
Research Article
ISOMP: An Instant Service-Orchestration Mobile M2M Platform

Cholhong Im and Changsung Jeong

Department of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

Correspondence should be addressed to Changsung Jeong; csjeong@korea.ac.kr

Received 19 October 2015; Revised 30 December 2015; Accepted 14 February 2016

Academic Editor: Lazaros Gkatzikis

Copyright © 2016 C. Im and C. Jeong. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Smartphones have greater computing power than ever before, providing convenient applications to improve our lives. In general,
people find it difficult to locate suitable applications and implementing new applications often requires professional skills. In this
paper, we propose a new service platform that facilitates the implementation of new applications by composing prebuilt components
that provide the context information ofmobile devices such as location and contacts. Our platform introduces an innovative concept
named context collaboration, in which smartphones exchange context information with each other, which in turn is used to deduct
useful inferences.The concept is realized by instant orchestration, which assembles some components and implements a composite
component. The interactive communication interface helps a mobile device to communicate with other devices using open APIs,
such as SOAP and HTTP (REST). The platform also works in heterogeneous environments, for example, between Android and
iOS operating systems.Throughout the platform, mobile devices can act as smart M2Mmachines with context awareness, enabling
intelligent tasks on behalf of users. Our platform will open up a new and innovative pathway for both enhanced mobile context
awareness and M2M, which is expected to be a fundamental feature of the next generation of mobile devices.

1. Introduction

Smartphones are now common and tightly interlinked with
our lives. An increasing number of people have an interest in
mobile technology and expect it to be continuously improved.
Currently, the hardware specifications of smartphones are
almost equivalent to those of PCs and smartphones have
greater computing power than ever before. Furthermore,
smartphones have convenient applications that improve our
lives. However, they still need more capabilities in terms of
gathering, analyzing, and inferring the user’s environment
and intentions. Those capabilities can be represented by con-
text awareness. Context is any information that can be used
to characterize the situation of an entity [1]. To achieve a tan-
gible context-awareness capability, we design and implement
an instant service-orchestration platform based on M2M
architecture. Thus, the platforms are distributed and they
can collaborate with each other. Even though some simple
types of context-awareness service have been investigated,
such as the retrieval of another user’s location and contacts,
users cannot get location and contact information on other
devices without making use of exclusive applications. Fur-
thermore, the context information of one application cannot

be exchanged with other applications. In turn, our platform
can support the gathering of context information from
devices as well as determining what assistance the users need
by analyzing the gathered context information.Orchestration
is the process of arranging multiple services or functions to
act in a predefined sequence [2]. Our research accomplishes
the aim of service-oriented computing to implement new
services easily by connecting some readymade components.
From now on, mobile devices will cease being merely
clients and will become servers or providers. Our platform
can also collaborate with other devices such as PCs and
workstations. It realizes flexible component architecture for
interactive service-oriented middleware to offer enhanced
context awareness on common smartphones.

2. Related Work

Researchers have proposed various context-provisioning sys-
tems that can acquire, analyze, and manage context infor-
mation. The context toolkit [3] has a layered architecture
that separates out the context acquisition, representation, and
adaptation processes. The context management framework
(CMF) [4] allows for semantic reasoning of the context in

Hindawi Publishing Corporation
Mobile Information Systems
Volume 2016, Article ID 7263729, 16 pages
http://dx.doi.org/10.1155/2016/7263729

2 Mobile Information Systems

real time and even in the presence of noise, for uncer-
tainty, and a rapid variation in the context. Service-oriented
context-awareness middleware (SOCAM) [5] constitutes an
architecture of service-oriented context-aware middleware
for the building and rapid prototyping of context-aware
mobile services. However, the authors handle generic con-
text information with no context-aware services. Other
researchers have managed to apply context information to
mobile services, as smartphones provide various kinds of
context information such as location, contacts, and media.
Context-Aware Pervasive Networking (CAPNET) [6] con-
stitutes context-aware middleware for mobile multimedia
applications. The middleware offers functionality for service
discovery, asynchronous messaging, publish-and-subscribe
event management, management of context information,
and the handling of both local and network resources.
Context Phone [7] is middleware for context-based mobile
services and it can provide context information as a resource.
Therefore, developers can gain context information from
smartphones and implement context services such as context
contacts and context media. LifeMap [8] is a smartphone-
based context provider operating in real time, fusing an
accelerometer, digital compass, Wi-Fi, and GPS to track
and automatically identify points of interest with room-
level accuracy. However, these types of context-aware mid-
dleware cannot offer context information to other devices
and their applications cannot be implemented instantly with
service-oriented components. Some SOA-based context-
aware middleware, such as A-MUSE [9], MobileSOA [10],
and ContextServ [11], has been developed, adopting the
representational state transfer (REST) protocol or model-
driven architecture (MDA). Our research proposes instant
orchestration, which can implement applications on demand
and provide context information to other devices with open
APIs based on SOA. ContextDroid [12] proposed a context
service from sensors to applications, but other devices cannot
integrate the information. Context Aware Machine Learning
Framework (CAMF) [13] proposed context-aware machine
learning architecture and context information interfaces that
can provide location proximity, face recognition, and so on.
Consequently, our research can make full use of the context
information of a mobile device and exchange this piece of
informationwith other devices using an openAPI.Therefore,
mobile devices collaborating with each other are able to
perform orchestrated processes. Since we adopt SOA-based
event-driven architecture, our composite components can be
implemented by orchestrating various context components
and external components including other composite compo-
nents. We first illustrate that a mobile device can be a great
server machine, providing a useful intelligent service based
on mobile context information and that our platform can
make a flexible mobile application structure based on SOA.

3. The Capability of Context Awareness

In the work that first introduces the term “context-aware,”
the context is defined as the location, the identities of nearby
people and objects, and changes to those objects [14]. The
new definition of “context” includes any information that

can be used to characterize the situation. If a piece of
information can be used to characterize the situation of a
participant in an interaction, then that information is context
[1]. We assume contacts, calendar, and phone state as the
context information, since the information gives important
clues regarding the inference of user situations. Various
kinds of context information can be gathered from mobile
devices. With the help of the mobile platform SDK (e.g.,
Google Android and Apple Cocoa), the information can
easily be retrieved from mobile devices. In existing research
works, researchers have inquired about simple forms of
context information such as current position, schedule, and
friends’ phone numbers, without integrating mutual context
information. However, our platform focuses on the mutual
and simultaneous collaboration of context information. This
action is termed “context collaboration.” Due to this context
collaboration, mobile devices can provide more intelligent
services to satisfy user demands. Our platform can undertake
context collaboration according to the phone state such as
unavailable or busy. Generally, it is not easy to call someone
at a time when he/she is busy or unavailable, in which case
the phone needs to keep calling until the recipient is on the
line. Even though a mobile device has its own phone state
information such as busy, unavailable, and available, there
have not yet been any trials to acquire and make use of this
aspect properly. On the other hand, our platform automati-
cally queries the phone state information on the other device,
gathers the device state information, and decides what to
do according to whether the line is busy or not. Hence, it
would be possible for users to determine whether they could
make a call or not by using the context-aware function of
our platform. However, such context awareness might cause
privacy and energy consumption issues.

4. The Instant Service-Orchestration Platform

4.1. The Basic Concept. Our platform consists of a provider
service, client service, and an external service. The provider
service includes instant orchestration, context components,
and an interactive communication interface. The context
components are implemented via an Android SDK and
they provide device information such as the location, phone
state, and contacts. The interactive communication interface
supports a bidirectional connection using an open API that
is independent of network protocols. Instant orchestration
creates composite components that consist of context com-
ponents and external services, and it controls the execu-
tion process of the composite components conforming to
orchestration specifications. Any external service with SOAP
or HTTP (REST) interface can be a part of the composite
components. The client service sends a request to execute a
composite component to the provider service and receives its
results. Figure 1 shows the basic concept of our platform.

4.2. Event-Driven Architecture. An event is a notable thing
that happens inside or outside our platform. An event may
signify a problem or impending problem, an opportunity,
a threshold, or a deviation [15]. Event-driven architecture
embraces mechanisms for coordinating the callers and

Mobile Information Systems 3

Open
API

Open
API

Client
service

Open
API

Provider
service

External
service

Client support

Mashup component

Interactive communication
interface

Instant orchestration handler

Context
components

Figure 1: The basic concept of our platform.

providers of a service, the producers and consumers of
data, and the sensors of and responders to software events
with a variable level of communication coupling, a variable
spectrum of message correlation, and variable options to
deliver quality of service [16]. The enterprise service bus
(ESB) is one of the typical solutions that is implemented
based on event-driven architecture [17]. Our platform adopts
event-driven architecture to work intelligently with context
awareness. First, events are generated whenever the platform
receives a new request message, interprets the message, and
generates additional events such as an invocation, skipping,
or termination. Our platform controls some actions accord-
ing to the generated events. Generally, the actions and events
are described by standard process notation such as Business
Process Execution Language (BPEL [18]) or Business Process
Modeling Notation (BPMN). Figure 1 shows the concept
of event-driven architecture for an inventory management
system. If a system starts working on some conditions, then
those conditions should be defined as events. When one of
the events is generated, an event-processing engine starts
performing actions such as publishing, notifying, invoking
service, or starting another business process. In this process,
low inventory generates an event, and the reorder inventory
process is started to fill the inventory automatically.

4.3. Provider Service

4.3.1. InstantOrchestrationHandler. Acomposite component
is made by composing services from other services, which
is an increasingly common service design goal [19]. Using
instant orchestration, composite components are imple-
mented in an easy and quick way on a mobile device, and
it accomplishes context collaboration among mobile devices.
Figure 2 shows the orchestration example of a composite
component interacting between two devices.

We assume that a user has to contact another user whose
contact information is unknown. Usually, people make a
call to another acquaintance who might know the contact
information, and then they write down or memorize the
phone number. Then they call again with the given number,
but he/she may not be available or may be busy, so they
need to call again later. This situation makes people continue
to call until the call is answered. Our platform solves this
problem by invoking a composite component to perform
context collaboration. In particular, an individual can gain
another person’s contact information and the other user’s
device state through context collaboration. The interactive
communication interface makes this possible. It does not
depend on radio technology as long as the mobile devices are
connected to the internet. However, the person seeking the
information needs to point out one of his/her acquaintances’
devices that is likely to have the contact information. The
platform finds that contact information by invoking the
“GETCONTACT” component and checks the phone state of
the receiver by invoking the “GETTELSTATE” component in
the other device. If available, the platform automatically calls
via the “TELLCALL” component and if not, as an alternative,
the device sends an SMS via “SENDSMS.”The instant orches-
tration handler interprets the orchestration specifications in
XML form and controls the execution process of the com-
posite components conforming to the orchestration specifi-
cations, as shown in Figure 3. We have already defined the
orchestration specification as simple XML language, which
is termed “Instant Orchestration Description Language”
(IODL) [20] in prior research. IODL is simple and describes
the necessary information for the composite components. It
does not have the “assign” tag in BPEL. Instead, the same
variable can be used for assigning a function. In Figure 3,
the initial value of “contactname” is used as the input value

4 Mobile Information Systems

Request

Result

GETCONTACT
Remote

invocation

Remote
invocation

GETTELSTATE

GETTELSTATE

SMS or call

To communicate with anyone of whom I do not have contact information

to find contact informationto get phone state

if state is power off or ringing,
send SMS to phone

① Request with name
② Request “GETCONTACT”③ Request “GETTELSTATE”

④ If state is idle, call phone;
⑤ Get result and terminate

Figure 2: A composite component implemented by instant orchestration.

newcontact
<<request message>>
contactname

<<response message>>
callresult
contresult

[Component] GETCONTACT

<<input>>
contactname

HOME
WORK

[Component] GETCONTACT

MOBILE
contactname

[Component] TELCALL

number:MOBILE callresult

[Mashup] contactprovider
192.168.11.4

contactname

[Mashup] GETTELSTATE
192.168.11.4

number:MOBILE callstate

① Executes mashup
with input parameters

② Executes GETCONTACT

③ Executes contactprovider
If it cannot get in local device
(remote invocation)

④ Executes SETCONTACT
if it does not exist in local device

⑤ Executes GETTELSTATE
(remote invocation)

Add new component

⑥ Executes TELLCALL
if device state is available

⑦ Return result values

<<output>>

<<input>> <<output>>

<<input>> <<output>>

<<input>> <<output>>

<<input>> <<output>>

MOBILE

contresult

MOBILE

</service>

<?xml version=“1.0” encoding=“EUC-KR”?>
<service id=“1” name=“newcontact” type=“Mashup”>
// Request Message
<request><reqmsg contactname=“”/></request>
// Event Rule (flow control)
<condition target=“TELCALL” key=”callstate” opt=“EQ”
value=“available”/>
// GETCONTACT component
<invoke name=“GETCONTACT” type=“Component”>
<input><inmsg contactname=“”/></input>
<output>
<outmsg MOBILE=“” HOME=“” WORK=“”/>
</output>
</invoke>
// contactprovider composite component
<invoke name=“contactprovider” type=“Mashup”
URI=“192.168.11.4” NS=“1” method=“1”>
<input><inmsg contactname=“”/></input>
<output><outmsg MOBILE=“”/></output>
</invoke>
// Response Message
<respond><resmsg callresult=“”/></respond>

Figure 3: The instant orchestration execution process and IODL specification.

in the orchestration process and maintains its value to the
end of the orchestration process. The result values such as
“callresult” and “contresult” store the value of the invocation
result and are returned to the client service. If a value were to
be replaced by another one, then IODLwould simply provide

an assignment method. Wherever “MOBILE” is used, it has
the same value and can be replaced by other variables also.
If we specify this as “number: MOBILE,” then the “number”
variable is replaced with “MOBILE.” Additionally, the event
rule contains control information such as the condition and

Mobile Information Systems 5

Intelligent
phone

platform

Interactive
communication

interface

Instant orchestration handler

[Executing event]

[Start event]

Decide

[Decision event]

Invoke
components

Start

Invoke
REST/SOAP

[Invocation event]

End
[End event]

Figure 4: The event-driven process of the instant orchestration handler.

Table 1: Event-processing functions.

Function Description Component name

Event handler Edit and control an
event flow

Event flow
configuration
Event flow handler

Event
invocation

Invoke remote
APIs offering various
kinds of interface

Composite endpoint
SOAP endpoint
REST endpoint
Component endpoint

Event rule Edit and interpret an
event rule

Event rule
configuration
Event rule resolver

target, and it handles event processing such as invoking, skip,
and beginning process. Surprisingly, direct manual editing
in IODL form is not needed, since it can be generated
automatically as users enter some information on the edit
screen provided by our platform.

The instant orchestration handler adopts SOA-based
event-driven architecture and has three event-processing
functions. They receive events from the instant orchestration
handler and perform various kinds of actions such as invoca-
tion, skip, and starting other composite components. Table 1
shows the event-processing functions provided by the instant
orchestration handler.

The event handler edits and controls the described event
flow in IODL. Event invocation executes components with

various kinds of communication protocol. The interactive
communication interface starts during the boot sequence and
waits to receive a request message. The messages contain
the type of events that are generated and which actions
should be performed. As a message containing a context
collaboration specification is received at a waiting socket, the
instant orchestration handler starts interpreting the message
automatically and generates various kinds of events such as
invocation, skip, and starting other composite components.
The event flow handler controls actions according to the
received events, as shown in Figure 4.

4.3.2. Context Components. Our platform has eleven context
components such as location, contact, and phone state. They
are implemented with a native Android SDK including the
Google Map API, content provider API, and Android system
API [21]. The components provide context information on
mobile devices. A composite component is implemented by
assembling them, in other words, by orchestration. With the
help of the interactive communication interface, a device
gathers context information from other mobile devices, and
a composite component can be invoked from both one’s own
device and other devices. Supporting both SOAP and the
HTTP (REST) protocol, our platform can exchange infor-
mation via a message-driven route even in heterogeneous
environments. Table 2 shows the context components of our
platform. In the location function group, “GETLOCATION”
retrieves the latitude and longitude values of the current posi-
tion [22]. “GETDISTANCE” calculates the distance between
two positions. “VIEWMAP” displays a Google Map of the
requested position. In addition, the contact and calendar

6 Mobile Information Systems

Table 2: Context components.

Group Component name Remarks

Location
GETLOCATION Android service (AIDL)
GETDISTANCE
VIEWMAP Google Map API

Contact GETCONTACT

Content provider APISETCONTACT

Calendar GETCALENDAR
SETCALENDAR

Device system

GETTELSTATE

Android system APISENDSMS
TELCALL

NOTIFICATION

information is handled by the context components “GET-
CONTACT,” “SETCONTACT,” and so forth. Furthermore,
there are various device functions such as sending an SMS
and calling. “GETTELSTATE” finds out the current phone
state such as busy, power off, or available.

4.3.3. Interactive Communication Interface. Many researchers
have attempted to make decisions via inference. Unfortu-
nately, inference can require considerable computation time,
from a few seconds to some days. Furthermore, it only
provides a probability instead of an accurate result. The
intelligence of our platform depends on explicit context
information. Our platform needs to locate a device with
useful information and it asks the device about the context
information. The platform should interact in a bidirectional
manner, and mobile devices can interact actively with each
other as if they are talking with each other. Context collabo-
ration can be performed via the interactive communication
interface, using network protocol adaption and an interface
service. Due to network protocol adaption, our platform
works in any network environment such as 3G, Wi-Fi, and
Bluetooth, and it has an interface service that can support
both socket and HTTP (REST) services. Both the socket
and HTTP (REST) capabilities are used for communication
among our platforms. The socket protocol outperforms
HTTP (REST) because the connection can be maintained for
a long time, state information can be stored, and both devices
can communicate with each other in any direction whenever
they need information. On the other hand, HTTP (REST)
communication does not retain a connection and cannot
communicate in a bidirectional manner. Socket communica-
tion is more suitable for use among our platforms. However,
when communicatingwith an external system involving open
APIs,HTTP (REST) should be used for context collaboration.
We implemented a server socket function that was provided
by web application servers on Android [23].The operation of
a server side socket on iPhones is not permitted by the iOS
when iPhone devices are in backgroundmode [24].Thus, the
iPhone needs to be woken up by a push notification in order
to communicate via a socket. Table 3 shows the protocol
information of our platform in comparison to the socket and

Table 3: Communication protocol.

Function Protocol

Service list
(socket/HTTP)

REQUEST|LISTSERVICE
RESPONSE|LISTSERVICE|[result]
[http://url:port/]servicelist
(ex) http://192.168.1.2:7000/servicelist

Service information
(socket/HTTP)

REQUEST|GETSERVICE |[id]
RESPONSE|GETSERVICE |[result]
[http://url:port/]servicedetail?id=

Service execution
(socket/HTTP)

REQUEST|EXECSERVICE|[id]
RESPONSE|EXECSERVICE|[result]
[http://url:port/]
Execution?id=&key=

HTTP (REST) protocols. Our protocol contains requesting
the available service information and executing a service.

4.4. Client Service. The client service asks the provider
service to return a list of available composite components
by sending a request to execute a composite component. If
an available service is found, the client service executes it
directly on the mobile device. Our platform includes client
support that communicates via a socket interface on mobile
devices. The client service can also be provided without
client support, since mobile devices and PCs can use the
HTTP (REST) interface that is provided by the provider
service directly. Composite components can be orchestrated
not only with context components, but also with external
services such as Google API, Programmable Web, and other
openAPIs.The interactive communication interface supports
communicating with those open APIs via both the SOAP and
HTTP (REST) interfaces. As the amount of information is not
limited, too much information may cause some failures such
as “out of memory” and socket errors.

4.5. Security Service. As the context information on mobile
devices is critical, a security service is necessary, and the
privacy concerns of users must be answered. Various security
services should be provided to users in order to protect
them from security threats. First, important information
should be encrypted using a strong algorithm such as the
Public Key Infrastructure (PKI) algorithm and the triple Data
Encryption Standard (DES). Next, users need to gain per-
mission to use context services. Authentication is the act of
confirming user identity, and it allows permitted users access
to information. Although a simple authentication method
employing ID and a password is widely used, the method
is extremely weak. Certificated authentication is a stronger
option, since the information on the certificate is encrypted
by PKI and verified by a public agency.Then, the users should
have controlled access to their permitted information. Autho-
rization is distinct from that of authentication. Whereas
authentication is the process of verifying that “you are who
you say you are,” authorization is the process of verifying that

Mobile Information Systems 7

Remote service
(REST)

Client app
(Android and iPhone)

Interactive
communication
server service

Port
HTTP (SOAP)
Android IPC
TCP
App. call

Remote service
Android service

DB DB repository

Instant
orchestration

handler

Orchestration
repository

Event-processing
components

Device service

Remote service
(SOAP)

Remote
mashup service
(other phones)

Interactive
communication
client service

Android or iPhone client
Android

External
services

Provider
service

Client
service

Context
components

Figure 5: The overall architecture of the instant service-orchestration platform.

“you are permitted to do what you are trying to do.” Finally, a
security service must be managed by a proper security policy.

5. Instant Service-Orchestration
Platform Implementation

5.1. Implementation Overview. The provider service, client
service, and external service are described by a compo-
nent and connector diagram [25], as shown in Figure 5.
Components are principal units of runtime interactions and
data stores, and connectors are interaction mechanisms. The
instant service-orchestration platform has various kinds of
components such as an Android service, Android activity,
open APIs, and a repository. They are connected by ports
and communicate with each other using various kinds of
protocol. Our platform supports peer-to-peer two-way com-
munication in order to provide both the provider and client
services, works as a server for the mobile device service,
and gives responses to the client service. If the client service
sends a request to the server, the provider service executes
its corresponding composite components. Composite com-
ponents are generated by orchestrating context components,

external open APIs, and even other composite components.
The provider service provides two server sockets; one is
executed by the client socket in the client service, and
the other is invoked by the HTTP (REST) socket in a
composite component.Therefore, even a PC and workstation
can execute the provider service using the HTTP (REST)
service. Our platform is implemented using Android SDK
r21.1 for Android 4.0.3 (Ice Cream Sandwich) and xcode
4.6.1 for iOS 6. The Android version of our platform has all
functions, including the provider service and client service,
but the iOS version only has the client service.

5.2. Provider Service. The provider service consists of an
instant orchestration handler, an interactive communication
interface, and context components. The interactive commu-
nication interface has two Android services: the interactive
communication server service and the device service, as
shown in Figure 6. If the client service sends a request to the
server, the interactive communication server service inter-
prets it and executes the proper components. The device ser-
vice inquires about context information such as the location
and phone state of one’s own device and receives the results.

8 Mobile Information Systems

Interactive communication server service

Message
broker

Service
connection

Socket
transport

HTTP
transport

Service
information

Device service

Service stub

Location
service

Phone state
service

Figure 6: Interactive communication interface architecture.

Instant orchestration handler

Component
endpoint

REST
endpoint

SOAP
endpoint

Orchestration
repository

Event flow
configuration

Event flow
handler

Context components

Service
connection

Android
component

Content
providerEvent rule

configuration

Event rule
resolver

Mashup
endpoint

Figure 7: The architecture of the instant orchestration handler and context components.

The architecture of the instant orchestration handler and
context components is shown in Figure 7.

The event flow configurator is implemented by Android
activity, and it helps in the ease of configuring the XML
message. Composite components are made by the event
flow configuration and are controlled by the event flow
handler. The event rule configurator edits some conditions
concerning whether actions should be executed or not. The
event flowhandler reads the event rule andflow configuration
and controls the execution of context components, external
components, and other composite components. The service
connection or content provider executes the context com-
ponents. The service connection helps in performing state
device functions such as the location and phone state infor-
mation. Since the state changes continuously, the Android
API helps by tracking it periodically every second.The period
of tracking can be altered to other values when consider-
ing the application performance and battery consumption.
Context components can retrieve the state via a service
connection.The content providermakes context components
access the complex internal databases easily such as those
of the contacts, calendar, and so on. Our platform helps in
implementing context-based composite applications easily
via instant orchestration without complicated programming
or configuration. The graphic user interface supports eas-
ily adding more components, configuring parameters, and
adding event rules. By merely tapping on the screen, the
configured information is shown, and an editable new screen
pops up. Figure 8 shows an implementation snapshot of the
instant orchestration handler.

5.3. Client Service. The client service consists of the client
application and the interactive communication client service.

The client application displays service information and exe-
cution results for the composite components. The commu-
nication client service takes the consumer part in the inter-
active communication interface and communicates with the
communication server service via a socket interface. When
the communication client service takes a result from the
server, the broadcast receiver transfers the result to the client
application. Figure 9 shows the client service architecture.

Two versions of the client service are implemented for
both Android and iOS. Figures 10(a) and 10(b) show the two
versions of client service-implementation snapshots. If user
sets parameters and press the “Done” button, a composite
component will be executed. If the server finishes executing a
composite component, the result is displayed as a dialog box.
More detailed information (including the execution result
and response time of all the components) is written in logs
on the device.

6. The Implementation and Evaluation of
Composite Components

6.1. Evaluation Scenarios. Our platform can make up a
number of composite components, but we implemented two
composite components for evaluation purposes. One is a
composite case for calling others with no contact informa-
tion. It executes three internal context components and two
external composite components located in other devices. If
this scenario is to be provided for the public, then the contact
information must be shared properly by taking into account
strict security procedures. The scenario is implemented for
evaluation. The other is a fully remote case for making an
appointment without disturbance. In this case, the client ser-
vice requests a provider service to execute a composite com-
ponent and receives its result from the component.The evalu-
ation of the two cases is implemented on two SamsungGalaxy

Mobile Information Systems 9

Mashup
component

Context
component

Event rule
(condition)

Event-processing
components

Instant orchestration handler Add
new component

Figure 8: An implementation snapshot of the instant orchestration handler.

Client app (Android and iPhone)

Communication
handler

Remote service
execution

Interactive communication client service

Message
broker

Broadcast
receiver

Socket
transport

Service
information

Figure 9: The client service architecture.

(a) (b)

Figure 10: (a) Client service-implementation snapshots for the Android operating system. (b) Client service-implementation snapshots for
iOS.

10 Mobile Information Systems

GETCONTACT
Exist?

GETCONTACT

TELCALL

No

Yes

Call

T

Instant orchestration handlerContext components
Interactive

communication
interface

Client
service

Provider
service

Available?
Yes No

GETTELSTATE

Provider
service

Provider
service

SETCONTACT

Start

Remote
mashup

invocation

Remote
mashup

invocation

End

Interface
service

[Event resolver]

[Mashup endpoint]

[Mashup endpoint]

[Event resolver]

[Event handler]

[Event handler]

Figure 11: Orchestration flowchart for the composite case.

S2 devices and one iPhone 4. Execution and response times
are measured for each case. Additionally, the performance
capability is evaluated with an automatic load-test solution.

6.2. Composite Case: “Calling Others with No Contact Infor-
mation”. The composite component consists of three context
components and two remote composite components, as
shown in Figure 11. When the client service invokes it, the
“GETCONTACT” context component is invoked, and it tries
to find contact information on its own device. If it does not
have contact information, the remote “(R)GETCONTACT”
component finds contact information on another device
by remote invocation and stores the newly gained contact
information by invoking the “SETCONTACT” component.
Then, a composite component, “GETTELSTATE,” located in
another device, is invoked and retrieves the device’s state such
as busy, unavailable, or available. Finally, if the device state is
available, the “TELCALL” component is invoked and makes
a call. Two event rules, as shown in the diamond in Figure 11,
control orchestration flow and decide whether to execute a
component or not depending on the situation. For example, if
the phone state is busy, then the “TELCALL” component does
not place a call.Three smartphones can be used in reality, but
our implementation uses two smartphones, one of which is

used for two provider services. “(R)GETCONTACT” should
be performed under a privacy policy. Users may require an
agreement for sharing information. Thus, an extra approval
step needs to be added to the scenario, or users need to be
able to control the privacy policy.

Our platform is evaluated on two Samsung Galaxy S2
smartphones. One smartphone executes the orchestration
process of composite components while the other smart-
phone provides two remote composite components such as
“GETCONTACT” and “GETTELSTATE.” Figure 12 shows
two evaluation results executed five times. The first describes
the response time of each context component over five differ-
ent experiments. The execution times of remote composite
components such as “(R)GETCONTACT” and “GETTEL-
STATE” take much longer than those of “GETCONTACT”
and “SETCONTACT.” The response time of “GETTEL-
STATE” is the longest, since it is a remote service and is exe-
cuted by invoking another internal Android service to keep
track of the phone state. The execution time for the “TEL-
CALL” component is very short, since it works asynchro-
nously. In other words, it executes its process without waiting
for any desired result. The second shows the rate of the
execution times for each context component in the composite
components for five different experiments.The response time

Mobile Information Systems 11

TELCALL
GETELSTATE
SETCONTACT

GETCONTACT
®GETCONTACT

N
um

be
r 2

N
um

be
r 3

N
um

be
r 4

N
um

be
r 5

N
um

be
r 1

Number of tests

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Re
sp

on
se

 ti
m

e (
m

s)

Number 1
Number 2
Number 3

Number 4
Number 5

TE
LC

A
LL

G
ET

EL
ST

AT
E

SE
TC

O
N

TA
CT

G
ET

CO
N

TA
CT

®
G

ET
CO

N
TA

CT

Context components

0
100
200
300
400
500
600
700
800

Re
sp

on
se

 ti
m

e (
m

s)

Figure 12: The evaluation results for the composite case.

varies with the experiments, since the resource allocation
and task priority of the operating system can be changed
continuously. It is difficult to determine whether the result
values are unconditional or not.

6.3. Fully Remote Case: “Making an Appointment without
Disturbance”. The first thing one does when making an
appointment is to call someone directly and check his or her
schedule. It requires much effort to make an appointment
and to remind the individual of one’s contact information.
However, our platform queries schedule information from
other devices regarding whether someone is available or not.
Then it automatically creates a new appointment on the other
person’s device if no appointment has been assigned at a
desired time. Figure 13 shows the orchestration flowchart
describing the fully remote case.

The “GETCLAENDAR” component finds any booked or
available schedules, while the “SETCALENDAR” component
registers a new schedule to the device planner database.Then,
“GETCONTACT” finds the caller’s contact information. If
it does not exist, “SETCONTACT” registers new contact
information on the device contacts. The remote composite
component is evaluated with two devices, similarly to the
previous case, but in this case, one works as a server while the
other does so as a client. The client service configures some
parameter values such as the schedule title, date, and content
and executes the composite component. After executing the
provider service, the client service receives an execution
result. Client services are implemented on both Android and
iOS. They are evaluated respectively on a Samsung Galaxy
S2 and an iPhone 4. Figure 14 shows two evaluation results
for the fully remote case on an Android server and a client

12 Mobile Information Systems

GETCALENDAR Exist?

SETCONTACT

Yes

No

Instant orchestration handlerContext components
Interactive

communication
interface

Client
service

Provider
service

Exist?
No

Yes

SETCALENDAR

GETCONTACT

Start
Interface
service

End

[Event resolver]

[Event handler]

[Event resolver]

Figure 13: The orchestration flowchart describing the fully remote case.

device executed five times. The most execution time is taken
by the client service, since the client communicates with the
server remotely, but the other components such as “GET-
CANLENDAR,” “SETCALENDAR,” “GETCONTACT,” and
“SETCONTACT” are executed in the local server. Figure 15
shows two evaluation results for the fully remote case on
an Android server and an iOS client device. The execution
time for the client service is faster than that of the Android
client, since the Android application has been developed
using Java language and executed within a Dalvik VM in the
device, while the iOS application has been developed using
Objective-C language, and an interactive communication
client interface is implemented via pure C socket communi-
cation code instead of by the Objective-C library.

6.4. Performance Evaluation with a Load-Test Solution. We
evaluate the performance capability of composite case imple-
mentation with an automatic load-test solution, LoadUI [26].
It is an open source project, is easy to use, and has good
reporting results in the form of graphs and raw data. Two
laptop computers, one wireless router, and two smartphones
(Samsung Galaxy S and S2) are used for this evaluation, as
shown in Figure 16.One laptop computer generates and sends
a heavy load to the smartphones using LoadUI, and the other
one monitors the platform logs with eclipse DDMS, that is,
the Android device-management plugin SDK.

LoadUI simulates a heavy user’s usage with virtual users
and undertakes a performance test as if hundreds or thou-
sands of users have accessed a remote target application. It
supports various virtual user-generation methods such as
random, ramp, fixed rate, and othermethods and controls the
amount of the heavy load as transactions per second (TPS).
A fixed rate maintains an unchanged amount of usage from
the beginning to the end, and ramp increases the amount of
usage to predefined values for a set time. Web page runner
configures the URL address of target applications, displaying
the evaluation status such as running, completed, or failed.
The performance evaluation is carried out by measuring the
response time and throughput (counted as the number of
transactions) by sending 5, 10, 15, and 20 TPS, respectively,
5 TPS meaning sending a request 5 times a second. The
ramp rate is selected as a virtual user-generation method.
Hence, the load amount increases from 0 to 5, 10, 15, and
20. The load amount is similar in the beginning, while it is
significantly different at the end of test. Wemeasure response
time and throughput with different load cases using Samsung
Galaxy S and S2 and show the results in Figures 17 and 18,
respectively.The response time is fluctuating due to CPU and
memory scheduling based on a round robin policy; that is,
more resource occupation leads to a lower response time.
As the load amount gets heavier, the response time also
increases. In the case of the Galaxy S2, the throughput is
almost the same as the amount of input load data; in other

Mobile Information Systems 13

Number 1
Number 2
Number 3

Number 4
Number 5

Cl
ie

nt

SE
TC

O
N

TA
CT

G
ET

CO
N

TA
CT

SE
TC

A
LE

N
D

A
R

G
ET

CA
LE

N
D

A
R

Context components

0
100
200
300
400
500
600
700
800

Re
sp

on
se

 ti
m

e (
m

s)

SETCONTACT
GETCONTACT
SETCALENDAR

GETCALENDAR
Client

0

100

200

300

400

500

600

700

800

900

1000

Re
sp

on
se

 ti
m

e (
m

s)

N
um

be
r 2

N
um

be
r 3

N
um

be
r 4

N
um

be
r 5

N
um

be
r 1

Number of tests

Figure 14: The evaluation results for the Android remote case.

words, there is no bottleneck in any of the test cases. The
response time is lower than 0.5 seconds and the throughput
is about 20 TPS at the highest performance rate. Therefore,
our platform shows good performance in terms of providing
a context collaboration service.

The same performance evaluation was carried out on
the Galaxy S (1 GHz Single Core and 512MB RAM). The
Galaxy S has lower CPU power and memory size than the
S2 does (1 GHz Dual Core and 1GB RAM). Even though
the evaluation result is similar to that of S2 in the case of 5
and 10 TPS, the response time becomes very large for 15 and
20 TPS, and the execution time is delayed due to accumulated
requests. For the 20 TPS evaluation result, the response
time increases up to 2000ms and the throughput almost
approaches 0.The lower resources of the Galaxy S device lead
to execution time increases and to decreases in throughput.

Number 1
Number 2
Number 3

Number 4
Number 5

Cl
ie

nt

SE
TC

O
N

TA
CT

G
ET

CO
N

TA
CT

SE
TC

A
LE

N
D

A
R

G
ET

CA
LE

N
D

A
R

Context components

0
50

100
150
200
250
300
350
400

Re
sp

on
se

 ti
m

e (
m

s)

SETCONTACT
GETCONTACT
SETCALENDAR

GETCALENDAR
Client

N
um

be
r 2

N
um

be
r 3

N
um

be
r 4

N
um

be
r 5

N
um

be
r 1

Number of tests

0

100

200

300

400

500

600

700

Re
sp

on
se

 ti
m

e (
m

s)

Figure 15: The evaluation results for the iOS remote case.

7. Conclusion

Most users expect that smartphones have the potential
for growth and that they will be continuously improved.
However, researchers still have not made full use of the useful
context information on smartphones. Our research focused
on the next innovatory stage for smartphones and M2M
technology. In this paper, we have presented a new mobile
M2M platform that provides intelligent functions such as
instant orchestration, context components, and an interactive
communication interface and which works based on the con-
text information of mobile devices. In addition, the platform
introduces an innovative concept named “context collabora-
tion” that enables smartphones to exchange mutual mobile
device context informationwith each other. In order to realize
context collaboration, we have designed instant orchestra-
tion by assembling prebuilt context components, external
APIs, and even other composite components. The interactive

14 Mobile Information Systems

LoadUI

Eclipse DDMS

Samsung

Galaxy S

Samsung

Galaxy S2

Wireless

router

Loads generated by the LoadUI are sent to smartphones
Performance is measured

Monitors logging information
of smartphones

Figure 16: The performance evaluation environment.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 181
(s)

0

50

100

150

200

250

300

350

400

450

Re
sp

on
se

 ti
m

e (
m

s)

5TPS
10TPS

15TPS
20TPS

5TPS
10TPS

15TPS
20TPS

0
2
4
6
8

10
12
14
16
18
20

Th
ro

ug
hp

ut
 (n

um
be

r o
f t

ra
ns

ac
tio

ns
)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 191
(s)

Figure 17: The performance test results for Samsung Galaxy S2.

Mobile Information Systems 15

5TPS
10TPS

15TPS
20TPS

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 191
(s)

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (n

um
be

r o
f t

ra
ns

ac
tio

ns
)

5TPS
10TPS

15TPS
20TPS

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 191
(s)

0

500

1000

1500

2000

2500

Re
sp

on
se

 ti
m

e (
m

s)

Figure 18: The performance test results for Samsung Galaxy S.

communication interface provided by our platform supports
the exchange of messages heterogeneously among various
devices such as a smartphone, PC, and workstation via open
APIs such as SOAP and HTTP (REST). The platform can
make up a number of composite components, but we have
shown two composite components for evaluation purposes.
In addition, we have shown the results of the performance
evaluation for two cases on two Samsung Galaxy S2 devices
and one iPhone 4, respectively, by measuring the response
time. Furthermore, we have evaluated the performance capa-
bility of composite case implementation via an automatic
load-test solution on Samsung Galaxy S and S2. We believe
that our platform will open up a new and innovative way for-
ward for enhanced mobile context-aware M2Mmiddleware.

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

This research was supported by Korea University and the
Brain Korea 21 Plus Project in 2016.

References

[1] A. K. Dey, “Understanding and using context,” Personal and
Ubiquitous Computing, vol. 5, no. 1, pp. 4–7, 2001.

[2] E. Pulier andH.Tylor,Understanding Enterprise SOA,Manning,
Greenwich, Conn, USA, 2005.

[3] A.K.Dey,G.D.Abowd, andD. Salber, “A conceptual framework
and a toolkit for supporting the rapid prototyping of context-
aware applications,” Human-Computer Interaction, vol. 16, no.
2–4, pp. 97–166, 2001.

[4] P. Korpipää, J. Mäntyjärvi, J. Kela, H. Keränen, and E.-J.
Malm, “Managing context information inmobile devices,” IEEE
Pervasive Computing, vol. 2, no. 3, pp. 42–51, 2003.

[5] T. Gu, X. H.Wang, H. K. Pung, andD.Q. Zhang, “Amiddleware
for building context-aware mobile services,” in Proceedings of
the IEEE Vehicular Technology Conference, Milan, Italy, May
2004.

[6] O.Davidyuk, J. Riekki, V.-M. Rautio, and J. Sun, “Context-aware
middleware formobilemultimedia applications,” in Proceedings
of the 3rd International Conference on Mobile and Ubiquitous
Multimedia (MUM ’04), pp. 213–220, ACM, College Park, Md,
USA, October 2004.

[7] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen, “Con-
textPhone: a prototyping platform for context-aware mobile
applications,” IEEE Pervasive Computing, vol. 4, no. 2, pp. 51–59,
2005.

[8] J. Chon and H. Cha, “LifeMap: a smartphone-based context
provider for location-based services,” IEEE Pervasive Comput-
ing, vol. 10, no. 2, pp. 58–67, 2011.

[9] L.M. Daniele, E. Silva, L. F. Pires, andM. van Sinderen, “A SOA-
based platform-specific framework for context-aware mobile
applications,” in Enterprise Interoperability, vol. 38 of Lecture
Notes in Business Information Processing, pp. 25–37, Springer,
Berlin, Germany, 2009.

[10] A. Ennai and S. Bose, “MobileSOA: a service oriented web 2.0
framework for context-aware, lightweight and flexible mobile
applications,” in Proceedings of the 12th Enterprise Distributed
Object Computing Conference Workshops (EDOCW ’08), pp.
345–352, Munich, Germany, September 2008.

[11] Q. Z. Sheng, S. Pohlenz, J. Yu, H. S. Wong, A. H. H. Ngu,
and Z. Maamar, “ContextServ: a platform for rapid and flexible
development of context-aware web services,” in Proceedings of
the 31st International Conference on Software Engineering (ICSE
’09), pp. 619–622, IEEE, British Columbia, Canada, May 2009.

[12] B. van Wissen, N. Palmer, R. Kemp, T. Kielmann, and H.
Bal, “ContextDroid: an expression-based context framework
for Android,” in Proceedings of the International Workshop on
Sensing for App Phones (PhoneSense ’10), Zürich, Switzerland,
November 2010.

[13] A. I. Wang, B. Wu, and S. K. Bakken, “CAMF: context-
awaremachine learning framework forAndroid,” inProceedings
of the International Conference on Software Engineering and
Applications (SEA ’10), Marina del Rey, Calif, USA, November
2010.

[14] A. K. Dey and G. D. Abowd, “Towards a better understanding
of context and context-awareness,” in Proceedings of the CHI

16 Mobile Information Systems

Workshop on “The What, Who, Where, When, Why and How of
Context-Awareness”, April 2000.

[15] B. M. Michelson, Event-Driven Architecture Overview: Event-
Driven SOA Is Just Part of the EDA Story, Patricia Seybold
Group, Boston, Mass, USA, 2006.

[16] B. Sriraman and R. Radhakrishnan, Event Driven Architecture
Augmenting Service Oriented Architectures, Sun Microsystems,
Santa Clara, Calif, USA, 2005.

[17] D. A. Chappell, Enterprise Service Bus, O’Reilly Media,
Sebastopol, Calif, USA, 2004.

[18] E. A. Marks and M. Bell, Service Oriented Architecture, John
Wiley & Sons, New Jersey, NJ, USA, 2006.

[19] A. Alves, A. Arkin, S. Askary, C. Barreto et al., April 2007, http://
docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

[20] C.-H. Im and C.-S. Jeong, “MCSC: mobile collaborative service
cloud using instant adaptive orchestration and mashup,” Inter-
national Journal of Software Engineering and Its Applications,
vol. 6, no. 4, pp. 265–272, 2012.

[21] R. Meierm, Professional Android 4 Application Development,
John Wiley & Sons, New York, NY, USA, 2012.

[22] G. Milette and A. Stroud, Professional Android Sensor Program-
ming, John Wiley & Sons, 2012.

[23] B. Kurniawan and P. Deck, How Tomcat Works: A Guide to
Developing Your Own Java Servlet Container, Boyd Printing
Company, 2004.

[24] D. Mark, J. Nutting, J. LaMarche, and F. Olsson, Beginning iOS6
Development, Apress, New York, NY, USA, 2013.

[25] P. Clements, F. Bachmann, L. Bass et al., Documenting Software
Architectures, Views and Beyond, Addison Wesley, Boston,
Mass, USA, 2002.

[26] LoadUI, http://www.loadui.org.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

