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Extremes precipitation may cause a series of social, environmental, and ecological problems. Estimation of frequency of extreme
precipitations and its magnitude is vital for making decisions about hydraulic structures such as dams, spillways, and dikes. In this
study, we focus on regional frequency analysis of extreme precipitation based on monthly precipitation records (1999–2012) at 17
stations of Northern areas and Khyber Pakhtunkhwa, Pakistan. We develop regional frequency methods based on L-moment and
partial L-moments (L- and PL-moments). The L- and PL-moments are derived for generalized extreme value (GEV), generalized
logistic (GLO), generalized normal (GNO), and generalized Pareto (GPA) distributions. The 𝑍-statistics and L- and PL-moments
ratio diagrams of GNO, GEV, and GPA distributions were identified to represent the statistical properties of extreme precipitation
in Northern areas and Khyber Pakhtunkhwa, Pakistan. We also perform a Monte Carlo simulation study to examine the sampling
properties of L- and PL-moments. The results show that PL-moments perform better than L-moments for estimating large return
period events.

1. Introduction

Hydraulic and hydrologic designs are key steps in planning
of any water project. Any problem pitched at designing
stage will result in the failure of design irrespective of the
fact how correctly the other steps are taken. Hydrologists
deal with water-related issues, problems of quantity, quality,
and availability, in the society that known as hydrologic
events. Stochastic methods are often used to understand
sources of uncertainties in physical processes that give rise
to observed hydrologic events, as precipitation and stream
flow estimates depend on the past or future events. Several
statistical methods offered to minimize and summarize the
uncertainties of observed data and frequency analysis is one
of them. It determines that how often a particular event will

occur by estimating the quantile 𝑄𝑇 for return period of 𝑇,
where 𝑄 is the magnitude of the event that occurs at a given
time and location.

Dalrymple [1] proposed regional frequency analysis
(RFA) method for pooling various data samples. It is index-
flood procedure in hydrology. Hosking et al. [2] studied
the properties of probability-weighted moments (PWMs)
method based on RFA method. This method is first used by
Greis and Wood [3] and Wallis [4]. Cunnane [5] reviewed
twelve methods of RFA and related regional PWMs algo-
rithm.

Initially, PWMs are considered as an alternative parame-
ter estimation method; however, it was difficult to interpret
directly as measures of the shape and scale parameters of
distribution. RFA can forecast the flood flow using empirical
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formula and unit-hydrograph procedure Subramanya [6],
and it can also estimate the quantiles of extreme precipitation.

Hosking and Wallis [7] showed that RFA method based
on L-moments is used to detect homogeneous regions, to
select suitable regional frequency distribution, and to predict
extreme precipitation quantiles at region of interest.

Whilst L-moment methodology is effective in estimating
parameters, it may not valid for predicting high return
period events. Wang [8] suggested that relatively small floods
might create disturbance in the analysis. To overcome such
situation, a censored sample can be used as by Cunnane [9].

Wang [8] proposed partial probability-weighted
moments (PPWMs) for fitting the probability distribution
function to the censored sample. Partial L-moments
(PL-moments) are variants of the L-moments and similar to
PPWMs. PL-momentsmethod has used in fitting generalized
extreme value (GEV) distribution for censored flood samples
(see Wang [8, 10, 11] and Bhattarai [12]). Bhattarai [12] found
that censoring flood samples are nearly thirty percent of
basic L-moments.

Shabri et al. [13] used Trim L-moments (TL-moments)
for the RFA and compared its performance with L-moments.
Saf [14] determined hydrologically homogeneous region and
regional flood frequency estimates by using index-flood
technique along with L-moments for the West Mediter-
ranean River, Turkey. L-moments method is also used to
assign a suitable regional distribution for the individual
subregions and to assess their homogeneity; see Abolverdi
and Khalili [15]. Hussain and Pasha [16] suggested the
regional flood frequency analysis based on L-moments.They
used discordancy measure for data screening and used the
four-parameter Kappa distribution with 500 simulations
for the heterogeneity analysis. Zakaria et al. [17] used the
PL-moments technique and found another link for the
homogeneity analysis. Shahzadi et al. [18] showed that the
generalized normal (GNO) distribution is suitable for the
regional quantile estimation at maximum return period and
the GEV distribution for the overall regions at low return
period based on relative RMSE and relative absolute bias.
Most commonly used statistical distributions for high climate
modeling are as follows: the logistic distribution with three
parameters, lognormal distribution with three parameters,
Log Pearson type III, GEV, and generalized Pareto (GPA)
(Coles [19]; Katz et al. [20]; Abida and Ellouze [21]; Feng et al.
[22]; Yang et al. [23]; Villarini et al. [24]; Zakaria et al. [17]; She
et al. [25]).Moreover, GEV andGPAdistributions are suitable
if data contains extremes values. Over the years, the GNO,
GEV, generalized logistic (GLO), and GPA distributions
have been widely employed in the extreme value estimation
of annual flood peaks. In this study, we aim to develop
RFA method based on L- and PL-moments approach. Our
proposed method can be used at all levels of regional analysis
such as identification of homogeneous regions, identification,
and also testing of the suitable probability regional frequency
distribution based on 𝑍-statistic and the L- and PL-moment
ratio diagram and estimation of the flood quantile at site
of interest. We use 17 sites of Northern areas and Khyber
Pakhtunkhwa as a case study to perform the analysis.

We explain the methodology of the L-moments and PL-
moments in Section 2.2. Section 2.3 shows the application
of the RFA where we choose the appropriate distribution
for the regional analysis. Section 3.3 provides the estimation
of quantile for both, the small and large return period. The
results of our simulations studywill be presented in Section 4.

2. Material and Methods

2.1. Study Area and Data Sources. The data was collected
for this study from Karachi Data Processing Center through
Pakistan Meteorological (PMD) Islamabad. Monthly precip-
itation data has been recorded from 1999 to 2012. There are
17 meteorological stations of Northern areas and Khyber
Pakhtunkhwa, Pakistan. These stations are full precipitation
regions that affect areas in Pakistan, where water is essential
for hydropower and flood plains. Figure 1 shows the location
of the study area and geographic distribution of precipitation
stations. There is no missing value in this data set.

2.2. Statistical Methods

2.2.1. The L-Moments. Conventional moments method may
be used for estimating the parameters of probability distri-
bution. However, this approach has some serious drawbacks.
Ratio ofmoment estimators is biased and often assumption of
being normally distributed is violated, Wallis et al. [26]. Fur-
thermore, it is sensitive to outliers, Pearson [27].Therefore, it
is unreliable for skewed distributions.

Hosking [28] proposed L-moments approach to over-
come the above problems. The L-moments may precisely
describe the statistical properties of hydrological informa-
tion, and it can write as a linear function of the PWMs. The
PWMs of order 𝑟 were properly described by Greenwood et
al. [29] as

𝑀𝑝,𝑟,𝑠 = 𝐸 [𝑥𝑝 {𝐹 (𝑥)}𝑟 {1 − 𝐹 (𝑥)}𝑠] , (1)

where 𝑟, 𝑠, and 𝑝 are the real numbers and 𝐹(𝑥) is the
cumulative distribution function of 𝑥. A functional case is

𝛽𝑟 = 𝑀1,𝑟,0. (2)

Therefore,

𝛽𝑟 = ∫1
0
𝑥 (𝐹) 𝐹𝑟𝑑𝐹, (3)

where 𝐹 = 𝐹(𝑥) is the cumulative distribution function of a
random variable 𝑥 and 𝑟 is a nonnegative integer of the real
number that is 𝑟 = 0, 1, 2, 3, . . .. Therefore the first four L-
moments, which are the linear combinations of the PWMs,
are

𝜆1 = 𝛽0,
𝜆2 = 2𝛽1 − 𝛽0,
𝜆3 = 𝛽2 − 6𝛽1 + 𝛽0,
𝜆4 = 20𝛽3 − 30𝛽2 + 12𝛽1 − 𝛽0.

(4)
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Figure 1: Locations of Northern areas and Khyber Pakhtunkhwa and the meteorological stations (𝑥 axis indicates Longitude [E]; 𝑦 axis
indicates Latitude [N]).

The L-moments have no units of measurement, which are
called the L-moments ratios. The L-moments ratios, pro-
posed by Hosking [28], are computed as

𝜏 = 𝜆2𝜆1 ,

𝜏3 = 𝜆3𝜆2 ,

𝜏4 = 𝜆4𝜆2 ,
(5)
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where 𝜏 represents the L-coefficient of variation (L-Cv),𝜏3 represents the L-coefficient of skewness (L-Cs), and 𝜏4
represents the L-coefficient of kurtosis (L-Ck).

The arranged sample is given as 𝑥(1) ≤ 𝑥(2) ≤ 𝑥(3) ⋅ ⋅ ⋅ ≤𝑥(𝑛). Wang [8] stated that the statistic

𝑏𝑟 = 1𝑛
𝑛∑
𝑖=1

(𝑖 − 1) (𝑖 − 2) ⋅ ⋅ ⋅ (𝑖 − 𝑟)(𝑛 − 1) (𝑛 − 2) ⋅ ⋅ ⋅ (𝑛 − 𝑟)𝑥(𝑖) (6)

is an unbiased estimator of 𝛽𝑟.
So

𝑙1 = 𝑏0,
𝑙2 = 2𝑏1 − 𝑏0,
𝑙3 = 6𝑏2 − 6𝑏1 + 𝑏0,
𝑙4 = 20𝑏3 − 30𝑏2 + 12𝑏1 − 𝑏0,

(7)

where 𝑙1, 𝑙2, 𝑙3, and 𝑙4 are the first four L-moments of the
sample. And similarly

𝑡 = 𝑙2𝑙1 ,
𝑡3 = 𝑙3𝑙2 ,
𝑡4 = 𝑙4𝑙2

(8)

are the sample L-moments ratios.

2.2.2. The Partial L-Moments. Wang [8, 10, 11] introduced a
concept of partial probability-weighted moments (PPWMs)
that will estimate the higher quantiles of flood flows. Data can
be censored to the right tail or left tail.

Initially, PPWMswere to take out the smaller values from
the process of distribution fitting because such values have
slight influence on the frequency analysis and are nuisance to
the fitting process.

The left tail PPWMs are defined by Wang [8, 11] as

𝛽∗𝑟 = ∫1
𝐹0

𝑥 (𝐹) 𝐹𝑟𝑑𝐹, (9)

where 𝐹0 = 𝐹(𝑥0) which is the lower limit of the censored
observations and 𝑥0 is the censoring threshold value.

The PPWMs elongated form described by Wang [10] are
to be given a censored sample as

́𝛽𝑟 = 11 − 𝐹𝑟+10 ∫1
𝐹0

𝑥 (𝐹) 𝐹𝑟𝑑𝐹. (10)

If the value of 𝐹0 is starting from the zero, then the result of
PPWMswill be the same as the usual PWMs. As 𝑥(1) ≤ 𝑥(2) ≤𝑥(3) ⋅ ⋅ ⋅ ≤ 𝑥(𝑛) is the arranged sample, Wang [10] describes the
unbiased estimator of ́𝛽𝑟 as

�́�𝑟 = 1(1 − 𝐹𝑟+10 ) 𝑛
𝑛∑
𝑖=1

(𝑖 − 1) (𝑖 − 2) ⋅ ⋅ ⋅ (𝑖 − 𝑟)(𝑛 − 1) (𝑛 − 2) ⋅ ⋅ ⋅ (𝑛 − 𝑟)𝑥∗(𝑖), (11)

where

𝑥∗(𝑖) = 0 for 𝑥(𝑖) ≤ 𝑥(0)
𝑥∗(𝑖) = 𝑥(𝑖) for 𝑥(𝑖) > 𝑥(0). (12)

The censoring level, 𝐹0, is the prior selection of the number
of censored sample data. The procedure that determines the
number of sample data points are to be censored:

𝐹0 = 𝑛0𝑛 , (13)

where 𝑛0 and 𝑛 are the lengths of sample which are to be
censored and uncensored, respectively. Similarly, 𝑥0 is the
highest value of the censored sample. The first four PL-
moments for the PPWMs are

�́�1 = ́𝛽0,
�́�2 = 2 ́𝛽1 − ́𝛽0,
�́�3 = ́𝛽2 − 6 ́𝛽1 + ́𝛽0,
�́�4 = 20 ́𝛽3 − 30 ́𝛽2 + 12 ́𝛽1 − ́𝛽0.

(14)

Similarly, the PL-moments ratios can be written as

́𝜏 = �́�2�́�1 ,

́𝜏3 = �́�3�́�2 ,

́𝜏4 = �́�4�́�2 ,

(15)

where ́𝜏, ́𝜏3, and ́𝜏4 denote the partial L-coefficient of variation(PL-Cv), partial L-coefficient of skewness (PL-Cs), and par-
tial L-coefficient of kurtosis (PL-Ck), respectively. Therefore,
the first four sample PL-moments can be computed as

́𝑙1 = �́�0,
́𝑙2 = 2�́�1 − �́�0,
́𝑙3 = 6�́�2 − 6�́�1 + �́�0,
́𝑙4 = 20�́�3 − 30�́�2 + 12�́�1 − �́�0.

(16)

And the first four sample PL-moments ratios can be com-
puted as

́𝑡 = ́𝑙2́𝑙1 ,
́𝑡3 = ́𝑙3́𝑙2 ,
́𝑡4 = ́𝑙4́𝑙2 ,

(17)
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where ́𝑡, ́𝑡3, and ́𝑡4 represent the sample partial L-moments
ratios of the PL-Cv, PL-Cs, and PL-Ck, respectively. The
derivation is L-moment and PL-moments are given in
Appendix. In the present study, different level of censoring
threshold is selected.

2.3. Regional Frequency Analysis. Hosking and Wallis [7, 30]
identified the following four steps to explain the procedure of
the RFA:

(1) Data screening
(2) Designing of the homogeneous region
(3) Selection of an appropriate probability distribution
(4) Parameters estimation of the appropriate probability

distribution

2.3.1. Data Screening. We screened data anomalies before
applying any statistical analysis.

2.3.2. Discordance Test. Hosking and Wallis [7] suggested a
discordancy measure (𝐷𝑖) test that recognizes the locations
where sample L-moments are marked contrarily from the
most other locations. Locations with the large flaws in the
data will be flagged as discordant.

The discordancy test for a region containing𝑁 locations,
for site 𝑖, is proposed by Hosking and Wallis [7] as follows:

𝐷𝑖 = 13𝑁 (𝑢𝑖 − 𝑢)𝑇 𝑆−1 (𝑢𝑖 − 𝑢) , 𝑖 = 1, 2, . . . , 𝑁, (18)

where 𝑢𝑖 is the vector containing the three sample L-moments
ratios for the site 𝑖 expressed as

𝑢𝑖 = [𝑡(𝑖)2 𝑡(𝑖)3 𝑡(𝑖)4 ]𝑇 . (19)

𝑢 is the average vector of 𝑢𝑖 for the overall region that is

𝑢 = 1𝑁
𝑁∑
𝑖=1

𝑢𝑖 (20)

and 𝑆 is the covariance matrix for the sample that can be
expressed as

𝑆 = 𝑁∑
𝑖=1

(𝑢𝑖 − 𝑢) (𝑢𝑖 − 𝑢)𝑇 . (21)

Broadly speaking, a location or a site is considered to be
discordant from the whole region or group if the value of 𝐷𝑖
is larger than the critical value.

2.3.3. Heterogeneity Test. The homogeneity measure (𝐻𝑗)
identifies homogenous regions, Hosking and Wallis [7]. It
is also useful to tag the locations if they are plausible to
handle as a homogeneous region. It estimates the amount
of heterogeneity in the overall region. The heterogeneity test(𝐻𝑗) is computed as

𝐻𝑗 = 𝑉𝑗 − 𝜇V𝑗𝜎V𝑗 , 𝑗 = 1, 2, 3, (22)

where 𝜇V𝑗 and 𝜎V𝑗 are representing the mean and standard
deviation of the simulated 𝑉𝑗 values. Also,

𝑉1 = { 𝑁∑
𝑖=1

𝑛𝑖 (𝑡
(𝑖)
2 − 𝑡𝑅2 )
∑𝑁𝑖=1 𝑛𝑖 }

1/2

,

𝑉2 =
∑𝑁𝑖=1 [𝑛𝑖 {(𝑡(𝑖)2 − 𝑡𝑅2 )2 + (𝑡(𝑖)3 − 𝑡𝑅3 )2}1/2]

∑𝑁𝑖=1 𝑛𝑖 ,

𝑉3 =
∑𝑁𝑖=1 [𝑛𝑖 {(𝑡(𝑖)3 − 𝑡𝑅3 )2 + (𝑡(𝑖)4 − 𝑡𝑅4 )2}1/2]

∑𝑁𝑖=1 𝑛𝑖 .

(23)

Here, 𝑡𝑅2 , 𝑡𝑅3 , and 𝑡𝑅4 are region average L-moments or PL-
moments ratios. We assessed the heterogeneity of a region as
suggested by Hosking and Wallis [7]:

Region is acceptably homogeneous if𝐻 < 1.
Region is possibly heterogeneous if 1 ≤ 𝐻 < 2.
Region is definitely heterogeneous if𝐻 ≥ 2.

2.4. Selection of the Appropriate Probability Distribution.
Hosking andWallis [7] proposed two approaches to select the
distribution that fitted best the data: the L-moment ratios dia-
gram and the 𝑍-test. The L-moment ratios diagram is using
the unbiased estimators, Hosking [28], Stedinger et al. [31],
Vogel and Fennessey [32], and Hosking [33].The L-moments
ratio diagram is a plot of the computed values L-Cs and
the observed values L-Ck of the distribution function. The
curves indicate the hypothetical connections between L-Cs
and L-Ck of the candidate distribution. The L-moment ratio
diagrams have been proposed for discriminating between the
candidate probability distributions in describing the regional
information (Hosking [28]; Stedinger et al. [31]; Hosking
and Wallis [7]). The L-moments ratio diagrams have been
used as a component of probability distribution process for
regional information (Schaefer [34]; Pearson [35]; Vogel and
Fennessey [32], Vogel et al. [36]; Chow and Watt [37]; ÖnÖz
and Bayazit [38]; Vogel and Wilson [39]; Peel et al. [40]).

Hosking and Wallis [7] suggested a measure to see how
well the L-Cs and L-Ck of the fitted probability distribution
match the regional average L-Cs and L-Ck of the observed
information.

The measure goodness of fit for every single selected
probability distribution is computed as follows:

𝑍Dis = (𝜏Dis4 − 𝑡𝑅4 )𝜎4 , (24)

where 𝜏Dis4 represents the value of the L-Ck of the fitted
distribution, 𝑡𝑅4 represents the weighted regional average
L-Ck, and 𝜎4 represents standard deviation of the 𝑡𝑅4 , which
is obtained from the simulation of the Kappa probability
distribution.

If the computed value of 𝑍Dis is equal to zero, the proba-
bility distributionwill be themost suitable fit. If the computed
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Table 1: Statistics of annual extreme monthly precipitation for study region based on L-moments and PL-moments.

Sites L-moments PL-moments
Mean 𝑡 𝑡3 𝑡4 Mean 𝑡 𝑡3 𝑡4

Astore 37.624 0.518 0.366 0.193 41.752 0.467 0.377 0.183
Balakot 120.450 0.478 0.322 0.192 133.259 0.428 0.335 0.198
Bunji 14.297 0.609 0.456 0.259 16.339 0.553 0.450 0.257
Chilas 15.091 0.585 0.392 0.194 17.603 0.516 0.375 0.200
Cherat 49.038 0.580 0.375 0.162 55.289 0.526 0.355 0.161
DI khan 28.885 0.689 0.516 0.262 32.351 0.651 0.487 0.250
Dir 105.694 0.432 0.216 0.098 116.741 0.378 0.222 0.097
Drosh 45.284 0.525 0.317 0.136 50.316 0.474 0.307 0.137
Garhi Dupatta 111.352 0.454 0.227 0.111 123.374 0.398 0.229 0.120
Gilgit 12.677 0.591 0.412 0.228 14.290 0.539 0.399 0.239
Gupis 23.446 0.678 0.529 0.331 30.299 0.583 0.506 0.350
Kakul 99.431 0.453 0.247 0.102 110.068 0.399 0.254 0.093
Kotli 95.070 0.542 0.332 0.136 106.903 0.487 0.314 0.138
Muzaffarabad 118.439 0.459 0.284 0.182 131.122 0.405 0.301 0.194
Peshawar 46.216 0.572 0.398 0.216 51.761 0.520 0.392 0.222
Saidu Sharif 85.667 0.455 0.265 0.181 94.978 0.399 0.283 0.200
Skardu 20.438 0.616 0.4564 0.238 22.885 0.570 0.444 0.231

value of 𝑍-statistic is less than 1.64 at 90% confidence level
(i.e., |𝑍Dis| ≤ 1.64), it will indicate that the distribution
qualifies the goodness of fit criteria. If there are more than
one distribution that qualify the criteria, the most suitable
distribution has the minimum |𝑍Dis| value.
3. Estimation

The sites’ information and statistic by using L-moments for
the present study are presented in Table 1. In Table 1, mean
represents the first sample L/PL-moments and 𝑡, 𝑡3, and 𝑡4
are the sample L/PL-moments ratios of the L-Cv/PL-Cv,
L-Cs/PL-Cs, and L-Ck/PL-Ck, respectively. The lower level
censoring threshold is selected from 10 to 23%. Table 2
expresses the feasible threshold values according to the
percentile technique along with Average Annual Occurrence
Number (AAON). Jiang et al. [41] and Yuguo [42] suggested
that the optimal threshold can be obtained if the values of
AAON lie between 1 and 2. Table 2 shows that 90th percentile
observations are suitable for the optimum threshold selection
of most of areas in the present study. We have 168 values
in each station; according to the above table, Astore station
has 3.2 threshold values due to which 16 values are being
censored in 168. According to censored level, 10.2% censored
level was selected. Similarly, 10.5% was selected for Balakot
and Muzaffarabad. According to this process, maximum
threshold level 22.3% was selected for Gupis. By using the
above process for each station, 17 different censoring levels
were selected. So we decide that the range from 10 to 23%
of censoring level should be kept for selecting threshold
values.

3.1. Regional Frequency Analysis. The following four steps are
considered as prerequisite for frequency analysis, Hosking
and Wallis [7, 30]:

(1) Data screening
(2) Designing of the homogeneous region
(3) Selection of an appropriate probability distribution
(4) Parameters estimation of the appropriate probability

distribution

3.1.1. Data Screening. In this study, we use secondary data
after carefully examining all locations for abnormalities and
missing observations. Therefore, we use 14 years of data for
RFA that were obtained from seventeen locations.

3.1.2. Discordance Test. Table 3 shows 𝐷𝑖 result of (18) for
17 locations of this study region. It can be observed from
the results of L/PL-moments in Table 3 that the value of 𝐷-
statistic varies from 0.07 to 2.44. If 𝐷𝑖 is greater than 3, the
location is considered to be discordant from the rest of the
regional data, Hosking and Wallis [7]. In this study region,
no location is diagnosed as discordant (𝐷𝑖 ≥ 3). Therefore,
we use all data for the development of the RFA based on L-
moments and PL-moments.

3.1.3. Regional Heterogeneity Measure. The next step is the
formation of the homogeneous region, which is conven-
tionally tougher and needs the higher number of subjective
judgments. The homogeneity conditions are defined as the
locations that have the same frequency distributions.
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Table 2: Precipitation threshold selection in GPA distribution for 17 stations.

Station 80th 90th 95th 97.5th 99th
Astore

Threshold 9.8 3.2 0.2 0 0
AAON 2.43 1.21 0.64 0.43 0.43

Balakot
Threshold 32.5 14.8 5.1 3 0
AAON 2.43 1.29 0.57 0.29 0.14

Muzaffarabad
Threshold 30.4 11.8 5 1 0
AAON 2.5 1.21 0.57 0.29 0.21

Garhi Dupatta
Threshold 28.8 10 3.8 0 0
AAON 2.43 1.21 0.57 0.29 0.29

Dir
Threshold 31 20 5 0.05 0
AAON 2.43 1.21 0.57 0.29 0.21

Kakul
Threshold 28.9 13.4 2.1 0.5 0
AAON 1.64 1.29 0.57 0.29 0.21

Kotli
Threshold 13 6 0.05 0 0
AAON 2.43 1.35 0.57 0.36 0.36

Saidu Sharif
Threshold 25.6 8.3 2 0 0
AAON 2.43 1.21 0.57 0.36 0.36

cherat
Threshold 5 0.05 0 0 0
AAON 2.43 1.43 0.93 0.93 0.93

Peshawar
Threshold 6 0.05 0 0 0
AAON 2.43 1.29 0.57 0.57 0.57

Drosh
Threshold 7.6 1.5 0.2 0.05 0
AAON 2.43 1.21 0.57 0.5 0.21

D I Khan
Threshold 0.3 0 0 0 0
AAON 2.57 1.29 1.29 1.29 1.29

Gupis
Threshold 0 0 0 0 0
AAON 2.71 2.71 2.71 2.71 2.71

Skardu
Threshold 2 0.3 0 0 0
AAON 2.43 0.71 0.71 0.71 0.71

Chilas
Threshold 1 0.5 0 0 0
AAON 1.71 1.07 1.07 1.07 1.07

Bunji
Threshold 1.3 0 0 0 0
AAON 1.5 1.5 1.5 1.5 1.5

Gilgit
Threshold 1.2 0.05 0 0 0
AAON 2.43 1.35 0.71 0.71 0.71



8 Advances in Meteorology

0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6

GLO
GEV
GPA

GNO
Average
Data

GLO
GEV
GPA

GNO
Average
Data

L-
ku

rt
os

is

L�㰀
-k

ur
to

sis

L-skewness L-skewness

Figure 2: L-diagram and PL-diagram of the GLO, GEV, GPA, and GNO distributions.

Table 3: Discordance test result based on L-moments and PL-
moments.

Name of site L-moments (𝐷𝑖) PL-moments (𝐷𝑖)
Astore 2.05 2.44
Balakot 1.42 0.85
Bunji 0.55 0.60
Chilas 0.29 0.07
Cherat 0.79 0.64
DI khan 1.29 1.90
Dir 0.82 0.86
Drosh 0.51 0.43
Garhi Dupatta 1.43 1.33
Gilgit 0.26 0.59
Gupis 2.37 2.31
Kakul 0.82 1.22
Kotli 0.77 0.59
Muzaffarabad 0.99 0.85
Peshawar 0.07 0.08
Saidu Sharif 1.91 1.57
Skardu 0.67 0.65

For the present study area, realization of the Kappa
probability distribution is used to conduct the heterogeneity
test based on the L-moments and PL-moments.

Number of simulations are 10,000 for computing the
heterogeneity.We computed the regional average L-moments
ratios, the regional PL-moments ratios, and the correspond-
ing parameter values of the fitted Kappa probability dis-
tribution (see Table 4). Table 4 shows the results of the
heterogeneity measure using L-moments and PL-moments
methods. It can be observed from Table 4 that the different

values for the𝐻-statistic are −0.41, −1.60, and −2.89 based on
L-moments and−0.06,−1.8, and−3.17 based onPL-moments.
Therefore, we concluded that, by comparing these results
and the heterogeneity conditions, study region is acceptably
homogeneous for L-moments and PL-moments. No further
subdivisions of the present study are necessary.

3.2. Fitting Appropriate Probability Distribution. After homo-
geneity analysis of the study area, a suitable probability
distribution is required for the RFA.The objective is not only
to recognize a suitable probability distribution for RFA but
also to observe a probability distribution that will provide
robust quantile estimate for each location and for the regional
growth cure. List of candidate probability distributions for
RFA is GLO, GEV, GPA, and GNO.

We plotted L-moments and PL-moments diagrams for
preliminary evaluation of the probability distribution for the
study area.

Figure 2 illustrates an analogy of the observed and hypo-
thetical relationships of the probability distribution. Figure 2
shows that GLO distribution is not a suitable candidate for
the L-moments and PL-moments.

Interestingly, both analyses of the L-moments and the PL-
moments diagram show that the sample average values are
appropriately distinguished by the hypothetical L-moments
and PL-moments for GPA and GNO distributions.

However, it is hard to find a suitable probability distri-
bution that fits most of the regional observed data. Table 5
shows the goodness of fit test results for candidate probability
distributions.

Table 5 shows that GLO distribution failed the goodness
of fit test for both L-moments and for PL-moments methods
as the calculated value of the 𝑍-test for the GLO distribution
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Table 4: Heterogeneity measures for the study region based on L-moments and PL-moments.

Heterogeneity measures L-moment PL-moment
Heterogeneity measure𝐻1

Observed standard deviation of group L-Cv 0.078 0.077
Simulated mean of standard deviation of group L-Cv 0.084 0.077
Simulated standard deviation of standard deviation of group L-Cv 0.015 0.014
Value of the heterogeneity measure𝐻1 −0.410 −0.060

Heterogeneity measure𝐻2
Observed average of L-Cv/L-skewness distance 0.105 0.139
Simulated mean of average L-Cv/L-skewness distance 0.141 0.139
Simulated standard deviation of average L-Cv/L-skewness distance 0.023 0.022
Value of the heterogeneity measure𝐻2 −1.600 −1.800

Heterogeneity measure𝐻3
Observed average of L-skewness/L-kurtosis distance 0.094 0.088
Simulated mean of average L-skewness/L-kurtosis distance 0.175 0.176
Simulated standard deviation of average L-skewness/L-kurtosis distance 0.028 0.028
Value of the heterogeneity measure𝐻3 −2.890 −3.170

Table 5: 𝑍-test result for the goodness of fit.
Method GLO GEV GNO GPA
L-moments 1.96 1.38 0.61 −0.42
PL-moments 1.77 1.19 0.43 −0.61
Table 6: Regional parameters for the three candidate distributions
for L-moments and PL-moments.

Method Distribution Parameters𝜉 𝛼 𝐾
L-moments

GEV 0.4660 0.5644 −0.2751
GNO 0.6671 0.7565 −0.7594
GPA −0.0551 0.9944 −0.0575

PL-moments
GEV 0.5220 0.5116 −0.2686
GNO 0.7046 0.6837 −0.7487
GPA 0.0478 0.9073 −0.0472

is larger than the critical value of 1.64 (at 90% confidence
level).

It has been observed that the computed values of |𝑍Dis|
are less than 1.64 (at 90% confidence level), namely, GEV,
GNO, andGPA distributions. However, GEV, GNO, andGPA
distributions are suitable for regional distribution based on
L-moments and PL-moments methods and for obtaining the
future estimates of the quantile.

Further, it can be noted that GPA distribution is suitable
for L-moments method (lowest critical |𝑍Dis| value). Simi-
larly, GNO distribution is suitable for PL-moments method
(lowest critical value). Table 6 shows the estimates of the
regional parameters for L-moments and PL-moments for the
suitable probability distribution.

3.3. Estimation of the Quantiles. The regional quantile esti-
mates 𝑞(𝐹), with varying nonexceedance probability𝐹 for the
GNO, GEV, and GPA distributions, are presented in Table 7

based on L-moments and PL-moments. Quantile function
is normally represented as 𝑞(⋅) for fitted regional frequency
distribution. The quantile estimate at location 𝑖 is established
by joining the estimate of 𝜇𝑖 and 𝑞(⋅).

Mathematical form of the quantile estimate with nonex-
ceedance probability 𝐹 is

𝑄 (𝐹) = 𝑙𝑖1𝑞 (𝐹) . (25)

The regional growth curves for the GEV, GNO, and GPA
distributions are shown in Figure 3.

Figure 3 shows the regional growth curves of each can-
didate distribution for L-moments and PL-moments. GEV,
GNO, and GPA distributions are approximately identical
up until 100-year return period (𝐹 = 0.99) for both L-
moments and PL-moments. However, afterward the growth
curves of the GPA distribution lie below the GEV and GNO
distributions.

Therefore, it is necessary to assess the performance of
regional quantile estimates.

4. Accuracy of the Estimated Quantiles and the
Regional Growth Curve

A Monte Carlo simulation is designed to assess accuracy
of the regional quantile estimates that are obtained by the
RFA. We use logical L-moments algorithm that has been
reported by Hosking and Wallis [7] in Section 6.4. This
algorithm takes samples from a region that has comparable
characteristics as of the actual region, such as having the same
record length, same number of locations, and the regional
L-moments ratios. The area used for simulation should
report the plausible heterogeneity in the area and intersite
dependency if exist (Hosking andWallis [7]). In the repeated
sampling procedure, the quantile estimates are computed for
the different nonexceedance probabilities. Suppose that, at𝑚th repetition and location 𝑖, quantile estimate can bewritten
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Table 7: Regional quantile estimates with nonexceedance probability 𝐹.
Method Distribution 𝐹

0.1000 0.5000 0.8000 0.9000 0.9500 0.9800 0.9900 0.9975 0.99875 0.9990

L-moments
GEV 0.0454 0.6836 1.5139 2.2247 3.0591 4.4161 5.6871 9.0748 11.3165 12.1338
GNO 0.0473 0.6671 1.5585 2.3072 3.1448 4.4098 5.4997 8.0676 9.5666 10.0823
GPA 0.0500 0.6481 1.6217 2.3931 3.1958 4.3073 5.1878 7.0578 8.0502 8.3782

PL-moments
GEV 0.1397 0.7190 1.4670 2.1034 2.8469 4.0497 5.1703 8.1363 10.086 10.7950
GNO 0.1412 0.7046 1.5062 2.1752 2.9203 4.0410 5.0032 7.2608 8.5739 9.0249
GPA 0.1436 0.6871 1.5649 2.2547 2.9674 3.9460 4.7149 6.3304 7.1786 7.4577
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Figure 3: L-moments and PL-moments regional growth curves.

as 𝑄(𝑚)𝑖 (𝐹) for the nonexceedance probability 𝐹. The relative
error for this estimator is

{𝑄(𝑚)𝑖 (𝐹) − 𝑄𝑖 (𝐹)}𝑄𝑖 (𝐹) . (26)

The bias and the RMSE of the above quantity over all 𝑀
repetition are

Bias = 𝐵𝑖 (𝐹) = 1𝑀
𝑀∑
𝑚=1

{𝑄(𝑚)𝑖 (𝐹) − 𝑄𝑖 (𝐹)}𝑄𝑖 (𝐹) ,
RMSE = 𝑅𝑖 (𝐹)

= 1𝑀 [
[
𝑀∑
𝑚=1

{(𝑄(𝑚)𝑖 (𝐹) − 𝑄𝑖 (𝐹))𝑄𝑖 (𝐹) }
2]
]
1/2

.

(27)

Also, for the estimated quantile, the regional average bias and
the relative RMSE are

𝐵𝑅 (𝐹) = 1𝑁
𝑁∑
𝑖=1

𝐵𝑖 (𝐹) ,

𝑅𝑅 (𝐹) = 1𝑁
𝑁∑
𝑖=1

𝑅𝑖 (𝐹) .
(28)

We use empirical quantities of quantile distribution for the
assessment analysis that can be computed by taking the ratio
of estimated to true values,𝑄𝑖(𝐹)/𝑄𝑖(𝐹) for the quantile, and𝑞𝑖(𝐹)/𝑞𝑖(𝐹) for the regional growth curves.Therefore, 90% of
the regional growth curve lie in between the interval:

𝐿0.05 (𝐹) ≤ 𝑞 (𝐹)𝑞 (𝐹) ≤ 𝑈0.05 (𝐹) . (29)
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Inverting the expression for 𝑞𝑖(𝐹), we have
𝑞 (𝐹)𝑈0.05 (𝐹) ≤ 𝑞 (𝐹) ≤

𝑞 (𝐹)𝐿0.05 (𝐹) . (30)

The 90% confidence interval limits show the measure of
variation between the estimated and the true quantiles.
These limits provide the expected magnitude of errors in the
estimated quantiles and the regional growth curves.

We computed L-moments ratios to find the most suitable
distribution and the precision of original growth curves. The
correlation between the study region sites varies from −0.05
to 0.86 with an average of 0.40. Therefore, we use algorithm
from Table 6.1 of Hosking and Wallis [7].

We held out the analysis for recurrence of different years.
We run 10,000 simulations with sample size of 30, 60, and 90
in each case. The whole process is repeated for GEV, GNO,
and GPA distributions. From these repetitions, we computed
several performance measures, such as the regional average
relative bias, regional average RMSE, regional average relative
RMSE, and the error bounds for the estimated regional
growth curves for the selected nonexceedance probability 𝐹.
Overall results for the suitable probability distribution for
both methods are presented in Tables 8, 9, and 10 for sample
size of 30, 60, and 90, respectively.

Figures 4, 5, and 6 show estimated regional growth curves
for sample sizes 30, 60, and 90, respectively, and also GEV,
GNO, and GPA distributions with the 90% error bounds.

Tables 8, 9, and 10 show that increase in the sample
size such as 30 to 90 improved the performance particularly
in the prediction of the large nonexceedance probability 𝐹.
L-moments method provides similar performance for the
GNO and GPA distributions in terms of relative bias that
is presented in Tables 8, 9, and 10. We found that the GPA
distribution produced the lowest relative bias compared to
GEV and GNO distribution for the PL-moment for the
various values of the nonexceedance probability 𝐹. However,
the GPA distribution performs better in terms of RMSE
than the GEV and GNO distribution for both methods (L-
moments and PL-moments). Furthermore, RMSE is lowest
for PL-moments compared to L-moments. In addition, the
error bounds for the GPA distribution of regional quantiles
are narrow compared to GEV and GNO distributions. It
shows that the estimation of censored sample improves
the prediction of extreme precipitation explicitly at large
nonexceedance probability 𝐹.
5. Discussion and Conclusion

This study provides a comprehensive evaluation of the
L-moments and the PL-moments. First, revisiting RFA
on L-moments by Hosking and Wallis [7], we aimed to
develop similar connections of regional homogeneity for PL-
moments. The L-moments and the PL-moments for candi-
date probability distributions (GLO, GEV, GNO, and GPA)
are also developed for presenting the corresponding L-ratio
and PL-ratio diagrams with the goodness of fit test results.
The regional growth curves for the selected distribution
have been shown in Figures 4, 5, and 6. At the lower tail,

GEV, GPA, and GNO distributions are approximately the
same, but, at the upper tail, there is variation between the
regional quantiles. The regional homogeneity analysis starts
by assuming 17 locations of Northern areas and Khyber
Pakhtunkhwa, Pakistan, as one homogeneous region, based
on L-moments and PL-moments at censoring level ranging
from 10 to 23%.This assumption is statistically accepted after
applying the heterogeneity and discordancy tests. The 𝑍-
statistic provides appropriate distribution for modeling the
monthly extreme precipitation in Northern areas and Khyber
Pakhtunkhwa, Pakistan. We found that GPA distribution is
suitable for the L-moments and GNOdistribution for the PL-
moments.

Finally, Monte Carlo simulation used for performance
evaluation by commonly used error functions. Several accu-
racy measures such as relative bias, RMSE, relative RMSE,
and error function bounds for the regional quantiles are
computed with 10,000 runs of Monte Carlo simulations. We
found that GPA distribution produced robust quantile esti-
mates for both return periods and methods (L-moments and
PL-moments). Our results support the finding of previous
study (e.g., Cunnane [9]; Bhattarai [12]) for censored sample
analysis where PL-moments method outperformed the L-
moments method for the estimation of large return periods
events.

Appendix

The partial L-moments (PL-moments) for generalized logis-
tic (GLO), generalized Pareto (GPA), generalized normal
(GNO), and generalized extreme value (GEV) distributions
were derived based on the formula defined by Wang (Water
Resour Res 32:1767Ö 1771, 1996 (In references lines from
442 to 444 mentioned that in study)). The summary of the
derived distributions and parameters estimation for these
distributions is as follows.

PL-moments for the GEVDistribution [10] are as follows.
The CDF and quantile function of the GEV are given by

𝐹 (𝑥) = exp[−{1 − 𝑘𝛼 (𝜒 − 𝜁)}
1/𝑘] , 𝑘 ̸= 0 (A.1)

and quantile function

𝑥 (𝐹) = 𝜁 + 𝛼𝑘 {1 − (− ln𝐹)𝑘} , 𝑘 ̸= 0. (A.2)

Wang [10] developed the partial probability-weighted
moments (PWMs) of the GEV as

(𝑟 + 1) 𝛽𝑟 = 𝜁 + 𝛼𝐻 (𝛾, 𝐹0, 𝑘) , (A.3)

where

𝐻(𝛾, 𝐹0, 𝑘) = 1𝑘 [1 −
𝑃 {1 + 𝑘, − (𝑟 + 1) ln𝐹0}(1 − 𝐹𝑟+10 ) (𝑟 + 1)𝑘 ] . (A.4)
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Figure 4: Regional growth curves of the three distributions for L-moments and PL-moments with their 90% error bounds for sample size of
30.
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Figure 5: Regional growth curves of the three distributions for L-moments and PL-moments with their 90% error bounds for sample size of
60.
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The first four PL-moments of the GEV are defined as

𝜆1 = 𝜁 + 𝛼𝐻 (0, 𝐹0, 𝑘)
𝜆2 = 𝛼 {𝐻 (1, 𝐹0, 𝑘) − 𝐻 (0, 𝐹0, 𝑘)}
𝜆3 = 𝛼 {2𝐻 (2, 𝐹0, 𝑘) − 3𝐻 (1, 𝐹0, 𝑘) + 𝐻 (0, 𝐹0, 𝑘)}
𝜆4 = 𝛼 {5𝐻 (3, 𝐹0, 𝑘) − 10𝐻 (2, 𝐹0, 𝑘)
+ 6𝐻 (1, 𝐹0, 𝑘) − 𝐻 (0, 𝐹0, 𝑘)} .

(A.5)

In previous equation, 𝑃(⋅, ⋅) is an Incomplete Gamma
function:

𝑃 (1 + 𝑘, − (𝑟 + 1) ln𝐹0) = ∫−(𝑟+1) ln𝐹0
0

𝜃𝑘exp−𝜃𝑑Θ. (A.6)

Then the first four PL-moments are computed to develop the
PL-moment ratios (PL-Cv, PL-Cs, and PL-Ck) for the GEV
distribution.

The PL-moments for the GLODistribution are as follows.
The CDF and quantile function of the GLO are given by

𝐹 (𝑥) = [1 + {1 − 𝑘𝛼 (𝜒 − 𝜁)}
1/𝑘]−1 , 𝑘 ̸= 0 (A.7)

and quantile function

𝑥 (𝐹) = 𝜁 + 𝛼𝑘 {1 − (1 − 𝐹𝐹 )𝑘} , 𝑘 ̸= 0. (A.8)

The partial PWMs of the GLO are developed as follows:

(𝑟 + 1) 𝛽𝑟 = 𝜁 + 𝛼𝑘
− 𝛼 (𝑟 + 1)𝑘 (1 − 𝐹𝑟+10 )𝐵1−𝐹0 (1 + 𝑘, 𝑟 − 𝑘 + 1) ,

(A.9)

where 𝐵1−𝐹0 (⋅, ⋅) is an Incomplete Beta function

𝐵1−𝐹0 (1 + 𝑘, 𝑟 − 𝑘 + 1) = ∫
1−𝐹0

0
Θ𝑘 (1 − Θ)𝑟−𝑘 𝑑Θ. (A.10)

The first four PL-moments of the GLO are defined as

𝜆1 = 𝜁 + 𝛼𝑘 {1 −
𝐵1−𝐹0 (1 + 𝑘, 1 − 𝐾)1 − 𝐹0 }

𝜆2 = −𝛼𝑘 {
2𝐵1−𝐹0 (1 + 𝑘, 2 − 𝐾)1 − 𝐹20

− 𝐵1−𝐹0 (1 + 𝑘, 1 − 𝐾)1 − 𝐹0 }

𝜆3 = −𝛼𝑘 {
6𝐵1−𝐹0 (1 + 𝑘, 3 − 𝐾)1 − 𝐹30

− 6𝐵1−𝐹0 (1 + 𝑘, 2 − 𝐾)1 − 𝐹20 − 𝐵1−𝐹0 (1 + 𝑘, 1 − 𝐾)1 − 𝐹0 }
𝜆4 = −𝛼𝑘 {

20𝐵1−𝐹0 (1 + 𝑘, 4 − 𝐾)1 − 𝐹40
− 30𝐵1−𝐹0 (1 + 𝑘, 3 − 𝐾)1 − 𝐹30
+ 12𝐵1−𝐹0 (1 + 𝑘, 2 − 𝐾)1 − 𝐹20
− 𝐵1−𝐹0 (1 + 𝑘, 1 − 𝐾)1 − 𝐹0 } .

(A.11)

Then the first four PL-moments are computed to develop
the PL-moment ratios (PL-Cv, PL-Cs, and PL-Ck) for the
GLO distribution.

The PL-moments for the GPADistribution are as follows.
The CDF and quantile function of the GPA are given by

𝐹 (𝑥) = 1 − {1 − 𝑘𝛼 (𝜒 − 𝜁)}
1/𝑘 , 𝑘 ̸= 0 (A.12)

and quantile function

𝑥 (𝐹) = 𝜁 + 𝛼𝑘 {1 − (1 − 𝐹)𝑘} , 𝑘 ̸= 0. (A.13)

The partial PWMs of the GPA are developed as follows:

(𝑟 + 1) 𝛽𝑟 = 𝜁 + 𝛼𝑘
− 𝛼 (𝑟 + 1)𝑘 (1 − 𝐹𝑟+10 ) ∫

1

𝐹0

(1 − 𝐹)𝑘 𝐹𝑟𝑑𝐹. (A.14)

The first four PL-moments of the GPA are defined as

𝜆1 = 𝜁 + 𝛼𝑘 (1 − 𝑔11)
𝜆2 = −𝛼𝑘 (2𝑔21 − 2𝑔221 − 𝑔11)
𝜆3 = −𝛼𝑘 (6𝑔31 − 12𝑔32 + 6𝑔33 − 6𝑔21 + 6𝑔22
+ 𝑔11)

𝜆4 = −𝛼𝑘 (20𝑔41 − 60𝑔42 + 60𝑔43 − 60𝑔44 − 30𝑔31
+ 60𝑔32 − 30𝑔33 − 12𝑔21 − 12𝑔22 − 𝑔11) ,

(A.15)

where

𝑔𝑠𝑟 = (1 − 𝐹0)𝑘+𝑟(𝑘 + 𝑟) (1 − 𝐹𝑠0) . (A.16)

Then the first four PL-moments are computed to develop
the PL-moment ratios (PL-Cv, PL-Cs, and PL-Ck) for the
GPA distribution.
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