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The objective of the present study is to investigate the first-order chemical reaction and Soret and Dufour effects on an
incompressible MHD combined free and forced convection heat and mass transfer of a micropolar fluid through a porous medium
between two parallel plates. Assume that there are a periodic injection and suction at the lower and upper plates. The nonuniform
temperature and concentration of the plates are assumed to be varying periodically with time. A suitable similarity transformation
is used to reduce the governing partial differential equations into nonlinear ordinary differential equations and then solved
numerically by the quasilinearization method. The fluid flow and heat and mass transfer characteristics for various parameters
are analyzed in detail and shown in the form of graphs. It is observed that the concentration of the fluid decreases whereas the
temperature of the fluid enhances with the increasing of chemical reaction and Soret and Dufour parameters.

1. Introduction

The flow through porous boundaries has many applications
in science and technology such as water waves over a shallow
beach, mechanics of the cochlea in the human ear, aerody-
namic heating, flow of blood in the arteries, and petroleum
industry. Several authors have studied theoretically the lam-
inar flow in porous channels. Berman [1] considered the
viscous fluid and analyzed the flow characteristics when it
passed through the porous walls. Later the same problem for
different permeability was studied by Terril and Shrestha [2].
The theory of micropolar fluids was introduced by Eringen
[3] which are considered as an extension of generalized
viscous fluids with microstructure. Examples for micropolar
fluids include lubricants, colloidal suspensions, porous rocks,
aerogels, polymer blends, and microemulsions. The same
Berman problem with micropolar fluid was discussed by
Sastry and Rama Mohan Rao [4]. The flow and heat transfer
of micropolar fluid between two porous parallel plates was
analyzed by Ojjela and Naresh Kumar [5]. Srinivasacharya

et al. [6] obtained an analytical solution for the unsteady
Stokes flow of micropolar fluid between two parallel plates.
The effect of buoyancy parameter on flow and heat transfer
of micropolar fluid between two vertical parallel plates was
investigated by Maiti [7].

The study ofMHDheat andmass transfer through porous
boundaries has attracted many researchers in the recent
past due to applications in engineering and science, such as
oil exploration, boundary layer control, and MHD power
generators. The steady incompressible free convection flow
and heat transfer of an electrically conducting micropolar
fluid in a vertical channel was studied by Bhargava et al.
[8]. The laminar incompressible magnetohydrodynamic flow
and heat transfer of micropolar fluid between porous disks
was analyzed numerically by Ashraf and Wehgal [9]. Islam
et al. [10] obtained a numerical solution for an incompress-
ible unsteady magnetohydrodynamic flow through vertical
porous medium. Nadeem et al. [11] discussed the unsteady
MHD stagnation flow of a micropolar fluid through porous
media.The effects of Hall and ion slip currents onmicropolar
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fluid flow and heat and mass transfer in a porous medium
between parallel plates with chemical reaction were consid-
ered by Ojjela and Naresh Kumar [12]. The MHD heat and
mass transfer of micropolar fluid in a porous medium with
chemical reaction andHall and ion slip effects by considering
variable viscosity and thermal diffusivity were investigated by
Elgazery [13]. The mixed convection flow and heat transfer
of an electrically conducting micropolar fluid over a vertical
platewithHall and ion slip effectswas analyzed byAyano [14].

When heat and mass transfer occurs simultaneously in
a moving fluid, the energy flux caused by a concentration
gradient is termed as diffusion thermoeffect, whereas mass
fluxes can also be created by temperature gradients which
is known as a thermal diffusion effect. These effects are
studied as second-order phenomena andmay have significant
applications in areas like petrology, hydrology, and geo-
sciences.The effect of thermophoresis on an unsteady natural
convection flow and heat and mass transfer of micropolar
fluidwith Soret andDufour effects was studied byAurangzaib
et al. [15]. Srinivasacharya and RamReddy [16] considered
the problem of the steady MHD mixed convection heat and
mass transfer of micropolar fluid through non-Darcy porous
medium over a semi-infinite vertical plate with Soret and
Dufour effects. Influence of the Soret and Dufour numbers
on mixed convection flow and heat and mass transfer of
non-Newtonian fluid in a porous medium over a vertical
plate was analyzed by Mahdy [17]. Hayat and Nawaz [18]
investigated analytically the effects of the Hall and ion slip
on the mixed convection heat and mass transfer of second-
grade fluid with Soret and Dufour effects. Rani and Kim [19]
studied numerically the laminar flow of an incompressible
viscous fluid past an isothermal vertical cylinder with Soret
andDufour effects.The effects of chemical reaction and Soret
and Dufour on the mixed convection heat and mass transfer
of viscous fluid over a stretching surface in the presence of
thermal radiation were analyzed by Pal and Mondal [20].
Sharma et al. [21] studied the mixed convective flow, heat
and mass transfer of viscous fluid in a porous medium past a
radiative vertical plate with chemical reaction, and Soret and
Dufour effects.

In the field of fluid mechanics many fluid flow problems
are nonlinear boundary value problems. To solve these prob-
lems we can use a numerical technique, quasilinearization
method which is a powerful technique having second-order
convergence. Several authors (Lee and Fan [22], Hymavathi
and Shanker [23], Huang [24], Motsa et al. [25], and Ojjela
and Naresh Kumar [5, 12]) applied the quasilinearization
method to solve the nonlinear boundary layer equations.

In the present study the effects of chemical reaction on
two-dimensional mixed convection flow and heat transfer
of an electrically conducting micropolar fluid in a porous
medium between two parallel plates with Soret and Dufour
have been considered. The reduced flow field equations
are solved using the quasilinearization method. The effects
of various parameters such as Hartmann number, inverse
Darcy’s parameter, Schmidt number, Prandtl number, chem-
ical reaction rate, Soret and Dufour numbers on the velocity
components, microrotation, temperature distribution, and
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Figure 1: Schematic diagram of the fluid flow between parallel
porous plates.

concentration are studied in detail and presented in the form
of graphs.

2. Formulation of the Problem

Consider a two-dimensional laminar incompressiblemicrop-
olar fluid flow through an elongated rectangular channel,
as shown in Figure 1. Assume that the fluid is injected and
aspirated periodically through the plates with injection veloc-
ity 𝑉
1
𝑒
𝑖𝜔𝑡 and suction velocity 𝑉

2
𝑒
𝑖𝜔𝑡. Also the nonuniform

temperature and concentration at the lower and upper plates
are 𝑇
1
𝑒
𝑖𝜔𝑡, 𝐶
0
𝑒
𝑖𝜔𝑡 and 𝑇

2
𝑒
𝑖𝜔𝑡, 𝐶
1
𝑒
𝑖𝜔𝑡, respectively. The region

inside the parallel plates is subjected to porousmedium and a
constant external magnetic field of strength 𝐵

0
perpendicular

to the𝑋𝑌-plane is considered.
The governing equations of the micropolar fluid flow and

heat and mass transfer in the presence of buoyancy forces,
magnetic field and in the absence of body forces, body couples
are given by

∇ ⋅ 𝑞 = 0, (1)

𝜌 [
𝜕𝑞

𝜕𝑡
+ (𝑞 ⋅ ∇) 𝑞] = −grad𝑝 + 𝑘

1
curl 𝑙

− (𝜇 + 𝑘
1
) curl curl (𝑞)

−
𝜇 + 𝑘
1

𝑘
2

𝑞 + 𝐽 × 𝐵 + 𝐹
𝑏
,

(2)

𝜌𝑗 [
𝜕𝑙

𝜕𝑡
+ (𝑞 ⋅ ∇) 𝑙] = −2𝑘

1
𝑙 + 𝑘
1
curl 𝑞

− 𝛾 curl curl (𝑙) ,
(3)

𝜌𝑐 [
𝜕𝑇

𝜕𝑡
+ (𝑞 ⋅ ∇) 𝑇] = 𝑘∇

2
𝑇 + 2𝜇𝐷 : 𝐷

+
𝑘
1

2
(curl (𝑞) − 2𝑙)

2

+ 𝛾∇𝑙 : ∇𝑙 +
𝜇 + 𝑘
1

𝑘
2

𝑞
2

+


𝐽


2

𝜎
+
𝜌𝐷
1
𝑘
𝑇

𝑐
𝑠

∇
2
𝐶

(4)



Journal of Engineering 3

[
𝜕𝐶

𝜕𝑡
+ (𝑞 ⋅ ∇) 𝐶] = 𝐷

1
∇
2
𝐶 − 𝑘
3
(𝐶 − 𝐶

0
𝑒
𝑖𝜔𝑡
)

+
𝐷
1
𝑘
𝑇

𝑇
𝑚

∇
2
𝑇,

(5)

where 𝐹
𝑏
is the buoyancy force and it is defined as (𝜌𝑔𝛽

𝑇
(𝑇 −

𝑇
1
𝑒
𝑖𝜔𝑡
) + 𝜌𝑔𝛽

𝐶
(𝐶 − 𝐶

0
𝑒
𝑖𝜔𝑡
))̂𝑖.

Neglecting the displacement currents, the Maxwell equa-
tions and the generalized Ohm’s law are

∇ ⋅ 𝐵 = 0,

∇ × 𝐵 = 𝜇

𝐽,

∇ × 𝐸 =
𝜕𝐵

𝜕𝑡
,

𝐽 = 𝜎 (𝐸 + 𝑞 × 𝐵) ,

(6)

where 𝐵 = 𝐵
0
�̂� + 𝑏, 𝑏 is induced magnetic field. Assume

that the induced magnetic field is negligible compared to the
applied magnetic field so that magnetic Reynolds number is
small, the electric field is zero, and magnetic permeability is
constant throughout the flow field.

The velocity and microrotation components are

𝑞 = 𝑢𝑖 + V�̂�,

𝑙 = 𝑁�̂�.

(7)

Following Ojjela and Naresh Kumar [5, 12] the velocity and
microrotation components are

𝑢 (𝑥, 𝜆, 𝑡) = (
𝑈
0

𝑎
−
𝑉
2
𝑥

ℎ
)𝑓

(𝜆) 𝑒
𝑖𝜔𝑡
,

V (𝑥, 𝜆, 𝑡) = 𝑉
2
𝑓 (𝜆) 𝑒

𝑖𝜔𝑡
,

𝑁 (𝑥, 𝜆, 𝑡) = (
𝑈
0

𝑎
−
𝑉
2
𝑥

ℎ
)𝐴 (𝜆) 𝑒

𝑖𝜔𝑡
.

(8)

The temperature and concentration distributions can be
taken as

𝑇 (𝑥, 𝜆, 𝑡)

= (𝑇
1
+
𝜇𝑉
2

𝜌ℎ𝑐
[𝜙
1
(𝜆) + (

𝑈
0

𝑎𝑉
2

−
𝑥

ℎ
)

2

𝜙
2
(𝜆)]) 𝑒

𝑖𝜔𝑡
,

𝐶 (𝑥, 𝜆, 𝑡)

= (𝐶
0
+

̇𝑛
𝐴

ℎ𝜐
[𝑔
1
(𝜆) + (

𝑈
0

𝑎𝑉
2

−
𝑥

ℎ
)

2

𝑔
2
(𝜆)]) 𝑒

𝑖𝜔𝑡
,

(9)

where 𝜆 = 𝑦/ℎ and 𝑓(𝜆),𝐴(𝜆), 𝜙
1
(𝜆), 𝜙
2
(𝜆), 𝑔
1
(𝜆), and 𝑔

2
(𝜆)

are to be determined.

The boundary conditions for the velocity, microrotation,
temperature, and concentration are

𝑢 (𝑥, 𝜆, 𝑡) = 0,

V (𝑥, 𝜆, 𝑡) = 𝑉
1
𝑒
𝑖𝜔𝑡
,

𝑁 (𝑥, 𝜆, 𝑡) = 0,

𝑇 (𝑥, 𝜆, 𝑡) = 𝑇
1
𝑒
𝑖𝜔𝑡
,

𝐶 (𝑥, 𝜆, 𝑡) = 𝐶
0
𝑒
𝑖𝜔𝑡

at 𝜆 = 0

𝑢 (𝑥, 𝜆, 𝑡) = 0,

V (𝑥, 𝜆, 𝑡) = 𝑉
2
𝑒
𝑖𝜔𝑡
,

𝑁 (𝑥, 𝜆, 𝑡) = 0,

𝑇 (𝑥, 𝜆, 𝑡) = 𝑇
2
𝑒
𝑖𝜔𝑡
,

𝐶 (𝑥, 𝜆, 𝑡) = 𝐶
1
𝑒
𝑖𝜔𝑡

at 𝜆 = 1.

(10)

Substituting (8) and (9) in (2), (3), (4), and (5) then we get

𝑓
𝑉
=
−𝑅

1 + 𝑅
𝐴

+

Re
1 + 𝑅

(𝑓𝑓

− 𝑓

𝑓

) cos𝜓

+
Ha2

1 + 𝑅
𝑓

+ 𝐷
−1
𝑓

−

EcGr
(1 + 𝑅) 𝜁

(𝜙


1
+ 𝜁
2
𝜙


2
)

−
ShGm
(1 + 𝑅) 𝜁

(𝑔


1
+ 𝜁
2
𝑔


2
) ,

𝐽
1
(𝑓𝐴

− 𝑓

𝐴) cos𝜓 = −𝑠

1
(2𝐴 + 𝑓


) + 𝐴

,

𝜙


1
= −2𝜙

2
− Re𝑠
2
𝐴
2 cos𝜓 − Re Pr ((1 + 𝑅)𝐷−1𝑓2

+Ha2𝑓2 + 4𝑓2 − 𝑓𝜙
1
) cos𝜓 − Du (𝑔

1
+ 2𝑔
2
) ,

𝜙


2
= −Re Pr(𝑅

2
(𝑓

+ 2𝐴)

2

+
𝑠
2

Pr
𝐴
2

+ (1 + 𝑅)𝐷
−1
𝑓
2
+Ha2𝑓2 + 𝑓2 + 2𝑓𝜙

2
− 𝑓𝜙


2
)

⋅ cos𝜓 − Du𝑔
2
,

𝑔


1
= −2𝑔

2
+ Kr𝑔

1
+ Sc Re𝑓𝑔

1
cos𝜓 − Sc Sr (𝜙

1

+ 2𝜙
2
) ,

𝑔


2
= Kr𝑔

2
+ Sc Re (𝑓𝑔

2
− 2𝑓

𝑔
2
) cos𝜓 − Sc Sr𝜙

2
,

(11)

where the prime denotes the differentiation with respect to 𝜆.
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The dimensionless forms of temperature and concentra-
tion from (9) are

𝑇
∗
=

𝑇 − 𝑇
1
𝑒
𝑖𝜔𝑡

(𝑇
2
− 𝑇
1
) 𝑒𝑖𝜔𝑡

= Ec (𝜙
1
+ 𝜁
2
𝜙
2
) ,

𝐶
∗
=

𝐶 − 𝐶
0
𝑒
𝑖𝜔𝑡

(𝐶
1
− 𝐶
0
) 𝑒𝑖𝜔𝑡

= Sh (𝑔
1
+ 𝜁
2
𝑔
2
) .

(12)

The boundary conditions (10) in terms of𝑓,𝐴, 𝜙
1
, 𝜙
2
, 𝑔
1
, and

𝑔
2
are

𝑓 (0) = 1 − 𝑎,

𝑓 (1) = 1,

𝑓

(0) = 0,

𝑓

(1) = 0,

𝐴 (0) = 0,

𝐴 (1) = 0

𝜙
1
(0) = 0,

𝜙
1
(1) =

1

Ec

𝜙
2
(0) = 0,

𝜙
2
(1) = 0,

𝑔
1
(0) = 0,

𝑔
1
(1) =

1

Sh

𝑔
2
(0) = 0,

𝑔
2
(1) = 0.

(13)

For micropolar fluids the shear stress 𝜏
𝑘𝑙
is given by

𝜏
𝑘𝑙
= (−𝑝 + 𝜂V

𝑟,𝑟
) 𝛿
𝑘𝑙
+ 2𝜇𝑑

𝑘𝑙
+ 2𝑘
1
𝑒
𝑘𝑙𝑟
(𝜔
𝑟
− 𝑙
𝑟
) . (14)

Then the nondimensional shear stress at the lower and upper
plates is

𝑆
𝑓
=
2𝜏
𝑘𝑙

𝜌𝑉
2

2

= [
2

Re
(
𝑈
0

𝑎𝑉
2

−
𝑥

ℎ
) (𝑅 − 1) 𝑓


(𝜆) cos𝜓]

𝜆=0,1

.

(15)

For micropolar fluids, the couple stress𝑀
𝑖𝑗
is given by

𝑀
𝑖𝑗
= 𝛼𝑙
𝑟,𝑟
𝛿
𝑖𝑗
+ 𝛽𝑙
𝑖,𝑗
+ 𝛾𝑙
𝑗,𝑖
. (16)

Then the nondimensional couple stress at lower and upper
plates is

𝑚 = [(
𝑈
0

𝑎𝑉
2

−
𝑥

ℎ
)𝑔

(𝜆) cos𝜓]

𝜆=0,1

. (17)

3. Solution of the Problem

The nonlinear equations (11) are converted into the following
system of first-order differential equations by the substitution

(𝑓, 𝑓

, 𝑓

, 𝑓

, 𝐴, 𝐴

, 𝜙
1
, 𝜙


1
, 𝜙
2
, 𝜙


2
, 𝑔
1
, 𝑔


1
, 𝑔
2
, 𝑔


2
)

= (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
, 𝑥
9
, 𝑥
10
, 𝑥
11
, 𝑥
12
, 𝑥
13
, 𝑥
14
)

𝑑𝑥
1

𝑑𝜆
= 𝑥
2
,

𝑑𝑥
2

𝑑𝜆
= 𝑥
3
,

𝑑𝑥
3

𝑑𝜆
= 𝑥
4
,

𝑑𝑥
4

𝑑𝜆
=
−𝑅

1 + 𝑅
(𝑠
1
(𝑥
3
+ 2𝑥
5
) + 𝐽
1
(𝑥
1
𝑥
6
− 𝑥
2
𝑥
5
)) cos𝜓

+
Re
1 + 𝑅

(𝑥
2
𝑥
3
− 𝑥
1
𝑥
4
) cos𝜓 + 𝐷−1𝑥

3
+

Ha2

1 + 𝑅
𝑥
3

−
EcGr
(1 + 𝑅) 𝜁

(𝑥
8
+ 𝜁
2
𝑥
10
) −

ShGm
(1 + 𝑅) 𝜁

(𝑥
12

+ 𝜁
2
𝑥
14
) ,

𝑑𝑥
5

𝑑𝜆
= 𝑥
6
,

𝑑𝑥
6

𝑑𝜆
= 𝑠
1
(𝑥
3
+ 2𝑥
5
) + 𝐽
1
(𝑥
1
𝑥
6
− 𝑥
2
𝑥
5
) cos𝜓,

𝑑𝑥
7

𝑑𝜆
= 𝑥
8
,

𝑑𝑥
8

𝑑𝜆
= −2𝑥

9
−

Re Pr
1 − Du Sc Sr

(4𝑥
2

2
+ (1 + 𝑅)𝐷

−1
𝑥
2

1

+Ha2𝑥2
1
− 𝑥
1
𝑥
8
+
𝑠
2

Pr
𝑥
2

5
) cos𝜓 − KrDu

1 − DuSc Sr
𝑥
11

+
Du Sc

1 − Du Sc Sr
Re𝑥
1
𝑥
12
cos𝜓,

𝑑𝑥
9

𝑑𝜆
= 𝑥
10
,

𝑑𝑥
10

𝑑𝜆
= −

Re Pr
1 − Du Sc Sr

(
𝑅

2
(𝑥
3
+ 2𝑥
5
)
2

+ 𝑥
2

3
+ (1 + 𝑅)

⋅ 𝐷
−1
𝑥
2

2
+Ha2𝑥2

2
+ 2𝑥
2
𝑥
9
− 𝑥
1
𝑥
10
) cos𝜓

−
KrDu

1 − Du Sc Sr
𝑥
13
−

Du Sc
1 − Du Sc Sr

Re (𝑥
1
𝑥
14

− 2𝑥
2
𝑥
13
) cos𝜓

𝑑𝑥
11

𝑑𝜆
= 𝑥
12
,

𝑑𝑥
12

𝑑𝜆
= −2𝑥

13
+

Sc Sr Re Pr
1 − Du Sc Sr

(4𝑥
2

2
+ (1 + 𝑅)𝐷

−1
𝑥
2

1

+Ha2𝑥2
1
− 𝑥
1
𝑥
8
+
𝑠
2

Pr
𝑥
2

5
) cos𝜓 + Kr

1 − DuSc Sr
𝑥
11

+
Sc

1 − Du Sc Sr
Re𝑥
1
𝑥
12
cos𝜓,
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𝑑𝑥
13

𝑑𝜆
= 𝑥
14
,

𝑑𝑥
14

𝑑𝜆
=

Sc Sr Re Pr
1 − DuSc Sr

(𝑥
2

3
+ (1 + 𝑅)𝐷

−1
𝑥
2

2
+Ha2𝑥2

2

+
𝑠
2

Pr
𝑥
2

6
+
𝑅

2
(𝑥
3
+ 2𝑥
5
)
2

+ 2𝑥
2
𝑥
9
− 𝑥
1
𝑥
10
) cos𝜓

+
Kr

1 − Du Sc Sr
𝑥
13
+

Sc
1 − DuSc Sr

Re (𝑥
1
𝑥
14

− 2𝑥
2
𝑥
13
) cos𝜓.

(18)

The boundary conditions in terms of 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
𝑥
5
, 𝑥
6
, 𝑥
7
,

𝑥
8
, 𝑥
9
, 𝑥
10
, 𝑥
11
, 𝑥
12
, 𝑥
13
, 𝑥
14
are

𝑥
1
(0) = 1 − 𝑎,

𝑥
2
(0) = 0,

𝑥
5
(0) = 0,

𝑥
7
(0) = 0,

𝑥
9
(0) = 0,

𝑥
11
(0) = 0,

𝑥
13
(0) = 0,

𝑥
1
(1) = 1,

𝑥
2
(1) = 0,

𝑥
5
(1) = 0,

𝑥
7
(1) =

1

Ec
,

𝑥
9
(1) = 0,

𝑥
11
(1) =

1

Sh
,

𝑥
13
(1) = 0.

(19)

The system of (18) is solved numerically subject to boundary
conditions (19) using the quasilinearization method given by
Bellman and Kalaba [26].

Let (𝑥𝑟
𝑖
, 𝑖 = 1, 2, . . . , 14) be an approximate current

solution and let (𝑥𝑟+1
𝑖

, 𝑖 = 1, 2, . . . , 14) be an improved
solution of (18). Using Taylor’s series expansion about the
current solution by neglecting the second- and higher-order
derivative terms, coupled first-order system (18) is linearized
as

𝑑𝑥
𝑟+1

1

𝑑𝜆
= 𝑥
𝑟+1

2
,

𝑑𝑥
𝑟+1

2

𝑑𝜆
= 𝑥
𝑟+1

3
,

𝑑𝑥
𝑟+1

3

𝑑𝜆
= 𝑥
𝑟+1

4
,

𝑑𝑥
𝑟+1

4

𝑑𝜆
= −

Re
1 + 𝑅

(𝑥
𝑟+1

1
𝑥
𝑟

4
+ 𝑥
𝑟+1

4
𝑥
𝑟

1
− 𝑥
𝑟+1

2
𝑥
𝑟

3

− 𝑥
𝑟

2
𝑥
𝑟+1

3
) cos𝜓 + 𝐷−1𝑥𝑟+1

3
+

Ha2

1 + 𝑅
𝑥
𝑟+1

3

−
𝑅

1 + 𝑅
(𝑠
1
(𝑥
𝑟+1

3
+ 2𝑥
𝑟+1

5
) + 𝐽
1
(𝑥
𝑟+1

1
𝑥
𝑟

6
+ 𝑥
𝑟

1
𝑥
𝑟+1

6

− 𝑥
𝑟+1

2
𝑥
𝑟

5
− 𝑥
𝑟+1

5
𝑥
𝑟

2
) cos𝜓) − EcGr

(1 + 𝑅) 𝜁
(𝑥
𝑟+1

8

+ 𝜁
2
𝑥
𝑟+1

10
) −

ShGm
(1 + 𝑅) 𝜁

(𝑥
𝑟+1

12
+ 𝜁
2
𝑥
𝑟+1

14
)

+
Re
1 + 𝑅

(−𝑥
𝑟

2
𝑥
𝑟

3
+ 𝑥
𝑟

1
𝑥
𝑟

4
) cos𝜓 + 𝑅𝐽

1

1 + 𝑅
(𝑥
𝑟

1
𝑥
𝑟

6

− 𝑥
𝑟

2
𝑥
𝑟

5
) cos𝜓,

𝑑𝑥
𝑟+1

5

𝑑𝜆
= 𝑥
𝑟+1

6
,

𝑑𝑥
𝑟+1

6

𝑑𝜆
= 𝑠
1
(𝑥
𝑟+1

3
+ 2𝑥
𝑟+1

5
) + 𝐽
1
(𝑥
𝑟+1

1
𝑥
𝑟

6
+ 𝑥
𝑟

1
𝑥
𝑟+1

6

− 𝑥
𝑟+1

2
𝑥
𝑟

5
− 𝑥
𝑟+1

5
𝑥
𝑟

2
) cos𝜓 − 𝐽

1
(𝑥
𝑟

1
𝑥
𝑟

6
− 𝑥
𝑟

2
𝑥
𝑟

5
) cos𝜓,

𝑑𝑥
𝑟+1

7

𝑑𝜆
= 𝑥
𝑟+1

8
,

𝑑𝑥
𝑟+1

8

𝑑𝜆
= −2𝑥

𝑟+1

9
−

Re Pr
1 − Du Sc Sr

(8𝑥
𝑟

2
𝑥
𝑟+1

2
+ 2 (1 + 𝑅)

⋅ 𝐷
−1
𝑥
𝑟

1
𝑥
𝑟+1

1
+ 2Ha2𝑥𝑟

1
𝑥
𝑟+1

1
− 𝑥
𝑟

1
𝑥
𝑟+1

8
− 𝑥
𝑟

8
𝑥
𝑟+1

1

+
2𝑠
2

Pr
𝑥
𝑟

5
𝑥
𝑟+1

5
) cos𝜓 − KrDu

1 − Du Sc Sr
𝑥
𝑟+1

11

+
Du Sc

1 − Du Sc Sr
Re (𝑥𝑟
1
𝑥
𝑟+1

12
+ 𝑥
𝑟

12
𝑥
𝑟+1

1
− 𝑥
𝑟

1
𝑥
𝑟

12
)

⋅ cos𝜓 + Re Pr
1 − DuSc Sr

(4𝑥
𝑟

2
𝑥
𝑟

2
+ (1 + 𝑅)𝐷

−1
𝑥
𝑟

1
𝑥
𝑟

1

+Ha2𝑥𝑟
1
𝑥
𝑟

1
− 𝑥
𝑟

1
𝑥
𝑟

8
+
𝑠
2

Pr
𝑥
𝑟

5
𝑥
𝑟

5
) cos𝜓,

𝑑𝑥
𝑟+1

9

𝑑𝜆
= 𝑥
𝑟+1

10
,

𝑑𝑥
𝑟+1

10

𝑑𝜆
= −

Re Pr
1 − Du Sc Sr

(
𝑅

2
(2𝑥
𝑟

3
𝑥
𝑟+1

3
+ 8𝑥
𝑟

5
𝑥
𝑟+1

5

+ 4𝑥
𝑟

3
𝑥
𝑟+1

5
+ 4𝑥
𝑟

5
𝑥
𝑟+1

3
) + 2𝑥

𝑟

3
𝑥
𝑟+1

3
+ 2 (1 + 𝑅)

⋅ 𝐷
−1
𝑥
𝑟

2
𝑥
𝑟+1

2
+ 2Ha2𝑥𝑟

2
𝑥
𝑟+1

2
+ 2𝑥
𝑟

2
𝑥
𝑟+1

9
+ 2𝑥
𝑟+1

2
𝑥
𝑟

9

− 𝑥
𝑟

1
𝑥
𝑟+1

10
− 𝑥
𝑟+1

1
𝑥
𝑟

10
) cos𝜓 − DuSc Re

1 − Du Sc Sr
(𝑥
𝑟

1
𝑥
𝑟+1

14

+ 𝑥
𝑟+1

1
𝑥
𝑟

14
− 2𝑥
𝑟

2
𝑥
𝑟+1

13
− 2𝑥
𝑟+1

2
𝑥
𝑟

13
− 𝑥
𝑟

1
𝑥
𝑟

14

+ 2𝑥
𝑟

2
𝑥
𝑟

13
) cos𝜓 + Re Pr

1 − Du Sc Sr
(
𝑅

2
(𝑥
𝑟

3
𝑥
𝑟

3
+ 4𝑥
𝑟

5
𝑥
𝑟

5

+ 4𝑥
𝑟

3
𝑥
𝑟

5
) + 𝑥
𝑟

3
𝑥
𝑟

3
+ (1 + 𝑅)𝐷

−1
𝑥
𝑟

2
𝑥
𝑟

2
+Ha2𝑥𝑟

2
𝑥
𝑟

2

+ 2𝑥
𝑟

2
𝑥
𝑟

9
− 𝑥
𝑟

1
𝑥
𝑟

10
) cos𝜓 − KrDu

1 − Du Sc Sr
𝑥
𝑟+1

13
,
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𝑑𝑥
𝑟+1

11

𝑑𝜆
= 𝑥
𝑟+1

12
,

𝑑𝑥
𝑟+1

12

𝑑𝜆
= −2𝑥

𝑟+1

13
+

Sc Sr Re Pr
1 − Du Sc Sr

(8𝑥
𝑟

2
𝑥
𝑟+1

2
+ 2 (1 + 𝑅)

⋅ 𝐷
−1
𝑥
𝑟

1
𝑥
𝑟+1

1
+ 2Ha2𝑥𝑟

1
𝑥
𝑟+1

1
− 𝑥
𝑟

1
𝑥
𝑟+1

8
− 𝑥
𝑟+1

1
𝑥
𝑟

8

+
2𝑠
2

Pr
𝑥
𝑟

5
𝑥
𝑟+1

5
) cos𝜓 + Kr

1 − DuSc Sr
𝑥
𝑟+1

11

+
Sc Re

1 − Du Sc Sr
(𝑥
𝑟

1
𝑥
𝑟+1

12
+ 𝑥
𝑟+1

1
𝑥
𝑟

12
− 𝑥
𝑟

1
𝑥
𝑟

12
) cos𝜓

−
Sc Sr Re Pr
1 − Du Sc Sr

(4𝑥
𝑟

2
𝑥
𝑟

2
+ (1 + 𝑅)𝐷

−1
𝑥
𝑟

1
𝑥
𝑟

1

+Ha2𝑥𝑟
1
𝑥
𝑟

1
− 𝑥
𝑟

1
𝑥
𝑟

8
+
𝑠
2

Pr
𝑥
𝑟

5
𝑥
𝑟

5
) cos𝜓,

𝑑𝑥
𝑟+1

13

𝑑𝜆
= 𝑥
𝑟+1

14
,

𝑑𝑥
𝑟+1

14

𝑑𝜆
=

Sc Sr Re Pr
1 − Du Sc Sr

(2𝑥
𝑟+1

3
𝑥
𝑟

3
+ 2 (1 + 𝑅)

⋅ 𝐷
−1
𝑥
𝑟

2
𝑥
𝑟+1

2
+ 2Ha2𝑥𝑟

2
𝑥
𝑟+1

2
+
2𝑠
2

Pr
𝑥
𝑟

6
𝑥
𝑟+1

6

+
𝑅

2
(2𝑥
𝑟

3
𝑥
𝑟+1

3
+ 8𝑥
𝑟

5
𝑥
𝑟+1

5
+ 4𝑥
𝑟

3
𝑥
𝑟+1

5
+ 4𝑥
𝑟

5
𝑥
𝑟+1

3
)

+ 2𝑥
𝑟

2
𝑥
𝑟+1

9
+ 2𝑥
𝑟+1

2
𝑥
𝑟

9
− 𝑥
𝑟

1
𝑥
𝑟+1

10
− 𝑥
𝑟+1

1
𝑥
𝑟

10
) cos𝜓

+
Kr

1 − Du Sc Sr
𝑥
𝑟+1

13
+

Sc Re
1 − Du Sc Sr

(𝑥
𝑟

1
𝑥
𝑟+1

14

+ 𝑥
𝑟+1

1
𝑥
𝑟

14
− 2𝑥
𝑟

2
𝑥
𝑟+1

13
− 2𝑥
𝑟+1

2
𝑥
𝑟

13
− 𝑥
𝑟

1
𝑥
𝑟

14

+ 2𝑥
𝑟

2
𝑥
𝑟

13
) cos𝜓 − Sc Sr Re Pr

1 − Du Sc Sr
(𝑥
𝑟

3
𝑥
𝑟

3
+ (1 + 𝑅)

⋅ 𝐷
−1
𝑥
𝑟

2
𝑥
𝑟

2
+Ha2𝑥𝑟

2
𝑥
𝑟

2
+
𝑠
2

Pr
𝑥
𝑟

6
𝑥
𝑟

6
+
𝑅

2
(𝑥
𝑟

3
𝑥
𝑟

3

+ 4𝑥
𝑟

5
𝑥
𝑟

5
+ 4𝑥
𝑟

3
𝑥
𝑟

5
) + 2𝑥

𝑟

2
𝑥
𝑟

9
− 𝑥
𝑟

1
𝑥
𝑟

10
) cos𝜓.

(20)

To solve for (𝑥𝑟+1
𝑖

, 𝑖 = 1, 2, . . . , 14), the solutions to seven
separate initial value problems, denoted by 𝑥ℎ1

𝑖
(𝜆), 𝑥ℎ2

𝑖
(𝜆),

𝑥
ℎ3

𝑖
(𝜆), 𝑥ℎ4

𝑖
(𝜆), 𝑥ℎ5

𝑖
(𝜆), 𝑥ℎ6

𝑖
(𝜆), and 𝑥ℎ7

𝑖
(𝜆) (which are the

solutions of the homogeneous system corresponding to (20))
and 𝑥𝑝1

𝑖
(𝜆) (which is the particular solution of (20)), with

the following initial conditions are obtained by using the 4th-
order Runge-Kutta method:

𝑥
ℎ1

3
(0) = 1,

𝑥
ℎ1

𝑖
(0) = 0 for 𝑖 ̸= 3,

𝑥
ℎ2

4
(0) = 1,

𝑥
ℎ2

𝑖
(0) = 0 for 𝑖 ̸= 4,

𝑥
ℎ3

6
(0) = 1,

𝑥
ℎ3

𝑖
(0) = 0 for 𝑖 ̸= 6,

𝑥
ℎ4

8
(0) = 1,

𝑥
ℎ4

𝑖
(0) = 0 for 𝑖 ̸= 8

𝑥
ℎ5

10
(0) = 1,

𝑥
ℎ5

𝑖
(0) = 0 for 𝑖 ̸= 10

𝑥
ℎ6

12
(0) = 1,

𝑥
ℎ6

𝑖
(0) = 0 for 𝑖 ̸= 12

𝑥
ℎ7

14
(0) = 1,

𝑥
ℎ7

𝑖
(0) = 0 for 𝑖 ̸= 14

𝑥
𝑝1

1
(0) = 1 − 𝑎,

𝑥
𝑝1

2
(0) = 𝑥

𝑝1

3
(0) = 𝑥

𝑝1

4
(0) = 𝑥

𝑝1

5
(0) = 0

𝑥
𝑝1

6
(0) = 𝑥

𝑝1

7
(0) = 𝑥

𝑝1

8
(0) = 𝑥

𝑝1

9
(0) = 0

𝑥
𝑝1

10
(0) = 𝑥

𝑝1

11
(0) = 𝑥

𝑝1

12
(0) = 0

𝑥
𝑝1

13
(0) = 𝑥

𝑝1

14
(0) = 0.

(21)

By using the principle of superposition, the general solution
can be written as

𝑥
𝑛+1

𝑖
(𝜆) = 𝐶

1
𝑥
ℎ1

𝑖
(𝜆) + 𝐶

2
𝑥
ℎ2

𝑖
(𝜆) + 𝐶

3
𝑥
ℎ3

𝑖
(𝜆)

+ 𝐶
4
𝑥
ℎ4

𝑖
(𝜆) + 𝐶

5
𝑥
ℎ5

𝑖
(𝜆) + 𝐶

6
𝑥
ℎ6

𝑖
(𝜆)

+ 𝐶
7
𝑥
ℎ7

𝑖
(𝜆) + 𝑥

𝑝1

𝑖
(𝜆) ,

(22)

where 𝐶
1
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐶
5
, 𝐶
6
, and 𝐶

7
are the unknown

constants and are determined by considering the boundary
conditions at 𝜆 = 1. This solution (𝑥𝑟+1

𝑖
, 𝑖 = 1, 2, . . . , 14)

is then compared with solution at the previous step (𝑥𝑟
𝑖
,

𝑖 = 1, 2, . . . , 14) and further iteration is performed if the
convergence has not been achieved.

4. Results and Discussion

The system of nonlinear differential equations (18) subject to
boundary conditions (19) is solved numerically by the quasi-
linearizationmethod.The influences of various fluid and geo-
metric parameters such as Soret number Sr, Dufour number
Du, Hartmann number Ha, chemical reaction parameter Kr,
Schmidt number Sc, Eckert number Ec, and Prandtl number
Pr on nondimensional velocity components, microrotation,
temperature distribution, and concentration are analyzed
through graphs in the domain [0, 1].

Figures 2 and 3 show the influence of Sr and Du on
temperature and concentration. From these figures, it is
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Figure 2: Effect of Sr on (a) temperature and (b) concentration for Kr = 2, Gr = 4, Gm = 4, Re = 2, Du = 2, Sc = 0.22, Pr = 1, 𝑎 = 0.2, 𝜓 = 0.2,
𝑅 = 0.2, 𝐽
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Figure 3: Effect of Du on (a) temperature and (b) concentration for Kr = 2, Gr = 4, Gm = 4, Re = 2, Sr = 1, Sc = 0.22, Pr = 1, 𝑎 = 0.2, 𝜓 = 0.2,
𝑅 = 0.2, 𝐽
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evident that the temperature of the fluid increases whereas
the concentration decreases with the increasing of Sr and Du.
This is because of the difference between the temperatures of
the fluid and surface as well as the difference between concen-
trations of the fluid and surface concentrations are increased
with Sr and Du. Figure 4 describes the behavior of the tem-
perature distribution and concentration for the various values
of Kr. AsKr increases the temperature distribution of the fluid
also increases, whereas the concentration decreases from the
lower plate to the upper plate. It is clear that the increase in
the Kr produces a decrease in the species concentration.This
causes the concentration buoyancy effects to decrease as Kr
increases. The effect of Ec on velocity components, micro-
rotation, and temperature is presented in Figure 5. As Ec

increases the radial velocity, microrotation and temperature
are decreasing towards the upper plate. However, the axial
velocity decreases towards the center of the channel and then
increases. Since the Eckert number is the relation between
the kinetic energy and enthalpy, as enthalpy increases, the
temperature distribution decreases. Figure 6 elucidates the
change in velocity components, microrotation, temperature
distribution, and concentration for different values of Pr.
It is observed that the axial velocity reaches highest value
near the hot plate and the radial velocity, microrotation, and
concentration decrease whereas the temperature increases
with the increasing value of Pr. Physically, if Pr increases the
thermal diffusivity decreases and this leads to the decrease
in the heat transfer ability at the thermal boundary layer.
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Figure 4: Effect of Du on (a) temperature and (b) concentration for Du = 1, Gr = 4, Gm = 4, Re = 2, Sr = 0.2, Sc = 0.22, Pr = 1, 𝑎 = 0.2,𝜓 = 0.8,
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Figure 7 displays the change in the velocity components,
microrotation, temperature distribution, and concentration
for several values of Ha. From this it is observed that when
Ha increases, the temperature distribution also increases
whereas the concentration decreases from the lower plate to
upper plate and the axial velocity attains maximum value
at the center of the plates. However, the radial velocity and
microrotation increase towards the center of the plates and
then decrease. This is due to the fact that the magnetic force
retards the flow in both axial and radial directions. The
variations in the velocity components, microrotation, tem-
perature distribution, and concentration for different values
of 𝐷−1 are shown in Figure 8. From these one can deduce
that the temperature distribution is increasing with 𝐷−1
whereas the radial velocity, microrotation, and concentration
are decreasing towards the upper plate and the axial velocity
decreases towards the center of the plates and then increases
because the resistance offered by the porosity of the medium
is more than the resistance due to the magnetic lines of force.

5. Conclusions

The thermal diffusion and diffusion thermoeffects on com-
bined free and forced convection magnetohydrodynamic
flow of micropolar fluid in a porous medium between two
parallel plates with chemical reaction are considered. The
numerical solution of the transformed governing equations is
obtained by the method of quasilinearization and the results
are analyzed for various fluid and geometric parameters
through graphs. From the results the following is concluded:

(i) The influences of Sr and Du on temperature and
concentration are similar.

(ii) The temperature of the fluid is enhanced whereas
the concentration of the fluid is decreased with the
increasing of Ha and𝐷−1.

(iii) Kr reduces the concentration and enhances the tem-
perature of the fluid.

(iv) Ec and Pr exhibit similar effects on the velocity
components and microrotation whereas it is opposite
in the case of temperature.
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2
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Greek Letters
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Figure 8: Effect of 𝐷−1 on (a) axial velocity, (b) radial velocity, (c) microrotation, (d) temperature, and (e) concentration for Kr = 2, Du =
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𝜇
: Magnetic permeability
𝜎: Electric conductivity
𝜓: Nondimensional frequency parameter, 𝜔𝑡.
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