
Fermilab FERMILAB-Conf-01/027 March 2001

A C++ Particle Data Table Interface
L.A. Garren

Fermi National Accelerator Laboratory, Batavia, Illinois 60510

Abstract. As a result of discussions within the HEP community, we have written a C++ package which can be used
to maintain a table of particle properties, including decay mode information. The classes allow for multiple tables and
accept input from a number of standard sources.

INTRODUCTION

For some time, there has been a need for a C++ class
embodying the information contained in the Review of
Particle Properties[1]. We have written HepPDT to fill
this need. HepPDT allows access to particle name, par-
ticle ID, charge, nominal mass, total width, spin infor-
mation, color information, constituent particles, and de-
cay mode information. HepPDT is designed to be used
by StdHepC++[2], HepMC[3], or any generated particle
class. Generated particles will contain a pointer to the
particle data information found in the HepPDT particle
data table. HepPDT also has simple mechanisms to en-
able customized decay chains.

HEPPDT DESIGN

HepPDT has been designed to be used by any Monte
Carlo particle generator or decay package. It contains
only generic particle attributes. In principle, all informa-
tion which can be found in the Review of Particle Proper-
ties[1] can be encapsulated in HepPDT. HepPDT contains
particle information such as charge and nominal mass as
well as decay mode information. This information is con-
tained in a table which is accessed by a particle ID num-
ber. This ID number is defined according to the Particle
Data Group’s Monte Carlo numbering scheme[4].

HepPDT may be used alone or as part of the Std-
HepC++[2] package. StdHepC++ provides a standard
generated particle class which can be used to communi-
cate among various Monte Carlo generators and decay
packages. A StdHep particle contains momentum infor-
mation, generated mass, information about its generated
decay, and a pointer to the appropriate HepPDT particle
data. The StdHep particle inherits properties from the
HepMC particle class, which also has a pointer to the rel-
evant HepPDT particle data.

Decay information is a crucial part of the particle data
in HepPDT. Standard decay information is a list of al-
lowed decay channels with associated branching frac-
tions, decay model names and decay model code. There
may also be extra information needed by the decay model
(e.g., helicity). A mechanism is provided so that the de-
cay model code can be accessed using the decay data in-
formation instead of needing to use a series of if state-
ments based on the decay model name. In addition, users
often need the ability to "force" a particle to decay in a
certain way. To do this, you must provide custom decay
information. Often this information involves the entire
decay chain (e.g.,D�+

! D0π+;D0
! K�π+). The de-

sign provides for the generated particle to have a pointer
to a custom DecayData object. If this pointer is present,
it overrides the use of the DecayData associated with the
generated particle’s ParticleData. To customize the decay
chain, the user may create particle aliases which use other
special DecayData objects.

Methods are provided to create ParticleDataTable ob-
jects from Pythia, Herwig, Isajet, QQ, and EvtGen decay
information. Methods are also provided to facilitate cre-
ation of custom particle and decay information. A Parti-
cleDataTable object may be created from multiple infor-
mation sources.

The design requires that ParticleDataTable objects
must be fully created before they are used. Multiple data
tables are allowed. Although potentially dangerous, we
recognize that this is also a powerful option.

Figure 1 shows the interactions of the basic classes.

HEPPDT CLASSES

The ParticleDataTable class contains a map of Parti-
cleData which is keyed on the ParticleID class. Particle
ID aliases can be used to add custom DecayData. Parti-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/206455115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Monte Carlo

HepPDT::ParticleID

HepPDT::DecayModelBase

derived

creates

HepPDT::DecayData

Generator Particle
HepPDT::ParticleDataTable

HepPDT::ParticleData

HepPDT::CommonParticleData

HepPDT::DecayModelFactory

DecayModel

HepPDT::DecayChannel

FIGURE 1. HepPDT Classes: Particle information is accessed by a pointer to ParticleData from any Monte Carlo generated particle.
CommonParticleData contains particle information such as mass, charge, and total width. Decay information is found in DecayData.
The ParticleDataTable contains a map of ParticleData objects, referenced by ParticleID, as well as maps of CommonParticleData and
DecayData. ParticleData has indices to CommonParticleData and DecayData, as well as methods to access all relevant information.
The DecayModelFactory is used to create DecayModelBase objects which are derived from user DecayModel classes.

cleDataTable also contains maps of CommonParticleData
and DecayData.

The ParticleID class can be used to retrieve all the in-
formation that is implied in the particle ID (e.g., charge
and quark content). Boolean methods (such as isMeson,
isBaryon, hasBottom, and hasTop) are provided for ease
of searching for various types of particles.

The ParticleData class has iterators into maps of Com-
monParticleData and DecayData. CommonParticleData
is extensible and includes particle name, particle ID,
charge, mass, total width with cutoffs, spin information,
color information, and constituent particles (e.g., quark
content). This class is not templated.

The DecayData class is a collection of DecayChan-
nels. A generated particle may use the DecayData in-
formation from the ParticleDataTable entry or it may use
a customized DecayData that allows, for instance, only a
single DecayChannel. Users may add customized Decay-
Data objects to the ParticleDataTable.

Each DecayChannel has a collection of decay chan-
nel products (which are pointers to ParticleData), a decay
name, a branching fraction, an optional vector of extra
decay model parameters, and a pointer to DecayModel-
Base. We recognize that other information, such as helic-
ity, may be needed by a particular DecayChannel object.
Because there are many options, this information is stored
as a vector of doubles.

DecayModelBase is the mechanism that allows the
user to invoke the actual decay method from this class.
Because the decay method must know what kind of gen-
erated particle will be created, this class, and by inference
the other HepPDT classes, is templated off the generated
particle.

The DecayModelFactory provides an interface be-
tween the user decay methods and the ParticleDataTable.
The user calls the factory before creating the Particle-
DataTable object. The factory object is a singleton which
registers DecayModels for each decay method. The
DecayModelFactory then makes the appropriate Decay-
ModelBase object when it is invoked during DecayData
construction.

CONCLUSIONS

HepPDT provides access to all useful particle data
properties and is designed to be used with any gener-
ated particle. It also contains a factory to allow the user
to directly access decay model code instead of needing
to use a lookup table or series of if statements based on
the decay model name. HepPDT will be part of the Std-
HepC++ package in CLHEP[5] and is available now at
http://www-pat.fnal.gov/stdhep/c++/.

REFERENCES

1. Particle Data Group: Groom, D.E.et al., The European
Physical JournalC3, (2000).

2. StdHepC++: http://www-pat.fnal.gov/stdhep/c++/.

3. HepMC: http://mdobbs.home.cern.ch/mdobbs/HepMC/.

4. Particle Data Group: Groom, D.E.et al., The European
Physical JournalC3, (2000) 205,
http://www-pdg.lbl.gov/mc_particle_id_contents.html.

5. CLHEP: http://wwwinfo.cern.ch/asd/lhc++/clhep/.

