Hindawi Publishing Corporation
Scientific Programming

Volume 2016, Article ID 7241928, 13 pages
http://dx.doi.org/10.1155/2016/7241928

Research Article

Hindawi

Feedback-Based Resource Allocation in

MapReduce-Based Systems

Bunjamin Memishi,' Maria S. Pérez,' and Gabriel Antoniu®

'OEG, ETS de Ingenieros Informaticos, Universidad Politécnica de Madrid, Campus de Montegancedo, s/n Boadilla del Monte,

28660 Madrid, Spain

’Inria Rennes-Bretagne Atlantique Research Centre, Campus Universitaire de Beaulieu, Rennes, 35042 Brittany, France

Correspondence should be addressed to Bunjamin Memishi; bmemishi@fi.upm.es

Received 14 January 2016; Accepted 28 March 2016

Academic Editor: Zhihui Du

Copyright © 2016 Bunjamin Memishi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Containers are considered an optimized fine-grain alternative to virtual machines in cloud-based systems. Some of the approaches
which have adopted the use of containers are the MapReduce frameworks. This paper makes an analysis of the use of containers in
MapReduce-based systems, concluding that the resource utilization of these systems in terms of containers is suboptimal. In order
to solve this, the paper describes AdaptCont, a proposal for optimizing the containers allocation in MapReduce systems. AdaptCont
is based on the foundations of feedback systems. Two different selection approaches, Dynamic AdaptCont and Pool AdaptCont,
are defined. Whereas Dynamic AdaptCont calculates the exact amount of resources per each container, Pool AdaptCont chooses a
predefined container from a pool of available configurations. AdaptCont is evaluated for a particular case, the application master
container of Hadoop YARN. As we can see in the evaluation, AdaptCont behaves much better than the default resource allocation

mechanism of Hadoop YARN.

1. Introduction

One of the most relevant features of cloud is virtualization.
Many cloud infrastructures, such as Amazon EC2, offer
virtual machines (VMs) to their clients with the aim of
providing an isolated environment for running their pro-
cesses. MapReduce systems [1] are also important cloud
frameworks that can benefit from the power of virtualization.
Nevertheless, VMs are extremely complex and heavyweight,
since they are intended to emulate a complete computer
system. This capability is not needed in MapReduce sys-
tems, since they only have to isolate the map and reduce
processes, among other daemons. For this reason, con-
tainers, a much more lightweight virtualization abstraction,
are more appropriate. Containers support the virtualiza-
tion of a single application or process, and this is enough
for MapReduce systems. Due to their nature, mainly by
sharing a unique operating system kernel in a host, and
being infrastructure independent, containers can start and

terminate faster, which makes the container virtualization
very efficient.

A container represents a simple unit of a box-like packed
collection (or encapsulation) of resources, placed on a single
node of a cluster. Whereas it shares many similarities with
a VM, it also differs in some essential aspects. First, the
container can represent a subset of a VM; conceptually,
the VM could also be subset of a large container, but the
practice suggests that it is better to avoid this scenario.
The virtualization level is another crucial difference. VMs
are designed to emulate virtual hardware through a full
operating system and its proper additional add-ons, at the
expense of more overhead. On the other hand, containers
can easily use and share the host operating system, because
they are envisioned to run a single application or a single
process. Similarities between a container and VM are strongly
linked in the manner of how they use resources. As in
any VM, the main resources of a container are the main
memory (RAM) and the computing processing unit (CPU).

The data storage and the data bandwidth are left in a second
place.

Due to the less overhead of containers, a considerable
number of cloud solutions, not only MapReduce-based
clouds, are using currently these abstractions as resource
allocation facility. Indeed, many experts are seeing containers
as a natural replacement for VMs in order to allocate
resources efficiently, although they are far from providing
all the features needed for virtualizing operating systems or
kernels. However, the coexistence between both abstractions,
containers and VMs, is not only a feasible future but indeed
now a reality.

According to our analysis made in Hadoop YARN [2],
its containers allocation is not efficient. The current form of
resource allocation at container level in Hadoop YARN makes
it impossible to enforce a higher level of cloud elasticity.
Elasticity can be defined as the degree to which a cloud
infrastructure is capable of adapting its capacity to different
workloads over time [3]. Usually, the number of containers
allocated is bigger than needed, decreasing the performance
of the system. However, occasionally, containers do not have
sufficient resources for addressing the request requirements.
This could lead to unreliable situations, jeopardizing the
correct working of the applications. For the sake of simplicity,
we only consider the main computing resources, the main
memory (RAM), and the computing processing unit (CPU).

We present a novel approach for optimizing the resource
allocation at the container level in MapReduce systems. This
approach, called AdaptCont, is based on feedback systems
[4], due to its dynamism and adaptation capabilities. When
a user submits a request, this framework is able to choose
the amount of resources needed, depending on several
parameters, such as the real-time request input, the number
of requests, the number of users, and the dynamic constraints
of the system infrastructure, such as the set of resources avail-
able. The dynamic reaction behind the framework is achieved
thanks to the real-time input provided from each user input
and the dynamic constraints of the system infrastructure. We
define two different selection approaches: Dynamic Adapt-
Cont and Pool AdaptCont. Whereas Dynamic AdaptCont
calculates the exact amount of resources per each container,
Pool AdaptCont chooses a predefined container from a pool
of available configurations.

In order to validate our approach, we use AdaptCont for
a particular case study on a particular MapReduce system,
the Hadoop YARN. We have chosen the application master of
Hadoop YARN instead of the YARN workers, because of the
importance of this daemon and because it involves the most
complex use of containers. The application master container
is required in every application. Additionally, the master
orchestrates its proper job, but its reliability can jeopardize
the work of the job workers. On the other hand, a particular
worker usually does not have impact on the reliability of the
overall job, although it may contribute to the delay of the
completion time. The experiments show that our approach
brings about substantial benefits compared to the default
mechanism of YARN, in terms of use of RAM and CPU. Our
evaluation shows improvements in the use of these resources,
which range from 15% to 75%.

Scientific Programming

In summary, this paper has the following main contribu-
tions:

(1) Definition of a general-purpose framework called
AdaptCont, for the resource allocation at the con-
tainer level in MapReduce systems.

(2) Instantiation of AdaptCont for a particular case study
on Hadoop YARN, that is, the application master
container.

(3) Evaluation of AdaptCont and comparison with the
default behavior of Hadoop YARN.

The rest of the paper is organized as follows. In Section 2,
we introduce AdaptCont as a general framework based
on feedback systems for allocating container resources. We
introduce a case study of the framework in Section 3. We
evaluate AdaptCont in Section 4. In Section 5, we discuss the
related work. Finally, we summarize the main contributions
and outline the future work in Section 6.

2. AdaptCont Framework

According to [4], feedback systems refer to two or more
dynamical systems, which are interconnected in such a way
that each system affects the behavior of others. Feedback
systems may be open or closed. Assuming a feedback system
F, composed of two systems A and B, F is closed if their
components form a cycle, with the output of system A
being the input of system B and the output of system B the
input of system A. On the contrary, F is open when the
interconnection between systems B and A is broken.

Feedback systems are based on a basic principle: correct-
ing actions should always be performed on the difference
between the desired and the actual performance. Feedback
allows us to (i) provide robustness to the systems, (ii) modify
the dynamics of a system by means of these correcting
actions, and (iii) provide a higher level of automation. When
a feedback system is not properly designed, a well known
drawback is the possibility of instability.

An example of a dynamic system that can benefit from
the feedback theory nowadays is a production cloud [5].
In this scenario, users, applications, and infrastructure are
clearly interconnected and the behaviors of any of these
systems influence each other. Our approach, AdaptCont, is a
feedback system, whose main goal is to optimize the resource
allocation at the container level in clouds and specifically in
MapReduce-based systems.

Before designing the feedback system, it is necessary to
define the features of a cloud:

(i) A cloud has a limited set of nodes n;,n,, ..., n,.

(ii) Each node #»; has a limited set of containers
Gl,¢2,...,¢l

(iii) The system can receive a limited set of job requests
Jur e i

(iv) Every job request has its workload input. These jobs
are part of applications.

(v) The same workload can be used as an input for
different applications.

Scientific Programming

submitRequest() Input

generation

Constraint
filtering

allocateResources()
Decision-making

FIGURE 1: A generalized framework for self-adaptive containers, based on the feedback theory.

(vi) Applications could divide a large workload into small
input partitions called splits, each split being a work-
load of a particular container.

(vii) Depending on the cluster size and scheduler limita-
tions, simultaneous containers could run in single or
multiple sequential groups called waves.

(viii) By default, all the containers should finish before the
application submits the final output to the user.

(ix) Applications may introduce different job completion
time, though under the same user, input, and allo-
cated resources.

In a dynamic cloud, these parameters may change in real
time. Detecting these changes is strongly dependent on the
monitoring system, which should be particularly focused on
the infrastructure [6].

At a generic level, we can follow a feedback-based
approach based on three stages: input generation, constraint
filtering, and decision-making. The general pattern is shown
in Figurel. This approach is closed. In real time, the
input generation module could receive several constraints in
sequence. After generating the initial parameters (by taking
into account the initial constraints), an additional follow-up
constraint may require another parameters calculation before
being sent to the decision-making module. Consequently,
the number of runs of the input generation module is
proportional to the modifications (constraints) identified
from the system.

2.1. Input Generation. The input generation module of
AdaptCont collects or generates the required parameters for
making decisions about efficient resource allocation. These
parameters are as follows:

(i) The input workload size.
(ii) The input split size enforced by the application.

(iii) The total number of available containers per each
user.

(iv) The wave size in which these containers may be run.
(v) The constraints introduced by users.

Some of these parameters are collected directly from the
application. For instance, the input workload size comes in
every job request. Other parameters are more complex to be
generated. For instance, the number of waves w depends on
the number of input splits n, and the number of available
containers per user 7., being calculated as w = n,/n,.

2.2. Constraint Filtering. This stage is needed because clouds
have a limited number of costly resources. Constraints may
be imposed by the infrastructure, application, and/or users.

Infrastructure constraints are those constraints related to
the limitation of the cloud provider, since not always the
number of resources is enough for fulfilling the resource
requests of all the applications and users.

Some constraints are enforced by applications. For in-
stance, some applications require a certain type of sequential
container. This is the case of MapReduce systems, where, by
default, containers of the first phase (map) need to finish
before the containers of the second phase (reduce) start [7, 8].

Finally, other constraints are defined by users. For
instance, some users have a limited capability for buying
resources.

2.3. Decision-Making. Based on the parameters coming from
the previous modules, the decision-making module outputs
the final resource allocation. In particular, this module
decides the minimum recommended container memory
cpam and CPU power ccpyy per every container. This decision
depends on the particular problem addressed by these con-
tainers.

Once this module has decided these values for a specific
application of a user, the rest of the process is automatic, since
all the containers of an application are equal. This process has
to be called for different applications or different users.

2.4. Predefined Containers. A possible improvement of
AdaptCont is enabling the use of predefined containers with
different configurations (e.g., small, medium, and large). This
means that a cloud has a pool of static containers that can
be used for different user request. In this way, it will not be
necessary to trigger a new container, but a predefined one
ready to be used. This reduces the overhead of the resource
allocation process during the job submission. This feature
should be part of the decision-making module.

How can the framework define this pool of containers?
First, it should be able to identify the typical user requests in
the system. These requests may be evaluated from (i) previous
(stored) monitoring values or from (ii) other monitoring
variables measured at the same time, according to [9].

What happens if the container does not have the exact
configuration we need? In this case, the decision-making
module establishes a threshold. If the difference between the
required and existing configurations is below this threshold,

client: Client system: ResourceManager
|
|

Scientific Programming

container: Master container: Task’

initMaster()

requestResources()

allocateResources

]
|
submitJob() |
|
|
|
|
|
|
|
|
7777777777777777777 |
|
monitor()
finish() I
finishJob() ‘
|
|
terminateMaster !
deliverResults |
777777777777777 | |
| |
| |
| |
| |
| |
| |

FIGURE 2: Job flow messages in Hadoop YARN: a sequence diagram.

the system uses the already existing container. Otherwise, the
system triggers a new container.

3. AdaptCont Applied to YARN

We have chosen as a case of study the analysis of a relevant
type of a container in a specific kind of cloud systems, that
is, MapReduce-based clouds. Namely, the chosen container
is the application master in the next-generation MapReduce
system called YARN [2].

3.1. Background. YARN constitutes the new version of
Apache Hadoop. This new implementation was built with
the aim of solving some of the problems shown by the old
Hadoop version. Basically, YARN is a resource management
platform that, unlike the former Hadoop release, provides
greater scalability and higher efficiency and enables different
frameworks to efficiently share a cluster. YARN offers, among
others, MapReduce capabilities.

The basicidea behind YARN is the separation between the
two main operations of the classic Hadoop master, resource
management and job scheduling/monitoring, into separate
entities or daemons. The resource manager consists of two
main components: the scheduler and the application manager.
While the scheduler’s duty is resource allocation, the applica-
tion manager accepts job submissions and initiates the first
job container for the application master. After this, the job is
managed by the application master, which starts negotiating
resources with the resource manager and collaborates with
the node managers to run and monitor its tasks. Finally,
it informs the resource manager that has been completed
and releases its container. The resource manager delivers the
results to the client. A simple sequence of these steps is given
in Figure 2.

For each job submission, the application master configu-
ration is static and does not change for different scenarios.

According to the state-of-the-art literature [10-14], most
large-scale MapReduce clusters run small jobs. As we will
show in Section 4, even the smallest resource configuration
of the application master exceeds the requirements of these
workloads. This implies a waste of resources, which could
be alleviated if the configuration is adapted to the workload
size and the infrastructure resources. Moreover, some big
workloads could fail if the container size is not enough
for managing them. At large-scale level, this would have a
higher impact. Therefore, our goal is to choose an appropriate
container for the application master.

3.2. Design. In order to optimize containers for the applica-
tion master, we will follow the same pattern of the general
framework, that is, AdaptCont.

The input generation module divides the workload input
size into splits. The YARN scheduler provides containers to
users, according to the number of available containers of
the infrastructure each instant of time. As we mentioned
above, the input generation module calculates the number
of waves from the number of input splits and the number
of available containers per user. Figure 3 shows how the
application master manages these waves.

Many constraints can be raised from the scheduler. An
example of this is the phase priority. It is well known that
the map phase input is by default bigger than or equal to the
reduce phase input [15]. This is one of the reasons why the
number of mappers is higher than the number of reducers.
Due to this, as a reasonable constraint, the constraint filtering
module prioritizes the number of mappers with regard to the
number of reducers.

Decision-making module considers mainly two param-
eters, total workload and wave sizes. Contrary to what
it may seem at first sight, the type of application does
not affect the resource allocation decision of our use case.
Some applications could have more memory, CPU, or I/O

Scientific Programming

Container,

Containers

Application master

Memory

Container,

Master

Containers

Container;

Container,, Container,,

Wave 1

Wave 2

Wave m

Workers

Job

FIGURE 3: Workers containers monitored in waves by the application master container.

requirements, influencing the number and types of needed
containers. However, this would only determine the size of
the worker containers, and, in this case study, our scope
is focused only on the master containers, which contribute
largely to the reliability of the application executions.

Decision-making module uses two parameters: Q and V.
The first parameter represents the minimum recommended
memory size for an application master container that man-
ages one unit wave, wy,;. Our goal is to calculate oy
from the value of Q, with ¢z, being the recommended
memory size for the application master. In the same way,
we aim to calculate ¢py as the recommended CPU power
for the application master, from ¥, which is the minimum
recommended CPU power for an application master that
manages Wy

To calculate the memory, if the actual wave w is bigger
than what could be handled by Q, that is, bigger than
Wynie» then we declare a variable A that measures this wave
magnitude: A = w/w,,;;. Now, it is easy to find ¢ 4

Q

Cram = A * Q + Stdev, Stdev € [0; E] . @
Regarding the CPU power, the formula for ¢cpy; is

v
ccpuy = A * ¥V + Stdev, Stdev € [0; E] . (2)
Figure 4 represents the AdaptCont modules, which are
executed in the context of different YARN daemons. Whereas
the input generation and the decision-making modules are

part of the application manager, the constraint filtering
module is part of the scheduler. The combination of both

daemons forms the resource manager. The resource manager
has a complete knowledge about each user through the
application manager and the available resources through the
scheduler daemon. When the application manager receives
a user request, the resource manager is informed about
the workload input. The scheduler informs the application
manager of every important modification regarding the
monitored cluster. According to this, the application manager
reacts upon the user request, by optimizing the container for
its application master.

4. Experimental Evaluation

We have performed a set of experiments to validate our
approach and compare it with YARN. These experiments have
been made by means of simulations. In order to make this
evaluation, we have followed the methodology of Section 4.1.
Results of the evaluation are described in Section 4.2. Finally,
the discussion about these results is shown in Section 4.3.

4.1. Methodology. To evaluate AdaptCont, we have consid-
ered three different schedulers and three different application
master configurations, as is shown in Table 1. Below we give
details for all of them.

Scheduler. We have taken into account three important
schedulers, already implemented in YARN:

(i) FIFO Scheduler. This was the first scheduling algo-
rithm that was implemented for MapReduce. It works
on the principle that the master has a queue of jobs,
and it simply pulls the oldest job first.

/‘\ Client

(2) Request

Input Decision-making

generation

(3) Authorize

Application manager

(1) Set constraints

(4) Allocate

Application
master

Scientific Programming

Resource man ager

Constraint
filtering

Scheduler

FIGURE 4: AdaptCont model applied to the Hadoop YARN application master.

TaBLE 1: Methodology description, taking into account different
schedulers and masters.

Scheduler Master

YARN Dynamic Pool
FIFO FIFO-YARN FIFO-Dynamic FIFO-Pool
Fair Fair-YARN Fair-Dynamic Fair-Pool

Capacity Capacity-YARN Capacity-Dynamic Capacity-Pool

FIFO: FIFO scheduler. Fair: Fair scheduler. Capacity: Capacity sched-
uler. YARN: YARN master. Dynamic: Dynamic master. Pool: Predefined
containers-based master.

(ii) Fair Scheduler. Tt assigns the same amount of
resources (containers) to all the workloads, so that on
average every job gets an equal share of containers
during its lifetime.

(iii) Capacity Scheduler. It gives different amount of
resources (containers) to different workloads. The
bigger the workload is, the more the resources are
allocated to it.

Master. To compare YARN with AdaptCont, we use the
following application master configurations:

(i) YARN Application Master (YARN). This is the default
implementation of the application master in YARN.

(ii) Dynamic Master (Dynamic AdaptCont). This master
container is adjusted in accordance with AdaptCont.
Namely, it calculates the memory and CPU, according
to the decision-making module and only after this
does it initiate the master.

(iii) Predefined Containers-Based Master (Pool Adapt-
Cont). As defined in Section 2.4, the resource man-
ager has a pool of master containers, which can be
allocated depending on the workload size. This is an
optional optimization of AdaptCont.

Workload. According to the job arrival time, we consider two
additional sets of experiments:

(i) Set-All. In this scenario, all the jobs are already in
the queue of the scheduler. We are going to combine
this scenario with all the values of Table 1, since it is
important to evaluate the approach under pressure,
that is, when the load reaches high values.

(ii) Set-Random. This is a more realistic scenario, where
jobs arrive at random times. Again, this scenario
is evaluated in combination with all the values of
Table 1, in order to simulate the behavior of a common
MapReduce cluster.

An important parameter to take into account is the
workload size. We introduce two additional scenarios:

Scientific Programming

(i) Workload-Mixed. In this case, the workload size will
be variable, ranging from 500 MB to 105 GB, taking
(1) 500 MB, (2) 3.5GB, (3) 7GB, (4) 15GB, (5) 30 GB,
(6) 45GB, (7) 60 GB, (8) 75GB, (9) 90 GB, and (10)
105 GB as workload size inputs. We have used these
boundaries, because of the average workload sizes of
important production clusters. For instance, around
90% of workload inputs in Facebook [12] are below
100 GB.

(ii) Workload-Same. In this case, every input (10 work-
loads) is the same: 10 GB. We have used this value,
since, on average, the input workloads at Yahoo and
Microsoft [12] are under 14 GB.

Therefore, we evaluate AdaptCont with the values of
Table1 and the 4 combinations from previous scenarios:
Set All-Workload Mix, Set All-Workload Same, Set Random-
Workload Mix, and Set Random-Workload Same.

Constraints. In MapReduce, the application master has to
manage both map and reduce workers. The map phase input
is always bigger than or equal to the reduce phase input [15].
This is one of the reasons why the number of mappers is
bigger than the number of reducers. On the other hand, both
phases are run sequentially. Thus, we can assume as constraint
that the master container resources depend on the number of
mappers and not on the number of reducers.

In order to simulate a realistic scenario, we have intro-
duced in our experiments a partition failure that will impact
around 10% of the cluster size. We assume that this failure
appears in the fifth iteration (wave). This constraint forces
AdaptCont to react in real time and adapt itself to a new
execution environment, having to make decisions about
future resource allocations.

Setup. In our experiments, 250 containers are used for worker
tasks (mappers and reducers). This number of containers is
sufficient to evaluate the approach, considering 25 containers
per workload. We consider that every map and reduce
container is the same and can execute a particular portion
(split) of the workload. Each task runs on a container that
has 1024 MB RAM and 1 virtual core. According to [16-18], a
physical CPU core is capable of giving optimal performance
of the container, if it simultaneously processes 2 containers at
most. Therefore, we take 1 CPU core as equivalent to 2 virtual
cores.

Our goal is to evaluate the resource utilization of the
application masters, in terms of CPU and RAM. To get this,
we consider an isolated set of resources oriented only to
application masters. In this way, it will be easier to measure
the impact of AdaptCont on saving resources.

4.2. Results. In this section, we compare the CPU and
memory efficiency of YARN versus Dynamic AdaptCont and
Pool AdaptCont. Before that, we analyze the wave behavior of
the 10 workloads.

Wave Behavior. Figure 5 represents the resource allocation
(maximum number of containers or wave sizes) for the
combination we have mentioned before: Set All-Workload

Mix, Set All-Workload Same, Set Random-Workload Mix, and
Set Random-Workload Same.

Figure 5(a) shows different workload sizes with the same
arrival time (already in the scheduler queue). The experi-
ments demonstrate that a maximum wave is dependent on
the workload size and the scheduler. Regarding the FIFO
scheduler, since the queue order is formed by the smallest
workload first, for these small workloads, the maximum
wave is represented by the needed containers. For instance,
the first workload needs only 8 containers. This number of
containers is calculated dividing the workload size by the
split size (64 MB). These 8 containers are provided by the
infrastructure, and this is the case of the second workload
(56 containers) and the third workload (112 containers).
For the fourth workload, the infrastructure is not capable
of providing the needed containers, which only has 74
containers in the first wave, that is, 250 — (8 + 56 + 112).
The fourth workload needs 240 containers in total. Thus, the
remaining containers (240 —74 = 166) will be provided in the
next wave.

In the second wave, since the first three workloads have
finished, the scheduler will provide 166 containers to the
fourth workload and the rest (250 — 166 = 84) to the fifth
workload. This process is repeated until all the workloads
are given the necessary containers and every job has termi-
nated. As we can notice, the maximum wave for the latest
workloads reaches higher amount of allocated containers,
since the workload is bigger, and in most of the cases the
scheduler is busy with a unique job. Although initially the
infrastructure has 250 containers, from the fifth wave, there
is a slight decrease (225), due to the partition failure (10%
of the resources). This only affects the workloads not having
finished before this wave (in this case, the fifth).

The main drawback of the FIFO scheduler is that it may
delay the completion time of the smallest jobs, especially if
they arrive late to the queue. In general, this scheduler is not
fair in the resource allocation and depends exclusively on the
arrival time.

Regarding the fair scheduler, this scheduler allocates
the same number of containers to all the workloads and
consequently to all the users, that is, 250/10 = 25. The
partition failure forces the fair scheduler to decrease the
number of containers to 22 (225/10) from the fifth wave.

With regard to the capacity scheduler, this scheduler
takes advantage of available resources once some jobs have
finished. At the beginning, it behaves like the fair scheduler.
However, when some small jobs have terminated, the avail-
able resources can be reallocated to the rest of the workloads.
This is the reason why the biggest workloads in the queue get
a higher number of containers. As in the previous case, the
partition failure also implies a slight decrease in the number
of containers from the fifth wave.

Figure 5(b) represents the same mixed workloads but
when they arrive randomly to the scheduler queue. Clearly,
the main differences are noted in the FIFO scheduler, because
the arrival time of the workloads is different and now one of
the biggest workloads (9) appears in first place.

The other subplots of Figure 5 show the experimental
results of the same workloads with an input of 10 GB. This

8
300 T T T T T T T T
250 | Joo b .
A T S S S T |
200 F -
5 : : ¥ : : : . . //
B OIS0 [oo
z e
100 - % R R R RRR R @ :
o P O S
O o s L O O R Ao
Nt G G A G
1 2 3 4 5 6 7 8 9 10
Workload
- FIFO -&- Capacity
-©- Fair
(a) Set All-Workload Mix
300
250
200 |
N SN SN N
§150-\ . ; Sy CeN . AT |
\ / SN ;K\ -
Lo * oK
100 ¥ ‘
SOF- v m
000 --0--0---0--0--0--0--
0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Workload
- FIFO -&- Capacity
-©- Fair

(c) Set All-Workload Same

Scientific Programming

300
250 : p
Ak ke T T
200F
o : /
/ !
<§ 150 ; y
wl A o
50 /5%/ NGy .
4O TTO G- 0--0---0---0- -4
O 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Workload
- FIFO -&- Capacity
-O©- Fair
(b) Set Random-Workload Mix
300
250
200
§ 1503 =66 -%- -9
100
BO e
P--0---O--O--0O---O - --0O---O---¢
0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Workload
- FIFO -&- Capacity
-O©- Fair

(d) Set Random-Workload Same

FIGURE 5: Wave behavior: wave size according to the scheduler and the workload type.

input requires a static number of containers (in this case, 160
containers).

In Figure 5(c), all the jobs have arrived to the queue.
In this scenario, the FIFO allocation oscillates between the
maximum wave of 160 containers and the smallest wave of
90 containers (250 — 160). This oscillation is caused by the
allocation of resources to the previous workload, which does
not leave enough resources for the next one, and then the
cycle is repeated again.

In this case, the fair and capacity schedulers have the same
behavior, since all the workloads are equal.

Figure 5(d) shows the number of containers for the same
workload with random arrival. The difference of this scenario
versus the scenario shown in Figure 5(c) is twofold:

(1) The arrival of these jobs is consecutive. In every wave,
ajob arrives. Due to this, the FIFO scheduler is forced
to wait after each round for a new workload, even
though at every round there are available resources

(250 — 160 = 90), not allocated to any job. Thus,
the FIFO scheduler always allocates 160 containers in
every wave.

(2) Whereas, in the previous scenario, the fair and capac-
ity schedulers behave the same, in this case, the capac-
ity scheduler acts similarly to the FIFO scheduler. This
is because the capacity scheduler adapts its decisions
to the number of available resources, which is enough
in every moment for addressing the requirements of
the jobs (160 containers). Thus, the capacity scheduler
achieves a better completion time, compared to the
fair scheduler.

According to this analysis, we can conclude that the
wave behavior and size are decisive in the application master
configuration.

Memory Usage. Figure 6 shows for the 4 scenarios the total
memory used by the three approaches: YARN, Dynamic
AdaptCont, and Pool AdaptCont.

Scientific Programming

12000 T T T

10000

x®©
(=3
(=3
(=}

6000

Memory (MB)

4000 +

2000

FIFO Fair
Scheduler

|:| Pool

Capacity

B vArRN
|:| Dynamic
(a) Set All-Workload Mix
12000 T T T

10000 |

8000

6000

Memory (MB)

4000

2000

FIFO Fair
Scheduler

|:| Pool

Capacity

Bl vArN
I:l Dynamic

(c) Set All-Workload Same

9
12000
10000
= 8000 -
2
>
g 6000 |
=
=
4000
2000 +
0
FIFO Fair Capacity
Scheduler
Bl vARN [_] Pool
|:| Dynamic
(b) Set Random-Workload Mix
12000 T T T
10000 1
= 8000} .
2
-
g 6000 - .
=
L
=
4000 J
2000 J
0
FIFO Fair Capacity
Scheduler
Bl YARN] Pool

I:l Dynamic

(d) Set Random-Workload Same

FIGURE 6: Memory usage and master type versus scheduler.

In the case of YARN, we have deployed the default
configuration, choosing the minimum memory allocation for
the application master (1024 MB).

The Dynamic AdaptCont-based application master mem-
ory is dependent on the waves size. If the wave size is
under 100, the decision-making module allocates a minimum
recommended memory of 256 MB. For each increase of 100
in the wave size, the memory is doubled. The reasons behind
this are as follows:

(1) A normal Hadoop task does not need more than
200 MB [12], and this is even clearer in the case of the
application master.

(2) As most of the jobs are small [12-14], consequently,
the maximum number of mappers is also small
and, therefore, the application master requires less
memory.

(3) The minimum recommended memory by Horton-
works [17] is 256 MB.

The Pool AdaptCont-based application master works in a
different way, constituting an alternative between the YARN
master and the Dynamic master. This application master has
three default configurations: small, medium, and big. The
small master has 512 MB of memory, for all small jobs that
need a maximum of 250 containers. The medium master
has 1024 MB, as it is the default minimum YARN setting.
In order to deal with big waves, the big configuration has
2048 MB.

As we can see in Figure 6, YARN is outperformed by
both AdaptCont approaches. YARN always consumes 10 GB,
not depending on the different use cases. For instance,
in Figure 6(a), Dynamic AdaptCont has memory usage of
6144 MB versus 10 GB in YARN, achieving 40% memory

10

improvement. In this case, Pool AdaptCont only uses
5120 MB, that is, 50% improvement compared to YARN. This
difference between Dynamic AdaptCont and Pool AdaptCont
for the FIFO scheduler is due to the way of providing memory
in both approaches. If the workload needs 250 containers,
Dynamic AdaptCont provides 256[(250/100)] MB, that is,
256 * 3 = 768 MB. In the same scenario, Pool AdaptCont
provides 512 MB, corresponding to the small size configura-
tion.

In general, Dynamic AdaptCont is the best approach
in terms of memory usage, except in the case of the FIFO
scheduler, where the performance is close to and slightly
worse than the performance of Pool AdaptCont. In the
case of fair and capacity schedulers, Dynamic AdaptCont is
the best alternative, achieving on average 75% and 67.5%
improvement compared to YARN, versus 50% improvement
provided by Pool AdaptCont.

CPU Usage. The CPU usage is another relevant parameter to
take into account. In order to measure it, we have correlated
memory and CPU, considering that we need higher CPU
power to process a larger amount of data, stored in memory.

In YARN, you can assign a value ranging from 1 up to 32
of virtual cores for the application master. This is also the pos-
sible interval allocation for every other container. According
to [16], 32 is the maximum value. In our experiments, we use
the minimum value for the YARN master (1 virtual core for
its container) per 1024 MB.

For the Dynamic AdaptCont, the decision-making mod-
ule increases the number of virtual cores after two successive
increments of 256 MB of memory. This decision is based
on the abovementioned methodology, which states that a
physical CPU core is capable of giving optimal performance
of the container, if it simultaneously processes 2 containers
at most [16-18]. To be conservative, we address the smallest
container, that is, a container of 256 MB. For instance, if the
memory usage is 768 MB, the chosen number of virtual cores
is 2.

The same strategy is valid for the Pool AdaptCont, assum-
ing 1 virtual core for small containers, 2 virtual cores for
medium containers, and 3 virtual cores for large containers.

Due to this policy, the CPU does not change so abruptly
as the memory for Dynamic and Pool AdaptCont. Thus, as is
shown in Figure 7, both approaches behave similarly, except
in the case of FIFO with Workload Mix. This was previously
justified in the memory usage evaluation. As the CPU is
proportional to the memory usage, the behavior of Dynamic
AdaptCont with FIFO for Workload Mix is again repeated in
the case of CPU.

In most of the cases, the improvement of both Dynamic
and Pool AdaptCont against YARN reaches 50%.

4.3. Discussion. In this section, we discuss what combination
of approaches and schedulers can be beneficial in common
scenarios.

As a result of the experiments, we can conclude that
YARN used by default is not appropriate for optimizing
the use of MapReduce-based clouds, due to the waste of
resources.

Scientific Programming

In the presence of heavy and known advanced workloads
(this is the usual case of scientific workloads), according to
our results, the best recommended strategy is to use Dynamic
AdaptCont combined with FIFO scheduler.

However, if we have limited resources per user, a better
choice could be Dynamic AdaptCont combined with fair
scheduler. This scheduler allocates a small set of resources to
every workload, improving the overall performance.

In a scenario where we have a mixture of large and small
workloads, the choice should be Dynamic AdaptCont com-
bined with capacity scheduler. This is due to the adaptability
of this scheduler with regard to the input workload and
available resources.

Finally, as shown in the experiments, if our focus is
on CPU and not on memory, we can decide to use Pool
AdaptCont (combined with any schedulers) instead of the
dynamic approach.

5. Related Work

As far as we know, this paper is the first contribution
that proposes a MapReduce optimization through container
management. In particular, linked to our use case, it is the first
contribution that aims to create reliable masters, by means of
the allocation of sufficient resources to their containers.

There are many contributions on MapReduce whose
goal is optimizing the framework from different viewpoints.
An automatic optimization of the MapReduce programs
has been proposed in [19]. In this work, authors provide
out-of-the-box performance for MapReduce programs that
need to be run using as input large datasets. In [20], an
optimization system called Manimal was introduced, which
analyzes MapReduce programs by applying appropriate data-
aware optimizations. The benefit of this best-effort system
is that it speeds up these programs in an autonomic way,
without human intervention. In [21], a new classifications
algorithm is introduced with the aim of improving the data
locality of mappers and the task execution time. All these
contributions differ from our contribution since they are only
software-oriented optimizations for the MapReduce pipeline,
and they do not take into account the resource allocation or
the CPU and memory efficiency.

FlexSlot [22] is an approach that resizes map slots and
changes the number of slots of Hadoop in order to accelerate
the job execution. With the same aim, DynamicMR [23] tries
to relax the slot allocation constraint between mappers and
reducers. Unlike our approach, FlexSlot is only focused on
the map stage and both FlexSlot and DynamicMR do not
consider the containers as resource allocation facility.

In [24], authors introduce MRONLINE, which is able to
configure relevant parameters of MapReduce online, by col-
lecting previous statistics and predicting the task configura-
tion in fine-grain level. Unlike MRONLINE, AdaptCont uses
a feedback-control approach that also enables its application
to single points of failure.

Cura [25] automatically creates an optimal cluster con-
figuration for MapReduce jobs, by means of the framework
profiling, reaching global resource optimization. In addition,
Cura introduces a secure instant VM allocation to reduce

Scientific Programming

12 T T T
10 -
8 -
B
8
L 6t
=]
S
4 -
2F
0
FIFO Fair Capacity
Scheduler
Bl YARN] Pool
|:| Dynamic
(a) Set All-Workload Mix
12
10}
sl
B
S
E 6}
=)
S
4l
21
FIFO Fair Capacity
Scheduler

Bl YARN [Pool
I:l Dynamic

(c) Set All-Workload Same

1

12
10 +
8t
B
15
E 6t
=
O
4|
2L
0
FIFO Fair Capacity
Scheduler
Bl YARN] Pool
|:| Dynamic
(b) Set Random-Workload Mix
12
10
8 L
o
3
2 6
)
&
©)]
4 -
2 -
FIFO Fair Capacity
Scheduler

Bl YARN [Pool
I:l Dynamic

(d) Set Random-Workload Same

FIGURE 7: CPU usage and master type versus scheduler.

the response time for the short jobs. Finally, it applies
other resource management techniques such as cost-aware
resource provisioning, VM-aware scheduling, and online
VM reconfiguration. Overall, these techniques lead to the
enhancement of the response time and reduce the resource
cost. This proposal differs from our work, because it is mostly
concentrated in particular workloads excluding others. Fur-
thermore, it is focused on VMs management and not on
containers, as AdaptCont.

Other proposals aim to improve the reliability of the
MapReduce framework, depending on the executional envi-
ronment. The work proposed in [26] is a wider review that
includes byzantine failures in Hadoop. The main properties
upon which the UpRight library is based are safety and
eventual liveliness. The contribution of this paper is to
establish byzantine fault tolerance as a viable alternative to
crash fault tolerance for at least some cluster services rather
than any individual technique.

The work presented in [27] represents a byzantine fault-
tolerant (BFT) MapReduce runtime system that tolerates
faults that corrupt the results of computation of tasks, such as
the cases of DRAM and CPU errors/faults. The BFT MapRe-
duce follows the approach of executing each task more than
once, but in particular circumstances. This implementation
uses several mechanisms to minimize both the number of
copies of tasks executed and the time needed to execute them.
This approach has been adapted to multicloud environments
in [28].

In [29], authors propose another solution for intentional
failures called Accountable MapReduce. This proposal forces
each machine in the cluster to be responsible for its behavior,
by means of setting a group of auditors that perform an
accountability test that checks the live nodes. This is done in
real time, with the aim of detecting the malicious nodes.

In order to improve master reliability, [30] proposes to
use a clone master. All the worker nodes should report their

12

activity to this clone master. For unstable environments, some
other works [31-33] introduce dedicated nodes for the main
daemons, including the master daemon.

Unlike our approach, these contributions related to relia-
bility do not deal with the resource utilization.

6. Conclusions

The classic Apache Hadoop (MapReduce 1.0) has evolved
for a long time by means of the release of several versions.
However, the scalability limitations of Hadoop have only
been solved partially with Hadoop YARN (MapReduce 2.0).
Nevertheless, YARN does not provide an optimum solution
to resource allocation, specifically at container level, causing
both performance degradation and unreliable scenarios.

This paper proposes AdaptCont, a novel optimization
framework for resource allocation at the container level,
based on feedback systems. This approach can use two
different selection algorithms, Dynamic AdaptCont and Pool
AdaptCont. On the one hand, Dynamic AdaptCont figures
out the exact amount of resources per each container. On the
other hand, Pool AdaptCont chooses a predefined container
from a pool of available configurations. The experimental
evaluation demonstrates that AdaptCont outperforms the
default resource allocation mechanism of YARN in terms of
RAM and CPU usage, by a range of improvement from 40%
to 75% for memory usage and from 15% to 50% for CPU
utilization.

As far as we know, this is the first approach to improve the
resource utilization at container level in MapReduce systems.
In particular, we have optimized the performance of the
YARN application master. As future work, we will explore the
adaptation of AdaptCont for other containers of MapReduce
worker tasks and deploy AdaptCont on real distributed
infrastructures. We also expect to explore AdaptCont for
VMs, in particular for allocating raw VMs to different user
requests. We believe that fine-tuning a VM can be optimized,
driven by requirements coming from an intersection between
performance, reliability, and energy efficiency.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The research leading to these results has received funding
from the H2020 project Reference no. 642963 in the call
H2020-MSCA-ITN-2014.

References

[1] J. Dean, S. Ghemawat, and Google Inc, “MapReduce: simplified
data processing on large clusters,” in Proceedings of the 6th
Conference on Symposium on Operating Systems Design & Imple-
mentation (OSDI °04), USENIX Association, San Francisco,
Calif, USA, December 2004.

[2] V. K. Vavilapalli, A. C. Murthy, C. Douglas et al., “Apache
hadoop YARN: yet another resource negotiator;” in Proceedings

Scientific Programming

of the 4th Annual Symposium on Cloud Computing (SoCC ’13),
pp- 5:1-5:16, ACM, Santa Clara, Calif, USA, 2013.

[3] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud
computing: what it is, and what it is not,” in Proceedings of the
10th International Conference on Autonomic Computing (ICAC
13), pp. 23-27, USENIX, San Jose, Calif, USA, 2013.

[4] K. J. Astrom and R. M. Murray, Feedback Systems: An Intro-
duction for Scientists and Engineers, Princeton University Press,
Princeton, NJ, USA, 2008.

[5] M. Armbrust, A. Fox, R. Griffith et al., “Above the clouds: a
berkeley view of cloud computing,” Tech. Rep., University of
California, Berkeley, Calif, USA, 2009.

[6] J. Montes, A. Sanchez, B. Memishi, M. S. Pérez, and G. Antoniu,
“GMonE: a complete approach to cloud monitoring,” Future
Generation Computer Systems, vol. 29, no. 8, pp. 2026-2040,
2013.

[7] A. Verma, B. Cho, N. Zea, I. Gupta, and R. H. Campbell,
“Breaking the MapReduce stage barrier,;” Cluster Computing,
vol. 16, no. 1, pp. 191-206, 2013.

[8] T.-C.Huang, K.-C. Chu, W.-T. Lee, and Y.-S. Ho, “Adaptive com-
biner for MapReduce on cloud computing,” Cluster Computing,
vol. 17, no. 4, pp. 1231-1252, 2014.

[9] E Salfner, M. Lenk, and M. Malek, “A survey of online failure
prediction methods,” ACM Computing Surveys, vol. 42, no. 3,
article 10, 2010.

[10] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta, “Making cloud
intermediate data fault-tolerant,” in Proceedings of the Ist ACM
Symposium on Cloud Computing (SoCC ’10), pp. 181-192, ACM,
New York, NY, USA, June 2010.

[11] E Dinu and T. S. Eugene Ng, “Understanding the effects and
implications of compute node related failures in Hadoop,” in
Proceedings of the 21st ACM Symposium on High-Performance
Parallel and Distributed Computing (HPDC ’12), pp. 187-197,
Delft, The Netherlands, June 2012.

[12] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson,
and A. Rowstron, “Scale-up vs scale-out for hadoop: time to
rethink?” in Proceedings of the 4th Annual Symposium on Cloud
Computing (SOCC ’I3), pp. 20.1-20.13, ACM, New York, NY,
USA, 2013.

[13] G. Ananthanarayanan, A. Ghodsi, A. Wang et al., “PACMan:
coordinated memory caching for parallel jobs,” in Proceedings
of the 9th USENIX Conference on Networked Systems Design
and Implementation (NSDI ’12), p. 20, USENIX Association,
Berkeley, Calif, USA, 2012.

K. Elmeleegy, “Piranha: optimizing short jobs in hadoop,
Proceedings of the VLDB Endowment, vol. 6, no. 11, pp. 985-996,
August 2013.

(15] T. White, Hadoop: The Definitive Guide: Storage and Analysis at
Internet Scale, O'Reilly, 3rd edition, 2012.

[16] Apache Software Foundation, Apache Hadoop NextGen MapRe-
duce (YARN), 2015, http://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/ YARN.html.

(17] Hortonworks, Hortonworks Data Platform: Installing HDP
Manually, 2013.

[18] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S.
Shenker, and I. Stoica, “Delay scheduling: a simple technique
for achieving locality and fairness in cluster scheduling,” in
Proceedings of the 5th ACM EuroSys Conference on Computer
Systems (EuroSys ’10), pp. 265-278, ACM, Paris, France, April

2010.

(14

Scientific Programming

(19]

[20

(21]

(22]

[25]

(26]

(27]

S. Babu, “Towards automatic optimization of MapReduce
programs,” in Proceedings of the Proceedings of the Ist ACM
Symposium on Cloud Computing, pp. 137-142, ACM, New York,
NY, USA, June 2010.

E.Jahani, M. J. Cafarella, and C. Ré, “Automatic optimization for
MapReduce programs,” Proceedings of the VLDB Endowment,
vol. 4, no. 6, pp. 385-396, 2011.

Z.Tang, J. Zhou, K. Li, and R. Li, “A MapReduce task scheduling
algorithm for deadline constraints,” Cluster Computing, vol. 16,
no. 4, pp. 651-662, 2013.

Y. Guo, J. Rao, C. Jiang, and X. Zhou, “FlexSlot: moving hadoop
into the cloud with flexible slot management,” in Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’14), pp. 959-969, IEEE
Press, New Orleans, La, USA, November 2014.

S. Tang, B.-S. Lee, and B. He, “DynamicMR: a dynamic slot
allocation optimization framework for mapreduce clusters,
IEEE Transactions on Cloud Computing, vol. 2, no. 3, pp. 333—
347, 2014.

M. Li, L. Zeng, S. Meng et al, “MRONLINE: mapReduce
online performance tuning,” in Proceedings of the ACM 23rd
International Symposium on High-Performance Parallel and
Distributed Computing (HPDC ’14), pp. 165-176, New York, NY,

USA, 2014.

B. Palanisamy, A. Singh, L. Liu, and B. Langston, “Cura: a cost-
optimized model for MapReduce in a cloud,” in Proceedings of
the 27th IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’13), pp. 1275-1286, IEEE, Boston, Mass,
USA, May 2013.

A. Clement, M. Kapritsos, M. Kapritsos et al., “Upright cluster
services,” in Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles (SOSP ’09), pp. 277-290, New
York, NY, USA, 2009.

P. Costa, M. Pasin, A. Bessani, and M. Correia, “Byzantine fault-
tolerant MapReduce: faults are not just crashes,” in Proceedings
of the 3rd IEEE International Conference on Cloud Computing
Technology and Science (CLOUDCOM ’I1), pp. 17-24, IEEE
Computer Society, Washington, DC, USA, 2011.

M. Correia, P. Costa, M. Pasin, A. Bessani, F. Ramos, and P.
Verissimo, “On the feasibility of byzantine fault-tolerant mapre-
duce in clouds-of-clouds,” in Proceedings of the 31st Symposium
on Reliable Distributed Systems (SRDS ’12), pp. 448-453, IEEE,
Irvine, Calif, USA, October 2012.

Z. Xiao and Y. Xiao, “Achieving accountable MapReduce in
cloud computing,” Future Generation Computer Systems, vol. 30,
no. 1, pp. 1-13, 2014.

E Wang, J. Qiu, J. Yang, B. Dong, X. Li, and Y. Li, “Hadoop
high availability through metadata replication,” in Proceedings
of the Ist International Workshop on Cloud Data Management
(CloudDB °09), pp. 37-44, ACM, Hong Kong, November 2009.
H. Lin, X. Ma, and W.-C. Feng, “Reliable MapReduce comput-
ing on opportunistic resources,” Cluster Computing, vol. 15, no.
2, pp. 145-161, 2012.

N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi,
and C. Krintz, “See Spot Run: using spot instances for mapre-
duce workflows,” in Proceedings of the 2nd USENIX Conference
on Hot Topics in Cloud Computing (HotCloud ’10), p. 7, USENIX
Association, Berkeley, Calif, USA, 2010.

H. Liu, “Cutting mapReduce cost with spot market,” in Pro-
ceedings of the 3rd USENIX Conference on Hot Topics in Cloud
Computing (HotCloud ’11), p. 5, Berkeley, Calif, USA, 2011.

13

= _'A'. ' N - -
Advances in b ,“ . e industal Engineering
iR, ARINE - -
L& s S . Applied
. - o Computational

Intelligence and Soft
Ep/mputing—'

The Scientific ISR —
World Journal Sensor Networks

Advances in

Fuzzy

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications P eEsl

Artificial
Intelligence

Advances in
iomedical Imaging. M Artificial
‘ol Neural Systems

s

International Journal of
Computer Games 5 in
Technology oy re Engineering

Reconfigurable
Computing

Computational o
Journal of ¢ Hu;jja[)TCOrjj|3L|tey‘ \ntengence and 2 Electrical and Computer
Robotics Interaction Neuroscience Engineering

SN

