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A new global asymptotic stability criterion of Takagi-Sugeno fuzzy Cohen-Grossberg neural networks with probabilistic time-
varying delays was derived, in which the diffusion item can play its role. Owing to deleting the boundedness conditions on
amplification functions, the main result is a novelty to some extent. Besides, there is another novelty in methods, for Lyapunov-
Krasovskii functional is the positive definite form of 𝑝 powers, which is different from those of existing literature. Moreover, a
numerical example illustrates the effectiveness of the proposed methods.

1. Introduction

Cohen-Grossberg neural networks (CGNNs) have many
practical applications, like artificial intelligence, parallel com-
puting, image processing and recovery, and so on ([1–6]).
But the success of these applications largely depends on
whether the system has some stability, and so people began
to be interested in the stability analysis of the system.
In recent decades, reaction-diffusion neural networks have
receivedmuch attention ([7–13]), including various Laplacian
diffusion ([6, 14–20]). Besides, people are paying more and
more attention to fuzzy neural network system ([21–34]),
due to encountering always some inconveniences such as the
complicity, the uncertainty, and vagueness ([27, 35–37]). For
example, in [27], Zhu and Li investigated the following fuzzy
CGNNs model:

𝑑𝑥𝑖 (𝑡) = {{{−𝑎𝑖 (𝑥𝑖 (𝑡))
[
[𝑏𝑖 (𝑥𝑖 (𝑡)) −

𝑛⋀
𝑗=1

𝑎𝑖𝑗𝑓𝑗 (𝑥𝑗 (𝑡))

− 𝑛⋁
𝑗=1

𝑏𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑡)) − 𝑛⋀
𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑥𝑗 (𝑡 − 𝜏))

− 𝑛⋁
𝑗=1

𝑑𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑡 − 𝜏))]]
}}}𝑑𝑡

+ 𝑛∑
𝑗=1

𝜎𝑖𝑗 (𝑥𝑗 (𝑡) , 𝑥𝑗 (𝑡 − 𝜏)) 𝑑𝑤𝑗 (𝑡) ,
𝑥𝑖 (𝑡) = 𝜙𝑖 (𝑡) , −𝜏 ⩽ 𝑡 ⩽ 0.

(1)

In [36], Muralisankar and Gopalakrishnan studied the
following T-S fuzzy neutral type CGNNs with distributed
delays:

𝑑𝑥𝑖 (𝑡) = 𝑟∑
𝑗=1

ℎ𝑗 (𝜔 (𝑡)) {−𝐴𝑗 (𝑥 (𝑡)) [𝐵𝑗 (𝑥 (𝑡))
− 𝐶𝑗𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) − 𝑀𝑗 ∫𝑡

𝑡−𝜌(𝑡)
𝑓 (𝑥 (𝑠)) 𝑑𝑠

− 𝐷𝑗𝑥̇ (𝑡 − 𝑟 (𝑡))]} .
(2)
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Besides, Balasubramaniam and Syed Ali discussed Takagi-
Sugeno fuzzy Cohen-Grossberg BAM neural networks with
discrete and distributed time-varying delays in [37].

Note that there is the following bounded condition on
amplification functions in many literatures (see, e.g., [38,
Theorem 4]) related to CGNNs:

0 < 𝑎𝑖 ⩽ 𝑎𝑖 (𝑟) ⩽ 𝑎𝑖, 𝑟 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛. (3)

So, in this paper, we try to delete this bounded condition
on amplification functions. This is the main purpose of this
paper.

2. Preliminaries

Consider the following fuzzy Takagi-Sugeno 𝑝-Laplace par-
tial differential equations with distributed delay.

Fuzzy Rule 𝑗. IF 𝜔1(𝑡) is 𝜇𝑗1 and ⋅ ⋅ ⋅ 𝜔𝑠(𝑡) is 𝜇𝑗𝑠 THEN
𝜕𝑢𝜕𝑡 = ∇ ⋅ (D (𝑡, 𝑥, 𝑢) ∘ ∇𝑝𝑢) − 𝐴 (𝑢) [𝐵 (𝑢)
− 𝐶𝑗𝑓 (𝑢 (𝑡 − 𝜏 (𝑡) , 𝑥)) − 𝑀𝑗 ∫𝑡

𝑡−𝜌(𝑡)
𝑓 (𝑢 (𝑠, 𝑥)) 𝑑𝑠] ,

𝑢 (𝜃, 𝑥) = 𝜙 (𝜃, 𝑥) , (𝜃, 𝑥) ∈ (−∞, 0] × Ω,
𝑢 (𝑡, 𝑥) = 0 ∈ 𝑅𝑛, (𝑡, 𝑥) ∈ 𝑅 × 𝜕Ω,

(4)

where Ω is an arbitrary open bounded subset in 𝑅𝑚.𝜔𝑘(𝑡) (𝑘 = 1, 2, . . . , 𝑠) is the premise variable and 𝜇𝑗𝑘 (𝑗 =1, 2, . . . , 𝑟; 𝑘 = 1, 2, . . . , 𝑠) is the fuzzy set that is char-
acterized by membership function. And 𝑟 is the number
of the IF-THEN rules; 𝑠 is the number of the premise
variables. 𝑢(𝑡, 𝑥) = (𝑢1(𝑡, 𝑥), 𝑢2(𝑡, 𝑥), . . . , 𝑢𝑛(𝑡, 𝑥))𝑇 ∈ 𝑅𝑛,
where 𝑢𝑖(𝑡, 𝑥) is the state variable of the 𝑖th neuron and
the 𝑗th neuron at time 𝑡 and in space variable 𝑥. Matrix
D(𝑡, 𝑥, 𝑢) = (D𝑖𝑗(𝑡, 𝑥, 𝑢))𝑛×𝑚 with each D𝑖𝑗(𝑡, 𝑥, 𝑢) ⩾ 0,
and D𝑖𝑗(𝑡, 𝑥, 𝑢) is diffusion operator. D(𝑡, 𝑥, 𝑢) ∘ ∇𝑝𝑢 =(D𝑗𝑘(𝑡, 𝑥, 𝑢))|∇𝑢𝑖|𝑝−2(𝜕𝑢𝑖/𝜕𝑥𝑘)𝑛×𝑚 denotes the Hadamard
product of matrix D(𝑡, 𝑥, 𝑢) and ∇𝑝𝑢 (see [39] for details).
Matrices 𝐴(𝑢) = diag(𝑎1(𝑢1), 𝑎2(𝑢2), . . . , 𝑎𝑛(𝑢𝑛)) and 𝐵(𝑢) =
diag(𝑏1(𝑢1), 𝑏2(𝑢2), . . . , 𝑏𝑛(𝑢𝑛)), where 𝑎𝑖(𝑢𝑖) and 𝑏𝑖(𝑢𝑖) repre-
sent an amplification function at time 𝑡 and an appropriate
behavior function at time 𝑡. 𝐶𝑗 = (𝑐(𝑗)𝑖𝑘 )𝑛×𝑛 is the connection
matrix. Time delays 𝜏(𝑡) ∈ [0, +∞). 𝑓(𝑢(𝑡 − 𝜏(𝑡), 𝑥)) =
(𝑓1(𝑢1(𝑡−𝜏(𝑡)𝑡, 𝑥)), 𝑓2(𝑢2(𝑡−𝜏(𝑡), 𝑥)), . . . , 𝑓𝑛(𝑢𝑛(𝑡−𝜏(𝑡), 𝑥)))𝑇
is the activation function of the neurons. And the second
and third equations of (4) imply the initial condition and the
Dirichlet boundary condition, respectively.

By way of a standard fuzzy inference method, (4) can be
inferred as follows.

𝜕𝑢𝜕𝑡 = ∇ ⋅ (D (𝑡, 𝑥, 𝑢) ∘ ∇𝑝𝑢) − 𝐴 (𝑢 (𝑡, 𝑥)) [[𝐵 (𝑢 (𝑡, 𝑥))

− 𝑟∑
𝑗=1

ℎ𝑗 (𝜔 (𝑡)) (𝐶𝑗𝑓 (𝑢 (𝑡 − 𝜏 (𝑡) , 𝑥))

+ 𝑀𝑗 ∫𝑡
𝑡−𝜌(𝑡)

𝑓 (𝑢 (𝑠, 𝑥)) 𝑑𝑠)]] ,
𝑢 (𝜃, 𝑥) = 𝜙 (𝜃, 𝑥) , (𝜃, 𝑥) ∈ (−∞, 0] × Ω,
𝑢 (𝑡, 𝑥) = 0 ∈ 𝑅𝑛, (𝑡, 𝑥) ∈ 𝑅 × 𝜕Ω,

(5)

where 𝜔(𝑡) = [𝜔1(𝑡), 𝜔2(𝑡), . . . , 𝜔𝑠(𝑡)]𝑇 and ℎ𝑗(𝜔(𝑡)) =𝑤𝑗(𝜔(𝑡))/∑𝑟𝑘=1 𝑤𝑘(𝜔(𝑡)), 𝑤𝑗(𝜔(𝑡)) : 𝑅𝑠 → [0, 1] (𝑗 =1, 2, . . . , 𝑟) is the membership function of the system with
respect to the fuzzy rule 𝑗. ℎ𝑗 can be regarded as the normal-
ized weight of each IF-THEN rule, satisfying ℎ𝑗(𝜔(𝑡)) ⩾ 0 and∑𝑟𝑗=1 ℎ𝑗(𝜔(𝑡)) = 1.

Next, we consider the following information for probabil-
ity distribution of time delays 𝜏(𝑡):

P (0 ⩽ 𝜏 (𝑡) ⩽ 𝜏1) = 𝑐0,
P (𝜏1 < 𝜏 (𝑡) ⩽ 𝜏2) = 1 − 𝑐0. (6)

Here the nonnegative scalar 𝑐0 ⩽ 1. Define a random variable
as follows:

C (𝑡) = {{{
1, 0 ⩽ 𝜏 (𝑡) ⩽ 𝜏1;
0, 𝜏1 < 𝜏 (𝑡) ⩽ 𝜏2. (7)

So, in this paper, we consider the following Takagi-Sugeno
(T-S) fuzzy system with probabilistic time-varying delays:

𝜕𝑢𝜕𝑡 = ∇ ⋅ (D (𝑡, 𝑥, 𝑢) ∘ ∇𝑝𝑢) − 𝐴 (𝑢 (𝑡, 𝑥)){{{𝐵 (𝑢 (𝑡, 𝑥))

− 𝑟∑
𝑗=1

ℎ𝑗 (𝜔 (𝑡)) [𝑐0𝐶𝑗𝑓 (𝑢 (𝑡 − 𝜏1 (𝑡) , 𝑥)) + (1 − 𝑐0)
⋅ 𝐶𝑗𝑓 (𝑢 (𝑡 − 𝜏2 (𝑡) , 𝑥)) + (C − 𝑐0)
⋅ (𝐶𝑗𝑓 (𝑢 (𝑡 − 𝜏1 (𝑡) , 𝑥)) − 𝐶𝑗𝑓 (𝑢 (𝑡 − 𝜏2 (𝑡) , 𝑥)))
+ 𝑀𝑗 ∫𝑡

𝑡−𝜌(𝑡)
𝑓 (𝑢 (𝑠, 𝑥)) 𝑑𝑠]}}} ,

𝑢 (𝜃, 𝑥) = 𝜙 (𝜃, 𝑥) , (𝜃, 𝑥) ∈ (−∞, 0] × Ω,
𝑢 (𝑡, 𝑥) = 0 ∈ 𝑅𝑛, (𝑡, 𝑥) ∈ 𝑅 × 𝜕Ω.

(8)
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System (8) includes the following integrodifferential
equations:

𝑑𝑥 (𝑡)𝑑𝑡 = −𝐴 (𝑥 (𝑡)){{{𝐵 (𝑥 (𝑡)) −
𝑟∑
𝑗=1

ℎ𝑗 (𝜔 (𝑡))
⋅ [𝑐0𝐶𝑗𝑓 (𝑥 (𝑡 − 𝜏1 (𝑡))) + (1 − 𝑐0)
⋅ 𝐶𝑗𝑓 (𝑥 (𝑡 − 𝜏2 (𝑡))) + (C − 𝑐0)
⋅ (𝐶𝑗𝑓 (𝑥 (𝑡 − 𝜏1 (𝑡))) − 𝐶𝑗𝑓 (𝑥 (𝑡 − 𝜏2 (𝑡))))
+𝑀𝑗 ∫𝑡

𝑡−𝜌(𝑡)
𝑓 (𝑥 (𝑠)) 𝑑𝑠]}}} , 𝑡 ⩾ 0,

𝑥 (𝜃) = 𝜙 (𝜃) , 𝜃 ∈ (−∞, 0] .

(9)

Particularly when 𝑝 = 2, system (8) degenerates into the
so-called reaction-diffusion CGNNs:

𝜕𝑢𝜕𝑡 = ∇ ⋅ (D (𝑡, 𝑥, 𝑢) ∘ ∇𝑢) − 𝐴 (𝑢 (𝑡, 𝑥)){{{𝐵 (𝑢 (𝑡, 𝑥))

− 𝑟∑
𝑗=1

ℎ𝑗 (𝜔 (𝑡)) [𝑐0𝐶𝑗𝑓 (𝑢 (𝑡 − 𝜏1 (𝑡) , 𝑥)) + (1 − 𝑐0)
⋅ 𝐶𝑗𝑓 (𝑢 (𝑡 − 𝜏2 (𝑡) , 𝑥)) + (C − 𝑐0)
⋅ (𝐶𝑗𝑓 (𝑢 (𝑡 − 𝜏1 (𝑡) , 𝑥)) − 𝐶𝑗𝑓 (𝑢 (𝑡 − 𝜏2 (𝑡) , 𝑥)))
+𝑀𝑗 ∫𝑡

𝑡−𝜌(𝑡)
𝑓 (𝑢 (𝑠, 𝑥)) 𝑑𝑠]}}} ,

𝑢 (𝜃, 𝑥) = 𝜙 (𝜃, 𝑥) , (𝜃, 𝑥) ∈ (−∞, 0] × Ω,
𝑢 (𝑡, 𝑥) = 0 ∈ 𝑅𝑛, (𝑡, 𝑥) ∈ 𝑅 × 𝜕Ω.

(10)

Throughout this paper, we assume 𝑝 = 𝑝1/𝑝2 > 1 with𝑝1 being even number and 𝑝2 being odd number. Besides,
suppose that the following conditions hold:

(H1) There exist positive definite matrices 𝐴 = diag(𝑎1,𝑎2, . . . , 𝑎𝑛) and 𝐴 = diag(𝑎1, 𝑎2, . . . , 𝑎𝑛) such that

0 < 𝑎𝑖 ⩽ 𝑎𝑖 (𝑠)𝑠𝑝−2 ⩽ 𝑎𝑖, 0 ̸= 𝑠 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛, (11)

where 𝐴(𝑢) = diag(𝑎1(𝑢1), 𝑎2(𝑢2), . . . , 𝑎𝑛(𝑢𝑛)) and𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛)𝑇 ∈ 𝑅𝑛.
(H2) There exists a positive definite matrix B =

diag(𝑏1, 𝑏2, . . . , 𝑏𝑛) such that 𝑏𝑖(0) = 0 and
𝑏𝑖 (𝑠)𝑠 ⩾ 𝑏𝑖, 0 ̸= 𝑠 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛. (12)

(H3) There is a positive definite matrix 𝐹 = diag(𝐹1, 𝐹2,. . . , 𝐹𝑛) such that󵄨󵄨󵄨󵄨𝑓𝑖 (𝑠)󵄨󵄨󵄨󵄨 ⩽ 𝐹𝑖 |𝑠| , 𝑠 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛. (13)

From (H1)–(H3), we know that 𝑏𝑖(0) = 𝑓𝑖(0) = 0 and𝑢 = 0 is an equilibrium of fuzzy system (8).

Remark 1. There are numerous functions satisfying (H1). For
example, if 𝑝 = 4/3, we may set

𝑎𝑖 (𝑠) = 0.1 (1 + 𝑒−𝑠2)
3√𝑠2 , ∀0 ̸= 𝑠 ∈ 𝑅, 𝑎𝑖 (0) = 0.2. (14)

It is obvious that

lim
𝑠→0

𝑎𝑖 (𝑠) = lim
𝑠→0

0.1 (1 + 𝑒−𝑠2)
3√𝑠2 = +∞. (15)

So the function 𝑎𝑖(𝑠) is unbounded for 𝑠 ∈ 𝑅.Moreover,

0.1 ⩽ 𝑎𝑖 (𝑠)𝑠𝑝−2 = 0.1 (1 + 𝑒−𝑠2) ⩽ 0.2. (16)

One can know from (16) that 0.1 ⩽ 𝑎𝑖(𝑠)/𝑠𝑝−2 ⩽ 0.2 with𝑎𝑖 = 0.1 and 𝑎𝑖 = 0.2.
Remark 2. The amplification function 𝑎𝑖(𝑠) defined as (7) is
actually unbounded for 𝑠 ∈ 𝑅. However, various bounded
conditions always imposed restrictions on the amplifica-
tion functions of existing literature ([3–6, 9, 10, 24, 27, 28]).
Hence, our condition (H1) is weaker, whichwill make a corol-
lary with regard to ordinary integrodifferential equations (9)
become novel.

For convenience’s sake, we need to introduce the follow-
ing standard notations similarly as [38]:

𝑄 = (𝑞𝑖𝑗)𝑛×𝑛 > 0 (< 0) ,
𝑄 = (𝑞𝑖𝑗)𝑛×𝑛 ⩾ 0 (⩽ 0) ,
𝑄1 ⩾ 𝑄2 (𝑄1 ⩽ 𝑄2) ,
𝑄1 > 𝑄2 (𝑄1 < 𝑄2) ,

𝜆max (Φ) ,
𝜆min (Φ) ,

|𝐶| = (󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗󵄨󵄨󵄨󵄨󵄨)𝑛×𝑛 ,
|𝑢 (𝑡, 𝑥)| ,

and the identity matrix with compatible 𝐼.

(17)

(i) The Sobolev space = {𝑢 ∈ 𝐿𝑝 : D𝑢 ∈ 𝐿𝑝} (see [40] for
details).
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(ii) Denote by 𝜆1 the lowest positive eigenvalue of the
boundary value problem (see [40] for details).

−Δ𝑝𝜑 (𝑡, 𝑥) = 𝜆𝜑 (𝑡, 𝑥) , 𝑥 ∈ Ω
𝜑 (𝑡, 𝑥) = 0, 𝑥 ∈ 𝜕Ω. (18)

Lemma 3. One has

𝑎𝑞−1𝑏 ⩽ 𝑞 − 1𝑞 𝑎𝑞 + 𝑏𝑞𝑞 , ∀𝑎, 𝑏 ∈ (0, +∞) , 𝑞 > 1. (19)

Note that Lemma 3 is the particular case of the famous
Young inequality.

3. Results and Discussion

Lemma 4. Let 𝑃 = diag(𝑝1, 𝑝2, . . . , 𝑝𝑛) be a positive definite
matrix and 𝑢 be a solution of the fuzzy system (8). Then one
has

∫
Ω
𝑢𝑇𝑃 (∇ ⋅ (𝐷 (𝑡, 𝑥, 𝑢) ∘ ∇𝑝𝑢)) 𝑑𝑥 ⩽ −𝜆1𝑝𝐷 ‖𝑢‖𝑝𝑝 , (20)

where𝐷 = min𝑖𝑘(inf 𝑡,𝑥,𝑢 |𝐷𝑖𝑗(𝑡, 𝑥, 𝑢)), ‖𝑢‖𝑝𝑝 = ∑𝑛𝑖=1 ∫Ω|𝑢𝑖|𝑝𝑑𝑥,
and 𝑝 is a positive scalar, satisfying 𝑃 > 𝑝𝐼.
Proof. Since 𝑢 is a solution of system (8), it follows by Gauss
formula and the Dirichlet zero-boundary condition that

∫
Ω

𝑛∑
𝑗=1

𝑝𝑗𝑢𝑗 𝑚∑
𝑘=1

𝜕𝜕𝑥𝑘 (𝐷𝑗𝑘
󵄨󵄨󵄨󵄨󵄨∇𝑢𝑗󵄨󵄨󵄨󵄨󵄨𝑝−2 𝜕𝑢𝑗𝜕𝑥𝑘)𝑑𝑥

= − 𝑚∑
𝑘=1

𝑛∑
𝑗=1

∫
Ω
𝑝𝑗𝐷𝑗𝑘 󵄨󵄨󵄨󵄨󵄨∇𝑢𝑗󵄨󵄨󵄨󵄨󵄨𝑝−2 (𝜕𝑢𝑗𝜕𝑥𝑘)

2 𝑑𝑥
⩽ −𝜆1𝐷𝑝 𝑛∑

𝑗=1

∫
Ω

󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑥 = −𝜆1𝑝𝐷 ‖𝑢‖𝑝𝑝 .
(21)

Remark 5. Lemma 4 extends the conclusion of [2, Lemma2.1] and [10, Lemma 2.4] fromHilbert space𝐻10 (Ω) to Banach
space𝑊1,𝑝0 (Ω). Particularly, in the case ofΩ = (0, 𝑇) ⊂ 𝑅1 or
𝑊1,𝑝0 (0, 𝑇), the first eigenvalue 𝜆1 = ((2/𝑇) ∫(𝑝−1)1/𝑝

0
(𝑑𝑡/(1 −𝑡𝑝/(𝑝 − 1))1/𝑝))𝑝 (see, e.g., [40]).

Theorem 6. If there exists a positive definite matrix 𝑃 =
diag(𝑝1, 𝑝2, . . . , 𝑝𝑛) and two positive scalars 𝑝, 𝑝 such that the
following inequalities hold:

𝜆1𝐷𝑝 + 𝑝𝜆𝑚𝑖𝑛 (𝐴B) > 𝑛𝑝𝑝
𝑟∑
𝑗=1

((𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨
+ 𝜌 (𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨𝑚𝑗󵄨󵄨󵄨󵄨󵄨 + 𝑐0 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨1 − 𝜏1 +

(1 − 𝑐0) 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨1 − 𝜏2 + 𝜌 󵄨󵄨󵄨󵄨󵄨𝑚𝑗󵄨󵄨󵄨󵄨󵄨)
⋅ 𝜆𝑚𝑎𝑥𝐴𝜆𝑚𝑎𝑥𝐹,

(22)

𝑃 > 𝑝𝐼,
𝑃 < 𝑝𝐼, (23)

then the null solution of fuzzy system (8) is globally asymptot-
ically stable, where matrices 𝐶𝑗 = (𝑐(𝑗)𝑖𝑘 )𝑛×𝑛, 𝑀𝑗 = (𝑚(𝑗)𝑖𝑘 )𝑛×𝑛,|𝑐𝑗| = max𝑖𝑘|𝑐(𝑗)𝑖𝑘 |, |𝑚𝑗| = max𝑖𝑘|𝑚(𝑗)𝑖𝑘 |, and 𝜏󸀠1(𝑡) ⩽ 𝜏1 <1, 𝜏󸀠2(𝑡) ⩽ 𝜏2 < 1, 0 ⩽ 𝜌(𝑡) ⩽ 𝜌.
Proof. Firstly, we can conclude from (H1)–(H3) that 𝑢 = 0 is
an equilibrium point for system (8).

Next, consider the Lyapunov-Krasovskii functional:

𝑉 (𝑡) = 𝑉1 (𝑡) + 11 − 𝜏1𝑉2 (𝑡) +
11 − 𝜏2𝑉3 (𝑡) + 𝑉4 (𝑡) , (24)

where

𝑉1 (𝑡) = ∫
Ω
𝑢𝑇 (𝑡, 𝑥) 𝑃𝑢 (𝑡, 𝑥) 𝑑𝑥 = 𝑛∑

𝑖=1

∫
Ω
𝑝𝑖𝑢2𝑖 𝑑𝑥,

𝑉2 (𝑡) = 2𝑐0𝑛𝑝𝑝 ( 𝑟∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨)
⋅ 𝜆max𝐴𝜆max𝐹 𝑛∑

𝑘=1

∫𝑡
𝑡−𝜏1(t)

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥 𝑑𝑠,

𝑉3 (𝑡) = 2 (1 − 𝑐0) 𝑛𝑝𝑝 ( 𝑟∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨)
⋅ 𝜆max𝐴𝜆max𝐹 𝑛∑

𝑘=1

∫𝑡
𝑡−𝜏2(𝑡)

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥 𝑑𝑠,

𝑉4 (𝑡) = 2𝑝𝑝 (
𝑟∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑚𝑗󵄨󵄨󵄨󵄨󵄨)
⋅ 𝜆max𝐴𝜆max𝐹 𝑛∑

𝑖=1

𝑛∑
𝑘=1

∫
Ω
(∫0
−𝜌
𝑑𝜁∫𝑡
𝑡+𝜁

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑠) 𝑑𝑥.

(25)

Here, 𝑢(𝑡, 𝑥) = (𝑢1(𝑡, 𝑥), 𝑢2(𝑡, 𝑥), . . . , 𝑢𝑛(𝑡, 𝑥))𝑇 is a
solution for stochastic fuzzy system (8). Below,wemaydenote𝑢(𝑡, 𝑥) by 𝑢 and 𝑢𝑖(𝑡, 𝑥) by 𝑢𝑖 for simplicity.

Remark 7. It is obvious that our Lyapunov-Krasovskii func-
tional is the positive definite form of 𝑝 powers, which is
different from those of existing literature ([41–43]). For
example, in [41], the model is also neural networks with
discrete time delay and distributed delays:

𝑑𝑥 (𝑡) = [−𝐶𝑖𝑥 (𝑡) + 𝐴 𝑖𝑓 (𝑦 (𝑡 − 𝜏 (𝑡) , 𝑖))
+ 𝐵𝑖 ∫𝑡

𝑡−𝜌(𝑡)
𝑓 (𝑦 (𝑠) , 𝑟 (𝑠))] 𝑑𝑡 + 𝜎𝑡𝑑𝑤1 (𝑡) ,

𝑑𝑦 (𝑡) = [−𝐶𝑖𝑦 (𝑡) + 𝐴 𝑖𝑔 (𝑥 (𝑡 − 𝜏 (𝑡) , 𝑖))
+ 𝐵𝑖 ∫𝑡

𝑡−𝜌(𝑡)
𝑔 (𝑥 (𝑠) , 𝑟 (𝑠))] 𝑑𝑡 + 𝜎̃𝑡𝑑𝑤2 (𝑡) .

(26)
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In [42, Theorem 1], the corresponding Lyapunov-Krasovskii
functional is as follows:

𝑉̃2 = ∫0
−𝜌
𝑑𝜃∫𝑡
𝑡+𝜃

𝑓𝑇 (𝑦 (𝑠) , 𝑟 (𝑠)) 𝐿𝑓 (𝑦 (𝑠) , 𝑟 (𝑠)) 𝑑𝑠
+ ∫0
−𝜌
𝑑𝜃∫𝑡
𝑡+𝜃

𝑔𝑇 (𝑥 (𝑠) , 𝑟 (𝑠)) 𝐿𝑔 (𝑥 (𝑠) , 𝑟 (𝑠)) 𝑑𝑠,
(27)

which is the positive definite form of 2 powers. And the
conclusion of [42, Theorem 1] is the asymptotical stability
in the mean square, which is also similar to that of our
Theorem 6. However, by means of our Lyapunov-Krasovskii
functional with the positive definite form of 𝑝 powers, we
shall derive the asymptotical stability in the mean square for
nonlinear 𝑝-Laplacian diffusion system (8).

Evaluating the time derivation of 𝑉1(𝑡) along the trajec-
tory of the fuzzy system (8), we can get by [38, Lemma 6] and
Lemma 4

𝑉󸀠1 (𝑡) = 2∫
Ω
[𝑢𝑇𝑃 (∇ ⋅ (𝐷 (𝑡, 𝑥, 𝑢) ∘ ∇𝑝𝑢))

− 𝑢𝑇𝑃𝐴 (𝑢) 𝐵 (𝑢)] 𝑑𝑥 + 2 𝑟∑
𝑗=1

ℎ𝑗 (𝜔 (𝑡))
⋅ (∫
Ω
𝑢𝑇𝑃𝐴 (𝑢) 𝑐0𝐶𝑗𝑓 (𝑢 (𝑡 − 𝜏1 (𝑡) , 𝑥)) 𝑑𝑥

+ ∫
Ω
𝑢𝑇𝑃𝐴 (𝑢) (1 − 𝑐0) 𝐶𝑗𝑓 (𝑢 (𝑡 − 𝜏2 (𝑡) , 𝑥)) 𝑑𝑥

+ ∫
Ω
𝑢𝑇𝑃𝐴 (𝑢)𝑀𝑗 ∫𝑡

𝑡−𝜌(𝑡)
𝑓 (𝑢 (𝑠, 𝑥)) 𝑑𝑠 𝑑𝑥)

⩽ −2𝜆1𝑝𝐷 ‖𝑢‖𝑝𝑝 − 2∫
Ω
𝑢𝑇𝑃𝐴 (𝑢) 𝐵 (𝑢) 𝑑𝑥

+ 2𝑐0 𝑟∑
𝑗=1

∫
Ω

󵄨󵄨󵄨󵄨󵄨𝑢𝑇󵄨󵄨󵄨󵄨󵄨 𝑃𝐴 (𝑢) 󵄨󵄨󵄨󵄨󵄨𝐶𝑗󵄨󵄨󵄨󵄨󵄨
⋅ 󵄨󵄨󵄨󵄨𝑓 (𝑢 (𝑡 − 𝜏1 (𝑡) , 𝑥))󵄨󵄨󵄨󵄨 𝑑𝑥 + 2 (1 − 𝑐0) 𝑟∑

𝑗=1

∫
Ω

󵄨󵄨󵄨󵄨󵄨𝑢𝑇󵄨󵄨󵄨󵄨󵄨
⋅ 𝑃𝐴 (𝑢) 󵄨󵄨󵄨󵄨󵄨𝐶𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑓 (𝑢 (𝑡 − 𝜏2 (𝑡) , 𝑥))󵄨󵄨󵄨󵄨 𝑑𝑥
+ 2 𝑟∑
𝑗=1

∫
Ω

󵄨󵄨󵄨󵄨󵄨𝑢𝑇󵄨󵄨󵄨󵄨󵄨 𝑃𝐴 (𝑢) 󵄨󵄨󵄨󵄨󵄨𝑀𝑗󵄨󵄨󵄨󵄨󵄨 ∫𝑡
𝑡−𝜌(𝑡)

󵄨󵄨󵄨󵄨𝑓 (𝑢 (𝑠, 𝑥))󵄨󵄨󵄨󵄨 𝑑𝑠 𝑑𝑥.
(28)

Besides, gathering (H1) and (H2) gives

∫
Ω
𝑢𝑇𝑃𝐴 (𝑢) 𝐵 (𝑢) 𝑑𝑥 ⩾ 𝑝𝜆min (𝐴B) ‖𝑢‖𝑝𝑝 . (29)

It follows by (H1), (H3), and Lemma 3 that

𝑐0 ∫
Ω

󵄨󵄨󵄨󵄨󵄨𝑢𝑇󵄨󵄨󵄨󵄨󵄨 𝑃𝐴 (𝑢) 󵄨󵄨󵄨󵄨󵄨𝐶𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑓 (𝑢 (𝑡 − 𝜏1 (𝑡) , 𝑥))󵄨󵄨󵄨󵄨 𝑑𝑥 = 𝑐0
𝑛∑
𝑘=1

𝑛∑
𝑖=1

∫
Ω
𝑝𝑖 󵄨󵄨󵄨󵄨𝑢𝑖𝑎𝑖 (𝑢𝑖)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨󵄨𝑐(𝑗)𝑖𝑘 󵄨󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑓𝑘 (𝑢𝑘 (𝑡 − 𝜏1 (𝑡) , 𝑥))󵄨󵄨󵄨󵄨 𝑑𝑥

⩽ 𝑐0𝑝 𝑛∑
𝑘=1

𝑛∑
𝑖=1

∫
Ω
𝑎𝑖 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑢𝑖󵄨󵄨󵄨󵄨𝑝−1 𝐹𝑘 󵄨󵄨󵄨󵄨𝑢𝑘 (𝑡 − 𝜏1 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥

⩽ 𝑐0𝑝 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 𝜆max𝐴𝜆max𝐹 𝑛∑
𝑘=1

𝑛∑
𝑖=1

∫
Ω
(𝑝 − 1𝑝 󵄨󵄨󵄨󵄨𝑢𝑖󵄨󵄨󵄨󵄨𝑝 +

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑡 − 𝜏1 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨𝑝𝑝 )𝑑𝑥
= 𝑐0 (𝑝 − 1) 𝑝𝑝 𝑛 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 𝜆max𝐴𝜆max𝐹 ‖𝑢‖𝑝𝑝
+ 𝑐0𝑝𝑝𝑛 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 𝜆max𝐴𝜆max𝐹 𝑛∑

𝑘=1

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑡 − 𝜏1 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥.

(30)

Similarly,

(1 − 𝑐0) ∫
Ω

󵄨󵄨󵄨󵄨󵄨𝑢𝑇󵄨󵄨󵄨󵄨󵄨 𝑃𝐴 (𝑢) 󵄨󵄨󵄨󵄨󵄨𝐶𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑓 (𝑢 (𝑡 − 𝜏2 (𝑡) , 𝑥))󵄨󵄨󵄨󵄨 𝑑𝑥 ⩽ (1 − 𝑐0) (𝑝 − 1) 𝑝𝑝 𝑛 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 𝜆max𝐴𝜆max𝐹 ‖𝑢‖𝑝𝑝
+ (1 − 𝑐0) 𝑝𝑝𝑛 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 𝜆max𝐴𝜆max𝐹 𝑛∑

𝑘=1

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑡 − 𝜏2 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥,
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∫
Ω

󵄨󵄨󵄨󵄨󵄨𝑢𝑇󵄨󵄨󵄨󵄨󵄨 𝑃𝐴 (𝑢) 󵄨󵄨󵄨󵄨󵄨𝑀𝑗󵄨󵄨󵄨󵄨󵄨 ∫𝑡
𝑡−𝜌(𝑡)

󵄨󵄨󵄨󵄨𝑓 (𝑢 (𝑠, 𝑥))󵄨󵄨󵄨󵄨 𝑑𝑠 𝑑𝑥 = 𝑛∑
𝑘=1

𝑛∑
𝑖=1

∫
Ω
𝑝𝑖 󵄨󵄨󵄨󵄨𝑢𝑖𝑎𝑖 (𝑢𝑖)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨󵄨𝑚(𝑗)𝑖𝑘 󵄨󵄨󵄨󵄨󵄨󵄨 ∫

𝑡

𝑡−𝜌(𝑡)

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑢𝑘 (𝑠, 𝑥))󵄨󵄨󵄨󵄨 𝑑𝑠 𝑑𝑥

⩽ 𝑝 𝑛∑
𝑘=1

𝑛∑
𝑖=1

∫
Ω
∫𝑡
𝑡−𝜌(𝑡)

𝑎𝑖 󵄨󵄨󵄨󵄨󵄨𝑚𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−1 𝐹𝑘 󵄨󵄨󵄨󵄨𝑢𝑘 (𝑠, 𝑥)󵄨󵄨󵄨󵄨 𝑑𝑠 𝑑𝑥

⩽ 𝑝 󵄨󵄨󵄨󵄨󵄨𝑚𝑗󵄨󵄨󵄨󵄨󵄨 𝜆max𝐴𝜆max𝐹 𝑛∑
𝑘=1

𝑛∑
𝑖=1

∫
Ω
∫𝑡
𝑡−𝜌(𝑡)

(𝑝 − 1𝑝 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 +
󵄨󵄨󵄨󵄨𝑢𝑘 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝𝑝 )𝑑𝑠 𝑑𝑥 ⩽ 𝜌(𝑝 − 1) 𝑝𝑝 𝑛 󵄨󵄨󵄨󵄨󵄨𝑚𝑗󵄨󵄨󵄨󵄨󵄨 𝜆max𝐴𝜆max𝐹 ‖𝑢‖𝑝𝑝

+ 𝑝𝑝 󵄨󵄨󵄨󵄨󵄨𝑚𝑗󵄨󵄨󵄨󵄨󵄨 𝜆max𝐴𝜆max𝐹 𝑛∑
𝑖=1

𝑛∑
𝑘=1

∫
Ω
∫𝑡
𝑡−𝜌(𝑡)

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑠 𝑑𝑥.
(31)

On the other hand,

𝑉󸀠2 (𝑡) = 2𝑐0𝑛𝑝𝑝 ( 𝑟∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨)

⋅ 𝜆max𝐴𝜆max𝐹( 𝑛∑
𝑘=1

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥
− 𝑛∑
𝑘=1

(1 − 𝜏󸀠1 (𝑡)) ∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑡 − 𝜏1 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥)

⩽ 2𝑐0𝑛𝑝𝑝 ( 𝑟∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨) 𝜆max𝐴𝜆max𝐹 ‖𝑢‖𝑝𝑝 − 2𝑐0𝑛

⋅ 𝑝𝑝 (
𝑟∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨) 𝜆max𝐴𝜆max𝐹 (1 − 𝜏1)
⋅ 𝑛∑
𝑘=1

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑡 − 𝜏1 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥.

(32)

Similarly,

𝑉󸀠3 (𝑡) ⩽ 2 (1 − 𝑐0) 𝑛𝑝𝑝 ( 𝑟∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨) 𝜆max𝐴𝜆max𝐹 ‖𝑢‖𝑝𝑝
− 2 (1 − 𝑐0) 𝑛𝑝𝑝 ( 𝑟∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨)
⋅ 𝜆max𝐴𝜆max𝐹 (1 − 𝜏2)
⋅ 𝑛∑
𝑘=1

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑡 − 𝜏2 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥.

(33)

Next, we need to recall some facts derived by mathemat-
ical analysis. Assume that 𝜂(𝑡, 𝑠) is continuous on variables𝑡 and 𝑠, and 𝜕𝜂/𝜕𝑡 exists, utilizing the integral middle value
theorem reaches

𝑑𝑑𝑡 ∫
𝜛(𝑡)

𝜉(𝑡)
𝜂 (𝑡, 𝑠) 𝑑𝑠 = 𝜛󸀠 (𝑡) 𝜂 (𝑡, 𝜛 (𝑡))

− 𝜉󸀠 (𝑡) 𝜂 (𝑡, 𝜉 (𝑡))
+ ∫𝜛(𝑡)
𝜉(𝑡)

𝜕𝜂 (𝑡, 𝑠)𝜕𝑡 𝑑𝑠,
(34)

where both 𝜉(⋅) and 𝜛(⋅) are differentiable.
Moreover, we can derive by employing (32) time and

again

𝑉󸀠4 (𝑡) = 2𝑝𝑝 (
𝑟∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑚𝑗󵄨󵄨󵄨󵄨󵄨) 𝜆max𝐴𝜆max𝐹 𝑛∑
𝑖=1

𝑛∑
𝑘=1

∫
Ω
(∫0
−𝜌

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑠 − ∫0
−𝜌

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑡 + 𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑠) 𝑑𝑥

= 2𝑝𝑝 (
𝑟∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑚𝑗󵄨󵄨󵄨󵄨󵄨) 𝜆max𝐴𝜆max𝐹 𝑛∑
𝑖=1

𝑛∑
𝑘=1

∫
Ω
(𝜌 󵄨󵄨󵄨󵄨𝑢𝑘 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 − ∫𝑡

𝑡−𝜌(𝑡)

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑠) 𝑑𝑥

= 2𝑝𝑝 (
𝑟∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑚𝑗󵄨󵄨󵄨󵄨󵄨) 𝜆max𝐴𝜆max𝐹(𝑛𝜌 ‖𝑢‖𝑝𝑝 − 𝑛∑
𝑖=1

𝑛∑
𝑘=1

∫
Ω
∫𝑡
𝑡−𝜌(𝑡)

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑠 𝑑𝑥) .

(35)
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Combining (28)–(35) results in

𝑉󸀠 (𝑡) ⩽ −2[[𝜆1𝐷𝑝 + 𝑝𝜆min (𝐴B) − 𝑛𝑝
⋅ 𝑟∑
𝑗=1

(𝑝 (𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 + 𝜌 (𝑝 − 1) 𝑝 󵄨󵄨󵄨󵄨󵄨𝑚𝑗󵄨󵄨󵄨󵄨󵄨
+ 𝑐0 𝑝1 − 𝜏1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 + (1 − 𝑐0) 𝑝1 − 𝜏2
󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 + 𝜌𝑝 󵄨󵄨󵄨󵄨󵄨𝑚𝑗󵄨󵄨󵄨󵄨󵄨)

⋅ 𝜆max𝐴𝜆max𝐹]] ‖𝑢‖
𝑝
𝑝 ⩽ 0.

(36)

Now the standard Lyapunov functional theory derives
that the null solution of the fuzzy system (8) is globally
asymptotically stable.

Remark 8. In the case of Takagi-Sugeno fuzzy model, our
Theorem 6 is better than [38, Theorem 4] because the
condition (H1) is weaker than the bounded assumption (2).

Remark 9. In Theorem 6, (22) illustrates the influence of
nonlinear diffusion on the stability of system (8) while its role
was always ignored in existing results (see, e.g., [5, 39, 44]).

Theorem 6 derives the following corollary.

Corollary 10. If there exists a positive definite matrix 𝑃 =
diag(𝑝1, 𝑝2, . . . , 𝑝𝑛) and two positive scalars 𝑝, 𝑝 such that the
following inequalities hold:

𝑝𝜆𝑚𝑖𝑛 (𝐴B) > 𝑛𝑝𝑝
𝑟∑
𝑗=1

((𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 + 𝜌 (𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨𝑚𝑗󵄨󵄨󵄨󵄨󵄨
+ 𝑐0 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨1 − 𝜏1 +

(1 − 𝑐0) 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨1 − 𝜏2 + 𝜌 󵄨󵄨󵄨󵄨󵄨𝑚𝑗󵄨󵄨󵄨󵄨󵄨) 𝜆𝑚𝑎𝑥𝐴𝜆𝑚𝑎𝑥𝐹,
𝑃 > 𝑝𝐼,
𝑃 < 𝑝𝐼,

(37)

then the null solution of the ordinary integrodifferential equa-
tions (9) is globally asymptotically stable.

Furthermore, if both diffusion behaviors and distributed
delay are ignored, we derive from Corollary 10.

Corollary 11. If there exists a positive definite matrix 𝑃 =
diag(𝑝1, 𝑝2, . . . , 𝑝𝑛) and two positive scalars 𝑝, 𝑝 such that the
following inequalities hold:

𝑝𝜆𝑚𝑖𝑛 (𝐴B) > 𝑛𝑝𝑝
⋅ 𝑟∑
𝑗=1

((𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 + 𝑐0 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨1 − 𝜏1 +
(1 − 𝑐0) 󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨1 − 𝜏2 )

⋅ 𝜆𝑚𝑎𝑥𝐴𝜆𝑚𝑎𝑥𝐹,
𝑃 > 𝑝𝐼,
𝑃 < 𝑝𝐼,

(38)
then the null solution of the following fuzzy system

𝑑𝑥 (𝑡)𝑑𝑡 = −𝐴 (𝑥 (𝑡)){{{𝐵 (𝑥 (𝑡)) −
𝑟∑
𝑗=1

ℎ𝑗 (𝜔 (𝑡))
⋅ [𝑐0𝐶𝑗𝑓 (𝑥 (𝑡 − 𝜏1 (𝑡))) + (1 − 𝑐0)
⋅ 𝐶𝑗𝑓 (𝑥 (𝑡 − 𝜏2 (𝑡))) + (C − 𝑐0)
⋅ (𝐶𝑗𝑓 (𝑥 (𝑡 − 𝜏1 (𝑡))) − 𝐶𝑗𝑓 (𝑥 (𝑡 − 𝜏2 (𝑡))))]}}} ,

𝑡 ⩾ 0,
𝑥 (𝜃) = 𝜙 (𝜃) , 𝜃 ∈ (−∞, 0]

(39)

is globally asymptotically stable.

Remark 12. Condition (H1) is weaker than the bounded
conditions on amplification functions of existing literature
([3–6, 9, 10, 24, 27, 28]).

Discussion 1. In recent related literature ([27, 45–51]), some
new conditions and methods were presented, and their
results were very good. However, some of the methods and
conditions are not applicable for system (8) with nonlinear𝑝-Laplacian diffusion. How to apply the new conditions
and methods of [45–49] to our system (8) is an interesting
problem.

4. Methods and Numerical Example

4.1. Methods. In this paper, Lyapunov functional method is
employed to derive the stability criterion. In this process, the
integral middle value theorem together with the derivation
formula on integral upper limit functions plays the important
roles.

Example 1. Consider the following Takagi-Sugeno 𝑝-Laplace
fuzzy T-S dynamic equations.

Fuzzy Rule 1. IF 𝜔1(𝑡) is 𝜇11, and 𝜔2(𝑡) is 𝜇12, THEN𝜕𝑢𝜕𝑡 = ∇ ⋅ (D (𝑡, 𝑥, 𝑢) ∘ ∇𝑝𝑢) − 𝐴 (𝑢) [𝐵 (𝑢)
− 𝑐0𝐶1𝑓 (𝑢 (𝑡 − 𝜏1 (𝑡) , 𝑥)) − (1 − 𝑐0)
⋅ 𝐶1𝑓 (𝑢 (𝑡 − 𝜏2 (𝑡) , 𝑥)) − (C − 𝑐0)
⋅ (𝐶1𝑓 (𝑢 (𝑡 − 𝜏1 (𝑡) , 𝑥)) − 𝐶1𝑓 (𝑢 (𝑡 − 𝜏2 (𝑡) , 𝑥)))
− 𝑀1 ∫𝑡

𝑡−𝜌(𝑡)
𝑓 (𝑢 (𝑠, 𝑥)) 𝑑𝑠] ,
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𝑢 (𝜃, 𝑥) = 𝜙 (𝜃, 𝑥) , (𝜃, 𝑥) ∈ (−∞, 0] × Ω,
𝑢 (𝑡, 𝑥) = 0 ∈ 𝑅2, (𝑡, 𝑥) ∈ 𝑅 × 𝜕Ω.

(40)

Fuzzy Rule 2. IF 𝜔1(𝑡) is 𝜇21, and 𝜔2(𝑡) is 𝜇22, THEN
𝜕𝑢𝜕𝑡 = ∇ ⋅ (D (𝑡, 𝑥, 𝑢) ∘ ∇𝑝𝑢) − 𝐴 (𝑢) [𝐵 (𝑢)
− 𝑐0𝐶2𝑓 (𝑢 (𝑡 − 𝜏1 (𝑡) , 𝑥)) − (1 − 𝑐0)
⋅ 𝐶2𝑓 (𝑢 (𝑡 − 𝜏2 (𝑡) , 𝑥)) − (C − 𝑐0)
⋅ (𝐶2𝑓 (𝑢 (𝑡 − 𝜏1 (𝑡) , 𝑥)) − 𝐶2𝑓 (𝑢 (𝑡 − 𝜏2 (𝑡) , 𝑥)))
− 𝑀2 ∫𝑡

𝑡−𝜌(𝑡)
𝑓 (𝑢 (𝑠, 𝑥)) 𝑑𝑠] ,

𝑢 (𝜃, 𝑥) = 𝜙 (𝜃, 𝑥) , (𝜃, 𝑥) ∈ (−∞, 0] × Ω,
𝑢 (𝑡, 𝑥) = 0 ∈ 𝑅2, (𝑡, 𝑥) ∈ 𝑅 × 𝜕Ω,

(41)

where 𝑢(𝑡, 𝑥) = (𝑢1(𝑡, 𝑥), 𝑢2(𝑡, 𝑥))𝑇, Ω = (0, 𝜋), 𝑝 = 4/3,
and then Remark 1 gives

𝜆1 = ( 2𝜋 ∫
(𝑝−1)1/𝑝

0

𝑑𝑡
(1 − 𝑡𝑝/ (𝑝 − 1))1/𝑝)

𝑝 = 0.7915. (42)

Let 𝜏1(𝑡) = 𝑡/3, 𝜏2(𝑡) = 𝑡/2, and then 𝜏1 = 1/3, 𝜏2 =1/2. Let 𝑎𝑖(𝑢𝑖) = 0.1𝑢−2/3𝑖 (1 + 𝑒−𝑖𝑢2𝑖 ), 𝑖 = 1, 2, 𝑏1(𝑢1) =2𝑢1(1+sin2𝑢1), 𝑏2(𝑢2) = 1.95𝑢2, 𝑓1(𝑢1(𝑡−𝜏(𝑡))) = 0.16𝑢1(𝑡−𝜏(𝑡)) sin 𝑢1(𝑡 −𝜏(𝑡)), 𝑓2(𝑢2(𝑡 −𝜏(𝑡))) = 0.166𝑢2(𝑡 −𝜏(𝑡)), 𝜏 =0.5, 𝐷 = 0.003, 𝑐0 = 0.75, 𝑐1 = 0.2, 𝑐2 = 0.3, 𝑚1 =0.02, 𝑚2 = 0.03, and
𝐴 = (0.01 0

0 0.02) ,

𝐴 = (0.1 0
0 0.2) ,

B = (2 0
0 1.95) ,

𝐷 (𝑡, 𝑥, 𝑢) = (0.003 0.005
0.004 0.006) ,

𝑀1 = (0.02 0.01
0 0.01) ,

𝐹 = (0.16 0
0 0.166) ,

𝐶1 = (0.2 0.1
0 0.15) ,

𝐶2 = (0.2 0.1
0 0.3) ,

𝑀2 = (0.01 0.01
0 0.03) .

(43)

Now we use MATLAB to solve LMIs (22)-(23), obtaining the
feasibility data

𝑃 = (0.9381 0
0 1.013) ,

𝑝 = 0.9103,
𝑝 = 1.023.

(44)

Now Theorem 6 derives that the null solution of this
Takagi-Sugeno fuzzy equations is globally asymptotically
stable (see Figures 1 and 2).

5. Conclusions

By constructing a novel Lyapunov function, we employed
Young inequality and LMI technique to derive the asymptotic
stability criteria for CGNNs with distributed delays and non-
linear diffusion. Since the stability of nonlinear 𝑝-Laplacian
diffusion neural networks was originally investigated in [2],
various 𝑝-Laplacian diffusion neural networks have attracted
a lot of interest ([6, 17, 34, 39, 44]). As pointed out in
Discussion 1, some new conditions and methods may not
be applicable to CGNNs model with nonlinear 𝑝-Laplacian
diffusion. So our results are a novelty to some extent.
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