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Abstract. In more than one spatial dimension, resonant linear conversion from one wave type to
another can have a more complex geometry than the familiar ‘avoided crossing’ of one-
dimensional problems.  In previous work [1] we have shown that helical ray shapes are generic
in a mathematical sense.  Here we briefly describe how the local field structure can be computed.

INTRODUCTORY COMMENTS

Resonant conversion between various wave types is exploited in RF heating
schemes for fusion plasmas.  Such conversion can occur in nonuniform plasmas
where, for some spatial position x0 and for a frequency ω0, two wave types ‘a’ and ‘b’
can have nearly equal wave vectors ka~ kb~ k0. The resonance condition implies a
matching of the local phase velocities, but still allows the two waves to have different
group velocities and polarizations.  Thus, the process cannot be reduced to one
dimension, even locally, and the possibility of new physics arises.  This is discussed
more fully in [1-3].

In a separate paper [1], we have considered the question of what ray
geometries might be ‘generic’ in multi-dimensions, and how the WKB connection
coefficients can be calculated.  We define the meaning of ‘generic’ conversion just
after Eq. (7).  This line of research is similar in spirit to the one-dimensional work of
Littlejohn and Flynn [4].   In [1] we show that in systems with two or three spatial
dimensions (implying that the ray phase space (x,k) is four- or six-dimensional,
respectively), the ray geometry in conversion regions cannot be purely hyperbolic.
Instead, it is generically a combination of hyperbolic motion in one two-dimensional
subspace (analogous to a one-dimensional ‘avoided crossing’ or ‘tunneling’ region)
and elliptical motion in another.  Hence, the combined motion is helical.  Such a
combination of behaviors is, of course, not possible in the one-dimensional conversion
problem.  This result was independently derived using a different approach by Colin
de Verdiere [5].

In [2] a tutorial introduction is given to ray-based analysis of multi-
dimensional conversion, and in [1] we show that generic ray motion in multi-
dimensional conversion is helical.  Here we sketch the calculation of the wave field for
helical conversion.  Details will be provided in a longer paper.



STATEMENT OF THE PROBLEM

Consider the linear wave equation (1) for the (three-component) electric field
in a non-uniform, time-stationary, plasma:
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Summation over repeated indices is implied.  We assume that the plasma has

two spatial dimensions for simplicity, but note that the approach can be generalized to
higher dimensions.  In addition, the WKB connection coefficients do not depend on
the number of spatial dimensions, but simply on the fact that only two waves are
undergoing conversion.

We assume that the wave equation is conservative and can be derived from an
action principle.  Using methods described in [2] we convert (1) into the form of a
partial differential equation:
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Our goal is to solve (2) subject to some specified initial/boundary conditions.  A
standard tool for this analysis is the WKB method.  WKB methods break down in
conversion regions and must be augmented by a local treatment which provides an
algorithm for calculating the WKB connection coefficients, as described below.

THE LOCAL 2x2 WAVE EQUATION

  In the conversion region, the electric field is expanded in the local form
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The uncoupled polarization vectors eα and eβ are (locally) constant and can be
constructed using methods sketched in [2].  Inserting the ansatz (3) into (2) gives
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where
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(Here, and in what follows, the * notation refers to the Hermitian adjoint on vectors
and operators.)  Suppressing the ω0-dependence, and Taylor-expanding the wave
operator about the conversion point, we have
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Because the polarizations of (3) are the uncoupled ones, and because the conversion
point lies on the dispersion surface for both uncoupled waves, the constant terms of
the diagonal elements Dαα and Dββ are zero, while the off-diagonal term is typically a
non-zero (complex) coupling constant η.  In prior work [2,6], we assumed that the
dominant terms in the vicinity of the conversion point were given by the first order
corrections to the wave operator along the diagonal.  This is, strictly speaking, only
correct if the coupling constant is non-zero in the conversion region (not just at the



conversion point).  Here we include the more general case as part of the analysis.
Using an extension of methods described in [3] and more recent results from [1], it is
possible to recast (5) into:
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Here q1 and q2 are new ray phase space coordinates that are linear combinations of the
old x and k, and γ and Ω are constants.  Note that Ω is the rate of rotation about the
conversion point of the elliptical part of the ray orbit, while γ is the rate of
exponentiation of the hyperbolic part [1].  Note also that the diagonal operators
commute with the off-diagonal ones.  We can now define a generic conversion to be
one where all terms in the matrix operator of (8) are of equal importance.

SOLUTION OF THE 2x2 WAVE EQUATION

Operating from the left with
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and defining
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leads to
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Thus, the α and β subspaces have decoupled.  From the form of (11) it is seen that the
q1- and q2-dependences separate. Further analysis shows that the q1-dependence
involves a parabolic cylinder-like equation (though not self-adjoint), and the q2-
dependence involves a self-adjoint equation like that of a quantum harmonic
oscillator. The separation constant plays the role of an effective coupling constant
(more precisely, the magnitude squared of the coupling constant). The general solution
of (11) is a linear superposition of terms involving products of parabolic cylinder-type
functions and harmonic oscillator eigenfunctions, with each term in the series having a
different separation constant. The matching to incoming and outgoing WKB waves is
done by first computing the expansion coefficients by fitting at large negative values
of q1 to the incoming WKB wave. Then, using the asymptotic behavior of the
parabolic cylinder functions at large positive values of q1, the outgoing WKB wave is
calculated.

At the level of the ray picture [2], we find the following result: the incoming
WKB wave is a family of rays, with an amplitude, phase and polarization assigned to
each.  The entire family of incoming rays follow helical orbits with helicity κ=Ω/γ as
they pass through the conversion region and connect smoothly onto the family of
outgoing converted rays.  The conversion coefficient provides the amplitude and phase
assigned to each of the outgoing converted rays.  The transmitted family of rays also
follows helical orbits.  They each are paired with an incoming ray and assigned an
amplitude and phase given by multiplication of the data on the incoming ray by the



transmission coefficient. Except for that small set of rays with effective coupling
constant nearly zero (which generates an outgoing Gaussian beam) the transmission
and conversion coefficients for each ray are identical to those obtained in [3] since
they depend only upon the asymptotics of parabolic cylinder functions.  This will be
elaborated in a longer paper.  We note that similar results were previously obtained by
Littlejohn and Flynn [7].

SUMMARY AND CONCLUSIONS

We have briefly described results recently obtained concerning resonant
conversion of linear waves in multiple spatial dimensions.  Our goal has been to
understand generic behavior, rather than analyzing a particular physical model.  The
search for generic results, true for ‘typical’ representatives of a family of systems, can
lead to very general results.  However, we have found that magnetized plasmas are
typically not generic in the sense we use here.  This is because the gyro-orbits of
magnetized particles exhibit symmetry around the local magnetic field. There are
various ways in which genericity might be obtained; for example strong shear flows or
fully three-dimensional gyro-orbits associated with complex magnetic field geometry
might break the symmetry which makes magnetized plasmas nongeneric.  This is work
in progress.
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