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In this Brief Report, we propose an index of user similarity, namely, the transferring similarity, which
involves all high-order similarities between users. Accordingly, we design a modified collaborative filtering
algorithm, which provides remarkably higher accurate predictions than the standard collaborative filtering.
More interestingly, we find that the algorithmic performance will approach its optimal value when the param-
eter, contained in the definition of transferring similarity, gets close to its critical value, before which the series
expansion of transferring similarity is convergent and after which it is divergent. Our study is complementary
to the one reported in �E. A. Leicht, P. Holme, and M. E. J. Newman, Phys. Rev. E 73, 026120 �2006��, and
is relevant to the missing link prediction problem.

With the exponential growth of the internet �1� and the
world-wide-web �2�, a prominent challenge for modern soci-
ety is the information overload. Since there are enormous
data and sources, people never have time and vigor to find
out those most relevant for them. A landmark for solving this
problem is the use of search engine �3,4�. However, a search
engine could only find the relevant web pages according to
the input keywords without taking into account the person-
alization, and thus returns the same results regardless of us-
ers’ habits and tastes. Thus far, with the help of Web2.0 tech-
niques, personalized recommendations become the most
promising way to efficiently filter out the information over-
load �5�. Motivated by the significance in economy and so-
ciety, devising efficient and accurate recommendation algo-
rithms becomes a joint focus from theoretical studies �5� to
e-commerce applications �6�. Various kinds of algorithms
have been proposed, such as collaborative filtering �CF�
�7,8�, content-based methods �9,10�, spectral analysis
�11,12�, iterative refinement �13�, principle component analy-
sis �14�, network-based inference �15–18�, and so on.

A recommender system consists of users and objects, and
each user has rated some objects. Denoting the user set as
U= �u1 ,u2 , . . . ,uN� and the object set as O= �o1 ,o2 , . . . ,oM�,
the system can be fully described by an N�M rating matrix
V, with vi��0 denoting the rating user ui gives to object o�.
If ui has not yet evaluated o�, vi� is set as zero. CF system
has been one of the most successfully and widest used rec-
ommender systems since its appearance in the mid-1990s
�7,8�. Its basic idea is that the user will be recommended
objects based on the weighted combination of similar users’
opinions. In the standard CF, the predicted rating vi�� from
user ui to object o� is set as

vi�� = v̄i + I�
j

sij�v j� − v̄ j� , �1�

where sij is the similarity between ui and uj, v̄i means the
average rating of ui and I= �� jsij�−1 serves as the normaliza-
tion factor. Here, j runs over all users having rated object o�

excluding ui himself. The similarity, sij, plays a crucial role
in determining the algorithmic accuracy. In the implementa-
tion, the similarity between every pair of users is calculated
first, and then the predict ratings by Eq. �1�. Various similar-
ity measures have been proposed, among which the Pearson
correlation coefficient is the widest used �7�, as

sij =
�c

�vic − v̄i��v jc − v̄ j�

	��
�vi� − v̄i�2	��

�v j� − v̄ j�2
, �2�

where c, �, and � run over all the objects commonly selected
by user i and j. All diagonal elements in the similarity matrix
are set to be zero, which has no effect on the predicted rat-
ings by Eq. �1�. We make this small modification of the
standard Pearson coefficient to make sure the transferred
similarity between two nodes �see Eq. �3�� is contributed
only by the medi-users.

Several algorithms �19–21� have recently been proposed
to improve the accuracy of the standard CF via modifying
the definition of user-user similarity. However, all those al-
gorithms have not fully addressed the similarity induced by
indirect relationship, say, the high-order correlations. Note
that, the Pearson correlation coefficient, sij, considers only
the direct correlation. We argue that to appropriately measure
the similarities between users, the indirect correlations
should also be taken into consideration. To make our idea
clearer, we draw an illustration in Fig. 1. Suppose there are
three users, labeled as A, B, and C. Although the similarity
between user A and C is quite small, A and C are both very
similar with B. Actually, A, B, and C may share very similar
tastes, and the very small similarity between A and C may be*zhutou@ustc.edu
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caused by the sparsity of the data. That is to say, A and C has
a very few commonly selected objects. The sparsity of data
set makes the direct similarity less accurate, and thus we
expect a new measure of similarity properly integrating high-
order correlations may perform better.

Denoting � a decay factor of similarity transferred by a
medi-user, a self-consistent definition of transferring similar-
ity can be written as

tij = ��
v

sivtvj + sij , �3�

where sij is the direct similarity as shown in Eq. �2�. The
parameter � can be considered as the rate of information
aging by transferring one step further �22�. Clearly, the trans-
ferring similarity will degenerate to the traditional Pearson
correlation coefficient when �=0. Denoting S= �sij�N�N and
T= �tij�N�N the direct similarity matrix and the transferring
similarity matrix, Eq. �3� can be rewritten in a matrix form,
as

T = �ST + S , �4�

whose solution is

T = �1 − �S�−1S . �5�

Accordingly, the prediction score reads

vi�� = v̄i + I��
j

tij�v j� − v̄ j� , �6�

where multiplier I�= �� jtij�−1 serves as the normalizing factor
and j runs over all users having rated object o� excluding ui
himself.

To test the algorithmic accuracy, we use a benchmark data
set, namely, MovieLens, which consists of N=943 users, M
=1682 objects, and 105 discrete ratings from 1 to 5. The
sparsity of the rating matrix V is about 6%. We first ran-
domly divide this data set into two parts: one is the training
set, treated as known information, and the other is the probe,
whose information is not allowed to be used for prediction.
Then we make a prediction for every entry contained in the
probe �resetting vi�� =5 and vi�� =1 in the case of vi�� �5 and
vi�� �1, respectively�, and measure the difference between
the predicted rating vi�� and the actual rating vi�. For evalu-
ating the accuracy of recommendations, many different met-
rics have been proposed �7�. We choose two commonly used
measures: root-mean-square error �RMSE� and mean abso-
lute error �MAE�. They are defined as

RMSE = 	�
�i,��

�vi�� − vi��2/E , �7a�

MAE =
1

E
�
�i,��


vi�� − vi�
 , �7b�

where the subscript �i ,�� runs over all the elements in the
probe, and E is the number of those elements.

In Figs. 2–4, we report the numerical results about the
algorithmic accuracy, where the divisions of training set and
probe are 90% vs 10%, 50% vs 50%, and 10% vs 90%,
respectively. In every case, there exists an optimal value of �,
denoted by �opt, corresponding to both the lowest MAE and
the lowest RMSE. Around the optimal value, �opt, the present
algorithm obviously outperforms the standard CF. The

FIG. 1. Illustration for transferring similarity.

FIG. 2. Prediction accuracy of the present algorithm, measured
by MAE and RSME, as functions of �. The transferring similarities
are directly obtained by Eq. �5�. The numerical results are averaged
over 20 independent runs, each corresponds to a random division
with training set containing about 90% of data while the probe
consisted of the remain 10%. The error bars denote the standard
deviations of the 20 samples.

FIG. 3. Prediction accuracy of the present algorithm, where the
division of training set and probe is 50% vs 50%. Other conditions
are the same as what presented in Fig. 2.
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present algorithm can also beat a recently proposed algo-
rithm based on an opinion diffusion process for the same
data set �16�, which gives predictions with RMSE�1.00 and
MAE�0.80 for the 90% vs 10% division �the corresponding
errors in the optimal cases for the present algorithm are
RMSE�0.96 and MAE�0.75�.

The optimal values of � are different for different cases,
and the one corresponding to sparser data is larger. In addi-
tion, the improvement of accuracy is larger for sparser data.
In the sparse case, the Pearson coefficient considering only
local information is not distinguishable for two users gener-
ally vote only a very few overlapped objects, therefore the
information from medi-users plays significant role and the
improvement is great as well as the difference between T and
S is remarkable. While in the dense case, two users usually
have many commonly voted objects, and thus the Pearson
coefficient can give accurate description on user similarity
and the information contained by long-range interactions is
less helpful. In addition, the specific case as shown in Fig. 1
is very unlikely to happen. Since in the real world, the data
sets are usually extremely sparse �the density of MovieLens
is about 6%, while for Netflix.com it is about 1%, for RateY-
ourMusic.com about 0.3%, for Del.icio.us about 0.05%�, the
transferring similarity is practically useful.

Equation �5� can be expanded by a power series, as

T = S + �S2 + �2S3 + ¯ . �8�

Since to directly inverse �1−�S� takes long time for huge-
size systems �1−�S is generally not a sparse matrix, so the
computational time scales as N3 by Gaussian elimination,
N2.807 by Strassen algorithm, and N2.376 by Coppersmith-
Winograd algorithm �23��, the cutoff

T = S + �S2 + ¯ + �nSn+1, �9�

is usually used as an approximation in the implementation
�although the matrix multiplication has the same order of
computational complexity as the inversion, it takes much
shorter time, and its advantage is that the multiplication of
matrix can be saved and reused in searching the optimal �

while the matrix inversion has to be redone when changing
��. However, in this paper, since the system size in not too
large, we always directly use Eq. �5� to obtain the transfer-
ring similarity matrix, which works out less than one second
in a desktop computer with a single Inter CoreE2160 proces-
sor �1.8 GHz� and 1 GB EMS memory. Note that, even if
�1−�S� is inversable, Eq. �8� may not be convergent. Actu-
ally, Eq. �8� is convergent if and only if all the eigenvalues of
�1−�S� are strictly smaller than 1. The mathematical proof
of a very similar proposition using Jordan matrix decompo-
sition can be found in Ref. �22�. Although Ref. �22� only
gives the proof of the sufficient condition, the necessary con-
dition can be proved in an analogical way. Accordingly, there
exists a critical point of �, before which the spectral radius of
�S is less than 1 and after which it exceeds 1. Since this
critical value is also the maximal value of � that keeps the
convergence of Eq. �8�, we denote it by �max. The optimal
and maximal values of � for the three cases corresponding to
Figs. 2–4 is presented in Table I. It is very interesting that
�opt is always smaller yet very close to �max.

In summary, we designed an improved collaborative fil-
tering algorithm based on a proposed similarity measure,
namely, the transferring similarity. Different from the tradi-
tional definitions of similarity that consider the direct corre-
lation only, the transferring similarity integrates all the high-
order �i.e., indirect� correlations. The numerical testing on a
benchmark data set has demonstrated the improvement of
algorithmic accuracy compared with the standard CF algo-
rithm. Very recently, Zhou et al. �24� and Liu et al. �21�
proposed some modified recommendation algorithms under
the frameworks of collaborative filtering �21� and random-
walk-based recommendations �24�, respectively. By taking
into account both the direct and the second-order correla-
tions, their algorithms can remarkably enhance the prediction
accuracy. These works can be considered as a bridge con-
necting the nearest-neighborhood-based information filtering
algorithms and the present work.

Very interestingly, we found that the optimal value of � is
always smaller yet very close to the maximal value of � that
guarantees the convergence of power-series expansion of the
transferring similarity. The significance of this finding is
twofold. First, Leicht, Holme, and Newman �25� have re-
cently proposed a new index of node similarity, which is
actually a variant of the well-known Katz index �26�. The

FIG. 4. Prediction accuracy of the present algorithm, where the
division of training set and probe is 10% vs 90%. Other conditions
are the same as what presented in Fig. 2.

TABLE I. The optimal and maximal values of � for the three
cases corresponding to Figs. 2–4. �max is obtained by averaging 20
independent runs, and we have checked that in each run �opt is
always a little bit smaller than �max. The resolution of � is 10−3

since for higher resolution �e.g., 10−4�, the difference between two
neighboring data point is very small, and the optimal value is not
distinguishable with the presence of fluctuations.

Data divisions 90% vs 10% 50% vs 50% 10% vs 90%

�opt 0.0061 0.0063 0.0156

�max 0.006136 0.006311 0.015642
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numerical tests �25� showed that their index best reproduces
the known correlations between nodes when the parameter is
very close to its maximal value that guarantees the conver-
gence of power-series expansion. Although their work and
the current work originate from different motivations and use
different testing methods, the results are surprisingly coinci-
dent. Despite the insufficiency of empirical studies and the
lack of analytical insights, this finding should be of theoret-
ical interests. Second, �max is equal to the inverse of the
maximum eigenvalue of S, �max

−1 . Therefore, it is easy to de-
termine �max since fast algorithms on calculating �max for a
given matrix is well developed �see, for example, the power
iteration method in Ref. �23��. When dealing with an un-
known system, we can first calculate �max, and then concen-
trate the search of �opt on the area around �max

−1 , which can
save computations in real applications.

Very recently, a fresh issue is raised to physics commu-
nity, that is, how to predict missing links of complex net-
works �27,28�. The fundamental problem is to determine the
proximities, or say similarities, between node pairs �29,30�.
The similarity index presented here is not only an extension
of the Pearson correlation coefficient in rating systems, but
also easy to be extended to quantify the structural similarity
of node pair in general networks based on any locally de-
fined similarity indices. We believe this self-consistent defi-
nition of similarity �see Eq. �3�� can successfully find its
applications in link prediction problem.
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and No. 10635040. T.Z. and J.-G.L. acknowledge the Swiss
National Science Foundation �Grant No. 200020-121848�.

�1� G.-Q. Zhang, G.-Q. Zhang, Q.-F. Yang, S.-Q. Cheng, and T.
Zhou, New J. Phys. 10, 123027 �2008�.

�2� A. Broder, R. Kumar, F. Moghoul, P. Raghavan, S. Rajago-
palan, R. Stata, A. Tomkins, and J. Wiener, Comput. Netw. 33,
309 �2000�.

�3� S. Brin and L. Page, Comput. Netw. ISDN Syst. 30, 107
�1998�.

�4� J. M. Kleinberg, J. ACM 46, 604 �1999�.
�5� G. Adomavicius and A. Tuzhilin, IEEE Trans. Knowl. Data

Eng. 17, 734 �2005�.
�6� J. B. Schafer, J. A. Konstan, and J. Riedl, Data Min. Knowl.

Discov. 5, 115 �2001�.
�7� J. L. Herlocker, J. A. Konstan, K. Terveen, and J. T. Riedl,

ACM Trans. Inf. Syst. 22, 5 �2004�.
�8� J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R.

Gordon, and J. Riedl, Commun. ACM 40, 77 �1997�.
�9� M. Balabanović and Y. Shoham, Commun. ACM 40, 66

�1997�.
�10� M. J. Pazzani, Artif. Intell. Rev. 13, 393 �1999�.
�11� D. Billsus and M. Pazzani, Proceedings of the International

Conference in Machine Learning, 1998 �Morgan Kaufmann
Publishers, San Francisco, 1998�, p. 46–54.�.

�12� B. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl, Proceed-
ings of the ACM WebKDD Workshop, 2000 �unpublished�.

�13� J. Ren, T. Zhou, and Y.-C. Zhang, EPL 82, 58007 �2008�.
�14� K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, Inf. Retr. 4,

133 �2001�.
�15� Y.-C. Zhang, M. Blattner, and Y.-K. Yu, Phys. Rev. Lett. 99,

154301 �2007�.

�16� Y.-C. Zhang, M. Medo, J. Ren, T. Zhou, T. Li, and F. Yang,
EPL 80, 68003 �2007�.

�17� T. Zhou, J. Ren, M. Medo, and Y.-C. Zhang, Phys. Rev. E 76,
046115 �2007�.

�18� T. Zhou, L. L. Jiang, R. Q. Su, and Y.-C. Zhang, EPL 81,
58004 �2008�.

�19� J.-G. Liu, B.-H. Wang, and Q. Guo, Int. J. Mod. Phys. C 20,
285 �2009�.

�20� R.-R. Liu, C.-X. Jia, T. Zhou, D. Sun, and B.-H. Wang,
Physica A 388, 462 �2009�.

�21� J.-G. Liu, T. Zhou, B.-H. Wang, and Y.-C. Zhang, e-print
arXiv:0808.3726.

�22� A. Stojmirovic and Y.-K. Yu, J. Comput. Biol. 14, 1115
�2007�.

�23� G. H. Golub and C. F. Von Load, Matrix Computation �Johns
Hopkins University Press, Baltimore, 1996�.

�24� T. Zhou, R.-Q. Su, R.-R. Liu, L.-L. Jiang, B.-H. Wang, and
Y.-C. Zhang, e-print arXiv:0805.4127.

�25� E. A. Leicht, P. Holme, and M. E. J. Newman, Phys. Rev. E
73, 026120 �2006�.

�26� L. Katz, Psychometrika 18, 39 �1953�.
�27� A. Clauset, C. Moore, and M. E. J. Newman, Nature �London�

453, 98 �2008�.
�28� S. Redner, Nature �London� 453, 47 �2008�.
�29� D. Liben-Nowell and J. Kleinberg, J. Am. Soc. Inf. Sci. Tech-

nol. 58, 1019 �2007�.
�30� T. Zhou, L. Lü, and Y.-C. Zhang, e-print arXiv:0901.0553, Eur.

Phys. J. B �to be published�.
�31� http://www.grouplens.org

ht
tp

://
do

c.
re

ro
.c

h

4


