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We describe the use of a bright-field microscope for dynamic light scattering experiments on weakly scat-
tering samples. The method is based on collecting a time sequence of microscope images and analyzing them
in the Fourier space to extract the characteristic time constants as a function of the scattering wave vector. We
derive a theoretical model for microscope imaging that accounts for �a� the three-dimensional nature of the
sample, �b� the arbitrary coherence properties of the light source, and �c� the effect of the finite numerical
aperture of the microscope objective. The model is tested successfully against experiments performed on a
colloidal dispersion of small spheres in water, by means of the recently introduced differential dynamic
microscopy technique �R. Cerbino and V. Trappe, Phys. Rev. Lett. 100, 188102 �2008��. Finally, we extend our
model to the class of microscopy techniques that can be described by a linear space-invariant imaging of the
density of the scattering centers, which includes, for example, dynamic fluorescence microscopy.

I. INTRODUCTION

Scattering and microscopy are traditionally considered as
two complementary techniques for the investigation of soft
and biological materials �1�. Scattering provides in a single
shot a powerful average information from the entire sample,
while microscopy allows for a detailed study of the behavior
of a small portion of it. As far as dynamic measurements are
concerned, both approaches offer interesting possibilities. In
the real space it is possible to characterize the motion of
moving entities by tracking their position in time. This ap-
proach is known as video particle tracking �VPT� �2,3�. In
the reciprocal space one can obtain equivalent information
by monitoring the temporal intensity fluctuations associated
with the sample dynamics �4�. This approach is known as
dynamic light scattering �DLS�.

The possibility of combining scattering and microscopy in
a single instrument has been already exploited in the past
�see, for example, Ref. �5� and references therein�. In most
cases a commercial microscope was customized and
equipped with a laser source, a suitable optics, and a hard-
ware for both the imaging of the sample �VPT� and the cal-
culation of statistical properties of the scattered light �DLS�.
In particular the Fourier transform �FT� operation, needed to
operate in the reciprocal space, was realized by means of an
auxiliary lens and the intensity distribution in the back focal
plane of the lens was analyzed �Fourier microscopy�.

It has been recently proposed that equivalent results can
be obtained by collecting and processing images close to the
sample �6–9�. Sequences of real-space images are Fourier
analyzed and wave vector resolved information about the
system structure and dynamics can be extracted. With refer-

ence to dynamics studies, this approach has been success-
fully demonstrated with �spatially coherent� monochromatic
�10,11� and quasimonochromatic �12–14� light. The close
proximity of the detector to the sample is necessary for the
success of the above-mentioned approach. When a sample is
illuminated with a large coherent beam, it exists a region—
the deep Fresnel region—where the transverse correlation
properties of the scattered light are independent on the dis-
tance from the sample �7,8,15,16�. It is only within the deep
Fresnel region that it is possible to recover a scattering pat-
tern of the sample by numerical Fourier analysis of the im-
ages. In a general way this defines a whole family of tech-
niques that we refer to as near-field, or deep Fresnel,
scattering �17�.

In near-field scattering experiments with coherent illumi-
nation the deep Fresnel region can be very extended. In the
attempt of maximizing the scattering signal at the lowest
wave vectors, it is a common practice to operate at large
�from a few millimeters up to 1 m� defocusing distances
from the sample. At such distances the defocused images are
either shadowgrams �6,10,12–14� or speckle images
�7–9,11�. Very recently it has been attempted to extend the
near-field scattering family to progressively incoherent illu-
mination. Experiments demonstrated that the requirements in
terms of both spatial and temporal coherences can be largely
relaxed either for partially coherent x rays �18� or for bright-
field microscopy �19�. Working with low-coherence sources
reduces the extent of the deep Fresnel region and forces col-
lecting images closer to the sample. This has been done in
Ref. �19� where the microscope object plane was chosen at
the sample midplane. The use of low-coherence sources of-
fers unexpected advantages, especially when the samples are
confined in thin cells. A small value of the longitudinal co-
herence length minimizes the tedious Fabry-Perot interfer-
ence fringes observed with laser illumination. In addition a
close distance to the sample guarantees a good correspon-
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dence between the image intensity and the local density of
scatterers within the sample. A better quantification of this
correspondence is of paramount importance in view of future
extensions of near-field scattering techniques to systems
whose dynamical properties are not uniform in space �het-
erogeneous dynamics� �20�. Moreover, the question about the
possible limitations due to the loss of coherence remains to
be addressed.

In this paper we present a description of the scattering-
based image formation process with partially coherent illu-
mination, including the effect of out-of-focus planes in the
microscope images. The main focus here is on the applica-
tion of such a description to the microscope-based investiga-
tion of dynamical systems, with a special reference to the
results presented in Ref. �19�. Our results suggest that dy-
namic microscopy techniques, and in particular differential
dynamic microscopy �DDM� �19�, can be quite flexible di-
agnostic tools for the study of dynamical phenomena, in par-
ticular for those laboratories that are already equipped with a
microscope. We generalize our results to all those cases
where the imaging is a linear space-invariant process, includ-
ing fluorescence microscopy. The paper structure is as fol-
lows. In Sec. II we present experimental results on colloidal
samples obtained with DDM and provide a two-dimensional
�2D� model of dynamic microscopy experiments in the Fou-
rier space, along the line followed in Ref. �19�. In Sec. III we
give a fully quantitative theory for the three-dimensional
�3D� bright-field imaging of weak scattering objects, i.e., that
do not dephase or absorb light too strongly. In Sec. IV we
treat the more general case of linear space-invariant imaging
and provide theoretical results for the case of fluorescence
imaging as an example. In Sec. V we describe various ap-
proaches to the analysis of time series of microscopy images.

II. ROUTE TO THE DESCRIPTION OF DYNAMIC
MICROSCOPY EXPERIMENTS IN THE FOURIER SPACE

To introduce dynamic microscopy in the Fourier space,
we first present in this section the data obtained by applying
the DDM technique to a series of microscopy images, ob-
tained by using a Brownian colloidal dispersion as a sample.
However, we stress that DDM is just one of the methods that
can be used to perform dynamic microscopy experiments in
the Fourier space. Alternative algorithms will be presented in
Sec. V. The DDM data presented here will be used through-
out the paper to test the theoretical descriptions of scattering-
based image formation, which we introduce stepwise.

As a first step we discuss the DDM data in the frame of a
simplified two-dimensional model, introduced in Ref. �19�.
Our experimental system is a dispersion of polystyrene par-
ticles �Duke Scientific, Part No. 3070A, nominal diameter of
73.0�2.6 nm� which is diluted to 1% w/w such that the
interactions between the particles are negligible. A capillary
tube with a rectangular section �Vitrocom, Inc.� is filled with
the colloidal dispersion and imaged by means of a commer-
cial microscope �LEICA DM IRB�. The images are acquired
with a complementary metal-oxide-semiconductor �CMOS�
camera �IDT X-Stream XS-3, 1280�1024 pixels, pixel size
of 12 �m�. The thickness of the capillary tube along the

optical axis is 100 �m and the midplane of the capillary
tube is imaged onto the camera sensor. Typical data consist
of a sequence of approximately 1000–2000 images, acquired
with a sampling rate of 100–400 images/s and with an expo-
sure time of 2.5–10 ms.

In Fig. 1 we show two images that are obtained at �t
=1 s distance with the following experimental parameters:
exposure time of 2.5 ms, numerical aperture of the objective
No=0.85, magnification M =40, 2�2 binning, and effective
pixel size dpix=0.6 �m. Both images exhibit a strong back-
ground due to the transmitted beam and artifacts due to dust
particles on the camera sensor and imperfections on the op-
tical surfaces. The scattering contributions of the particles
are barely visible and can be brought to light by selecting the
image in Fig. 1 �left� as a reference and subtracting it from
the one taken at later time. This procedure is expected to
remove all the time-independent signals and to isolate the
signal associated with the particles’ motion. The subtraction
procedure can be repeated for different values of �t, as
shown in Fig. 2. The inspection of Fig. 2 reveals that the
time-independent stray signal present in the original images
has been effectively removed from the original images. A
small-scale signal is now evident which is purely associated
with the particles’ motion. The amplitude of the signal in-
creases with �t and a more quantitative assessment of this
increase can be obtained by defining the stochastic two-

FIG. 1. Microscopy images of a colloidal dispersion acquired 1
s apart in time �details in the text�. The size of each panel corre-
sponds to about 150 �m. Because of the small scattering signal of
the particles the two images appear to be identical. The visible
signal is due mainly to stray light �for example, dust particles on the
optical surfaces of the microscope, on the detector, and on the sur-
faces of the sample cell�.

FIG. 2. Images obtained by subtracting two microscopy images
that are taken at time intervals of �t=0.01, 0.1, and 1 s �from left to
right�. The subtraction removes efficiently the stray signal and iso-
lates the contribution due to the particles. The average size of the
speckles gives an estimate of the microscope resolution. The con-
trast in the images increases with �t.
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dimensional variable �I�x , t ;�t�= I�x , t+�t�− I�x , t�, where
I�x , t� is the intensity detected at the pixel with position x on
the detector.

In the following we will make the simplifying but not
necessary assumption that the dynamics is stationary, i.e., the
dynamical properties of the system depend only on the time
delay �t but not on the actual time t that is chosen as a
reference. We will drop accordingly the dependence on t.
The expectation value ��I�x ;�t�� is then equal to zero and
the energy content of the intensity fluctuation �I�x ;�t� can
be quantified by its first nonzero moment, i.e., the expecta-
tion value �2��t� of the variance defined as

�2��t� =� � �	�I�x;�t�	2�dx . �1�

For dynamically active systems, �2��t� is expected to in-
crease with �t as a consequence of the particles’ motion �19�.
For our Brownian colloidal dispersion, this increase is shown
in Fig. 3, where we display data obtained with the highest
frame rate �400 Hz� to capture the initial increase in the
variance. The signal increases from a small background
value, associated with the detector noise, and saturates to a
plateau, which is indicative of the complete loss of positional
correlation between the particles.

The DDM technique is based on a Fourier analysis of
�I�x ;�t� and the basic concept behind it is easily explained
for a 2D object, i.e., for a sample having negligible thickness
along the optical axis. The object refractive index distribu-
tion can be Fourier decomposed and each Fourier component
can be labeled with a 2D Fourier wave vector qobj. Each
Fourier component of the refractive index distribution acts as
a periodic diffraction grating, scattering light at an angle
�=sin−1�qobj /ko� with respect to the incident wave vector ko.
For an imaging system with unitary magnification, the dif-
fracted plane wave causes in the image a sinusoidal fringe

pattern with 2D Fourier wave vector q such that

q = 2�
sin �

	o
= qobj , �2�

where we have used ko=2� /	o �	o is the wavelength of
light�. Equation �2� is the key relation for performing DDM
experiments and, more generally, near-field scattering experi-
ments. Indeed, it relates to a one-to-one fashion a Fourier
component of the measured intensity distribution with the
corresponding one in terms of the sample refractive index.

The simplest way of taking advantage of this result
would be to study the behavior in time of the Fourier

transform of the intensity I�x , t�, defined as Î�q , t�
= �1 /2��

dx I�x , t�e−jq·x, where q= �qx ,qy�. This could be
easily done by means of the image correlation function

G�q,�t� = �Î��q,0�Î�q,�t�� �3�

or the normalized image correlation function

g�q,�t� =
G�q,�t�
G�q,0�

. �4�

Here, the expectation value �¯ � is taken over many sta-
tistically independent realizations of the signal. For the case
of Brownian motion considered here, we can calculate the
2D correlation function �4�

g2D�q,�t� = exp�− �t/
d�q�� , �5�

where 
d�q�= �Dmq2�−1 is the characteristic diffusion time
constant and Dm is the particle diffusion coefficient. How-
ever, because of the large and nonhomogeneous background
intensity, it was seminally suggested in Ref. �10� that a more
robust statistical estimator is represented by the expectation
value of the Fourier power spectrum of �I�x ;�t�, i.e.,

D�q,�t� � �	�Î�q;�t�	2� . �6�

Incidentally D�q ,�t� is the two-dimensional generaliza-
tion of the photon structure function used in DLS experi-
ments �21–24�. To stress the fact that the use of images al-
lows us to have a multitude �typically more than 1.0�106�
of photon structure functions in parallel, we will name it
image structure function. In analogy with DLS, the correla-
tion and the structure functions are related by

D�q,�t� = 2�G�q,0� − G�q,�t�� , �7�

which is valid for statistically stationary processes. It is
worth noting that G�q ,�t� is a decreasing function of �t
from G�q ,0� to G�q ,�t→��=0. Equation �7� implies that
D�q ,�t� is an increasing function of �t from zero to
2G�q ,0�. Even if from a theoretical point of view the struc-
ture and the correlation functions are equivalent, we will use
for the data analysis the structure function approach �a
deeper discussion about this point can be found in Sec. V�.

Without prior knowledge about the relationship occurring
between intensity and refractive index fluctuations, the struc-
ture function is generally given by

FIG. 3. The particle rearrangement due to their Brownian mo-
tion causes an increase in the variance of the intensity fluctuation
�I�x ;�t�. With increasing time delay �t, the two subtracted images
become progressively uncorrelated, such that �2��t� saturates at
large �t. Each experimental point is the result of an average ob-
tained by using 100 statistically independent �I images with the
same �t. The line is drawn with no adjustable parameters from the
theory presented in Sec. III.
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D�q,�t� = A�q��1 − g�q,�t�� + B�q� , �8�

where A�q� is related to the scattering properties of the par-
ticles, to the coherence properties of the light source, and to
the properties of the microscope objective. B�q� accounts for
the noise of the detection system and is equal to 2 times the
power spectrum of the camera noise. As already pointed out
in Ref. �19�, previous knowledge of A�q� and B�q� is not
necessary for performing DDM experiments. For example, in
the case of Brownian motion, we can use Eq. �5� and treat
A�q�, B�q�, and 
d�q� as fitting parameters. The information
about the dynamics can then be extracted from the analysis
of the parameter 
d�q�.

In Fig. 4 we show D�q ,�t� for different values of �t. As
expected the energy content increases with �t. Because of
the azimuthal symmetry exhibited by D�q ,�t�, we consider
the azimuthal average D�q ,�t�, where q=�qx

2+qy
2. The result

of this averaging operation is shown in Fig. 5, where the
azimuthal average D�q ,�t� as a function of the wave vector
q is presented for different values of the time delay �t. The
area under the curve, i.e., the variance �2��t�, increases with
�t.

The characterization of the dynamics passes through the
analysis of the behavior of D�q ,�t� as a function of the time
delay �t. Typical curves are presented in Fig. 6 for different
wave vectors q. From a fitting procedure based on Eq. �8�, it
is possible to extract A�q�, B�q�, and 
d�q�. To facilitate the
comparison with DLS experiments, we plot in Fig. 6 �bottom
panel� the normalized correlation function g�q ,�t�=1
− �D�q ,�t�−B�q�� /A�q�. A fair exponential decay is ob-
served for the three data sets, as expected for a Brownian
system.

The results of the fitting procedure for 
d�q� are plotted in
Fig. 7 �open symbols�, together with data points obtained
with a traditional rotating-arm DLS setup �closed symbols�.
The DLS data have been acquired on a more dilute sample
�0.001% w/w� in the angular range of 20° –150°. The
two data sets agree very satisfactorily with the predictions of
the Stokes-Einstein-Sutherland relation Dm=kBT / �6��R�.
Here, kB is the Boltzmann constant, T is the absolute tem-
perature, � is the solvent viscosity, and 2R is the particle
diameter. The result of the theoretical estimate, accounting
for the polydispersity of the sample and including a correc-
tion for the finite concentration of the colloids is Dm
=6.0�0.2 �m2 /s, in good agreement with the experimental
data. Figure 7 shows that DDM operates at extremely low q,
typically not accessible with DLS and that the simultaneous
use of the two techniques guarantees an access to dynamical
information over more than 2 decades in q.

As far as the other two fitting parameters are concerned,
we show in Fig. 8 the results for the amplitude A�q� and the

FIG. 4. Experimentally determined image structure function
D�q ,�t� for the images �I�x ;�t� in Fig. 2: �t=0.01 s, �t=0.1 s,
and �t=1 s. Each image is the result of an average over 2000
statistically independent �I images with the same �t. The black
cross at the center of each image is the result of a postprocessing
operation and is used to suppress artificially large contributions due
to image processing artifacts. The larger energy content of the right
image can be appreciated.

FIG. 5. The image structure function D�q ,�t� is plotted as a
function of q for different values of �t: �t=0.01 s �open circles,
black�, �t=0.1 s �open squares, dark gray�, and �t=1 s �close up
triangles, light gray�.

FIG. 6. �Color online� �Top� Growth of D�q ,�t� as a function of
�t for three different values of q: 0.70 �blue down triangles�, 1.06
�red up triangles�, and 2.13 �m−1 �black circles�. �Bottom� Expo-
nential decay of the normalized correlation function G�q ,�t� corre-
sponding to the same wave vectors.
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background B�q� in the wave-vector range �0.1,5� �m−1.
The signal A�q� can be appreciably discriminated from the
background B�q� in the wave-vector range �0.3,5� �m−1.
The function A�q� has a deep minimum at q=0, increases to
a peak for q�1 �m−1, and decreases again for larger values
of q. Unfortunately, the 2D model presented in Ref. �19� and
outlined above cannot quantitatively account for the behavior
of A�q�. In this paper we derive a 3D theory that, among
other things, predicts the behavior of A�q� as a function of
the parameters of the microscope. We anticipate here that the
theory captures the basic ingredients of the experiments as
can be appreciated from Fig. 8, where the result of the fitting
of the A�q� data with Eq. �62� is shown as a dashed line. The
agreement of the data with the theory is good and will be
discussed in more detail in Sec. III.

A. Toward a 3D model: The Brownian particle

Let us consider a Rayleigh scatterer, i.e., a particle whose
size is much smaller than the wavelength 	0 and a mono-

chromatic plane wave ejk0z impinging on the particle along
the optical axis z. The unitary amplitude impinging plane
wave is characterized by a wave vector ki and the light
quasielastically scattered at an angle � with respect to the
incident direction has a wave vector ks, where k0= 	ks	= 	ki	
�see Fig. 10 for the wave-vector diagram�. The interaction of
the particle with the plane wave produces a spherical wave
propagating away from the particle and centered on it �25�.
The resulting scalar field, measured at distance z from the
particle center, is given by

U�x,z� = ejk0z + S
ejk0r

r
, �9�

where r=�	x	2+z2 and S is related to the scattering contrast
of the particle �25�. With a simple change in the reference
frame, we can write the intensity pattern in the plane z=0
due to a particle located in �x0 ,z0� as

I�x	x0,z0� � 1 +
2S

z0
cos k0	x − x0	2

2z0
� , �10�

where we made the paraxial approximation r=�	x	2+z2�z
+ 	x	2 /2z. This pattern has the typical appearance shown in
Fig. 9, where it can be appreciated that, while a particle
displacement in the �x ,y� plane causes an overall translation
of the fringes, a motion along z is associated with a change in

FIG. 7. �Color online� Experimentally determined characteristic
decay time 
d plotted against the wave vector q for the 73 nm
particles. Open �black� circles are data obtained with DDM. Close
�red� circles are DLS data. The continuous line in the graph is the
theoretical estimate corresponding to Dm=6.0 �m2 /s �see text for
details�.

FIG. 8. �Color online� Experimentally determined A�q� ,B�q�
plotted against the wave vector q for a colloidal dispersion of par-
ticles with a diameter of 73 nm. The dashed line is a fit of the data
for A�q� as discussed in the text.

FIG. 9. Simulated interference pattern generated at some dis-
tance from a Rayleigh scatterer �particle� illuminated by a plane
wave, which propagates along the z direction. �Upper left� the par-
ticle is in �x0 ,y0 ,z0�; �upper right� the particle has moved in �x0

+�x ,y0+�y ,z0�. The fringes are unchanged and translated in the
�x ,y� plane by an amount ��x ,�y�; �lower left� the particle is in
�x0 ,y0 ,z0+�z� i.e., further away from the image plane. The fringes
are not translated in the �x ,y� plane but their shape has changed;
�lower right� the particle is in �x0+�x ,y0+�y ,z0+�z�. The fringes
are translated in the �x ,y� plane by an amount ��x ,�y� and also
modified by virtue of the particle axial displacement �z.
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the fringe spacing, which depends on the value of z0. These
fringes do contain precious information about the position of
the particles along the optical axis z. In principle this infor-
mation allows for the recovery of the three-dimensional po-
sition of the particle as routinely done in digital holographic
microscopy �26�.

Here, we use this information in a different way. The two-
dimensional Fourier transform of the intensity pattern is
given by

Î�q	x0,z0� � �q� +
2S

k0
ejq·x0 sin�qzz0� �11�

where qz�q2 /2k0 is the paraxial approximation of the z
component of the scattering wave vector Q=ks−ki= �q ,qz�.
Indeed, Q= 	Q	=2k0 sin�� /2��k0�,

Q2 � q2 +  q2

2k0
�2

, �12�

which implies that qz�q2 /2k0.
It has to be noted that results similar to Eq. �11� have been

already presented before �27–30� for visible, x-ray, and elec-
tron optics. The single-particle model used here allows us to
easily interpret in the Fourier space any particle motions. The
motion of the particle along the z axis causes an appreciable

phase shift of Î�q� when an axial displacement on the order
of 1 /qz takes place, whereas a displacement in the transverse
plane has to be on the order of 1 /q to cause an appreciable
effect. By assuming a Brownian motion of the particle with a
diffusion coefficient Dm and inserting the above expression
in Eq. �6�, we obtain

D�q,�t� = 2G�q,0��1 − e−Dm�q2+qz
2��t�

= 2G�q,0��1 − e−DmQ2�t� , �13�

where G�q ,0�=4S2 /k0
2. This model can be easily extended to

a collection of noninteracting identical particles and one ob-
tains a result identical to Eq. �13�. This result shows that the
dynamics of the Brownian motion of a system of particles
can be characterized by investigating the image structure
function. The outcome of this investigation performed with
coherent light is fully equivalent to a DLS experiment, pro-
vided that the dynamics measured at the 2D wave vector q is
correctly associated with the correct 3D wave vector Q. It is
worth noting that for small scattering angles � one has Q
�q and the fractional error in the determination of the char-
acteristic time of the exponential by assuming that Q�q
scales as �Q /2k0�2=sin2�� /2�. For example for ��20° the
fractional error amounts to about 3%. The advantage of the
single-particle model is that it can be easily used to get a
semiquantitative understanding of the effects of the limited
coherence of the illuminating light. To this purpose we draw
in Figs. 11 and 12 two wave-vector diagrams similar to
the one reported in Fig. 10 for plane-wave illumination.
These diagrams illustrate the main effect of partially coher-
ent illumination on a scattering experiment: different three-
dimensional wave vectors Q may give rise to the same two-
dimensional projection q.

In the case of spatially incoherent illumination the particle
is illuminated with a set of plane waves whose mutual phase
relationship is a random stochastic variable. In Fig. 11 we
can appreciate that the wave vector k1 gives rise to a scat-
tering wave vector Q1= �q1 ,qz1

� and k2 to a scattering wave
vector Q2= �q2 ,qz2

�. The two wave vectors q1 and q2 can
have the same amplitude provided that the z components
have the appropriate value. This means that the two-
dimensional wave vector q might correspond to different
three-dimensional wave vectors Q.

A similar effect can be associated with the polychroma-
ticity of the source. In Fig. 12 the two wave vectors k1 and
k2 do not differ in direction, as for the previous case, but in
amplitude, due to their different wavelengths. Again, the
one-to-one correspondence between q and Q is lost. In gen-
eral for every q it exists a whole set of qz that correspond to
the same three-dimensional wave vector Q.

qz

q

ki

ks

Q

FIG. 10. Diagram showing the relationship between the wave
vectors involved in the scattering and imaging processes. The ref-
erence system is chosen as follows. The z axis coincides with the
direction of propagation of the incident light, which is characterized
by the wave vector ki. The �x ,y� plane is perpendicular to the inci-
dent wave vector.

qz2

qz1

q2

q1k2

k1

ks2 ks1

Q2

Q1

FIG. 11. Two plane waves forming different angles with respect
to the optical axis are characterized by two wave vectors k1 and k2

with the same amplitude k but different directions. They give rise to
the same two-dimensional projection q, provided that the compo-
nents qz1 and qz2 are different. Therefore, we expect �q�0 when-
ever Ns�0.

ht
tp

://
do

c.
re

ro
.c

h

6



B. Lack of spatial coherence

We model the lack of spatial coherence by assuming that
the illuminating beam is the �incoherent� superposition of
many monochromatic plane waves of the form Uk
=ejk0z+k·x. Such a wave forms an angle k /k0 with respect to
the z axis. The summation over the intensity pattern associ-
ated with each independent plane wave leads to

I�x	x0,z0� � 1 +
2S

z0
�cos k	x − x0	2

2z0
− k · �x − x0���

k

= 1 +
2S

z0
f̂��ks�x − x0��cos k	x − x0	2

2z0
� , �14�

where we have used as a weight function P�k�
= �1 /�ks

2�f�k /�ks�, and where f is assumed to be a normal-
ized symmetric bell-shaped function with width of �1. In
this model �ks /k0�2Ns, where Ns indicates the numerical
aperture of the source. This expression leads to a Fourier
intensity pattern

Î�q	x0,z0� � �q� +
2S

k0
ejq·x0f�q/�ks��q sin�q̄zz0� , �15�

where the symbol �q indicates a convolution operation with
respect to the variable q. Interestingly, the loss of spatial

coherence does not affect the transverse part of Î�q 	x0 ,z0�
but only the z-dependent term. The function sin�q̄zz0�
=sin�

q2z0

2k0
� is a chirped function of q, whose local spatial fre-

quency scales as qz0 /k0. This implies that the convolution
operation leaves the function sin�q̄zz0� more or less un-
changed at small wave vectors q, where the width of
f�q /�ks� remains small with respect to the local spatial pe-
riod of sin�q̄zz0�. For large q the oscillations of sin�q̄zz0� are
smeared out and average to zero. The crossover value of z0
that marks this transition is

Ls =
k0

q�ks
=

1

2qNs
. �16�

This value can be interpreted as a q-dependent depth of
focus and should be compared with the typical distance trav-
eled by a particle during a time interval �t. If

�t � 
s �
Ls

2

Dm
�

1

�Ns�2Dmq2 , �17�

the dynamics is not affected by the limited spatial coherence
of the light. For longer times the path becomes longer than Ls
and this imposes a cutoff on the structure function. By taking
into account that the Brownian motion acts on time scale on
the order of 1 /Dmq2, the condition for neglecting this spuri-
ous dynamics becomes

Ns � 1, �18�

i.e., as expected the numerical aperture of the light source
should be kept small. However, it is worth stressing that the
lack of spatial coherence introduces a q-independent effect.
Minimizing the effect of the illumination numerical aperture
at one wave vector guarantees that the correct dynamics is
measured at every wave vector. Equation �18� can be made
more quantitative by providing a detailed expression for
f�q /�ks�. At this stage this is not worth in view of the com-
plete model that will be presented in Sec. III.

C. Lack of temporal coherence

A similar reasoning can be made for describing the effect
of the limited temporal coherence that can be modeled by
assuming that the illuminating beam is the �incoherent� su-
perposition of many monochromatic plane waves with differ-
ent wavelengths �wave vectors� Uk=ej�k0+k�z. We can again
assume a spread P�k�= �1 /�kt�g�k /�kt�, where g is again
assumed to be a normalized symmetric bell-shaped function
of unitary width. Under this assumption,

Î�q	x0,z0� � �q� +
2S

k0
ejq·x0�sin�q̄z1 −

k

k0
�z0��

k

= �q� +
2S

k0
ejq·x0ĝ�kt

k0
q̄zz0�sin�q̄zz0� , �19�

where ĝ is the Fourier transform of the spectral distribution
g. By following a line of reasoning similar to the one out-
lined above for the case of limited spatial coherence, it is
possible to identify a q-dependent depth of focus

Lt =
k0

q̄z�kt

. �20�

In this case if

�t � 
t �
Lt

2

Dm
=  k0

�kt
�2 1

Dmq̄z
2 , �21�

the effect of the limited temporal coherence of the source can
be neglected. Again, we can compare 
m with the Brownian
time scale and we get the condition

qz2

qz1

q2 q1

k2 k1

ks2

ks1

Q2 Q1

FIG. 12. Two plane waves having different wavelengths are
characterized by two wave vectors k1 and k2 with different ampli-
tudes but with the same direction. If they impinge on the sample
along the same direction, they could give rise to the same two-
dimensional projection q, provided that the components qz1 and qz2

are different. Therefore, we expect �q�0 whenever �	�0.
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q �
1

�	
�22�

for neglecting the spurious dynamics across Lt. By contrast
with the previous case we find a q-dependent condition.
An order of magnitude estimate can be obtained by consid-
ering that for typical microscope lamps one has �	
�0.1 �m and Eq. �22� becomes q�10 �m−1. Again, a
more precise estimate would require to model the function
P�k�= �1 /�kt�g�k /�kt�, which is not done in this section.

The single-particle model just presented succeeds in
pointing out the basic ingredients of the effect of partially
coherent illumination in dynamic microscopy experiments.
In the next section we will use a more general approach
based on Fourier optics arguments. This approach is valid for
an arbitrary refractive index distribution of the �weak� object
and accounts also for the properties of the collection optics.

III. MICROSCOPY OF WEAK OBJECTS

A. Nemoto-Streibl model of a microscope

An elegant but rather involved treatment of quasimono-
chromatic �i.e., the wavelength spread �	 is negligible with
respect to the peak wavelength 	0� microscopy with partially
coherent light has been proposed by Streibl for 3D weakly
scattering objects �31�. The description is based on the Helm-
holtz equation for the scalar field U�x� and the object is
assumed to be weak in such a way to allow for a first-order
Born approximation. A subsequent theory due to Nemoto
�32� succeeded in showing that Streibl description is consis-
tent with the well-known theory of 2D image formation due
to Hopkins �33,34�. If each layer within the object is treated
independently with the Hopkins theory, the final image is
shown by Nemoto to coincide with the sum of the images of
the individual layers. We find convenient to rewrite the
Nemoto-Streibl results in the following way:

I�x,t� = I0 +� � � dx�dz� K�x − x�,− z��c�x�,z�,t� .

�23�

This means that the intensity in the image plane is a linear
superposition of all the contributions coming from the differ-
ent layers of the object. Each of these contributions is a x
convolution of the density c�x ,z , t� with the transfer function
K�x ,z� that also acts as a weighting function along z. The
model of the kernel K�x ,z� is a challenging task and we
report here the results of Nemoto, by using a notation more
suitable to our purposes.

The layout of the microscope is presented in Fig. 13 that
describes a 6-f imaging system characterized by unitary
magnification. The light emitted by a light source with inten-
sity S�q� is sent onto the object by using a condenser lens.
The object is described by a complex transmission function
f�x ,z�= 	f�x ,z�	exp�j��x ,z��. If the object is weak �i.e., if
	f�x ,z�	�1 and ��x ,z��0�, one has f�x ,z�=1+ fA�x ,z�
+ j fP�x ,z�, where 	fA�x ,z�	�1 and fP�x ,z����x ,z�. Our ob-
ject can be generally described in terms of the density
c�x ,z , t� of the moving particles, where t indicates time, z

tags the particles’ position along the optical axis, and x
= �x ,y� is perpendicular to it. The coefficients aA and aP are
strictly related to the complex refractive index n=nR+ jnI

because f�x ,z�=1+ fA�x ,z�+ j fP�x ,z�=1+ jk0
�n
�c c�x ,z�. This

implies the relations fA=aAc�x ,z� and fP=aPc�x ,z�. It is evi-
dent from Fig. 13 that the object is extended along the opti-
cal axis z and that the plane z=0 is located somewhere in its
proximity. Also, we will temporarily assume that the sample
thickness along z is infinite. The light scattered by the object
recombines with the transmitted beam onto a suitable sensor
�typically a pixel detector� by means of an optical system
�objective� described by a pupil function p�q�. It is worth
noting that the function S�q� is directly related to the mutual
coherence function in the object plane jS�r�= �U0�x
+r�U0

��x��, where U0�x��U�x ,z=0�. The link between the
two functions is given by the Van Cittert and Zernike theo-
rem �34� that is easily expressed in the following form:

JS�q� = S�q� , �24�

where JS�q� is the 2D FT of jS�r�.
Under the reasonable assumption that both JS�q� and p�q�

are real-valued functions we obtain

K̃�q,qz� = aATAF�q,qz� + jaPTPF�q,qz� , �25�

where

TAF�q,qz�
TPF�q,qz�

� = T+�q,qz� � T−�q,qz� �26�

and

T��q,qz� � � � p�q� +
q

2
�JSq� �

q

2
�pq� −

q

2
�qz

+
q · q�

k0
�dq�. �27�

In Eq. �25� we have introduced the 3D Fourier transform

K̃�Q�= �2��−3/2


dX K�X�e−jQ·X, where X= �x ,z� and Q
= �q ,qz�. The two functions TAF�q ,qz� and TPF�q ,qz� are 3D
optical transfer functions �OTFs�, respectively, for the ampli-
tude and the phase of the object. They account for the partial
coherence of the light source, the properties of the objective,
and the 3D nature of the object.

If we assume in addition that both JS�q� and p�q� are even
functions we can write

������ ��	��
 ���� �����
���� ������ ���� ����

���

�
�

�
�

�
�

�
�

�
�

�
�

FIG. 13. �Color online� Simplified layout of an optical
microscope.
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TAF�q,qz�
TPF�q,qz�

� = T�q,qz� � T�q,− qz� , �28�

where we have reduced the knowledge of the two functions
TAF and TPF to the knowledge of the single function
T�q ,qz��T+�q ,qz�, which is also an even function with re-
spect to q. The evenness of JS�q� and p�q� is very plausible
in most cases. Indeed, the typical apertures in microscopes
are described by circularly symmetric functions and the an-
gular distribution of light from the source does also exhibit a
symmetric nature.

B. Calculation of the transfer function T(q ,qz)

An analytical calculation of the transfer function T�q ,qz�
is a challenging task for realistic pupils and sources. A nu-
merical analysis of the imaging problem can be performed
by using the formulas derived here. However, such an analy-
sis is outside the aim of the present work, in which we prefer
to describe the basic physics of the imaging problem by us-
ing convenient Gaussian functions in both cases. This allows
us to obtain exact results to guide the experimentalists in
choosing optimum working conditions for dynamic micros-
copy experiments.

We model the source coherence with

JS�q� =
1

2��c
2k0

2exp−
1

2

q2

�c
2k0

2� �29�

and the pupil function with

p�q� = exp−
1

2

q2

�o
2k0

2� , �30�

where �c gives an estimate of the numerical aperture of the
condenser and �o of the objective. We define the incoherence
parameter

M =
�c

�o
�31�

that allows a continuous transition from spatially coherent
�M =0� to incoherent �M =�� illumination. This is consistent
with the Hopkins 2D theory of image formation �33�, where
a similar parameter is used.

By inserting Eqs. �29� and �30� into Eq. �27�, we obtain

T�q,qz� =
C�q�

�2��q�q�
exp�−

1

2
qz − q̄z�q�

�q�q�
�2� . �32�

This function is a Gaussian function of the variable qz, cen-
tered at

q̄z�q� =
q2

2k0
 1

1 + 2M2� �33�

and characterized by a width �q given by

�q2�q� = q2�2, �34�

where

�2 =
1

2

�o
2 +

1

�c
2

=
�c

2

1 + 2M2 . �35�

Note that ���c if M �1, while ��0 when M �1. The
normalization of Eq. �32� is such that 
T�q ,qz�dqz=C�q�,
where

C�q� =

exp�−
1

2
 q

qro
�2�

1 + 2M2 �36�

is a decreasing function of the wave vector q that describes
the overall frequency modulation introduced by the imaging
process. The decrease in C�q� is characterized by the roll-off
wave vector

qro = k0�o�1 + 2M2

1 + M2 �37�

that is a measure of the resolution of the microscope. Indeed,
the minimum detail that can be resolved by such a micro-
scope is given by

xmin =
2�

qro
=� 1 + M2

1 + 2M2

	0

�o
. �38�

It is quite interesting to note that the resolution increases
with the incoherence parameter M in agreement with Hop-
kins theory for 2D microscopy �33�. More in detail xmin
→	0 /�o for M→0 and xmin→	0 / ��2�o� for M→�. The
appearance of the factor �2 is a consequence of the choice of
Gaussian functions to model the microscope properties.
Other choices would lead to different numerical factors but
always larger than 1.

As far as the contrast of the microscope images is con-
cerned, we investigate also the behavior of the amplitude and
phase transfer functions in Eq. �25�. While TAF�q ,qz� is pro-
portional to the sum of two Gaussian functions centered at
�q̄z, TPF�q ,qz� turns out to be proportional to their differ-
ence. The superposition ratio

rs�q� = �q

q̄z
�2

= �2�
k0

q
�1 + 2M2��2

�39�

is a quantitative measure of the superposition of the two
Gaussian functions. If the ratio rs is small, this superposition
is negligible. This happens if q /k0�2��1+2M2�. Only for
small M it is possible to satisfy the latter condition together
with the requirement that the ray is transmitted through the
objective �q /k0��o�. In this case rs is small if q /k0��c.

Equation �32� is an analytical model for describing 3D
microscopy of weak objects. In the context of our paper it
will serve as a starting point for a more refined description,
incorporating also the effect of polychromatic illumination.

C. Effect of polychromatic illumination

The Streibl-Nemoto theory specified to Gaussian pupil
and Gaussian mutual coherence function was used in the
previous paragraph for the calculation of the transfer func-
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tion T�q ,qz�. In this paragraph we shall include the effect of
polychromatic illumination. The latter can be accounted for
quantitatively by modeling the source with a Gaussian spec-
trum

P�	� =
1

�2��	
exp�−

1

2

�	 − 	0�2

�	2 � �40�

that can be used as a weight function for the individual in-
tensity patterns associated with each wavelength. Again this
choice is made in order to obtain results in a closed form.
The result of this calculation for the function T�q ,qz� can be
still written as in Eq. �32�. The most general form for the
parameters q̄z�q�, �q2�q�, and C�q� is not particularly useful
in this context. Here, we report the simpler approximate ex-
pressions obtained with a lowest-order expansion in both M
and �	 /	0,

q̄z�q� =
q2

2ko
�1 − 2M2 −

1

�o
2 q

k0
�2�	

	0
�2� , �41�

�q2�q� = q2���oM�2 +
1

4
 q

k0
�2�	

	0
�2� , �42�

C�q� =

exp�−
1

2

�q/qro�2

1 + �q/qro�2��	/	0�2�
�1 +  q

qro
�2�	

	0
�2

, �43�

and the result for the superposition ratio reads

rs�q� = 4 k0

q
�2

��oM�2 + �	

	0
�2

. �44�

As a by-product of the lowest-order approximation just
made, most of the parameters characterizing T�q ,qz� are ex-
pressed as a sum of the contributions due to effects of tem-
poral and spatial coherence limitations, considered sepa-
rately. It is worth pointing out that the function P�	� shall in
principle account also for the effect of the spectral sensitivity
of the detectors used, whose effect is to weight the spectral
intensity components of the image.

D. Application to Brownian motion

One of the advantages of the 3D model is that the inten-
sity in the microscope images can be quantitatively linked to
the sample properties. As far as dynamics is concerned, one
has

G�q,�t� =� dqz	K̃�q,qz�	2F̃�q,qz,�t� , �45�

where

F̃�q,qz,�t� = �c̃��q,qz,0�c̃�q,qz,�t�� �46�

is the intermediate scattering function �35�, which is the spa-
tial 3D Fourier transform of the space-time density-density
correlation function

F��x,�z,�t� � �c�0,0,0�c��x,�z,�t�� . �47�

The function F̃�Q ,�t� has been the object of intense the-
oretical work in the past and it has been calculated for many
cases of practical interest such as, for example, that of col-
loidal particles undergoing Brownian motion or drifting with
uniform velocity �4�. For the Brownian motion of small
noninteracting particles in a host molecular solvent,

F̃�q ,qz ,�t�=F0e−Dm�q2+qz
2��t �4� and one obtains

G�q,�t� = F0e−Dmq2�t� dqz	K̃�q,qz�	2e−Dmqz
2
�t �48�

for the correlation function and

g�q,�t� =
e−Dmq2�t
dqz	K̃�q,qz�	2e−Dmqz

2
�t


dqz	K̃�q,qz�	2
�49�

for the normalized correlation function. By inserting Eqs.
�25�, �28�, and �32� in Eq. �49�, we obtain

gP�q,�t� =
e−Dmq2�t

�1 + Dm�t�q2

e−�Dm�t/�1+Dm�t�q2��q̄z
2

− e−�q̄z/�q�2

1 − e−�q̄z/�q�2 ,

�50�

which is valid for phase objects �nI=0�, and

gA�q,�t� =
e−Dmq2�t

�1 + Dm�t�q2

e−�Dm�t/�1+Dm�t�q2��q̄z
2

+ e−�q̄z/�q�2

1 + e−�q̄z/�q�2

�51�

for amplitude �absorbing� objects �nR=0�. Equations �50�
and �51� simplify if the superposition parameter rs�1, i.e., if
�q� q̄z, and in both cases we obtain the 3D generalization of
Eq. �5�,

g�q,�t� � g2D�q,�t�gz�q,�t� , �52�

where the factor

gz�q,�t� =
e−�Dm�t/�1+�t/
�q��q̄z

2�q�

�1 + �t/
�q

�53�

quantifies the contribution of the particles’ motion along the
microscope optical axis �axial motion�. Here we have defined
a time scale 
�q�1 /D�q2.

It is instructive to study two limit cases for the behavior
of gz�q ,�t�. For coherent illumination we have

gz,coh�q,�t� = exp�− Dm�q2/2k0�2�t� �54�

and, if we take into account Eq. �12�, we obtain g�q ,�t�
=e−DmQ2�t. This proves that for coherent illumination the
motion along one of the three axes contributes to the decay
of the correlation function with a term of the form
exp�−Dmqi

2�t�, with i=x ,y ,z. This symmetry is broken with
incoherent illumination because
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gz,incoh�q,�t� =
1

�1 + �t/
�q

�55�

that represents a slow decay with characteristic time 
�q,
which is associated with the wave-vector spread �q �q�.
Along the same line of reasoning followed with the single-
particle model in Sec. II, we can interpret

L�q� =
1

�q�q�
�56�

as the overall q-dependent depth of field for the partially
coherent system and 
�q as the time needed to travel by
diffusion a distance on the order of L�q�. The existence of a
nonzero L�q� is strictly related to the fact that planes pro-
gressively far from the object plane contribute less and less
to the image. As far as the dynamics is concerned, at the
wave vector q we are sensitive not only to the effect of
motions of molecules over distances on the order of 1 /q but
also to the effect of diffusion in and out of a region whose
size along the optical axis z is on the order of L�q�. Equation
�56� is the generalization of the results obtained in Eqs. �16�
and �20� with the single-particle model. In analogy we re-
quire the time scale associated with L�q� being slower than
any time scale of interest to ensure that the true dynamics of
the system is measured. To facilitate the comparison between
the diffusive time 
Q=1 /DmQ2 and the spurious time 
�q, we
define the dynamic separation ratio

rd�q� �

Q


�q
=

�q2

Q2 , �57�

which should be kept small for the spurious dynamics to be
negligible. It is important to stress that there is a connection
between the two parameters rs�q�, which should be kept
small for the imaging of phase objects, and rd�q�, which
separates the true dynamics from the spurious one. Owing to
the fact that Q2� q̄z

2, we have

rd�q� � rs�q� . �58�

From an experimental point of view, this relation guaran-
tees that by optimizing the contrast in the images of phase
objects, one gets automatically the best separation between
the two dynamic scales. However, rd�q� can be small despite
the value of rs�q�. This is particularly true at low wave vec-
tors because of the fact that q̄z

2 scales as q4, while Q2 scales
as q2, which implies that there might be a loss of contrast for
phase objects without consequences for dynamic measure-
ments.

E. Finite-size effects

In the previous section we kept the assumption that the
sample thickness along the optical axis was infinite. This
assumption is well justified if the sample thickness l is larger
than L�q�. The effect of the finite sample thickness can be
incorporated by defining a window function f�z� and per-
forming the substitution T�q ,qz��T�q ,qz��qz

f̂�qz�. A con-
venient choice is represented by f�z�= 1

�2�
exp�− 1

2 ��z
−z��2 / l2��, where z� is the distance of the object plane to the
sample midplane. The calculation for the general case gives

T�q,qz� =

C�q�exp�−
1

2
� �q2�2

�q2 + �2z�2 +
�qz − q̄z�2

�q2 + �2 −
2j�2

�q2 + �2 �qz − q̄z�z���
�2���q2 + �2

, �59�

where we set ��1 / l. The presence of the term
e−�1/2���q2�2/��q2+�2��z�2

imposes some requirements on the
choice of the object plane because it is responsible of a sig-
nal decrease in the images for increasing z�. This term can be
kept small if z���l2+L2�q� or equivalently if

z� � max�L�q�,l� . �60�

If the illumination is coherent �L�q�→�� this condition is
fulfilled for every value of z�. On the contrary, whenever
L�q�� l the object plane should lie well within the sample. A
natural choice is to choose the object plane coincident with
the sample midplane �z�=0�. In this case Eq. �59� is obtained
from Eq. �32� with the substitution

�q2 → �q2 + �2. �61�

This result is of particular interest because it allows the
use of all the previously obtained formulas and does not

require additional calculations. In the following we will con-
tinue using �q. Depending on the application, the effect of
the sample thickness can be taken into account by using the
substitution in Eq. �61�.

F. Comparison with the experiments

As anticipated above a quite stringent test of the theory is
based on the analysis of the connection between the term
A�q� in Eq. �8� and the properties of the microscope. The 73
nm particles investigated here can be considered to a very
good extent as phase objects �25� and we have

A�q� = 2G�q,0� =
2aP

2

��

C2�q�
�q

�1 − e−�q̄z/�q�2
� �62�

The function A�q� turns out to be related to the coherence
properties of the light source �via �	 and �c� but also to the
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cutoff wave vector imposed by the numerical aperture �o of
the objective. In addition we can observe a dependence on
the sample thickness l �via � in �q�. For a sample with finite
thickness the limit of Eq. �62� for low q is given by A�q�
�q4. The fact that the signal becomes very small is due to
the fact that the sample is a phase object. This decrease could
be avoided by using a phase contrast microscope. At large q
the behavior of A�q� is set by C2 /�q that causes a decrease
associated with the progressive loss of coherence and with
the limited numerical aperture of the collection optics.

It should be mentioned here that all these formulas were
derived here under the assumption of pointlike scatterers. We
anticipate that, if the size of the scatterer cannot be ne-
glected, the right side of Eq. �62� should be multiplied by the
q-dependent scattering pattern �form factor� of the particles
�25�. For the measurements performed on the 73 nm particles
presented in this paper, the form factor can be neglected and
Eq. �62� can be used for fitting the experimental data for
A�q� without taking into account the effect of the particle
form factor. To facilitate the fitting, we impose the known
value �o=No /2=0.425, which reduces the number of fitting
parameters. The result of the fitting procedure is shown in
Fig. 8 as a dashed line superimposed to the data points. The
agreement of the fit with the theory is impressive especially
if we take into account that all the model functions in the
theory were assumed to be Gaussian functions to allow for
exact calculations. The estimates for the fitting parameters
are M =0.08�0.01, �	 /	0=0.15�0.02, and l=51�5 �m.
All of these values are very reasonable. A numerical aperture
of the condenser about ten times smaller than the numerical
aperture of the objective is compatible with the experimental
setup that we used even if we did not characterize experi-
mentally the numerical aperture of the condenser. The spec-
trum of the Osram H64625HLX, tungsten-halogen lamp was
measured with a spectrometer and was found to be fitted by
a Gaussian function with �	 /	0=0.14. Finally, as far as the
thickness is concerned, we can attempt to find a correspon-
dence between the Gaussian function used for modeling the
capillary and a more realistic flat-top profile. This can be
done, for example, by imposing that the two curves have the
same area. Under this assumption we estimate an equivalent
flat-top sample thickness of leq=�2�l=130 �m. Despite the
crudeness of this approximation, this value is in fair agree-
ment with the nominal value �100 �m� for the capillary
thickness.

As an additional check of our theory, Eq. �62� can be
inserted to Eqs. �6� and �8� to model the growth of the vari-
ance with �t. However, an analytical formula cannot be cal-
culated. In Fig. 3 we plot as a continuous line the result of
numerical calculations obtained with the parameters ex-
tracted from the fitting A�q� and 
d�q�. The agreement with
the experimental data is excellent, given that no adjustable
parameters are used.

IV. GENERALIZATION TO LINEAR SPACE-INVARIANT
IMAGING SYSTEMS

A. Linear space-invariant three-dimensional imaging

An exhaustive analysis of the process of three-
dimensional �3D� image formation is a challenging task

whose details depend on the physical process involved �fluo-
rescence, scattering, etc.�. The reason why we chose the form
expressed by Eq. �23� for the description of microscope im-
ages is that Eq. �23� describes an imaging system that is
capable of maintaining a linear space-invariant relationship
between the intensity I�x , t� measured in the image plane
and the density c�x ,z , t� of our particles. In bright-field mi-
croscopy the objects could be scattering centers such as col-
loidal particles as well as assemblies of molecules. The cases
of dark-field microscopy or microscopy of multiple scatter-
ing media are not accounted for by our description because
they cannot be described by Eq. �23�. Other forms of micros-
copy can be described by Eq. �23� provided that the correct
kernel K�x ,z� is chosen. For the case of bright-field micros-

copy, K̃�q ,qz� describes the so-called 3D OTF �36�. A form
of microscopy that falls within this category is represented
by fluorescence microscopy.

B. Example: Fluorescence microscopy

In fluorescence experiments c�x ,z , t� describes the con-
centration of the fluorophores that originate the fluorescence
signals. In this case, the function K�x ,z� coincides with the
3D point spread function for fluorescent imaging. We assume
that our sample is fluorescently labeled and each point �x ,z�
emits a spherical wavelet whose intensity is proportional to
the local density c�x ,z� multiplied by the intensity of the
excitation wave Ie�x ,z� in that point. There is no phase rela-
tionship between two distinct points and their contributions
sum up on an intensity basis. We assume that the fluorescent
emission takes place at one single wavelength 	 f or equiva-
lently that this situation is achieved by suitable narrow-band
filtering of light. The result will be proved to be independent
on the wavelength of the fluorescent emission.

Before turning to the mathematical description of the
fluorescence imaging process, it is worth pointing out the
main difference between the scattering- and the
fluorescence-based dynamic imaging. In analogy to what is
done in Fig. 9, we plot in Fig. 14 a simulated pictorial image
of the pattern caused by a fluorescent object placed in vari-
ous positions.

It appears that, in the same way as it was observed for the
scattering case, a motion of the particle in the �x ,y� plane
corresponds to a translation of its pattern in the image plane.
On the other hand, a motion along the optical axis z �defo-
cusing� is not related anymore to a shift of interference
fringes but is rather connected to a different degree of sharp-
ness of the image. As we will see below the only difference
with respect to the scattering-based imaging is related to the
dynamics along the z direction.

By dropping the term Io in Eq. �23� and assuming a con-
stant excitation profile over the sample plane, we obtain

K̂�q,z� = exp�−
1

2
�1 + �z�o

2kf�2�
q2

2�o
2kf

2� , �63�

K̃�q,qz� =
C�q�

�2��q�q�
exp�−

1

2
 qz

�q�q�
�2� , �64�

where
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C�q� = exp�−
1

2
 q

qro
�2� �65�

with

qro = 2�okf , �66�

�q2�q� = 1
2�o

2q2. �67�

The main result for Brownian diffusion of small particles
reads

g�q,�t� =

exp−
�t


q
�

�1 +
�t


�q

, �68�

where


q =
1

Dmq2 . �69�

The functional form of Eq. �68� shares some similarities
with the one appearing in the well-known fluctuation corre-
lation spectroscopy �FCS� technique. The setup for FCS is

equivalent to the one for DLS, i.e., is a far-field scattering
setup. By contrast with DLS the signal analyzed is the fluo-
rescence intensity that exhibits fluctuations due to the fluc-
tuating number of particles within the scattering volume. For
this reason the number of particles is usually kept very small
and particle concentrations on the order of nM are typically
used. This number fluctuation gives rise to a square-root term
identical to the one in Eq. �68�. However, in the microscope-
based dynamic experiment proposed here, the square-root
term is associated only with the depth of focus L�q�, while
the dynamics in the �x ,y� plane coincides with the one that
would be measured in a DLS experiment. The former has a
typical time scale 
�q and the latter has 
q. Under typical
experimental conditions, 
�q�
q and the mutual relevance
of these two time scales can be expressed by the dynamic
separation ratio

rf�q� =
�o

2

2
, �70�

which should be kept small for neglecting the number fluc-
tuation term. It must be pointed out that working with large
numerical apertures in this case is not beneficial. Finally, we
note that Eqs. �65� and �66�, valid for the fluorescence case,
are strictly connected to the incoherent limit �M→�� of Eqs.
�36� and �37�, valid for the scattering based imaging. In
the same way the axial correction in Eq. �68� coincides with
Eq. �55�.

V. ANALYSIS OF THE DATA

In this Section we give a brief overview on a set of pos-
sible algorithms that can be employed for the analysis of
dynamic microscopy data. In principle there are at least three
ways of analyzing sequences of images.

�1� The image structure function D�q ,�t� is calculated as
explained above by analyzing pairs of images separated in
time by �t. This was done in Refs. �10,11,13,18,19� where
the method was proved to be very efficient in the subtraction
of time-independent noise contributions on the images such
as, for example, dust particles along the optical path or bad
camera pixels. In addition the structure function processing
is known to be superior to the correlation function for data
subjected to slow temporal drifts �23,22�. This is often the
case in microscopy where the average intensity might fluc-
tuate on a slow time scale.

�2� The power spectrum is obtained from each image
I�x , t�. For every wave vector q the temporal autocorrelation
function �or equivalently the temporal power spectrum or
structure function� is calculated. This method may suffer
from the presence of the very large static contribution due to
the transmitted beam, especially if the latter is modulated in
space. However, in some cases it might be used quite prof-
itably, especially when real-time fast processing of the data is
useful.

�3� Another alternative that lies in between the two meth-
ods consists of using the fact that the signal to be analyzed
fluctuates in a stochastic manner around its average intensity,
which might have a space-dependent pattern I0�x�. If this
average does not change sensibly in time, it can be deter-

FIG. 14. Simulated pattern generated at some distance from a
fluorescent pointlike object �particle�, illuminated by a plane, which
propagates along the z direction. �Upper left� the particle is in
�x0 ,y0 ,z0� where z0 labels the nominal objective plane of the mi-
croscope; �upper right� the particle is in �x0+�x ,y0+�y ,z0�. The
pattern is unchanged and translated in the �x ,y� plane by an amount
��x ,�y�; �lower left� the particle is in �x0 ,y0 ,z0+�z�, i.e., further
away from the image plane. The pattern did not translate in the
�x ,y� plane but its shape has changed because of the defocusing
distance �z; �lower right� the particle is in �x0+�x ,y0+�y ,z0

+�z�. The pattern translated in the �x ,y� plane by an amount
��x ,�y� and also modified by virtue of the particle axial displace-
ment �z.
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mined by averaging many independent frames and subtracted
to the individual frames. In this way it is still possible to
work on the power spectrum of the difference signal
I�x , t�= I�x , t�− I0�x�. This choice is optimal in the presence
of a very stable background and it allows us to analyze the
data with the structure function, with the correlation func-
tion, or with the temporal power spectrum.

It is clear that the algorithms described above are charac-
terized by a lower limit for the experimentally accessible
correlation time that is given by the inverse of the camera
frame rate. To overcome this limitation a variant has been
recently proposed �37,38� that is a q-resolved generalization
of the well-known laser contrast speckle analysis �see Ref.
�39� for a recent review� and speckle visibility spectroscopy
�40�. This procedure allows us to characterize motions at
time scales on the order of �s and can also be combined with
the differential algorithms outlined above, provided that the
time delay between successive images is kept sufficiently
large. Additional details can be found in Ref. �38�.

VI. CONCLUSIONS

We developed a paraxial theory for the description of the
dynamic imaging of weakly scattering 3D objects. Our
theory describes the main findings of our benchmark experi-
ment: a bright-field microscopy experiment performed on a
colloidal dispersion, analyzed using the DDM method �19�.
The theory provides useful criteria for experimental plan-
ning, in addition to the quantitative description of dynamic
microscopy experiments. The theory encompasses also the
previously demonstrated case of near-field scattering dy-
namic experiments with coherent light �10,11,38�. Interest-
ingly the use of light with a limited degree of coherence sets
a q-dependent depth of field �Eqs. �42� and �56��, which in
principle limits the accessible wave-vector range. To quan-
tify these limitations we introduced a single-particle model,
from which we extract semiquantitative indications about op-
timized experimental conditions �see Eqs. �18� and �22��.
The model outlines the importance of the numerical aperture
of the microscope condenser and of the spread �	 of the
light source. A more quantitative statement is given in terms
of a full theory, which quantitatively accounts for the limita-
tions set by the degree of coherence of the illuminating light.
An important result of the theory is that these limitations
would appear at wave vectors where the signal is too low to
be measured, as expressed by Eq. �58�. From a practical
point of view a limited coherence turns out to be beneficial in

reducing the disturbing fringes that appear when multiple
reflections of coherent light from the cell walls interfere on
the camera sensor. In fact, the wave-vector range accessed in
the present work with DDM turns out to be even wider than
the one investigated in previous work with coherent illumi-
nation �11�. It has to be pointed out that the DDM data pre-
sented here were obtained in a range of scattering angles
�1° ,25°�, which makes DDM a good complementary tech-
nique with respect to DLS, as shown in Fig. 7.

With respect to existing dynamic microscopy techniques
such as, for example, dynamic light scattering microscopy
�41� and defocusing microscopy �42�, the distinctive feature
of Fourier-based microscopy techniques such as DDM is re-
lated to the possibility of characterizing the dynamics of the
samples in the wave-vector space. The use of software Fou-
rier transforms of real-space data is in principle equivalent to
the direct recording of optical Fourier transforms in the focal
plane of a lens �5�. A detailed discussion of the advantages of
software processing of near-field images over the traditional
far-field schemes can be found in Ref. �17�. Here, we men-
tion that the differential algorithm typical of DDM offers
unique performances in terms of background subtraction.
Also, it requires no modifications on the microscope. A pos-
sible limitation is related to the fact that the fluctuating com-
ponent of the intensity is superimposed to the most intense
transmitted beam and this can impair the characterization of
low-scattering samples. On the other hand, the possibility of
using an ordinary unmodified microscope for dynamic mea-
surements is appealing in light of the fact that many modern
laboratories are already equipped with a microscope. In ad-
dition we believe that dynamic microscopy techniques could
provide useful insights in all those cases where a space-
resolved study of the dynamics is of interest but q-resolved
information is also precious. Indeed, as a future extension we
envision the possibility of dividing the original images in
panels and analyze the dynamics in each panel separately as
done, for example, in Ref. �43� for laser velocimetry appli-
cations. Such a space-resolved approach would represent a
major step forward in the study of soft and biological matter.
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