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In food industry, bioprocesses like fermentation often are a crucial part of the manufacturing process and decisive for the final
product quality. In general, they are characterized by highly nonlinear dynamics and uncertainties that make it difficult to control
these processes by the use of traditional control techniques. In this context, fuzzy logic controllers offer quite a straightforward
way to control processes that are affected by nonlinear behavior and uncertain process knowledge. However, in order to maintain
process safety and product quality it is necessary to specify the controller performance and to tune the controller parameters. In this
work, an approach is presented to establish an intelligent control system for oxidoreductive yeast propagation as a representative
process biased by the aforementioned uncertainties. The presented approach is based on statistical process control and fuzzy logic
feedback control. As the cognitive uncertainty among different experts about the limits that define the control performance as still
acceptable may differ a lot, a data-driven design method is performed. Based upon a historic data pool statistical process corridors
are derived for the controller inputs control error and change in control error.This approach follows the hypothesis that if the control
performance criteria stay within predefined statistical boundaries, the final process state meets the required quality definition. In
order to keep the process on its optimal growth trajectory (model based reference trajectory) a fuzzy logic controller is used that
alternates the process temperature. Additionally, in order to stay within the process corridors, a genetic algorithm was applied to
tune the input and output fuzzy sets of a preliminarily parameterized fuzzy controller.The presented experimental results show that
the genetic tuned fuzzy controller is able to keep the process within its allowed limits. The average absolute error to the reference
growth trajectory is 5.2 × 106 cells/mL. The controller proves its robustness to keep the process on the desired growth profile.

1. Introduction

Generally, uncertainty can be considered as a result of some
information deficiency of any problem-solving situation [1].
When dealing with bioprocesses under real conditions it
is rarely impossible to completely avoid uncertainty. The
reasons for uncertainty are quite diverse. On the one hand,
there are large variations in raw material quality, especially
in the food and beverage sector. On the other hand there is
the intrinsic nonlinear behavior of the used microorganisms,
which is in most cases still not fully understood. Therefore,
existing process models are affected by incomplete or frag-
mentary knowledge about the underlying mechanisms. With
respect to process monitoring and control, uncertainty is
almost inseparable from any real-time measurement, result-
ing from a combination of inevitablemeasurement errors and

resolution limits of applied sensors. And at the cognitive level,
uncertainty stems from the vagueness and ambiguity which is
inherent in human language and the semantics of assessment
[2]. Because of the fact that inmost cases the sources of uncer-
tainty cannot be easily solved from a physical point of view,
several approaches are proposed in literature that allow han-
dling uncertainties by the use of statistics. A general overview
of (multivariate) statistical process control and quality control
is given in [3–8] and with special focus on food by [9–
11]. With respect to online process observation and quality
monitoring the use of online control charts is emphasized
[12, 13].Theuse of online control charts is a very powerful tool
in decision-making. It serves as human-machine interface
and thus allows the operator to evaluate the process in real
time. Bymeans of simple statistics, they allow calculating and
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graphically visualizing if the current process is running inside
or outside its allowed limits. In order to represent the process,
key performance indicators and critical quality attributes
have to be defined on a univariate or multivariate basis.There
are several charting techniques existing that ease the process
of statistical quality control and on a single variable basis they
are comprehensively reviewed by [14]. However, the majority
of SPC approaches presented in literature consider SPC as
a pure monitoring system. Although there has been done
quite interesting work making use of fuzzy logic approaches
in order to handle uncertainty that is related with the
construction [15–20] or the evaluation of control charts with
respect to quality attribute changes [21], there is only little
investigation that actually takes into account how to integrate
the information that is delivered by the SPC system into a
feedback control system in order to keep the process within
its statistical boarders.This shortcoming is mentioned as well
by Woodall, Montgomery, and Stoumbos [22–25].

With respect to automatic process control, fuzzy logic has
also become a powerful tool in intelligent control of biological
systems due to the capability to handle complex nonlinear
processes and uncertainty in data [26–29]. The concept of
fuzzy logic was first introduced by Zadeh [30]. It uses the
principle of linguistic description by means of IF-THEN
algorithms in order to mimic human reasoning and process
assessment. Therefore, it is a good platform for controller
design that is subjected to uncertain process behavior.

However, the classic fuzzy controller has several draw-
backs. In particular, amajor drawback is the lack of a learning
capability. Classical fuzzy systems are static and their practical
implementation and optimization is done by trial and error
and based on the experience of an expert knowing the process
and how it should be controlled. However, with respect to fast
controller implementation andfinding the optimal parameter
configuration of the fuzzy sets in order to reach the required
controller performance, the method of trial and error is quite
cumbersome and often results in inefficient and subopti-
mal configurations of the control parameters. The optimal
configuration can be “hidden” in the data. Therefore, in this
work a genetic algorithm was used in order to provide addi-
tional intelligence and the ability of learning to the fuzzy
controller. The genetic algorithm optimizes the control per-
formance on a data-driven approach. The overall control
strategy, which is represented by the rulebase, uses the cog-
nitive knowledge of an expert.

In this approach, the process control architecture is real-
ized by an automated feedback control system based on fuzzy
logic. The fuzzy system is linked to SPC in order to control
and monitor the process of yeast propagation.The developed
fuzzy controller adjusts the process temperature in order to
keep the process within statistical corridors of the controller
input variables, which are the control error and the temporal
control error derivative. Within the framework of SPC, the
statistical corridors, respectively, upper and lower control
limits of the input variables, are derived from historical data
of batches that met the required quality specifications. She-
whart control charts (𝑋-charts) are used to calculate the ideal
trajectory 𝑋, the upper control (UCL) limit, and the lower

control limit (LCL) of the input variables. With respect to
the control quality this means that if the control error stays
within the statistical borders, the process and the control
meet the required and predefined quality and performance
criteria with a probability of 99.73%. The adjustment of the
fuzzy controller parameters is done by a genetic algorithm.
The heuristic search mechanism of the genetic algorithm is
able to find the ideal parameter configuration of the fuzzy
sets. The advantage therefore lies in the combination of fuzzy
and genetic algorithms. The fuzzy system holds the principle
expert knowledge of how to best control the process and the
genetic algorithm is used to optimize the expert knowledge by
providing learning capability and efficient solution finding in
a big search space.

2. Materials and Methods

2.1. Control Charts and Data Pool. The standard Shewhart𝑋-
chart consists of a centerline to monitor the process mean
and the upper and lower control limit which are calculated
fromhistoric process data.The control limits are usually set at
±3 times the standard deviation from the centerline, which is
simply the arithmetic average.This expresses statistically that
99.73% of all batches that run within these limits are meeting
the specified quality requirements and can be viewed to be in
control.

The process for which the system was developed is the
brewer’s yeast propagation process, which is a typical and rep-
resentative process biased by various sources of uncertainty.
In general, yeast propagation is performed as a batch process,
whereby the yeast undergoes the different growth phases of
a static culture (lag phase, exponential phase, transition or
deceleration phase, stationary phase, and degeneration). The
individual phase duration and the transition time from one
phase to another depend on various factors. For example, the
lag phase depends on the physiological state of the inoculum
and the specific growth medium [31]. The physiological state
in turn depends on storage conditions and the upstream
treatment of the yeast used as inoculum [32]. Furthermore,
the growth behavior is influenced by the substrate, which
is beer wort. Its composition again is dependent on natural
variations of the used raw materials. In consequence, the
effects of substrate limitations on the metabolic behavior due
to unavoidable variations in available carbohydrates, nitro-
gen, zinc, or vitamins are subjected to uncertainty. Addition-
ally, metabolic regulation effects occurring under brewing
related conditions have to be taken into account. In this
regard, the most important regulation mechanism affecting
the different metabolic pathways is the Crabtree effect [33].
The Crabtree effect, which is also known as overflow meta-
bolism, catabolite repression, aerobic fermentation, or oxi-
doreductive metabolism, leads to the formation of ethanol at
exceedance of a critical glucose concentration in the substrate
[34–36]. In summary, the process of oxidoreductive yeast
propagation is affected by numerous sources of uncertainty
that in consequence influence the observability and control-
lability of the process. Hence, in order to observe and control
this kind of process an intelligent online monitoring and
process control system is required.
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In this work the data of 11 batches was used that met the
following performance and quality requirements:

(i) Cell count concentration at end of batch: ≥100 ×
106 cells/mL.

(ii) Portion of dead cells at end of batch: ≤1%.

For the experimental work, beer wort produced from
standard malt extract (Weyermann�, “Bavarian Pilsner”)
was used as substrate for the propagation of Saccharomyces
cerevisiae sp. (strain W34/70). A detailed description of
the technical plant configuration, experimental procedure,
and analytics is given in [37]. For the performance anal-
ysis, calculation of control charts, and the later controller
design, a temperature dependent growth model by [38] was
implemented. The model is based on known stoichiometric
turnover and Michaelis-Menten kinetics of yeast [35, 36, 39].
In addition, it considers growth limitations like the Crabtree
effect that occur by feeding substrate sugar concentrations
above 100 g/L [33].The effect of temperature on yeast growth,
respectively, the substrate uptake, is modeled by implement-
ing an additional temperature factor𝑓temp that is expressed by
a square root term that was originally developed to describe
the temperature effect on the growth of specific bacteria
[40, 41]. The specific substrate uptake 𝑞

𝑆
can be represented

by the following equations:

𝑞
𝑆

= 𝑞
𝑆,max ∗min( 𝑆

𝑆 + 𝐾
𝑠

,

𝑁

𝑁 + 𝐾
𝑛

) ∗

𝐾
𝑖,eth

𝐾
𝑖,eth + 𝐸

∗ 𝐿
𝑡
∗ 𝑓temp,

𝑓temp

= ⟨𝑏 ∗ (𝑇 − 𝑇min) ∗ {1 − exp [𝑐 ∗ (𝑇 − 𝑇max)]}⟩
2
.

(1)

Applied half saturation constants for limitations or inhibition
were 𝐾

𝑠
= 2.8mmol/L [36], 𝐾

𝑛
= 2mmol/L [42], and 𝐾

𝑖,eth
= 500mmol/L [43]. Furthermore, 𝑞

𝑆,max = 0.486mol/mol/h
[36] denotes the maximum specific substrate uptake rate, 𝑆
is the substrate concentration in mmol/L, 𝑁 is the nitrogen
concentration in mmol/L expressed as NH

3
equivalents, and

𝐸 is the ethanol concentration in mmol/L. The lag time 𝐿
𝑡

is determined by a sigmoid function 𝐿
𝑡
= 1/(1 + 𝑒

−(𝑡−𝑡lag)
),

where 𝑡lag was set to 5.6 h. 𝑇 is the temperature in K and the
mathematical regression coefficients were determined to be
𝑏 = 0.03296 and 𝑐 = 11.98 in this work. 𝑇min = 270.7616K and
𝑇max = 308.1539K are temperatures where no further growth
is observed.

Figure 1 displays the comparison of yeast cell counts
(YCC) in mmol/L between the model outputs and the cor-
responding experimental runs (that were judged as “good”
batches from a qualitative point of view) for different temper-
ature profiles. The YCC of the batches was measured online
using a turbidity sensor (optek-Danulat, AF 16). The model
has a root mean squared error (RMSE) of 7.4mmol/L and
therefore shows good accuracy in predicting the cell concen-
tration. The error 𝑒YCC between model and real trajectory, as
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Figure 1: Comparison of cell count (YCC) of historical batches
and model output. The circles (o) show the YCC model output in
mmol/L, the solid line (—) is the experimental trajectory of YCC
in mmol/L, and the dashed line (- - -) denotes the temperature in
K. The duration, respectively, batch length, varied between 24 and
46 hours. Initial conditions of yeast cell concentration varied in
between 4.1mmol/L and 14.9mmol/L.The final state of the yeast cell
concentration showed a range from 146.3 mmol/L to 191.9mmol/L.
The temperature varied from 283K to 291 K.

well as its temporal derivative ̇𝑒YCC, is then calculated in order
to establish the control charts:

𝑒YCC = YCCreal − YCCmodel,

̇𝑒YCC =
𝑑𝑒YCC
𝑑𝑡

.

(2)
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Due to the varying individual batch length, the batches were
uncoupled from time. To achieve this, batch evening was
performed by resampling the batches and mapping them to
the shortest number of 𝐽 = 9120 sampling instances. Then,
after mean centering and normalization with the standard
deviation, for 𝑁

𝑘
batches with 𝑖 = 1 : 𝐽 sampling instances,

the control charts are calculated as follows:

𝑋
𝑒YCC,𝑖
=

1

𝑁
𝑘

𝑁𝑘

∑
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=
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(3)

2.2. The Fuzzy Controller. The applied fuzzy temperature
controller is a Mamdani type controller [44, 45] that consists
of the standard components of fuzzification, inference engine
with rulebase, and defuzzification. The fuzzification of the
input variables 𝑒YCC (difference in biomass concentration
between the reference process model and the real measure-
ment) and the temporal derivative ̇𝑒YCC is done via piecewise
linear functions, respectively, trapezoidal fuzzy sets. In this
context, the fuzzy variable 𝑒YCC is assigned to the linguistic
expressions low, matched, and high. Similarly, the fuzzy vari-
able ̇𝑒YCC is linked to the verbal terms slower, matched, and
faster. The fuzzy output variable comprises three fuzzy sets,
namely, neg, zero, and pos. Here, the output is a temperature
increment Δ𝑇 that is added to the initial temperature at the
start of the process.The inference engine has the task tomatch
the input variables to the output variable of the controller
by taking into account the logical statements defined in
the rulebase. In this case a standard max-min method was
applied [46]. The rulebase contains the rules in “IF-THEN”
form that determine the basic control strategy in order to
follow an optimal growth trajectory delivered by the process

model. The rulebase of the fuzzy temperature controller is
shown as follows:

IF 𝑒YCC is low AND ̇𝑒YCC is slower THEN Δ𝑇 is pos.
IF 𝑒YCC is low AND ̇𝑒YCC ismatched THEN Δ𝑇 is pos.
IF 𝑒YCC is low AND ̇𝑒YCC is faster THEN Δ𝑇 is zero.
IF 𝑒YCC is matched AND ̇𝑒YCC is slower THEN Δ𝑇 is
pos.
IF 𝑒YCC is matched AND ̇𝑒YCC is matched THEN Δ𝑇
is zero.
IF 𝑒YCC is matched AND ̇𝑒YCC is faster THEN Δ𝑇 is
neg.
IF 𝑒YCC is high AND ̇𝑒YCC is slower THEN Δ𝑇 is zero.
IF 𝑒YCC is highAND ̇𝑒YCC ismatched THENΔ𝑇 is neg.
IF 𝑒YCC is high AND ̇𝑒YCC is faster THEN Δ𝑇 is neg.

At first, the fuzzy set parameterization for each variable was
done uniformly across the individual universe of discourse.

Therefore, the set parameters were assigned as follows:

(i) 𝑒YCC:

(a) low fl [−100 −30 −5 0],
(b) matched fl [−5 −0.01 0.01 5],
(c) high fl [0 5 30 100];

(ii) ̇𝑒YCC:

(a) slower fl [−100 −10 −5 0],
(b) matched fl [−5 −0.01 0.01 5],
(c) faster fl [0 5 10 100];

(iii) Δ𝑇:

(a) neg fl [−1.2 −0.8 −0.6 −0.2],
(b) zero fl [−0.6 −0.1 0.1 0.6],
(c) pos fl [0.2 0.6 0.8 1.2].

Here, the numbers denote the characteristic points of the
piecewise linear membership functions used to define the
individual fuzzy sets. For example, the support (the set of
points on the variable domain, where the membership func-
tion value is greater than zero) and slopes of the trapezoidal
fuzzy set matched are characterized by the four points −5,
−0.01, 0.01, and 5. In general themembership function𝜇

𝐴
𝑗

𝑖

(𝑢
𝑖
)

of a trapezoidal set is given by [46]

𝜇
𝐴
𝑗

𝑖

(𝑢
𝑖
) =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

0: 𝑢
𝑖
≤ 𝑙; 𝑢

𝑖
≥ 𝑟

1: 𝑚
1
≤ 𝑢
𝑖
≤ 𝑚
2

𝑢
𝑖
− 𝑙

𝑚
1
− 𝑙

: 𝑙 < 𝑢
𝑖
< 𝑚
1

𝑚
2
− 𝑢
𝑖

𝑟 − 𝑚
2

+ 1: 𝑚
2
< 𝑢
𝑖
< 𝑟.

(4)
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Figure 2: Schematic representation of the nontuned fuzzy controller structure and the flow of information. The first step shows the fuzzy
partition and the fuzzification of the input variables 𝑒YCC and ̇𝑒YCC into their specific fuzzy sets. The second step diagrammatically shows the
inference mechanism and the activation of the corresponding rules in the rulebase. The third step illustrates the set partition of the fuzzy
output variable Δ𝑇 and the accumulation and COG defuzzification of the overall implied fuzzy set into a crisp output.

Here, 𝜇
𝐴
𝑗

𝑖

(𝑢
𝑖
) is a membership function associated with fuzzy

set 𝐴𝑗
𝑖
= {(𝑢

𝑖
, 𝜇
𝐴
𝑗

𝑖

(𝑢
𝑖
)) | 𝑢

𝑖
∈ U
𝑖
}, which maps U

𝑖
to [0, 1].

U
𝑖
is the universe of discourse, 𝑙 denotes the leftmost point of

the trapezium,𝑚
1
is the left center point,𝑚

2
is the right center

point, and 𝑟 represents the rightmost point. Figure 2 gives a
schematic representation of the fuzzy temperature controller.

The defuzzification uses the center of gravity method
(CoG) [46] in order to do the back transformation from the
linguistic to the numerical domain and to calculate a crisp
output value. The crisp output value of Δ𝑇 is then used as

an incremental change of process temperature 𝑇 at the cur-
rent point in time 𝑡,

𝑇 (𝑡 + 1) = 𝑇 (𝑡) +

Δ𝑇

cph
. (5)

Here, cph is equal to 360 and it denotes the cycles per hour.
This results from the chosen sampling time of 10 s.

2.3. Genetic Tuning of Fuzzy Sets. There is a wide range of
bioengineering and food related applications, where fuzzy
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logic controllers and expert systems have been successfully
used [26–28, 47–53]. However, they show a deficiency in
knowledge acquisition and their parameterization relies to a
great extent on empirical and heuristic knowledge.Moreover,
in-field tuning and performance adjustment is mostly done
by trial and error, which can be very inefficient and time-
consuming depending on the complexity of the process to
be controlled.The combination of evolutionary optimization
methods and fuzzy logic allows incorporating information
that is present in the process data in order to automatically
adjust the controller parameters and to add a certain degree of
intelligence. In this case, genetic algorithms play a significant
role, as search techniques for handling complex spaces, and
were successfully applied in many fields such as artificial
intelligence, (bio)engineering, and robotics [54–57]. In this
work, a genetic algorithm (GA) was used in order to tune
the input and output membership functions in order to
make the control error stay within its statistical borders.
The genetic algorithm consists of initialization, rank-based
selection, crossover, and mutation. In the beginning the
settings of the GA are initialized. A population size of 𝑗 = 40
individuals was chosen. The selection rate was set to 0.5 and
the mutation rate was fixed to 0.02. The maximum number
of iterations was set to 120. Instead of binary coding, real
coding of fuzzy set parameters on the chromosomes was
applied. A similarmethod as suggested by [58, 59] was chosen
to encode the fuzzy parameters. Trapezoidal fuzzy sets were
used because this allows the GA to change the set form also
into triangular sets as a special form of a trapezium if the two
center points are allowed to take equal values. With respect
to the coding scheme some restrictions have to be made
in order to maintain the order of the linguistic labels. Each
trapezoidal shaped membership function or label of a fuzzy

variable is parameterized by a 4-tuple of real values. There-
fore, an individual of the population or chromosome 𝑃

𝑗
is

encoded as follows:

𝑃
𝑗
fl (𝐴

1,1
, 𝐴
1,2
, 𝐴
1,3
, 𝐴
1,4
, . . . , 𝐴

𝑝,𝑞
, 𝐵
1,1
, 𝐵
1,2
, 𝐵
1,3
, 𝐵
1,4
,

. . . , 𝐵
𝑝,𝑞
, 𝐶
1,1
, 𝐶
1,2
, 𝐶
1,3
, 𝐶
1,4
, . . . , 𝐶

𝑝,𝑞
) .

(6)

In this assignment, 𝐴 denotes the first fuzzy variable 𝑒YCC,
𝐵 represents ̇𝑒YCC, and 𝐶 is the output variable Δ𝑇. Each
variable has 3 labels and each label consists of 4 characteristic
points (alleles). Thus 𝑝 = (1, . . . , 3) and 𝑞 = (1, . . . , 4).
In the beginning, the GA is initialized. For this, the first
individual was fixed and the set parameters of the original
fuzzy controller were encoded on the chromosome. The
residual population was initialized randomly within each
variables domain. However, some constraints with respect
to the semantics of ordering relation and completeness have
to be considered [58]. In this context, the ordering of the
labels was fixed and for each fuzzy set the sequence of the
characteristic points was fixed in order to maintain the order
of the linguistic labels. For example, in the case of 𝐴, low <
matched < high for label ordering and 𝐴

𝑝,1
< 𝐴
𝑝,2
≤ 𝐴
𝑝,3
<

𝐴
𝑝,4

for the sequence of set points.This boundary condition is
valid for the mutation operation, as well. Figure 3 shows how
the fuzzy set parameters are coded on the chromosomes.

Including a priori knowledge, the set parameters 𝐴
1,1
,

𝐴
1,2
, 𝐴
3,3
, 𝐴
3,4
, 𝐵
1,1
, 𝐵
1,2
, 𝐵
3,3
, 𝐵
3,4
, 𝐶
1,1
, and 𝐶

3,4
were hard

coded with their initial values in order to cover the whole
universe of discourse. Thus, they are not altered by crossover
and mutation. The residual parameters of the trapezoidal
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Figure 4: After initialization each individual of the population passes its parameter vector to the fuzzy controller. The controller is then
simulated using the process model described in Section 2.1. Following the principle of elitism, the best solutions of each iteration are kept in
order to create the next population.

fuzzy sets were allowed to take values in the possible intervals
of adjustment as follows:

Γ
1,4
∈ [Γ
1,2
, Γ
3,3
] ,

Γ
1,3
∈ [Γ
1,2
, Γ
1,4
] ,

Γ
2,1
∈ [Γ
1,2
, Γ
3,3
] ,

Γ
2,2
∈ [Γ
2,1
, Γ
3,3
] ,

Γ
2,3
∈ [Γ
2,2
, Γ
3,3
] ,

Γ
2,4
∈ [Γ
2,3
, Γ
3,3
] ,

Γ
3,1
∈ [Γ
1,2
, Γ
3,3
] ,

Γ
3,2
∈ [Γ
3,1
, Γ
3,3
] .

(7)

Here, Γ represents 𝐴, 𝐵, and 𝐶, respectively. The whole
population is simulated using the growthmodel and the cost,
respectively, fitness of each individual, is calculated using the
RMSE:

RMSE = √
∑
𝑛

𝑡=1
(�̂�
𝑡
− 𝑦
𝑡
)
2

𝑛

.
(8)

Here, �̂�
𝑡
denotes the predicted YCC by the model at the

sampling point 𝑡 and 𝑦 is the YCC of the reference trajectory
at the same point of time. Rank-based selection [60] is used
in order to choose the best solutions. The best 20 individuals
are chosen to form the mating pool and the pairing is
done randomly within the pool. The crossover operation is
done by calculating the mean of the corresponding alleles
of each mating pair, which corresponds to whole arithmetic
crossover [61]. In this crossover method two offspring 𝐻

𝑘
=

(ℎ
𝑘

1
, . . . , ℎ

𝑘

𝑖
, . . . , ℎ

𝑘

𝑛
) and 𝑘 = 1, 2 are computed from two

parental chromosomes 𝐶
1
= (𝑐
1

1
⋅ ⋅ ⋅ 𝑐
1

𝑛
) and 𝐶

2
= (𝑐
2

1
⋅ ⋅ ⋅ 𝑐
2

𝑛
)

selected to apply the crossover operator, where ℎ1
𝑖
= 𝜆𝑐
1

𝑖
+

(1 − 𝜆)𝑐
2

𝑖
and ℎ2

𝑖
= 𝜆𝑐
2

𝑖
+ (1 − 𝜆)𝑐

1

𝑖
. 𝜆 is a constant (uniform

arithmetical crossover) and was chosen to be equal to 0.5.
According to this the population is filled up again with 20
new offspring. Finally, 2% of the new population is mutated
by randomly alternating one allele on a chosen chromosome.
The mutation alternation is done in compliance with the
restrictions of ordering. Figure 4 shows schematically the flow
of information during the genetic tuning process.

The control strategy was implemented using a PLC
system (Beckhoff, CX9000) with standard I/O terminals for
analogue inputs and outputs (4–20mA). On the PLC a PID
temperature controller was programmed. The fuzzy system,
the genetic algorithm, and the SPC monitoring system run
on a separate PC in a framework similar to a SCADA
(Supervisory Control and Data Acquisition) system. The
fuzzy system reads from the PLC, recalculates a new set point
for temperature, and writes it to the PID controller on the
PLC. The communication between the PLC system and the
external PC, respectively, the SCADA system, is done via
Ethernet (TCP/IP).The software used for the SCADA system
is in-house developed C++ based software named Virtual
Expert�.

3. Results and Discussion

After the genetic tuning process the best individual of
the simulations (RMSE = 4.03 × 106mmol/L) was chosen
for experimental validation. The obtained genetically tuned
fuzzy sets are shown in Figure 5.The resulting set parameters
are as follows:

(i) 𝑒YCC:

(a) low fl [−100 −30 −17.28 10.79],
(b) matched fl [0.17 19.16 25.28 27.31],
(c) high fl [12.90 18.95 30 100];
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Figure 5: New set configuration of the fuzzy controller after the
genetic tuning process. Slopes, shapes, and positions of the sets were
changed. In particular, the sets denoted as matched were generally
enlarged.

(ii) ̇𝑒YCC:

(a) slower fl [−100 −10 −4.31 −1.24],
(b) matched fl [−1.29 −0.61 3.24 6.72],
(c) faster fl [2.23 9.30 10 100];

(iii) Δ𝑇:

(a) neg fl [−1.2 −0.95 −0.69 0.55],
(b) zero fl [−0.95 −0.01 0.15 0.50],
(c) pos fl [−0.16 0.34 0.83 1.2].

It can be observed that the slopes, shapes, and positions of
the different sets have been changed. In particular, the part
of the fuzzy sets linked to the linguistic valuematched with a
membership value equal to one has been enlarged compared

to the original sets (almost triangular). This makes the
controller behavior more robust against process disturbances
and therefore leads to less fluctuation in temperature.

Prior to genetic tuning, the yeast propagation process
was run with a nonadapted, uniformly parameterized fuzzy
controller described in Section 2.2. As expected, the con-
trol performance of the fuzzy controller did not meet the
requirements and exceeded the allowed control corridors.
As a result, big changes in process temperature exceeding
10 K within 15 hours were recorded. As a consequence, the
required performance specifications could not be met. After
2 days of propagation, less than 70 × 106 cells/mL and around
5% of dead cells were detected by microscopic plate count
[62]. The experiment was then repeated 4 times using the
tuned fuzzy controller. The corresponding control charts
are shown in Figure 6. As shown, the original controller
exceeds the control limits, which is indicated by the arrows.
In contrast, the adjusted fuzzy controller is able to keep the
process within the statistical borders and therefore meets
the performance requirements. Furthermore, by comparison
of the controller outputs, in contrast to the nontuned fuzzy
controller it alters the process temperature only when it is
necessary.The original controller parameterization leads to a
permanent change in temperature resulting in an oscillatory,
unstable behavior. By applying the genetic tuning process
this behavior could be avoided leading to a smoother change
of the temperature. Using the tuned fuzzy controller, on
average, a cell concentration of about 185 × 106 cells/mL and
less than 1% of dead cells were achieved after two days of
cultivation. The RMSE of reference trajectory and online
measured YCC is 5.2 × 106 cells/mL. This shows that there
is a good matching and that the fuzzy controller is able to
lead the process along the desired growth profile.The control
charts are projected online; thus the user is permanently
informed if the process was in control or if there was any
deterioration occurring. However, it has to be noted that
the immediate and specific identification of the cause for
undesired process behavior would need some additional
process knowledge and experience. Here, the quality of
the process is merely linked to the control performance.
So, if there was, for example, contamination with another
microorganism or an undersupply with oxygen, the process
would go out of the corridors and one could directly observe
this in the control charts, but one would not be able to
tell the reason for that without having the corresponding
experience and process knowledge. Therefore, a multivariate
approach in combination with recent fuzzy control chart
evaluation methods [21] is currently under investigation in
order to link further quality attributeswith the corresponding
key performance indicators of the process. This would be
a further step in combining online (multivariate) statistical
process monitoring and direct, intelligent feedback process
control techniques.

4. Conclusion

In this work an approach is presented to couple statistical
processmonitoringwith an intelligent feedback control based
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Figure 6: Online control charts for control error 𝑒YCC (a) and its derivative ̇𝑒YCC (b). The solid bold lines (-) are the statistical values of the
upper control limit, mean, and lower control limit. The dotted (⋅ ⋅ ⋅ ) curve is the trajectory that belongs to the nontuned fuzzy controller.
The arrows mark where it leaves the statistical corridor. The residual lines (— ⋅—) stay clearly within the control limits and show the error
trajectories resulting from the genetic tuned fuzzy controller. Graph (c) shows the output of the nontuned fuzzy controller (⋅ ⋅ ⋅ ) in comparison
to the output of the genetic tuned controller (- - -).

on fuzzy logic for handling uncertainty biased processes
related to food production and fermentative processes in
life sciences. The system is demonstrated by the process
of brewer’s yeast propagation. For that purpose, the fuzzy
controller parameters are adjusted using a genetic tuning
algorithm in order to meet the required quality and per-
formance criteria. Subsequent to the simulations, an exper-
imental verification was performed using a 120 L medium-
scale propagation system. The obtained results show that
the performance of the control system is directly linked
to process quality. By staying within the statistical con-
trol limits, the required biomass concentration of 100 ×
106 cells/mL was exceeded reaching up to 185 × 106 cells/mL,
whereby the RMSE to the reference growth trajectory is
5.2 × 106 cells/mL. However, the remaining future challenge
is to specifically identify the cause of a process anomaly
without having the corresponding experience or knowledge
about the process. Therefore, current investigations strive for
a combined approach of multivariate modeling and fuzzy
control chart evaluation to link specific quality attributes and
the control performance of the process, whichwould be a step
forward in combining online (multivariate) statistical process

monitoring and direct, intelligent feedback process control
techniques.
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lung der Mitteleuropäischen Brautechnischen Analysenkommis-
sion (MEBAK), Chapter 10.4.3,Weihenstephan: Selbstverlag der
MEBAK, Band III, Freising, Germany, 2nd edition, 1982.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


