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This paper proposes a method that uses feature fusion to represent images better for face detection after feature extraction by deep
convolutional neural network (DCNN). First, with Clarifai net andVGGNet-D (16 layers), we learn features fromdata, respectively;
then we fuse features extracted from the two nets. To obtain more compact feature representation and mitigate computation
complexity, we reduce the dimension of the fused features by PCA. Finally, we conduct face classification by SVM classifier for
binary classification. In particular, we exploit offset max-pooling to extract features with sliding window densely, which leads to
better matches of faces and detection windows; thus the detection result is more accurate. Experimental results show that our
method can detect faces with severe occlusion and large variations in pose and scale. In particular, our method achieves 89.24%
recall rate on FDDB and 97.19% average precision on AFW.

1. Introduction

Face detection is a classical problem in computer vision,
which is widely used for all facial analysis algorithms, includ-
ing face recognition, face tracking, and facial attribute recog-
nition (e.g., gender, age, and facial expression recognition).
However, due to large variations in pose, blur, occlusion, and
illumination condition, face detection is still confronted with
some challenges.

Since seminal work of Viola and Jones [1], face detection
has made great progress in recent years. Viola-Jones detector
adopted Adaboost classifier with cascade structure to achieve
real-time face detection. Nevertheless, due to simplicity of
Haar-like features extracted manually, it fails to detect faces
with pose variations, exaggerated expressions, and extreme
illumination. Later deformable part models (DPM) [2] detec-
tor adopted part models based on pictorial structure for
deformation of objects and proposed a detection model to
study the parts and their relations. This method is robust
to partial occlusion but with higher computational cost.
Nowadays, with the availability of massive data and the
improvement of computing power, deep convolutional neural

network has recently achieved remarkable performance in
many computer vision tasks, including image classification,
object detection, and face recognition. Farfade et al. [3] pro-
pose Deep Dense Face Detector (DDFD) for multiview face
detection; however it fails to detect faceswith heavy occlusion
or blur. Li et al. [4] put forward a cascade structure based
on CNN and adjust the location of detection windows by
rectification for face detection, but this needs additional com-
putational costs, thus resulting in high computational com-
plexity. Yang et al. [5] exploit scoring facial parts responses
by the spatial structure and arrangement for face detection,
which can deal with severe occlusion and unconstrained
pose variations but with higher computational complexity.
Therefore, detection algorithms need a trade-off between
detection performance and speed.

This paper proposes a feature extraction and fusion
method for face detection by DCNN and achieves the state-
of-the-art performance on FDDB [6], AFW [7], and LFW [8]
dataset. The rest of this paper is organized as follows. The
proposed method is presented in Section 2. Experiments and
results are provided in Section 3. Finally, we draw the conclu-
sions in Section 4.
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2. The Proposed Method

The framework of the proposed method is shown in Figure 1.
In our method, first, we learn and extract feature of input
images at fc6 layer of Clarifai net [9] and VGG Net-D (16
layers) [10]. Then, we fuse the features of the two networks.
To obtain more compact feature and mitigate computation
complexity, PCA is adopted to reduce feature dimension.
Finally, we conduct binary classification by SVM to realize
face detection on images. The following subsections will
discuss the procedure in detail.

2.1. Feature Extraction by DCNN. In this paper, pretrained
Clarifai net and VGG Net-D (16 layers) model are used for
fine-tuning these two networks. Clarifai net adopts kernels
of size 7 × 7 in the first convolutional layer to filter images
to obtain global information, which contains more context
information, making it easier to separate faces from nonfaces
but harder to handle partial occlusion. VGG Net-D (16
layers) network exploits smaller 3 × 3 convolution kernels
to filter images to obtain local information, which contains
higher resolution image information to address face detection
under occlusion and blur, but without global superiority;
for example, the region extracted from cheek is difficult to
be confirmed as a part of face or not. Since both networks
have strong ability to learn features and generalize well, we
consider feature fusion of them to obtain global and local
information simultaneously to distinguish faces from non-
faces more easily and be more robust to faces under partial
occlusion, resulting in better performance.

This paper adopts sliding window approach to detect
faces with different sizes on each image. We construct image
pyramid with max scale of 8 and scaling factor of 0.9057,
which is shown in Figure 2. Due to network input (detection
window) of size 224 × 224, we can detect faces as small as size
((224/8) × (224/8) =) 28 × 28.

Due to high computational complexity of original sliding
window approach, we convert the fully connected layers into
convolutional layers and reshape layer parameters; then we
use the fully convolutional network to deal with input images
of arbitrary sizes [11]. Figure 3 illustrates that each sliding
window of size 6 × 6 at fc6-conv layer in fully convolutional
network corresponds to a detection window of size 224 ×
224 on original image; we can obtain features of all candidate
regions by fully convolutional network with just one forward
computation.

And similar to the approach introduced by Giusti et al.
[12], we adopt multiple starting locations at the last pooling
layer with each corresponding to a pooled feature map. We
use max-pooling with stride of 2 for the last pooling layer;
thus each input feature map generates 4 output feature maps
as shown in Figure 4, which contain information of each
candidate region on image for denser detection. More details
are as follows.

We call each starting location as offset to avoid overlap-
ping with a stride of 2 at the max-pooling layer; there are
only (2 × 2 =) 4 offsets in 𝑂, defined as 𝑂 = {(0, 0), (1, 0),
(0, 1), (1, 1)}. Given an input feature map, one output feature
map is obtained for each offset 𝑜 (𝑜 = (𝑜𝑥, 𝑜𝑦) ∈ 𝑂), where

𝑜 is the coordinate of starting location at the top left on the
input featuremap for pooling. As shown in Figure 4, applying
offsetmax-poolingwith kernel size of 3× 3 and stride of 2, one
input feature map of size 7 × 7 can generate output feature
maps of sizes 3 × 3, 3 × 2, 2 × 3, and 2 × 2 by starting at
(0, 0), (1, 0), (0, 1), and (1, 1) of the top left, respectively. And
four output feature maps above correspond to (3 × 3 +3 ×
2 + 2 × 3 + 2 × 2 =) 25 detection windows of size 3 × 3 on
the input featuremap. However, in case of traditional pooling
operation, there is only one feature map of size 3 × 3, which
corresponds to only 9 detection windows of size 3 × 3 on the
input feature map. If we use a max-pooling with kernel size
of 3 × 3 and stride of 1, an input feature map of size 7 × 7 can
generate a feature map of size 5 × 5, which corresponds to
25 detection windows of size 3 × 3 on the input feature map.
Thus our method is equivalent to reduce the stride by half to
conduct denser detection.

2.2. Feature Fusion and Dimensionality Reduction by PCA.
After feature extraction of each candidate region by the two
networks above, these feature vectors of the same region are
catenated to form higher dimensional fusion features. And
this can compensate for inadequacy of single network in
feature extraction. However, there always exist some corre-
lation and information redundancy among these features,
and higher dimensional features lead to higher computa-
tion complexity. Therefore, we adopt principle component
analysis (PCA) for selection and dimensionality reduction of
features. In this paper, we define the eigenvalue statistical rate
as the ratio of number of principal components (eigenvalues)
retained by PCA to number of all components. And we
select the eigenvalue statistical rate as 50%, which means
that eigenvectors corresponding to top 50% of principal
components (eigenvalues) are selected to build projection
direction matrix for dimensionality reduction of features. In
Section 3.2, we compare effect on the experiment of different
eigenvalue statistical rate in PCA.

Feature fusion helps to learn image features fully for
description of their rich internal information, and after
dimensionality reduction, we can obtain compact represen-
tation of integrated features, thus resulting in lower compu-
tational complexity and better performance of face detection
with unconstrained environment.

2.3. Binary Classification Using SVM. The features, whose
dimension is reduced by PCA after feature fusion, are used
to train a SVM classifier for binary classification. And after
comparison between polynomial kernel function and RBF
kernel functions in Section 3.2, we finally choose polynomial
kernel functionwith better classification results as final kernel
function.

By the trained SVMmodel, we can score feature extracted
from each candidate region, which is corresponding to
the confidence of a detection box. Comparing confidences
of candidate regions with preset threshold, regions with
confidence higher than the threshold are labelled as faces,
otherwise they are labelled as nonfaces. Despite slow detec-
tion speed, SVM classifier can result in smaller risk of wrong
classification.
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Figure 1: The framework of the proposed method.
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Figure 2: Sketch map of image pyramid.

2.4. Bounding Box Regression. Some methods with deep
learning for object detection correct the position of detection
box by bounding box regression, resulting in improvement of
final detection accuracy [13].Therefore, bounding box regres-
sion is introduced to our method, and comparison between
results with/without bounding box regression is shown in
Section 3.2. As shown in Figure 5, detection box 𝑃 is a
candidate region extracted by our detector, represented by
(𝑥0, 𝑦0, 𝑤0, ℎ0), where (𝑥0, 𝑦0) is the coordinate of top left of
the detection box and 𝑤0 and ℎ0 are defined as width and
height of the detection box, respectively. And 𝐺 is a ground
truth bounding box for the face on image. The regression
target is to learn a transformation that maps a detection box
𝑃 to a ground truth bounding box𝐺, and𝐺󸀠 is our regression
result.

For bounding box regression, candidate regions, whose
IOU with ground truth bounding box are greater than a pre-
set threshold, are used for training. After feature extraction
and fusion for each candidate region by these two networks
above, the features, whose dimension is reduced by PCA,
are defined as Φ. And the regression target (𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ) is
defined as

𝑡𝑥 = (𝑥 − 𝑥0)𝑤0 ,

𝑡𝑦 = (𝑦 − 𝑦0)ℎ0 ,

𝑡𝑤 = log( 𝑤𝑤0) ,

𝑡ℎ = log( ℎℎ0) ,

(1)

where (𝑥0, 𝑦0, 𝑤0, ℎ0) represents a candidate region and
(𝑥, 𝑦, 𝑤, ℎ) represents the ground truth bounding box. We
learn a set of parameters 𝑊 (= (𝑊𝑥,𝑊𝑦,𝑊𝑤,𝑊ℎ)) by opti-
mizing the regularized least squares objective as

𝑊∗ = argmin
𝑊
0
∗

𝑁

∑
𝑖

(𝑡𝑖∗ − Δ𝑖∗)2 + 𝜆 󵄩󵄩󵄩󵄩𝑊0∗󵄩󵄩󵄩󵄩2 , (2)

where 𝑖 is the number of training samples, Δ𝑖∗ = 𝑊𝑇0∗Φ𝑖, and∗ is one of 𝑥, 𝑦, 𝑤, ℎ, and each transformation corresponds
to an optimization objective function.

At testing stage, after scoring each candidate region with
SVM classifier, new bounding boxes for regions whose scores
are larger than the preset threshold are obtained by bounding
box regression with the trained transformation. And the
regression result is defined as

𝑥󸀠 = 𝑤0 × Δ 𝑥 + 𝑥0,
𝑦󸀠 = ℎ0 × Δ 𝑦 + 𝑦0,
𝑤󸀠 = 𝑤0 × exp (Δ𝑤) ,
ℎ󸀠 = ℎ0 × exp (Δ ℎ) ,

(3)

where (𝑥󸀠, 𝑦󸀠, 𝑤󸀠, ℎ󸀠) represents the detection result after
bounding box regression.

2.5. Postprocessing of Detection Boxes. Wehave obtainedmul-
tiscale detection information by image pyramid, and there is
high overlap among output detection boxes. Therefore, we
adopt non-maximum suppression (NMS) [14] for postpro-
cessing of detection boxes. It aims at ensuring to obtain
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only one detection box per object by eliminating redundant
overlapping detection boxes that refer to the same object to
find optimal detection box for the object. When two objects
on the image are in close distance, say, they are occluded
by each other, in this case, we keep overlapping detection
boxes referring to different objects. Common postprocessing
methods include NMS-Max and NMS-Average.

We first apply NMS-Max and later NMS-Average in this
paper. As for two detection boxes, IOU is taken as the overlap
criterion, and the value of IOU is defined as the intersecting
area divided by their union. After selecting the detection
box with maximum score, NMS-Max removes the detection
boxes whose IOU is larger than an overlap threshold. And
then the NMS-Average is used to cluster the rest of detection
boxes according to an overlap threshold. Within each cluster,
we remove the detection boxes with score less than the
maximum score of that cluster and average the locations of
the remaining detection boxes to get the optimal detection
box. And themaximum score of the cluster is used as the final
score of the merged detection box. Figure 6 illustrates results
after applying NMS-Max and NMS-Average.

3. Experiments and Results

3.1. Experimental Settings

3.1.1. Training Networks for Feature Extraction. WIDER
FACE dataset [15] contains rich annotations, including occlu-
sion, pose, and event categories. We cropped images of
WIDER train, and those are taken as positive samples if

IOU between it and the ground truth bounding box is larger
than 0.65. Due to larger proportion of small-scale samples
in WIDER train, we cropped WIDER val dataset using the
same standard and selected images whose size is larger than
80 pixels to form positive samples with WIDER train to
expand data for training. And we cropped images of AFLW
[16], and those are taken as negative samples if IOU between
it and the ground truth bounding box is smaller than 0.3;
these cropped colorful images are all resized to network input
size. As a preprocessing step, the input image is centered
by subtracting the mean image created from a large dataset,
and we expanded training set by mirror transformation for
training net. Finally we update parameters with a batch size of
128 examples, initializing learning rate at 0.0001, momentum
of 0.9, and ratio of 1 : 5 positives to negatives for fine-tuning.

3.1.2. Training SVM Classifier. After cropping WIDER train
and WIDER val dataset according to ground truth anno-
tations, we select a part of them as positive samples and
crop images of AFLW are taken as negative samples if IOU
between it and the ground truth bounding box is smaller than
0.3. Then we set the ratio of positive samples and negative
ones to 1 : 1 to train SVM classifier.

3.1.3. Testing. We use FDDB, AFW, and LFW dataset as
test sets. FDDB dataset is the benchmark of face detec-
tion, including faces with variations in occlusion, pose, and
scene. Also, faces of out-of-focus are included. Comparisons
of experimental results in 3.2 are conducted on FDDB.
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Figure 6: Results after applying NMS-Max andNMS-Average, where (a) is original image, (b) is result of applying NMS-Max, and (c) is result
of applying NMS-Average.

AFW is released by Zhu et al., which includes 205 images
with cluttered background with large variations in both face
viewpoint and appearance (e.g., aging, sunglasses, makeups,
skin color, and expression). LFWdataset is a challenge dataset
for face verification in the wild. All images of LFW dataset
are taken in real scene, which leads to natural variability
in light, expressions, pose, and occlusion. People involved
in LFW mostly are public figures, which results in more
complex interference factor, such as makeup and spotlight.
Therefore, we use LFW dataset for evaluating the proposed
method. Since LFW dataset is used for following task of face
alignment and recognition in the future, and only the central
face on each image is needed for face recognition, we take the
bounding box nearest the center of image as final detection
result, in case there is more than one detected bounding box
in an image. This postprocessing method can lead to no false

positive and accuracy of 100%. In testing stage, we convert the
fully connected layers into convolutional layers and reshape
layer parameters and exploit offset max-pooling to extract
features with sliding window densely, which leads to better
matches of faces and detection windows. Taking each image
of image pyramid as input of the fully convolutional network,
we extract feature vector of each candidate region at fc6-conv
layer and realize feature fusion and dimensionality reduction,
and we can obtain a set of bounding boxes with confidence
scores by SVM. Then we merge all boxes at each scale and
apply NMS to get final detection results.

3.2. Comparisons of Experimental Results

3.2.1.The Effectiveness of Feature Fusion. In order to prove the
feasibility of our method, we conduct contrast experiment on
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Figure 7: Comparisons of our method with other face detectors on
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Figure 8: Comparisons of our method with other face detectors on
AFW dataset.

Table 1: Comparison between the single net and feature fusion of
these two networks on FDDB.

Network Recall rate (%) False positives
Clarifai net 86.46 2000
VGG Net-D (16 layers) 86.94 2000
Feature fusion of Clarifai and VGG 89.24 2000

FDDB and AFW before and after feature fusion, as shown in
Tables 1 and 2.

Table 2: Comparison between the single net and feature fusion of
these two networks on AFW.

Network Average precision (%)
Clarifai net 96.78
VGG Net-D (16 layers) 96.83
Feature fusion of Clarifai and VGG 97.19

Table 3: Test results of the proposed face detector on FDDB with
different eigenvalue statistical rate in PCA.

Eigenvalue statistical rate (%) Recall rate (%) False positives
50 89.24 2000
70 89.27 2000
90 88.64 2000

Table 4: Test results of the proposed face detector with two kernel
functions of SVM classifier on FDDB.

Kernel function Recall rate (%) False positives
Polynomial kernel function 89.24 2000
RBF kernel function 87.25 2000

Table 1 illustrates that Clarifai net achieves recall rate of
86.46% and VGG Net 86.94% with 2000 false positives on
FDDB dataset. Notably, our method improves the recall rate
to 89.24%, which is 2.3% higher than VGG Net. And the
same improvement is observed on AFW dataset, our method
achieves 97.19% average precision. Experimental results above
demonstrate that the fused features lead to richer represen-
tation of images and compensation for defects of feature
processing in single net, and it outperforms the single net for
face detection on the commonly used face detection datasets.
Compared with single net, we note that our method needs
additional operations, such as PCA, which result in higher
computation complexity and higher memory overhead.

3.2.2. Effect of Different Eigenvalue Statistical Rate in PCA.
Table 3 illustrates the performance of different eigenvalue
statistical rate on FDDB dataset.

As shown in Table 3, our method achieves recall rate of
89.24% with the eigenvalue statistical rate to 50%, and the
recall rate increases slightly to 89.27% when we set the eigen-
value statistical rate to 70% but with much higher dimension.
However, when we further increase the eigenvalue statistical
rate, recall rate drops to 88.64%,whichmeans that there exists
redundancy in the high dimensional features. Obviously,
higher eigenvalue statistical ratemeans higher computational
cost. Trading off between the performance and computa-
tional cost, we set the eigenvalue statistical rate to 50%.

3.2.3. Comparison between Two Kernel Functions of SVM
Classifier. Table 4 illustrates the comparison between dif-
ferent kernel functions of SVM classifier. Compared with
RBF kernel function, polynomial kernel function can help to
increase recall rate by about 2%; we finally choose polynomial
kernel function for our SVM classifier.
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Figure 9: Qualitative face detection results of our detector on (a) FDDB, (b) AFW, and (c) LFW.
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Table 5: Test results of different classifier on FDDB.

Classifier Recall rate (%) False positives
LR 87.50 2000
SVM 89.24 2000

Table 6: Test results of the proposed face detector with/without
bounding box regression.

Method Recall rate (%) False positives
Ours+bounding box regression 89.51 2000
Ours 89.24 2000

Table 7: Evaluation of performance of other methods.

Method Recall rate (%) False positives
DDFD 84.84 2000
Boosted Exemplar 85.65 2000
Joint Cascade 86.68 2000
HeadHunter 88.09 2000
Our method 89.24 2000
Faceness-Net 90.99 2000
Conv3D 91.16 2000

3.2.4. Comparison between Two Classifiers. In our exper-
iments, besides SVM classifier, we also consider another
common and simple classifier, LR (Logistic Regression),
to classify face and nonface, whose output represents the
confidence of face with cross-entropy loss function based
on probability theory, resulting in lower computational com-
plexity. Comparison of different classifiers is shown inTable 5.

Table 5 illustrates that SVM classifier outperforms LR
classifier. Experiments indicate that SVM classifier is more
time consuming, but with less false positives and higher
confidence of detection results, thus achieving better classi-
fication.

3.2.5.ThePerformance ofOurDetectorwith/without Bounding
Box Regression. Table 6 compares the performance of our
detector with/without bounding box regression.

Table 6 illustrates that bounding box regression slightly
improves the performance of our detector but leads to higher
computational complexity at stage of data generation and
training network. Our method adopts offset max-pooling to
extract features with sliding window densely, which leads
to better matches of faces and detection windows and gets
accurate detection results; therefore, bounding box regression
makes little sense in this case.

3.2.6. Comparisons with Other State-of-the-Art Face Detectors
on FDDB. We compare the performance of our method
with other state-of-the-art methods on FDDB dataset. In
particular, we report recall rate of our method with DDFD,
Boosted Exemplar et al. [17], Joint Cascade [18], HeadHunter,
Faceness-Net, and Conv3D [19] with 2000 false positives in
Table 7. Quantitative comparisons of our method with other
face detectors on FDDB are displayed in Figure 7.

3.2.7. Comparisons with Other State-of-the-Art Face Detectors
on AFW. We compare the performance of our method with
other state-of-the-art methods including TSM, Shen et al.
[20], StructuredModels [21],HeadHunter, Face.com, Face++,
and Picasa on AFW dataset. Precision-recall curve is shown
in Figure 8, where AP is defined as average precision.

Some detection results are shown in Figure 9.
Figures 7, 8, and 9 illustrate that our method out-

performs other state-of-the-art detectors and realizes great
improvements of face detection with unconstrained environ-
ment. Detection results show that our method can not only
cope with faces with small-scale and pose variations, but also
perform well for occlusion and blur.

4. Conclusion

In this paper, we propose a face detection method based
on two deep convolutional neural networks with SVM
classifier; our method has achieved 89.24% recall rate on
FDDB and also achieved high accuracy on other datasets.
Experimental results show that our method can compensate
for defects of feature processing in single deep network by
feature fusion ofmultiple layers and have better performance.
In particular, our method is strongly robust to faces with
occlusion, blur, and rotation. With using offset max-pooling
to extract features, we can obtain better matches of faces and
detection windows, and the detection result is more accurate.
Further effort will be focused on learning efficient cross-GPU
parallelization method, which can take slightly less time to
train than the one-GPU net.
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