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Simulation of numerical reservoir models with thousands and millions of grid blocks may consume a significant amount of time
and effort, even when high performance processors are used. In cases where the simulation runs are required for sensitivity analysis,
dynamic control, and optimization, the act needs to be repeated several times by continuously changing parameters. This makes it
even more time-consuming. Currently, proxy models that are based on response surface are being used to lessen the time required
for running simulations during sensitivity analysis and optimization. Proxy models are lighter mathematical models that run faster
and perform in place of heavier models that require large computations. Nevertheless, to acquire data for modeling and validation
and develop the proxy model itself, hundreds of simulation runs are required. In this paper, a system identification based proxy
model that requires only a single simulation run and a properly designed excitation signal was proposed and evaluated using a
benchmark case study. The results show that, with proper design of excitation signal and proper selection of model structure,
system identification based proxy models are found to be practical and efficient alternatives for mimicking the performance of

numerical reservoir models. The resulting proxy models have potential applications for dynamic well control and optimization.

1. Introduction

Reliable prediction is a natural requirement to the design
of an optimal management strategy whereby important
decisions on future investment, facility development, and
expansion will be made [1]. Typically, in the petroleum
industry, forecasting oil, gas, and water production rates
is undertaken on a regular basis. Some of the factors that
determine precision and accuracy of these forecasts include
quality of geological and geophysical (G&G) data, quality and
quantity of observed production rate and pressure data, and
modeling procedures employed.

Decline curve analysis (DCA) and numerical reservoir
simulation are classical methods that are frequently employed
to forecast reservoir performance [2-6]. Each of these meth-
ods has strengths, limitations, and restrictions [7]. In practice,
it is common to implement more than one method to reduce
uncertainty and increase prediction accuracy. Decline curve
analysis (DCA) is popular in the industry and is relatively a
modest technique. It is one of the oldest methods, which was

developed by Arps [2] and has been utilized even when there

were no high-speed processors for handling large amounts of

production and pressure data. The empirical Arps equations

recognized for different curtailment trends are shown in (1),

(2), and (3) [8]. The analysis is based on fitting one of these

three empirical relations using measured production data.
For the exponential case (b = 0),

q= qie(_”t). 1)
For the hyperbolic case (0 < b < 1),
qi
9= an"
(1+bait)"”’ @
For the harmonic case (b = 1),
_ qi
1= (1+at)’ (3)

where a is the nominal (instantaneous) decline rate, b is the
decline exponent constant, g is the flow rate, and g; is the
initial flow rate
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However, it is recognized that the application of DCA is
limited to the early production stage of a well, where produc-
tion is at steady state and the reservoir is under boundary-
dominated flow. In addition, rock and fluid compressibility
must be low and constant. In cases such as gas reservoir and
solution gas derived oil production, where compressibility is
higher, the decline is less severe and hence none of the three
curtailment trends will fit. An improved DCA which consid-
ers reservoir parameters as part of the decline analysis was
developed by Fetkovich [4] and is referred to as Fetkovich’s
type-curve analysis. Fetkovich showed that the value of b
was an indication for efficiency of recovery, where zero was
the lowest efficiency with small compressibility and 0.5 was
the highest efficiency that is achievable from any known
recovery mechanism with optimistic relative permeability.
Analytical flow equations were applied to generate type
curves for transient flow, and they were combined with the
empirical decline curve equations documented by Arps [2].
However, Fetkovich’s analysis has some notable limitations.
It is applicable if the reservoir is homogeneous and has
constant thickness, no-flow outer boundary, and constant
flowing pressure at the wellbore. In addition, Fetkovichs
type-curve analysis assumes a constant productivity index,
which implies a straight-line relationship between pressure
and flow rate. However, Evinger and Muskat [9] stated
that for multiphase flow the relationship between pressure
and flow rate is curved. Therefore, Fetkovich’s type-curve
analysis performs well if only the reservoir is saturated
with a single-phase fluid of constant and small compressi-
bility.

On the other hand, numerical reservoir simulation based
on first principles provides a more accurate and robust
solution to the task of forecasting reservoir performance.
Reservoir simulation models are mathematical descriptions
of an actual reservoir and are based on material balance,
momentum balance, and constitutive equations such as
Darcy’s Law. Reservoir models are often used to analyze,
optimize, and forecast both pressure and saturation depen-
dent terms. Geological, geophysical, petrophysical, well log,
core, and fluid data are required to construct reservoir
simulation models. However, development of an accurate and
representative numerical model is challenging and it involves
utilization of a large number of uncertain data. This is because
reservoirs are gigantic subsurface systems, which are both
heterogeneous and anisotropic. Due to the relatively large
size, samples of rock and fluid are collected from only a
few locations within the boundary of the reservoir. Statistical
techniques are then employed to populate and infer rock and
fluid properties for the remaining portion. Moreover, con-
trary to direct measurement, most of the input data required
to build a simulation model are inferred from physical and
chemical measurements on rock and fluid samples taken
at only few locations of the vicinity of the reservoir. For
instance, fluid resistivity measurements are used to determine
saturation of water within the reservoir and levels of natural
gamma ray and spontaneous potential of a reservoir rock are
used to determine the type of rock (lithology) and mineral
content. Thus, reservoir property data used in modeling and
forecasting are only best estimates and will not be exact
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representatives of the reservoir at large. Besides, the history-
matching stage by which the inferred reservoir properties
are adjusted until the numerical simulation model reasonably
mimics the actual reservoir is a formidable task and has
substantial limitations [3, 5].

History matching is the process of altering sensitive reser-
voir model parameters and developing a list of representative
numerical models which are capable of reproducing observed
production and pressure data [10, 11]. History matching is
undertaken via manual alteration of sensitive parameters or
automatically by using dedicated multiobjective optimization
algorithms [12]. The former is time-consuming and requires
expert knowledge and experience on the reservoir under
study. In addition, manually adjusting reservoir parameters
results in trial-and-error solutions; therefore, it is impossible
to use all information; it is not suitable for complex reservoir
models; it is time-consuming and it provides suboptimal
results. A relatively new technique, which is referred to
as assisted history matching (AHM), substantially reduces
the time required. In AHM, global optimization algorithms
help to reduce a misfit function between the observed and
simulated production and pressure data. AHM techniques
apply methods that allow for multiple realizations and are
able to deal with the uncertainty in an optimal manner.

The Kalman Filter and its variants, such as the Ensemble
Kalman Filter (EnKF) and Particle Filter, are currently pop-
ular among the research community [13-17]. Though AHM
shortened the time taken during the history-matching phase,
it is an ill-posed optimization problem, which is known
to result in many realizations. Different sets of reservoir
parameters may equally reproduce the historical data which
results in a different prediction [6]. The so-called best realiza-
tion could also produce a geologically inconsistent reservoir
model [11]. The reader is advised to refer to [3] which has crit-
ically summarized the limitations of assisted history match-
ing.

Once history matching is successfully completed, the
models are used for production optimization and prediction
of future reservoir performance under various development
strategies. The process is repeated several times until a viable
strategy is realized. For a medium sized reservoir model, each
simulation run may require hours to complete. In spite of
the demanding effort and time spent on model construction
and history matching, the challenge encountered during
optimization makes it difficult to exploit the full potential
of numerical reservoir simulators. The use of proxy models
that mimic the behavior of numerical reservoir models is
currently on the rise and significantly eases the optimization
stage. Once developed, these proxy models can be evaluated
within seconds. Many commercial simulators that generate
polynomial proxy models are being developed and used in
both industry and academia. In all the simulators, response
surface based proxy models are being employed. However,
several runs are required to develop a representative proxy
model that accurately mimics the response of numerical
reservoir models. For instance, if there are ten factors (e.g.,
water injection wells) and three responses (oil, water, and
gas production rates), then the Box-Behnken experiment
design will require at least 170 runs. Again, if each run takes
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four hours to complete, then 680 computational hours are
required to gather data for proxy modeling.

In this paper, we propose system identification based
proxy models for optimization of a reservoir model. System
identification is the art and science of model building that
engages statistical methods to build mathematical models
of dynamic systems from measured data. System identifi-
cation involves proper design of excitation signal, model
structure selection, parameter estimation, and validation of
the identified model. By properly designing the excitation
signal and by selection of an appropriate model structure, it
is possible to obtain a representative proxy model using data
from a single run of the numerical simulation model. System
identification is extremely flexible in a sense that there are
several model structures to capture linear as well as nonlinear
relationships. In this study, a benchmark reservoir model
originally developed to evaluate history-matching techniques
is used to validate the efficacy of system identification
based proxy models, which have the potential to be used
for automatic control and production optimization. The
proposed methodology assumes that the numbers of wells
and operating conditions except for injection rates remain the
same. In cases where infill drilling is required, it is necessary
to redo the identification anew.

2. Materials and Methods

2.1. System Identification Based Proxy Models. System identi-
fication is a popular and steadily growing modeling approach.
It is used to build analytical models of a dynamic system and
forecast future behavior easily with less computational effort
and time [18-20]. It is commonly used in engineering where
prediction is part of an integrated technology such as model
based control systems. System identification develops a
uniquely structured mathematical model of a system through
the application of certain model structure and conventional
statistical methods. The number of researches and results
reported related to the use of system identification in the
oil and gas industry is increasingly growing. Aifa [21] has
presented applications of neural network based black-box
model, to various problems that arise in the process of
understanding the behavior of reservoirs. Sheremetov et al.
[22] applied nonlinear autoregressive neural networks with
exogenous input to forecast production rate of a naturally
fractured reservoir. Olominu and Sulaimon [7] pointed out
that autoregressive integrated moving average (ARIMA),
which is a popular model structure in time series analysis,
has a better efficacy than DCA. In addition, they showed
that the model might be useful for short- to mid-long-
term forecasting. However, ARIMA model structure does not
consider external inputs, such as water injection. As such, the
application is limited to primary recovery only. Elmabrouk
et al. [23] studied the use of feedforward backpropagation
artificial neural network in the prediction of oil production
and employed real data from a Libyan oil field to test the
hypothesis. The study proves the potential use of advanced
empirical models for better prediction of oil production,
which is essential for better reservoir management. However,
the study does not incorporate the effect of external inputs.

TABLE 1: Polynomial system identification model structures.

Name

Frequency impulse response
(FIR)

Autoregressive with external
input (ARX)

F(q) =D(q) =C(q) = A(q) = 1

F(q) =D(q) =C(gq) =1

Autoregressive moving average

Fl@) =Dig) =1 with external input (ARMAX)
D(q) =C(q) = A(g) =1 Output error (OE)
Alg =1 Box-Jenkins (BJ)

System identification is the process of developing mathe-
matical models of a physical system from input and output
data [18, 19]. In this study, the system is a reservoir under
water injection, the inputs are either water injection rates
or well bottomhole pressures, and outputs are production
rates. During the lifetime of a reservoir, data such as wellhead
flowing pressure, bottomhole flowing pressure, production
rates, injection rate, gas/oil ratio, and water cut are recorded
regularly to quantify production and evaluate field perfor-
mance. Therefore, one can develop a dynamic model that
assists in decision-making using system identification tech-
niques and those readily available sets of data. In this study,
linear polynomial model structures, which are among the
many variations of system identification model structures,
are used to build a proxy model, which can be used for
production optimization. Equation (4) displays the general
representation of a linear, dynamic time invariant system
(24, 25]:

ym) =q"G(q".0)um)+H(q*0)e(m), ()

where
-1 _ B(q)
a0 = 5 A’ 5
-1 B(Q)
40 = T a@

A(g), B(q), C(q), D(q), and F(q) are polynomials with respect
to the shift operator !, where g *u(k) = u(k—1). Depending
on the nature of these polynomials, different structures can be
formulated as shown in Table 1.

Noise integrated versions of the model structures listed
in Table 1 are also available for system identification. These
are special cases of general linear input-output models. They
correspond to linear difference equations relating the input to
the output under various noise assumptions. For ARX model
structure, addition of noise integration leads to an “ARIX”
model structure:

C(q)
1-q!

Similarly, the ARMAX and BJ structures can be enhanced
to handle nonstationary disturbances and are referred to as
ARIMAX and BJI, respectively.

A(q) y () =B(q)u(t —nk) + et). (6
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TABLE 2: Groups and wells control data for water injection case.
Individual producer wells control Individual injector wells control
Minimum BHP ~ Maximum Q; Maximum WC Maximum GOR Minimum Qg Maximum BHP Maximum Q,,
280 2000 0.9 200 20 350 7500

TABLE 3: Group wells control for water injection case.

Producers group control

Maximum Q; Maximum Qg

Injectors group control

Maximum Q,, Maximum Q,,

15500 15500

13950 65000

The development of the system identification based mod-
els comprises the following key procedures:

(a) Collection of input and output data from the physical
model

(b) Choice of model structure that represents the physical
system

(c) Estimating unknown model parameters in the
selected model structure

(d) Validating the estimated model using cross validation
and/or residual analysis

A detailed discussion on the steps of system identification and
model development is available by Ljung [24] and Nelles [25].

2.2. Excitation Input Selection. Selection of a proper exci-
tation input dictates efficacy in system identification. There
are several input sequences, which can be used in modeling
different complexities. Among them, a pseudorandom binary
sequence (PRBS) is very popular and efficient in equally
exciting all frequencies. PRBS is a sequence that switches
between an upper and a lower bound at varying frequencies.
PRBS can also have multiple amplitudes; that is, different
upper and lower bounds may be specified at different times
for a given input sequence. However, such PRBS inputs are
often employed during nonlinear system identification. Since
this article studies the application of linear polynomial model
structures, the excitation signal used was PRBS that only
switches between two amplitudes.

2.3. Model Validation. Model validation constitutes quanti-
tying the deviation exhibited by the estimated model and
making sure that all the information contained in the input
and output data is exploited. In this article, percentage fit,
whiteness test, and crossplot test were used to evaluate the
efficacy of the identified model. The mathematical expression
of percentage fit is shown in

percentage fit = 1 - NRMSE

Iy -5l )

=1- * 100%,
“}/ - ymean“

where 7 is the predicted output, y is the observed output,
Ymean 18 the mean of the observed output, and NRMSE is the
normalized root mean square error.

Whiteness test of a residual indicates whether the model
has extracted all the information or requires further refining.
This is achieved by plotting a histogram of residuals. A good
model is one that has a mean value of zero and some variance,
indicating that the residuals are uncorrelated. On the other
hand, a crossplot analysis is a graphical and visual method
of comparing two sets of data whereby the plot of simulated
output and validation data was compared graphically and
visually, with a 45-degree straight line. The crossplot of a
residual is an x-y plot obtained by plotting the simulated
output on the x-axis and validation data on the y-axis. A good
model will produce an output that gives a perfectly 45-degree
straight line when plotted against the validation data set.

2.4. Description of the Case Study Reservoir Model. The res-
ervoir model, which was used to generate the input and
output data, is referred to as UNISIM-I-M and is based on
a field located in Campos basin in Brazil [27]. The model
was originally developed to serve as a benchmark case study
on decision analysis regarding reservoir management. For
a detailed description of the model, readers are referred to
Avansi and Schiozer [26] and Gaspar et al. [27]. Figure 1
shows the porosity distribution while Figure 2 presents the
reservoir geometry including the wells placement and ver-
tical permeability distribution of the UNISIM-I-M reservoir
model. All the red wells represent producer wells while blue
wells represent injector wells. The reservoir volume is meshed
into smaller 3D blocks, referred to as grid blocks. Each grid
block has a thickness of 50 m, a width 0f100 m, and a length of
100 m. There are a total of 93960 such active grid blocks with
81, 58, and 20 blocks arranged in the x, y, and z directions,
respectively. The water-oil and gas-oil contacts are located at a
depth of 3200 m and 3000 m, respectively. Initial oil originally
in place is calculated to be 175000 m. The initial reservoir
pressure was 300 bar. The total numbers of water injectors and
producers are 11 and 14, respectively. The original well place-
ment was slightly modified to optimize production; however,
production constraints are kept the same as the original.
Production and injection well constraints are described in
Tables 2 and 3.

3. Result and Discussion

In developing a proxy model, the inputs consisted of water
injection rate from individual wells and the output consisted
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FIGURE 1: Porosity distribution of the first layer of the UNISIM-I-M
reservoir model.
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FIGURE 2: Vertical permeability distribution of the first layer of the
UNISIM-I-M reservoir model.

of the total oil production rate. The design of a PRBS input
was in such a way that each of the multiple inputs has different
lower and upper bounds. The lower and upper bounds used to
excite the numerical simulation model are shown in Table 4.

The response of the numerical reservoir model is pre-
sented in Figure 3. The figure shows that the total number
of input and output data is 2807, of which 1500 were
used for identification and the next 10 data points were
removed to fulfill requirements set by the initial condition of
prediction equations. The remaining 1297 data points were
utilized for cross validation. Each of the 2807 data points
presents the input and output calculated on a daily basis.
The numerical simulation run time required to generate
the outputs was 4 hours and 53 minutes on Intel® Core™

TABLE 4: Lower and upper bounds of input design for modeling fluid
production during water injection.

Well name  Lower bound (Sm3/day) Upper bound (Sm® /day)
Well 1 1500 4500
Well 2 1750 4750
Well 3 2000 5000
Well 4 2250 5250
Well 5 2500 5500
Well 6 2750 5750
Well 7 3000 6000
Well 8 3250 6250
Well 9 3500 6500
Well 10 3750 6750
Well 11 4000 7000

i5-3210 M CPU @2.5 GHz Processor with 6 GB RAM. This is
considered very large compared to the few seconds required
to run polynomial models, which are examined in this study.
In addition, when carrying out multiple simulation runs
to evaluate reservoir performance, the essence of utilizing
reduced model or metamodel as a substitute for numerical
reservoir simulator becomes extremely substantial.

3.1. Initial Model Estimation. A simple and yet useful system
identification model structure, that is, ARX, and its noise
integrated version were used to initiate the system identifica-
tion process. This allows narrowing the model-order search
region and determining time delay. Noise integrated ARX
model (ARIX) with both poles and zeros equal to three and
a time delay of zero was found to result in a percentage fit of
71.92%. The model was named ARIX (3-3-0). Model structure
of ARIX model is

A@yO=B@u®+ ——re®), ()

(1-g7)

where A(q) is a polynomial in the shift operator (gq) of order
na, B(q) is a polynomial in the shift operator (q) of order
nb, y(t) is the output (oil production rate), u(t) is the input
(injection rates), na is the number of poles, and #b is the
number of zeros.

Figure 4 presents the cross validation result of the ARIX
(3-3-0) model. Akaike’s final prediction error (FPE) and mean
squared error (MSE) exhibited were 0.8157 and 0.8724. The
MSE is a measure of the quality of an estimator; it is always
nonnegative, and values closer to zero are better. Moreover,
according to Akaike’s theory, the most accurate model has
the smallest FPE. The step response, which illustrates the time
behavior of the outputs of ARX (3-3-0) when its inputs change
from zero to one in a very short time, is shown in Figure 5.
It can be seen that the model has responded without a time
delay and has become stable.

3.2. Identification of a More Complex and More Accu-
rate Model. Based on the analysis of the ARIX (3-3-0)
model, more complex model structures were examined by
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introducing a variation in model order and time delay close to
the ARIX (3-3-0) model. The best model that resulted in the
best percentage fit with the validation data set was found to be
Box-Jenkins model with noise integration (BJI). The structure
of the BGI model is

B(q) C(q)
= [m] n [D<q)<1 )

The number of poles and zeros of the deterministic part
was found to be four for all the inputs. The stochastic part
of the BJI model structure that gave the best performance
was also of order four in both poles and zeros. The time
delay is found to be two. The model can be referred to as
BJI (4-4-4-4-2). Figure 6 presents a graphical comparison

]e(t). 9)
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of simulated output and measured validation data. It can be
seen that the simulated output has closely reproduced the
validation data. The percentage fit, FPE, and MSE exhibited
were 94.01%, 0.207, and 0.5632, respectively. The estimated
polynomial functions of the BJI (4-4-4-4-2) model are
B1(q) = 0.0003314q > — 0.0009479q
- 0.001406g * - 0.0010884
B2(q) = —0.0003488g > — 1.278¢ — 05 >
~0.000499* - 0.00013984 "
B3(q) = —0.0003505g > — 2.031e — 05>
+0.0001999g * +0.0001434g
B4(q) = 0.003034q > + 0.001483¢q > + 0.001071¢"*
+0.0009769g
B5(q) = —0.0001085q > + 0.000201¢q
+0.0003909g * + 0.00034424g
B6(q) = —0.001266q > — 0.000845q
- 0.0005904g * - 0.0008796
B7(q) = —0.000173q > + 8.793¢ — 05q
+0.0002124g * +0.0001657q "
B8(q) = —0.0001733g > + 8.761e — 05 >
+0.0002121g"* + 0.0001654g
B9 (q) = —0.0001734g > + 8.75¢ — 05 >
+0.000212q * +0.0001653g
B10(gq) = —0.0000.3g > + 1.986¢ — 05g >
+0.0001798g * +0.0001357q
B11(gq) = —0.0002676g > + 2.000e — 059~
+0.0002 " +0.0001157g >
C(q) =1-0.01847q ' —0.2401q > - 0.1495g "
~0.03079q "*
D(q) =1-1.85¢" +1.0099> - 0.27669
+0.12159 "
F1(q) =1-1937q"" +1.131g > - 0.3102q >

+0.1171g"*

7
F2(q)=1-1.9369 " +1.131q > - 0.3103q "
+0.11664 *
F3(q) =1-1936q " +1.131g > - 0.3097q "
+0.1175q"*
F4(q) =1-1937q ' +1.131q > - 0.30979 "
+0.1177¢”"*
F5(q) =1-1.936q ' +1.131g > - 0.3098¢ "
+0.1174¢q "
F6(q) =1-1936q " +1.131q > - 0.3097q "
+0.11769*
F7(q) =1-1937q " + 1.123q > - 0.3103q "
+0.1174”*
F8(q) =1-1937q " +1.123q > - 0.3103q "
+0.1174”*
F9(q) =1-1937q " + 1.113g > — 0.3103q "
+0.1174”*
F10(q) =1-1937q " + 1.113g > - 0.3101q "
+0.1172q"*
F11(q) =1-1922q" + 1.123g > - 0.3101q
+0.1165q *.
(10)

In addition, the step response of the identified model is shown
in Figure 7. It can be observed that the response of model BJI
(4-4-4-4-2) is stable after an abrupt change in input. Knowing
how the system responds to a sudden input is important
because large and possibly fast deviations from the long-term
steady state may have extreme effects on the prediction ability
of the model. This will in turn influence decisions.

3.3. Residual Analysis. Two types of residual analysis were
carried out: a whiteness test and crossplot analysis. The
whiteness test was undertaken by plotting a histogram of the
residuals, which were calculated by differencing simulated
output and validation data. Figure 8 presents the histogram of
the residuals. The mean and sample variance of the residual
distribution are 0.0873 and 1272, respectively. According to
the whiteness test, a good model that has exploited most of
the information, which is inherently contained in the data,
will have a white noise. Since the mean is almost zero, it
can be considered that the model has captured most of the
information in the input and output data.
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In addition, a crossplot of simulated output versus val-
idation data was plotted to allow further analysis on the
identified model. The data set was concatenated and sorted
in descending order based on the simulated output before
it was plotted on x-y plane. A good model will have its
crossplot aligned with the 45-degree line. A model that
underestimates the output will have its crossplot below the
45-degree line and a model that overestimates the output will
have its crossplot above the 45-degree line. Figure 9 presents
a crossplot of model BJI (4-4-4-4-2). It can be seen that the
model neither underestimates nor overestimates during the

validation period. In other words, the prediction ability of the
identified model is satisfactory.

4. Summary and Conclusion

Numerical reservoir modeling and simulation has many
applications in the upstream oil and gas industry. However,
due to the large computational time required, full exploitation
of its potential use remains challenging. Currently, the use
of response surface based proxy models is becoming a com-
mon trend. Nowadays, several simulation software packages
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incorporate a module for proxy modeling. While such proxy
models are useful and significantly reduce optimization time,
their development still requires several simulation runs. In
this study, a system identification based proxy model that
only requires a single run and properly designed excitation
signal was proposed. A case study that involves water injec-
tion was used to investigate and establish a procedure for
application of system identification techniques in reservoir
simulation. Injection flow rates were designed in the form of
a pseudorandom binary sequence that is known to excite all
frequencies equally and allow successful identification. Input
and output data were collected at a frequency of 1/day and
were divided into modeling and validation sets. The modeling
set was used to construct a proxy model. The validation set
was used for cross validation and residual analysis. Residual
analysis and crossplot test together with the calculation of
percentage fit have shown that the identified model was
able to accurately mimic the performance of the numerical
reservoir simulator while predicting total oil production
during oil recovery by water injection. In conclusion, with
proper selection of input sequence and model structure,
system identification can deliver a proxy model with just one
simulation run.

Nomenclature

Q: Liquid flow rate
Qo Oil flow rate

DCA:  Decline curve analysis
Qu: Water flow rate

WC: Water cut

BHP:  Bottomhole pressure
GOR:  Gas-to-oil ratio

NRMSE: Normalized root mean square error
PRBS:  Pseudorandom binary sequence
MISO:  Multiple input-single output.
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