proved by Furuta et al. [], but our method is differ-
ent.

Proposition . Let A, B ∈ B++(H) and positive real numbers m, M satisfy  < mI ≤ A, B ≤
MI . Then

A∇μB ≤ K(h, )A!μB, (.)

where μ ∈ [, ] and h = M
m . Equality holds if and only if A = B and m = M.

Proof By the inequality (.), we have

( – μ) + μx ≤ K(x, )
(
( – μ) + μx–)–

for any x > , and hence

( – μ)I + μX ≤ max

h ≤x≤h

K(x, )
(
( – μ)I + μX–)–

for the positive operator X such that  < 
h I ≤ X ≤ hI .

Since  < 
h I ≤ A– 

 BA– 
 ≤ hI and the Kantorovich constant K(t, ) is an increasing

function for t >  and K( 
h , ) = K(h, ), substituting A– 

 BA– 
 for X in the above inequality,

we have

( – μ)I + μA– 
 BA– 

 ≤ K(h, )
(
( – μ)I + μ

(
A– 

 BA– 

)–)–.

Multiplying both sides of the above inequality by A 
 , we can deduce the required inequal-

ity (.). �

We prove an operator inequality obtained by Krnić et al. in [] by a different method.
But our method is more transparent and simpler than the one given in [].

Proposition . Let A, B ∈ B++(H) and μ ∈ [, ]. Then

A∇μB ≤ A!μB + R(A∇B – A!B), (.)

where R = max{ – μ,μ}. Equality holds if and only if A = B.

Proof By the inequality (.), for x >  and μ ∈ [, ], we have

( – μ) + μx– ≤ (
( – μ) + μx

)– + R
[

 + x–


–

(
 + x



)–]
.

For a positive invertible operator T and μ ∈ [, ], it follows that

( – μ)I + μT– ≤ (
( – μ)I + μT

)– + R
[

I + T–


–

(
I + T



)–]
.



Liao and Wu Journal of Inequalities and Applications  (2015) 2015:215 Page 7 of 13

Putting T = A– 
 BA– 

 in the above inequality and multiplying both sides by A 
 , we deduce

the inequality (.). �

Note that, by (.) and (.), we have

 < A!μB

≤ A!μB + r(A∇B – A!B)

≤ A∇μB

≤ A!μB + R(A∇B – A!B).

Based on Theorem ., we have the following.

Theorem . Let A, B ∈ B++(H) and positive real numbers m, M satisfy  < mI ≤ A, B ≤
MI . Then for μ ∈ [, ],

A∇μB – r(A∇B – A!B) ≤ K(
√

h, )R′
K(h, )RA!μB, (.)

where h = M
m , r = min{μ,  – μ}, R = max{μ,  – μ}, and R′ = max{r,  – r}. Equality holds

if and only if A = B and m = M.

Proof By the inequality (.), we have

( – μ) + μx – r
[

 + x


–
(




+



x–
)–]

≤ K(
√

x, )R′
K(x, )R(

( – μ) + μx–)–

for any x > , and hence

( – μ)I + μX – r
[

I + X


–
(




I +



X–
)–]

≤ K(
√

h, )R′
K(h, )R(

( – μ)I + μX–)–

for the positive operator X such that  < 
h I ≤ X ≤ hI .

By a similar process to Proposition ., we can deduce the required inequality (.). �

Note that (.) is a reverse of (.):

 < A!μB ≤ A∇μB – r(A∇B – A!B) ≤ K(
√

h, )R′
K(h, )RA!μB.

Now, we exhibit the operator inequalities based on Theorem . and Theorem ..

Theorem . Let A, B ∈ B++(H) and μ ∈ [, ]. The positive real numbers m, M satisfy
 < mI ≤ A, B ≤ MI and h = M

m .
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(I) If  ≤ μ ≤ 
 , then

A∇μB – μ(A∇B – A!B) ≤ K(
√

h, )A!μ(A#B). (.)

Equality holds if and only if A = B and m = M.
(II) If 

 < μ ≤ , then

A∇μB – ( – μ)(A∇B – A!B) ≤ K(
√

h, )B!(–μ)(A#B). (.)

Equality holds if and only if A = B and m = M.

Proof If  ≤ μ ≤ 
 , by (I) of Theorem ., we have

( – μ) + μa – μ

[
 + a


–

(



+



a–
)–]

≤ K(
√

a, )
[
( – μ) + μa– 


]–

for any a > , and hence

( – μ)I + μX – μ

[
I + X


–

(



I +



X–
)–]

≤ K(
√

h, )
[
( – μ)I + μX– 


]–

for the positive invertible operator X such that  < 
h I ≤ X ≤ hI .

Substituting A– 
 BA– 

 for X in the above inequality, we have

( – μ)I + μA– 
 BA– 



– μ

[
I + A– 

 BA– 



–

(



I +


(
A– 

 BA– 

)–

)–]

≤ K(
√

h, )
[
( – μ)I + μ

(
A– 

 BA– 

)– 


]–. (.)

Multiplying both sides of (.) by A 
 , we can deduce the required inequality (.).

Likewise, if 
 < μ ≤ , by (II) of Theorem ., we have

( – μ)b + μ – ( – μ)
[

 + b


–
(




+



b–
)–]

≤ K(
√

b, )
[
(μ – )b– 

 + ( – μ)
]–

for any b > , and hence

( – μ)Y + μI – ( – μ)
[

I + Y


–
(




I +



Y –
)–]

≤ K(
√

h, )
[
(μ – )Y – 

 + ( – μ)I
]–

for the positive invertible operator Y such that  < 
h I ≤ Y ≤ hI .
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Substituting B– 
 AB– 

 for Y in the above inequality, we have

μI + ( – μ)B– 
 AB– 



– ( – μ)
[

I + B– 
 AB– 




–

(



I +



I
(
B– 

 AB– 

)–

)–]

≤ K(
√

h, )
[
(μ – )

(
B– 

 AB– 

)– 

 + ( – μ)I
]–. (.)

Multiplying both sides of (.) by B 
 , we can deduce the required inequality (.). �

Note that, by (.), (.), and (.), we have

 < A!μB

≤ A∇μB – r(A∇B – A!B)

≤
{

K(
√

h, )A!μ(A#B),  ≤ μ ≤ 
 ,

K(
√

h, )B!(–μ)(A#B), 
 < μ ≤ .

Theorem . Let A, B ∈ B++(H) and μ ∈ [, ].
(I) If  ≤ μ ≤ 

 , then

A∇μB – μ(A∇B – A!B) ≤ A!μ(A#B) + R′(A∇(A#B) – A!(A#B)
)
. (.)

Equality holds if and only if A = B.
(II) If 

 < μ ≤ , then

A∇μB – ( – μ)(A∇B – A!B) ≤ B!–μ(A#B) + R′(B∇(A#B) – B!(A#B)
)
. (.)

Equality holds if and only if A = B.

Proof If  ≤ μ ≤ 
 , by (I) of Theorem ., we have

( – μ) + μb – μ

[
 + b


–

(



+



b–
)–]

–
[
( – μ) + μb– 


]–

≤  max{ – μ, μ}
[




+



b

 –

(



+



b– 


)–]

for any b > , and hence

( – μ)I + μX – μ

[
I + X


–

(



I +



X–
)–]

–
[
( – μ)I + μX– 


]–

≤  max{ – μ, μ}
[




I +



X

 –

(



I +



X– 


)–]

for the positive invertible operator X.
Substituting A– 

 BA– 
 for X in the above inequality and then multiplying both sides by

A 
 , we can deduce the required inequality (.).
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Likewise, if 
 < μ ≤ , by (II) of Theorem ., we have

( – μ)a + μ – ( – μ)
[

a + 


–
(




a– +



)–]

≤ [
(μ – ) + ( – μ)a– 


]– +  max{ – μ, μ – }

[



+



a

 –

(



+



a– 


)–]

for any a > , and hence

( – μ)Y + μI – ( – μ)
[

Y + I


–
(




Y – +



I
)–]

≤ [
(μ – )I + ( – μ)Y – 


]–

+  max{ – μ, μ – }
[




I +



Y

 –

(



I +



Y – 


)–]

for the positive invertible operator Y .
Substituting B– 

 AB– 
 for Y in the above inequality and then multiplying both sides by

B 
 , we can deduce the required inequality (.). �

Note that, by (.), (.), and (.), we have

 < A!μB

≤ A∇μB – r(A∇B – A!B)

≤
{

A!μ(A#B) + R′(A∇(A#B) – A!(A#B)),  ≤ μ ≤ 
 ,

B!–μ(A#B) + R′(B∇(A#B) – B!(A#B)), 
 < μ ≤ .

Remark . These inequalities proved in Theorem .-. are all the reverse forms of the
inequality (.). It is easy to see that the right-hand side of these inequalities can not be
compared with each other, but they are indeed new versions of reverse ratio arithmetic-
harmonic mean inequality.

4 The mixed mean inequalities
In this section, we obtain refinements of the inequalities (.) and (.) and deduce some
mixed weighted arithmetic-geometric and geometric-harmonic means inequalities.

First, we need the following lemma.

Lemma . (Hermite-Hadamard’s inequality []) If f : I →R is a convex function on the
interval I ⊂R, then for any x, y ∈ I with x �= y, we have

f
(

x + y


)
≤ 

y – x

∫ y

x
f (t) dt ≤ f (x) + f (y)


. (.)

Theorem . Let A, B ∈ B++(H). Then

A#(A∇B) ≥ 

[
A∇(A#B) – (A#B)

(
A∇(A#B)

)–A
] ≥ A∇(A#B), (.)

A#(A!B) ≤ 
[

(
A!(A#B)

)– – (A#B)–(A!(A#B)
)
A–]– ≤ A!(A#B). (.)
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Proof Applying the Hermite-Hadamard’s inequalities (.) to the convex function f (t) =
–t 

 , t > , we have

(
x + y



)/

≥ 


[

(

x/ + y/



)
– (xy)/

(
x/ + y/



)–]
≥ (x/ + y/)


,

and hence

(
I + C



)/

≥ 


[

(

I + C/



)
– (C)/

(
I + C/



)–]
≥ (I + C/)



for a positive invertible operator C.
Putting C = A– 

 BA– 
 in the above inequality and multiplying both sides by A 

 , we can
obtain (.).

Substituting A– for A and B– for B and then taking the inverse in (.), we get (.).
�

Note that the inequalities (.) and (.) are the refinements of (.) and (.), respec-
tively.

If f is convex on a segment [a, b] of a linear space, one can easily observe that (.) is
equivalent to the following double inequality:

f
(

a + b


)
≤

∫ 


f
(
( – t)a + tb

)
dt ≤ f (a) + f (b)


. (.)

A natural generalization of the classical Hermite-Hadamard inequality to Hermitian ma-
trices could be the double inequality

f
(

A + B


)
≤

∫ 


f
(
( – t)A + tB

)
dt ≤ f (A) + f (B)


.

However, Moslehian [] pointed out that this was not true. We will show that the follow-
ing result is valid.

Theorem . Let A, B ∈ B++(H). Then

A#(A∇B) ≥
∫ 


A#(A∇tB) dt ≥ A∇(A#B). (.)

Proof Taking f (t) = –t 
 , t >  in (.), then

(
a + b



)/

≥
∫ 



(
( – t)a + tb

)/ dt ≥ (a/ + b/)


,

and by a method resembling Theorem ., we obtain (.). �

In the next theorems, mixed weighted arithmetic-geometric and geometric-harmonic
mean inequalities are established. First, we show the definition of operator convex (see
[], p.).
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Definition . A continuous function f : I →R on the interval I ⊂R is said to be operator
convex if for every pair of self-adjoint operators X, Y on a Hilbert space H with spectrum
in I and each v ∈ [, ],

f
(
( – v)X + vY

) ≤ ( – v)f (X) + vf (Y ). (.)

A function f is called operator concave if the function –f is operator convex. The
function f (X) = Xs is operator convex on a self-adjoint operator space for – ≤ s ≤  or
 ≤ s ≤  and is operator concave for  ≤ s ≤ .

For an operator convex function f : I → R on the interval I ⊂ R, we have the following
property (see [], p.): For each v /∈ [, ], self-adjoint operators X, Y and ( – v)X + vY
with spectra in I,

f
(
( – v)X + vY

) ≥ ( – v)f (X) + vf (Y ). (.)

In the next theorems, we still use the notations A∇vB, v /∈ [, ], and A#sB, s ∈ [–, ] ∪
[, ].

Theorem . Let A, B ∈ B++(H), and v ∈ [, ]. If s ∈ [–, ] ∪ [, ], then

A#s(A∇vB) ≤ A∇v(A#sB), (.)

A#s(A!vB) ≥ A!v(A#sB). (.)

Proof By the inequality (.), for every pair of self-adjoint operators X, Y and the operator
convex function f (x) = xs (x > ), s ∈ [–, ] ∪ [, ], we have

[
( – v)X + vY

]s ≤ ( – v)Xs + vY s.

Putting X = I and Y = A– 
 BA– 

 in the above inequality and multiplying both sides by
A 

 , we can get (.).
Substituting A– for A and B– for B in (.) and then taking the inverse of both sides,

we get (.). �

Theorem . Let A, B ∈ B++(H) and ( – v)A + vB ∈ B++(H) for v /∈ [, ].
(I) If s ∈ [, ], then

A#s(A∇vB) ≤ A∇v(A#sB),

A#s(A!vB) ≥ A!v(A#sB).

(II) If s ∈ [–, ] ∪ [, ], then

A#s(A∇vB) ≥ A∇v(A#sB),

A#s(A!vB) ≤ A!v(A#sB).

Proof By the inequality (.) and using the same ideas as in the proof of Theorem ., we
can deduce this theorem. �
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