
Reducing the heterogeneity of payoffs: An effective way to promote cooperation
in the prisoner’s dilemma game

Luo-Luo Jiang (姜罗罗�,1 Ming Zhao (赵明�,1,* Han-Xin Yang (杨涵新�,1 Joseph Wakeling,2

Bing-Hong Wang (汪秉宏�,1,3,† and Tao Zhou (周涛�1,2

1Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
2Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland

3The Research Center for Complex System Science, University of Shanghai for Science and Technology
and Shanghai Academy of System Science, Shanghai 200093, People’s Republic of China

In this paper, the accumulated payoff of each agent is regulated so as to reduce the heterogeneity of the
distribution of all such payoffs. It is found that there exists an optimal regulation strength at which cooperation
in the prisoner’s dilemma game is optimally promoted. If the heterogeneity is regulated to be either too weak
or too strong, the promotive effect disappears and the evolution of cooperation may even be impaired if
compared to the absence of the proposed regulatory mechanism. An explanation of the observed results is
provided. In particular, it is found that cooperators on the spatial grid are not isolated but form compact clusters
and that the distribution of these clusters is crucial for the promotion of cooperation. Our work provides
insights into relations between the distribution of payoffs and the evolution of cooperative behavior in situa-
tions constituting a social dilemma.

I. INTRODUCTION

Cooperation is a widespread and important phenomenon
and, indeed, it can be seen as the foundation for the sustain-
able development of many natural and social systems. Ex-
plaining the evolution of cooperation, from insect communi-
ties to human societies, has been a major goal of biologists
since Darwin �1–4�. In a system, the individuals who are
willing to contribute to the common good at a personal cost
are referred to as cooperators, while those who choose to
take advantage of such actions are the defectors. Cooperators
are therefore not favored in terms of natural selection, as the
latter is individually based and evaluated in terms of personal
fitness. Accordingly, defection is often preferred and seems
like the natural strategy to choose �4�. However, if all the
individuals choose to defect, the social welfare suffers im-
mensely and the system is set for a collapse. Therefore, the
understanding of the conditions for the emergence and pro-
motion of cooperation is fundamental importance biological,
social, and economic science �5–13�.

The problem of cooperation is frequently addressed in the
framework of the evolutionary game theory. As one of the
representative games, prisoner’s dilemma game �PDG�
seizes the characteristics of the conflict between the selfish
individuals and the collective interests. In PDG, when most
of the individuals take the cooperation strategy, the collective
interests is optimized, but as to an individual, if it defects
when its opponents cooperate, it will profit much greater, and
meanwhile its opponents will profit little or none. Thus, due
to the selection pressure routed in the fundamental Darwin-
ian assumption, more and more individuals will choose to
defect, and as a result the level of cooperation will decrease.

Ultimately, all the individuals will receive lower payoffs than
if they chose to cooperate.

There are many mechanisms that can promote the coop-
eration of PDG such as repeated interaction �5�, spatial ex-
tensions �14�, reciprocity �15�, and partly randomly contacts
�16�. Very recently, the distribution of payoffs had also been
found playing a crucial role in promoting cooperation in
PDG �17–19�. Particularly, Perc found that Gaussian-
distributed payoff variations is more successful in promoting
cooperation than Levy distribution of payoffs �17�, indicating
that too strong heterogeneity of payoffs will harm the evolu-
tion of cooperation among selfish individuals. Then a natural
question arises: what is the most effective way to regulate the
total payoff of each agent to optimize the cooperation? Here
in this paper, we aim to answer this question.

In the continuation, we will show that when the total pay-
offs are regulated to an intermediate extent, the evolution of
cooperation is greatly promoted, and we will provide an ex-
planation for this phenomenon. Furthermore, we find that if
the regulation is too strong, the cooperation will be sup-
pressed until the point of disappearance. We also present an
explanation for this critical phenomenon and obtain the exact
critical point. Moreover, we find the cooperators will gather
together to form clusters and it is not the number but rather
the size of the clusters that mainly determine the cooperation
rate.

II. MODEL

In the spatial PDG, agents located on a square lattice fol-
low two simple strategies: cooperation �C� or defection �D�,
described as the form of vector,

� = �1

0
� or �0

1
� . �1�

When a cooperator meets a cooperator, both of them get
reward 1, and when two defectors meet, they each get 0, and
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when a cooperator meets a defector, it gets 0, but the defector
receives temptation b, 1�b�2. The above rule can be ex-
pressed by a matrix

� = �1 0

b 0
� , �2�

which is called the payoff matrix, and the parameter b char-
acterizes the temptation to defection against cooperation.
Each agent plays PDG with its four neighbors. Therefore, the
total payoff of the player i is the sum of payoffs after i
interacts with its four neighbors, which is written as

Pi = �
j��i

�i
T�� j , �3�

where �i denotes four neighbors of individual i and the pay-
off in the following section is denoted as the total payoff in
our paper. In classical PDG, an agent updates its strategy
according to the following rule: the agent i plays PDG with
its neighbors, then randomly selects a neighbor j, and adopts
its strategy with probability

Gi→j =
1

1 + exp��Pi − Pj�/T�
, �4�

where T characterizes the stochastic noise. For T=0, the in-
dividual always adopt the best strategy determinately, while
irrational changes are allowed for T�0. In numerical simu-
lation, noise level is often set as T=0.1 because a few irra-
tional behavior is common in real economic systems. With
the probability defined above, if the selected neighbor j ob-
tains more payoff than node i, node i will adopt the neigh-
bor’s strategy with larger probability, but if the neighbor j
obtains less payoff than node i, the probability will be much
smaller. It is worth noting that the parameter b has great
effects on the cooperation process and with b’s increasing,
more and more agents would be defectors.

In �17�, Perc proposed several methods to regulate the
distribution of payoffs and found that when the distribution
becomes not so heterogeneous, the cooperation rate will be
promoted greatly. In this paper, we present a scheme that
regulates the total payoffs continuously and try to find the
optimal regulation strength. In our regulation scheme, we
define the regulated payoffs

Wi = Pi
�, �5�

where ��0 is the regulation parameter which determines
the regulation strength and when �=1, our model degener-
ates into the classical PDG. Clearly, when � decreases from
1, the distribution of regulated payoffs becomes narrower
and narrower until �=0+, where the heterogeneity of the
regulated payoffs distribution disappears and each agent ob-
tains regulated payoff 1 or 0. In our work, we replaced the
payoffs Pi and Pj in Eq. �4� by the regulated payoffs Wi and
Wj, and we get generalized probability

Gi→j =
1

1 + exp��Wi − Wj�/T�
. �6�

We believe that when the distribution of regulated payoffs
becomes a little more homogenous than the original one ��

=1 for regulated payoffs�, the cooperation will be promoted
greatly, however, when � is too small there will be less or
even no cooperators in the system. We will give the expla-
nation for this interesting phenomenon later in this paper.

III. SIMULATION AND ANALYSIS

In order to describe the evolution process of the game, we
employ the fraction of cooperations as an order parameter

�C =
1

L2�
i=1

L2

�i
T�1

0
� . �7�

Based on a periodic boundary lattice with size of 100	100,
an extensive Monte Carlo numerical simulation is performed
with random initial states. After the system reaches dynamic
equilibrium, �C is calculated and the final results are ob-
tained after the averaging of 10 000 times.

Figure 1�a� shows the cooperation fraction �C as a func-
tion of b at different values of �. It displays that �C decreases
monotonically with the increasing of b, no matter what � is.
Most interestingly, the cooperation is greatly affected by the
parameter � for fixed b: in a large region of �, �C will be
increased, indicating the reduction in heterogeneity of pay-
offs will improve the cooperation. It is worth noting that
there is at least one optimal value of �, where �C takes its
maximum, larger, or smaller � will cause the decreasing of
�C. Thus, to quantify the effects of � on the promotion of
cooperation for different b, we present the dependence of �C
on � in Fig. 1�b�. It is clearly seen that with �’s decreasing
from 1, �c will increase prominently and at the point �
	0.5 �c reaches its maximum, and after that the value �c will
decrease until no cooperators in the system. It is especially
worth noting that our regulation scheme is more powerful for
larger temptation b, for example, at b=1.005, for the classi-
cal PDG ��=1.0�, the fraction of cooperation �C=0.3855
and for the best case of our regulation scheme ��	0.5�,
�C=0.5060, the increment is 
�C=0.1205; but for a larger

FIG. 1. Fraction of cooperation �c as a function of b in �a� and
� in �b�. b is fixed at 1.01 in �a�.
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temptation b=1.020, the fraction of cooperation �C will in-
crease from 0.0 to 0.3736, with the increment 
�C=0.3736.

All the above simulation results are consistent with our
estimation in Sec. II, and here we will give the explanation
for this phenomenon and present the critical and maximal
points of the curves in Fig. 1�b� in analysis. First of all, we
go back to the generalized probability defined in Eq. �6�, in
Fig. 2�a� we present the change in Gi→j with the regulated
payoffs difference between two neighboring agents 
W
=Wi−Wj. From the figure, we can see when the difference is
less than a critical point 
Wc, the probability is near to 1, and
we believe the changing of the strategy is determined; but
when the difference is larger than this critical point, the prob-
ability will decrease sharply to 0, and it seems that the agent
would never change its strategy. This curve shows that the
difference of regulated payoffs plays an important role in the
changing of strategy.

Now we investigate the possible values of 
W’s and how
they change with parameter �. According to the rule of
changing strategy, if an agent could change its strategy, it
must have at least one neighbor that takes the reverse strat-
egy to it at the current moment. Thus, for a cooperator, the
regulated payoff may be 0, 1, 2�, and 3� and, for a defector,
the regulated payoff may take b�, �2b��, �3b��, and �4b��.
When agent i is a cooperator and its selected neighbor j is a
defector, the 16 possible 
WC→D’s will take values between
−�4b�� and 3�−b�, and when agent i is a defector and its
selected neighbor j is a cooperator, the 16 possible 
WD→C’s
will take values between b�−3� and �4b��. When �=1, it is
clear that the minimum of 
WC→D’s is much smaller than
that of 
WD→C’s and there are ten values of 16 
WC→D’s are
which are less than 
Wc and, correspondingly, there are 10
GC→D’s which are about 1, but the number for 
WC→D’s is 3,
as shown in the insets of Fig. 2�a�. With �’s decreasing, all
the possible nonzero regulated payoffs approach 1, which
results in the decreasing of the absolute value of 
W’s; thus

the 
W’s that originally are less than 
Wc leave this region
by and by, which result in the decreasing of the probability
that changing strategy �see right inset of Fig. 2�a��. The first
curve that leaves this region is a cooperator, which means the
propensity for cooperators to change to defectors decrease;
thus the fraction of cooperators �c will increase. �c reaches
its maximum when the first curve belongs to defector leaves
this region; the point �max can be obtained by solving the
equation

�2b��max − 3�max = 
Wc, �8�

when b=1.01, T=0.1, and 
Wc=−0.3476, where G=0.97,
�max	0.53 �right inset of Fig. 2�a��. When � decreases to
the point �c, where all the curves belongs to defectors leave
the region, the probability for the defectors changing to co-
operators decreases sharply, yet there are still some curves of
the cooperators that in the region—after a period of
iteration—there will be no cooperators, the fraction of coop-
erations is 0. This critical point can be obtained by the equa-
tion

b�c − 3�c = 
Wc. �9�

From this equation, it can be concluded that with the increas-
ing of b, the critical point �c will also increase, which is
confirmed by the curves in Fig. 1�b�. At the same parameters,
we get �c	0.26 �right inset of Fig. 2�a��. In simulation, we
get the two points �max	0.50 and �c	0.28, which are con-
sistent with the result obtained by the analysis very well.
Because the fraction of cooperation transits from zero to
nonzero at �c, we can say a phase transition occurring from
a noncooperation state to a cooperation existing state.

This kind of phenomenon can be conceptually identical to
coherence resonance within the framework of noise-driven
dynamical systems �20–24�. Similarly to results obtained by
Perc �17� that cooperation is most promoted in an interme-
diate intensity of payoffs’ noise; in our case there always
exists an intermediate intensity of regulated payoffs for
which cooperation is mostly maintained. To understand the
resonancelike behavior induced by payoff regulation strength
�, we also apply the mean-field method to investigate the
motion of the fraction of cooperators �C. GC→D is denoted as
the transition probability of cooperators changing into defec-
tors and GD→C is denoted as the transition probability of
defectors changing into cooperators. Therefore, we get fol-
lowing equation �4,19�:

��C

�t
= �1 − �C�GD→C − �CGC→D. �10�

When the system has reached the steady state
��C

�t =0, and the
fraction of cooperators in the steady state can be given as

�C =
GD→C

GD→C + GC→D
=

1

1 + GC→D/GD→C
. �11�

In our analysis, GC→D and GD→C are obtained from the simu-
lation, as shown in Fig. 2�b�, then we can calculate the value
of cooperation fraction �C according to Eq. �11�. In Fig. 2�b�,

FIG. 2. �Color online� �a� The change in the generalized prob-
ability with the regulated payoffs difference. Insets in �a� shows
GC→D �left� and GD→C �right� as a function of �, respectively, and
the lines present 16 kinds of possible value of 
W /T. �b� Average
transition probability as a function of � for b=1.01. Inset in �b�
shows the value of GC→D /GD→C varying with �.
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one can find that the transition probability GC→D keeps in
high value for all �, while GD→C stays in low value for �
�0.3 and ��1.0. As a result, the value of GC→D /GD→C is
large for ��0.3 and ��1.0 and is the smallest around �
=0.5 for b=1.01 �see the inset of Fig. 2�b��. Therefore, the
cooperation level reaches its optimal value at around �
=0.5. The facilitative effect of � on cooperation is directly
related to GD→C. The described explanation is consistent
with the general mechanism of cooperation in the spatial
prisoner’s dilemma game �17,19�.

It has been confirmed that intermediate � promotes coop-
eration, while too small or too large value of � has the re-
verse effects. In Fig. 3, three typical snapshots are displayed
to show how the system will be when � takes small, inter-
mediate, and larger values. Clearly, most of the cooperators
are not distributed in isolation but form some clusters. When
the payoffs are not regulated ��=1.0� or regulated too much
��=0.3�, there are only a few cooperator clusters in the sys-
tem; but when �	0.5, there will emerge so many cooperator
clusters that the cooperation is remarkably promoted. We
also investigate the change in the number and the maximal
and average size of cooperator clusters and find that the num-
ber of cooperator clusters has no notable changing for a large
region of � although they will disappear at too small or too
larger �; but the maximal and average size of the cooperator
clusters will be greatly increased in some region of �, which
is shown in Fig. 4�a� and in the inset. Moreover, the distri-
bution of cooperator clusters at the three values of � is also
plotted in Fig. 4�b�. It is clear, when �=0.5, there are much
more large clusters �SC�86� than when � is 0.3 or 1.0, and
the small size clusters �4�SC�80� are less than the two
cases.

From the above simulation and analysis results we can
assert, when � increases from 0.0, there is no cooperator in
the system until � reaches some threshold, then the coopera-
tors emerge, with �’s further increasing, more and more
agents become cooperators and the cooperator clusters be-
come larger and larger, when � reaches about 0.5, the num-
ber of cooperators and the maximal and average size of co-
operator clusters all reach their maximums, and further
increase �, where the payoffs are not regulated much, the
cooperations are repressed again, more and more agents pre-
fer to cheat, the cooperation is depressed, until it disappear. It
seems that the emergence of larger cooperator clusters causes
the promotion of cooperation since when the fraction of

cooperation has been promoted the number of cooperator
clusters will not change but the size of them will be greatly
enlarged, as shown in insets of Fig. 4�a�. Our assertion is
consistent with the previous researches that cooperators sur-
vive by forming compact clusters, and the cooperative agents
along the boundary resisting against defectors can be en-
hanced by, for example, heterogeneous structure �25�, attrac-
tiveness of the neighbors �26,27�, and stochastic interactions
�28�. It is found that the more heterogeneous distribution of
the cluster size promotes cooperation, which is consistent
with previous researches argued for heterogeneous states in
general, including the distribution of degree of networks �29�
and the teaching activity �30�.

IV. CONCLUSION AND DISCUSSION

In conclusion, we regulate the total payoffs of each agent
to narrow down the differences between agents in the spatial
prisoner’s dilemma game and find that there is an optimal
regulation strength, where the cooperation is greatly pro-
moted, especially for larger temptation. But too strong of the
regulation will depress the cooperation, and even cause the
disappearance of the cooperators. We reassure that it is the
larger size and not the number of cooperator clusters that
promote the cooperation. We also prove the existence of the
optimal regulation strength and explain the formation of
larger cooperator clusters. Similarly to other methods to
regulate payoff, such as random variations in payoffs �31�,
our quantitative regulation of payoffs also reveal resonance-
like cooperation. We hope that our study will prove useful
for the understanding of the effects of heterogeneity on co-
operation, ranging from payoffs �32� to social connections
�33�.

FIG. 3. For panels �a�, �b�, and �c�, typical snapshots of the
distribution of cooperators �light gray� and defectors �black� on a
square 100	100 lattice obtained for a different value of � by b
=1.01. �a� �=0.3, �b� �=0.5, and �c� �=1.0.

FIG. 4. �Color online� Panel �a� shows the size of the largest
clusters formed by cooperators varying with �, and the inset shows
the number of clusters NC �upper� and average size of clusters

formed by cooperators S̄C �lower�. Clearly, NC keeps about 150

from �=0.37 to �=0.85, while S̄C reaches its maximal value at �
=0.5. Panel �b� displays the distribution of cooperators’ cluster size
for different values of �. b=1.01 in both panels �a� and �b�.
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