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The first aim of the paper is to present a survey of possible approaches for the study of fuzzy stochastic differential or integral
equations. They are stochastic counterparts of classical approaches known from the theory of deterministic fuzzy differential
equations. For our aims we present first a notion of fuzzy stochastic integral with a semimartingale integrator and its main
properties. Next we focus on different approaches for fuzzy stochastic differential equations. We present the existence of fuzzy
solutions to such equations as well as their main properties. In the first approach we treat the fuzzy equation as an abstract relation
in the metric space of fuzzy sets over the space of square integrable random vectors. In the second one the equation is interpreted
as a system of stochastic inclusions. Finally, in the last section we discuss fuzzy stochastic integral equations with solutions being
fuzzy stochastic processes. In this case the notion of the stochastic Itô’s integral in the equation is crisp; that is, it has single-valued
level sets. The second aim of this paper is to show that there is no extension to more general diffusion terms.

1. Introduction

Deterministic fuzzy differential equations have been devel-
oped due to investigations of dynamic systems where the
information on parameters of such systems is incomplete
or vague. They play an important role in an increasing
number of systemmodels in biology [1], engineering [2], civil
engineering [3], bioinformatics and computational biology
[4], quantum optics and gravity [5], and hydraulic [6, 7]
andmodeling ofmechanical systems [8].Many investigations
in this area were developed using different approaches for
formulations of differential problems in a fuzzy setting (see,
e.g., [1, 9–23] and references therein). Historically, the earliest
approach for deterministic fuzzy differential equations was
based on a generalization of the Hukuhara derivative of a
set-valued function. This was made by Puri and Ralescu
in [24] and used by Kaleva in [15, 16]. Further extensions
were developed next also in [25–27] where the concept of
strongly generalized differentiability was introduced. A dif-
ferent approach was proposed by Hüllermeier in [13] where
fuzzy differential equations were interpreted as a family of
differential inclusions associated with level sets of their fuzzy

right hand sides. Such an approach has been also used next
among others in [1, 9, 12, 18, 22, 28, 29] (see also the references
therein). A further step is a research concerning stochastic
fuzzy differential (or integral) equations which generalize
both classical stochastic differential equations and determin-
istic fuzzy differential equations. In this case, the main prob-
lem is a concept of a fuzzy stochastic integral which should
cover the notion of the classical stochastic Itô integral. A
research concerning stochastic fuzzy differential (or integral)
equations driven by a Wiener process has been initiated in
different forms in [30–33], and it can be applied in modeling
of phenomenons where two kinds of uncertainties, that is,
randomness and fuzziness, are incorporated simultaneously.
For applications in stochastic population models, see, for
example, [31, 34]. The aim of this paper is twofold. Firsly,
we present a survey of extensions of some of approaches for
deterministic fuzzy differential equations to fuzzy stochastic
equations driven by semimartingales presented mainly in
[35–37] and developed further in [38, 39]. Secondly, we
present an analysis of the notion of fuzzy Itô’s stochastic
integral understood as fuzzy random variable. So, we will
start with presentation of some recent results where different
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approaches to the notion of a fuzzy stochastic equation were
used. They reflect those known from deterministic case. The
first one presented in Section 3 treats a fuzzy equation as an
abstract relation in the metric space of fuzzy sets over the
space of square integrable random vectors. In the second one
we solve an equation via stochastic inclusions approach. In
this case, the idea is to solve those inclusions and then apply
the theorem of Negoita and Ralescu. In the deterministic
case these studies reduce to investigations presented in [9,
13, 15, 28]. In Section 4, we discuss another concept of the
notion of fuzzy stochastic differential equations which was
developed in [33, 34, 40–44] and which again reduces to
classical Kaleva’s approach in the deterministic case. Now
the idea is to use an embedding of a single-valued stochastic
integral driven by a Wiener process into the space of fuzzy
sets. Here the advantage is that a solution of fuzzy integral
equation appears as a fuzzy-valued stochastic process. On the
other hand, the main disadvantage in this case is that the
fuzzy-valued stochastic integral is trivial; that is, it has single-
valued level sets. In fact, in this case the integrand must have
single-valued level sets as well. Therefore in the context of
the study of stochastic fuzzy equation the following problem
appears: is it possible to consider fuzzy stochastic differ-
ential equations with more general fuzzy-valued diffusion
terms and with solutions still being fuzzy-valued stochastic
processes? The second aim and the novelty of the paper
is the analysis of this problem. This is done in Section 4
where we show that because of unboundedness in general
of a fuzzy stochastic Itô’s integral such extension may not
hold.

2. Fuzzy Random Variables and
Fuzzy Stochastic Integral

We start with some facts from stochastic analysis needed in
the sequel. We recall the notion of a fuzzy stochastic integral
with respect to semimartingale integrators studied first in
[32] and next used and developed in [35–38]. Let 𝑇 > 0

and let 𝐼 = [0, 𝑇] or 𝑅
+
. Let (Ω, F, {F

𝑡
}
𝑡∈𝐼

, 𝑃) be a complete
filtered probability space satisfying the usual hypothesis; that
is, {F

𝑡
}
𝑡∈𝐼

is an increasing and right continuous family of sub-
𝜎-fields of F and F

0
contains all 𝑃-null sets. LetP denote the

smallest 𝜎-field on 𝐼 × Ω with respect to which every left-
continuous and {F

𝑡
}
𝑡∈𝐼

-adapted process is measurable. An
𝑅
𝑑-valued stochastic process 𝑥 is said to be predictable if 𝑥

is P-measurable. One has P ⊂ 𝛽 ⊗ F, where 𝛽 denotes the
Borel 𝜎-field on 𝐼. Let 𝐿

2,𝑑 fl 𝐿
2
(Ω, F, 𝑃; 𝑅

𝑑
) for 𝑑 ≥ 1. By

𝑆
2 we denote the space of all {F

𝑡
}
𝑡∈𝐼

-adapted and càdlàg (i.e.,
right continuous and with finite left-hand limits) processes
(𝑥

𝑡
)
𝑡∈𝐼

such that the norm ‖𝑥‖
𝑆
2 fl ‖sup

𝑡∈𝐼
|𝑥

𝑡
|‖
𝐿
2,1 is finite.

It is well known that (𝑆2, ‖ ⋅ ‖
𝑆
2) is a Banach space (see, e.g.,

[45]). We will use the notation 𝑥
𝑡−

fl lim
𝑠↗𝑡

𝑥
𝑡
𝑃-a.s. Let 𝑍 be

an {F
𝑡
}
𝑡∈𝐼

-adapted and càdlàg process with values in 𝑅
1. It is

said to be a semimartingale if 𝑍 = 𝑀 + 𝐴, where 𝑀 is an
{F

𝑡
}
𝑡∈𝐼

-adapted local martingale and 𝐴 is an {F
𝑡
}
𝑡∈𝐼

-adapted,
càdlàg process with finite variation on compact intervals in 𝐼

(see, e.g., [45] for details). We will assume that 𝑍
0−

= 𝑍
0
= 0.

Let us consider the class of H2-semimartingales, that is, the

space of {F
𝑡
}
𝑡∈𝐼

-adapted semimartingales with a finite H2-
norm:

‖𝑍‖H2 fl
󵄩󵄩󵄩󵄩󵄩
[𝑀,𝑀]

1/2

sup 𝐼
󵄩󵄩󵄩󵄩󵄩𝐿2,1

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(∫

sup 𝐼

0

󵄨󵄨󵄨󵄨𝑑𝐴 𝑡

󵄨󵄨󵄨󵄨)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2,1
< ∞, (1)

where [𝑀,𝑀] denotes the quadratic variation process for a
local martingale𝑀, while |𝐴|

⋅
fl ∫

⋅

0
|𝑑𝐴

𝑠
| represents the total

variation of the random measure induced by the paths of the
process 𝐴. Proceeding, similarly as in [32], we will introduce
somemeasure𝜇

𝑍
on the predictable𝜎-fieldP associatedwith

a semimartingale 𝑍. Since 𝑍 ∈ H2, it follows that 𝑀 is a
square integrable martingale such that 𝐸𝑀

2

𝑡
= 𝐸[𝑀,𝑀]

𝑡
for

all 𝑡 ∈ 𝐼. By the same reason, the process 𝐴 has a square inte-
grable total variation on 𝐼. By 𝜇

𝑀
denote the Doléans-Dade

measure for themartingale𝑀; that is, 𝜇
𝑀
is a uniquemeasure

on a predictable 𝜎-fieldP such that

𝜇
𝑀

((𝑠, 𝑡] × 𝐴) = 𝐸 (𝐼
𝐴
(𝑀

𝑡
− 𝑀

𝑠
)
2

) ,

𝜇
𝑀

({0} × 𝐴
0
) = 0

(2)

for all𝐴 ∈ F
𝑠
, 0 ≤ 𝑠 < 𝑡, and𝐴

0
∈ F

0
(see, e.g., [46]).Then for

all 𝑓 ∈ 𝐿
2
(𝐼 × Ω,P, 𝜇

𝑀
; 𝑅

𝑑
) the stochastic integral ∫𝑓

𝑠
𝑑𝑀

𝑠

exists and one has

𝐸(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑓
𝑠
𝑑𝑀

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑅
𝑑

) = ∫
[0,𝑡]×Ω

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝑅
𝑑 𝑑𝜇𝑀

= 𝐸(∫

𝑡

0

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩

2

𝑅
𝑑 𝑑 [𝑀,𝑀]

𝑠
) ,

(3)

for 𝑡 ∈ 𝐼. Let us define a random measure on 𝐼

𝛾 (𝜔, 𝑑𝑡) fl |𝐴 (𝜔)|sup 𝐼
󵄨󵄨󵄨󵄨𝑑𝐴 𝑡

(𝜔)
󵄨󵄨󵄨󵄨 (4)

and a measure associated with the process𝐴 by the following
formula:

]
𝐴
(𝐶) fl ∫

Ω

∫

sup 𝐼

0

𝐼
𝐶
(𝜔, 𝑡) 𝛾 (𝜔, 𝑑𝑡) 𝑃 (𝑑𝜔) (5)

for every 𝐶 ∈ P. Then ]
𝐴
is a finite measure on P. Finally,

we define a finite measure 𝜇
𝑍
associated with 𝑍 ∈ H2 by

𝜇
𝑍

fl 𝜇
𝑀

+ ]
𝐴
. Let us denote 𝐿

2

P(𝜇
𝑍
) fl 𝐿

2
(𝐼 × Ω,P, 𝜇

𝑍
;

𝑅
𝑑
). Then by Proposition 1 in [32] for every 𝑓 ∈ 𝐿

2

P(𝜇
𝑍
)

and 𝑡 ∈ 𝐼 there exists a stochastic integral ∫
𝑡

0
𝑓
𝑠
𝑑𝑍

𝑠
. In

order to introduce a notion of fuzzy stochastic integral we
begin with some auxiliary facts. LetX be a separable Banach
space. By K(X), K𝑏

(X), or K𝑏

𝑐
(X) we denote the family

of all nonempty closed, all nonempty closed and bounded
or nonempty closed bonded, and convex subsets of X,
respectively. We will consider the spaces K𝑏

(X) or K𝑏

𝑐
(X)

with a Hausdorff metric 𝐻X:

𝐻X (𝐴, 𝐵) fl max{sup
𝑎∈𝐴

𝑑X (𝑎, 𝐵) , sup
𝑏∈𝐵

𝑑X (𝑏, 𝐴)} , (6)

where 𝑑X(𝑎, 𝐵) fl inf
𝑏∈𝐵

‖𝑎 − 𝑏‖X and ‖ ⋅ ‖X is a norm in
X. Then (K𝑏

(X),𝐻X) and (K𝑏

𝑐
(X),𝐻X) are complete metric
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space (cf. [47]). For𝐴 ∈ K(X), we set ‖|𝐴|‖X fl 𝐻X(𝐴, {0}) =

sup
𝑎∈𝐴

‖𝑎‖X. By a fuzzy set 𝑢 of a Banach space X we mean
a mapping 𝑢 : X → [0, 1]. The space of all fuzzy sets of
X will be denoted by the symbol F(X). For 𝛼 ∈ (0, 1] let
[𝑢]

𝛼 fl {𝑥 ∈ X : 𝑢(𝑥) ≥ 𝛼} and [𝑢]
0 fl clX{𝑥 ∈ X : 𝑢(𝑥) > 0}

where clX denotes the closure in (X, ‖ ⋅ ‖X). In the sequel we
deal with the following fuzzy sets:

F
𝑏

(X)

= {𝑢 ∈ F (X) : [𝑢]
𝛼

∈ K
𝑏

(X) for 𝛼 ∈ [0, 1]} ,

F
𝑏

𝑐
(X)

= {𝑢 ∈ F (X) : [𝑢]
𝛼

∈ K
𝑏

𝑐
(X) for 𝛼 ∈ [0, 1]} .

(7)

We will use a metric 𝐷X inF𝑏

𝑐
(X) described as follows:

𝐷X (𝑢, V) fl sup
𝛼∈[0,1]

𝐻X ([𝑢]
𝛼

, [V]𝛼)

for 𝑢, V ∈ F
𝑏

𝑐
(X) .

(8)

One can show (cf. [48]) that (F𝑏

𝑐
(X), 𝐷X) is a complete

metric space. Othermetrics used in the setF𝑏

𝑐
(X) (apart𝐷X)

are

𝐷
X
𝑝

(𝑢, V) fl (∫

1

0

𝐻
𝑝

X
([𝑢]

𝛼

, [V]𝛼) 𝑑𝛼)

1/𝑝

, 𝑝 ≥ 1, (9)

and the Skorokhod metric

𝐷
X
𝑆

(𝑢, V) fl inf
𝜆∈Λ

max {𝑎, 𝑏} , (10)

where 𝑎 = sup
𝑡∈[0,1]

|𝜆(𝑡)−𝑡|, 𝑏 = sup
𝑡∈[0,1]

𝑑
𝐻
(𝑥

𝑢
(𝑡), 𝑥V(𝜆(𝑡))),

and Λ is the set of strictly increasing continuous functions
𝜆 : [0, 1] → [0, 1] with 𝜆(0) = 0 and 𝜆(1) = 1. Functions
𝑥
𝑢
, 𝑥V : [0, 1] → K𝑏

𝑐
(X) are the càdlàg representations

for the fuzzy sets 𝑢, V ∈ F𝑏

𝑐
(X); see Colubi et al. [49] for

details.The space (F𝑏

𝑐
(X), 𝐷

X
𝑝
) is separable and noncomplete

but (F𝑏

𝑐
(X), 𝐷

X
𝑆
) is a Polish metric space. ByB

𝜌
, we define a

borel 𝜎-field in a metric space (F𝑏

𝑐
(X), 𝜌) where 𝜌 is one of

metrics described above. For 𝑢, V ∈ F𝑏

𝑐
(X) the addition 𝑢 ⊕ V

is defined by Zadeh’s extension principle (see [11]). But, due
to Lemma 3.4 in [50], it can be also defined levelwise; that is,

[𝑢 ⊕ V]𝛼 = [𝑢]
𝛼

+ [V]𝛼 for each 𝛼 ∈ [0, 1] . (11)

In what follows, we will use the following version of the
theorem of Negoita and Ralescu.

Theorem 1 (see [51]). Let 𝑌 ⊂ X be a nonempty set and let
{𝑌

𝛼
: 𝛼 ∈ [0, 1]} be a family of subsets of 𝑌 such that

(a) 𝑌
0
= 𝑌,

(b) 𝑌
0
⊃ 𝑌

𝛼
⊃ 𝑌

𝛽
for 0 ≤ 𝛼 ≤ 𝛽,

(c) if 𝛼
𝑛
↗ 𝛼 then 𝑌

𝛼
= ⋂

∞

𝑛=1
𝑌
𝛼
𝑛

.

Then there exists 𝑢 ∈ F(X) such that [𝑢]
𝛼

= 𝑌
𝛼
for every

𝛼 ∈ (0, 1], and [𝑢]
0
⊂ 𝑌

0
. Moreover

𝑢 (𝑥) =
{

{

{

sup {𝛼 : 𝑥 ∈ 𝑌
𝛼
} , 𝑖𝑓 𝑥 ∈ 𝑌,

0, 𝑖𝑓 𝑥 ∉ 𝑌.

(12)

On the other hand for 𝑢 ∈ F(X) the family of sets 𝑌
0
fl [𝑢]

0

and 𝑌
𝛼
fl [𝑢]

𝛼, 𝛼 ∈ (0, 1], satisfies conditions (b) and (c).

Let 𝑓 : Ω → F𝑏

𝑐
(X) be such that [𝑓(⋅)]

𝛼

: Ω → K𝑏

𝑐
(X)

is an F-measurable set-valued mapping (in the sense of set-
valued analysis, see, e.g., [47]) for every 𝛼 ∈ [0, 1]. Then 𝑓

is called a fuzzy random variable (in the sense of Puri and
Ralescu). A fuzzy-valued mapping 𝑓 : 𝐼 × Ω → F𝑏

𝑐
(𝑅

𝑑
) is

said to be a predictable fuzzy-valued stochastic process, if the
set-valued function [𝑓]

𝛼
: 𝐼 × Ω → K𝑏

𝑐
(𝑅

𝑑
), [𝑓]

𝛼
(𝑡, 𝜔) fl

[𝑓(𝑡, 𝜔)]
𝛼 isP-measurable.We call𝑓 to be𝐿2

P(𝜇
𝑍
)-integrally

bounded if ‖|[𝑓]
0

|‖ ∈ 𝐿
2
(𝐼 × Ω,P, 𝜇

𝑍
, 𝑅

+
). Taking such a

predictable fuzzy-valued stochastic process 𝑓, let us consider
(for every fixed 𝛼 ∈ [0, 1]) the following set:

𝑆
2

P ([𝑓]
𝛼

, 𝜇
𝑍
) fl {𝑢 ∈ 𝐿

2

P (𝜇
𝑍
) : 𝑢 ∈ [𝑓]

𝛼

𝜇
𝑍
a.e.} . (13)

Then by Kuratowski and Ryll-Nardzewski SelectionTheorem
(see, e.g., [52]), it follows that 𝑆2P([𝑓]

𝛼

, 𝜇
𝑍
) ̸= 0 for 𝛼 ∈ [0, 1].

Hence for every 𝑢 ∈ 𝑆
2

P([𝑓]
𝛼

, 𝜇
𝑍
) the stochastic integral

∫
𝑡

0
𝑢
𝑠
𝑑𝑍

𝑠
exists for 𝑡 ∈ 𝐼. Consequently, for every 𝑡 ∈ 𝐼 and

𝛼 ∈ [0, 1] one can consider [32] the set

∫

𝑡

0

[𝑓]
𝛼

𝑠
𝑑𝑍

𝑠
fl {∫

𝑡

0

𝑢
𝑠
𝑑𝑍

𝑠
: 𝑢 ∈ 𝑆

2

P ([𝑓]
𝛼

, 𝜇
𝑍
)} . (14)

The set ∫
𝑡

0
[𝑓]

𝛼

𝑠
𝑑𝑍

𝑠
is called set-valued stochastic integral of

the set-valuedmapping [𝑓]
𝛼
: 𝐼×Ω → K𝑏

𝑐
(𝑅

𝑑
)with respect

to semimartingale 𝑍.
Below we collect the main properties of the sets 𝑆2P([𝑓]

𝛼

,

𝜇
𝑍
) and ∫

𝑡

0
[𝑓]

𝛼

𝑠
𝑑𝑍

𝑠
for 𝑡 ∈ 𝐼 and 𝛼 ∈ [0, 1].

Proposition 2 (see [32]). Let 𝑓 : 𝐼 × Ω → F𝑏

𝑐
(𝑅

𝑑
) be a

predictable and𝐿
2

P(𝜇
𝑍
)-integrally bounded fuzzy-valuedmap-

ping. Then

(a) 𝑆
2

P([𝑓]
𝛼

, 𝜇
𝑍
) is a closed, convex, bounded, weakly

compact, and decomposable subset of 𝐿2

P(𝜇
𝑍
) for every

𝛼 ∈ [0, 1],
(b) The set ∫

𝑡

0
[𝑓]

𝛼

𝑠
𝑑𝑍

𝑠
is a bounded closed, weakly com-

pact, and convex subset of 𝐿
2,𝑑 for every 𝑡 ∈ 𝐼 and

𝛼 ∈ [0, 1].

Theorem 3 (see [32]). Let 𝑓 : 𝐼 × Ω → F𝑏

𝑐
(𝑅

𝑑
) be a predict-

able and 𝐿
2

P(𝜇
𝑍
)-integrally bounded fuzzy-valued mapping.

Then one has the following:
(a)

∫

𝑡

0

[𝑓]
𝛼
1

𝑠
𝑑𝑍

𝑠
⊃ ∫

𝑡

0

[𝑓]
𝛼
2

𝑠
𝑑𝑍

𝑠
(15)

for every 𝑡 ∈ 𝐼 and 𝛼
1
≤ 𝛼

2
.
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(b)

∫

𝑡

0

[𝑓]
𝛼

𝑠
𝑑𝑍

𝑠
= ⋂

𝑛≥1

∫

𝑡

0

[𝑓]
𝛼
𝑛

𝑠
𝑑𝑍

𝑠 (16)

for every 𝑡 ∈ 𝐼 and 𝛼
𝑛
↗ 𝛼.

Then by Theorem 1, Proposition 2, and Theorem 3, for
every fixed 𝑡 ∈ 𝐼, there exists a fuzzy set (say) 𝑋(𝑓, 𝑍)

𝑡
∈

F𝑏

𝑐
(𝐿

2,𝑑
) such that [𝑋(𝑓, 𝑍)

𝑡
]
𝛼

= ∫
𝑡

0
[𝑓]

𝛼

𝑠
𝑑𝑍

𝑠
for every 𝑡 ∈ 𝐼

and every 𝛼 ∈ [0, 1]. This leads to the following definition
(see [32]).

Definition 4. By a fuzzy stochastic integral (over the interval
[0, 𝑡]) of the predictable and 𝐿

2

P(𝜇
𝑍
)-integrally bounded

fuzzy stochastic process𝑓with respect to the semimartingale
𝑍, one means a fuzzy set 𝑋(𝑓, 𝑍)

𝑡
described above. One

denotes it by 𝑋(𝑓, 𝑍)
𝑡
fl (F) ∫

𝑡

0
𝑓(𝑠)𝑑𝑍

𝑠
, 𝑡 ∈ 𝐼.

Using similar methods as in [36] and general properties
of stochastic integrals driven by càdlàg semimartingales, one
can show the following properties.

Proposition 5. Let𝑓, 𝑓
1
, 𝑓

2
: 𝐼×Ω → F𝑏

𝑐
(𝑅

𝑑
) be predictable

and 𝐿
2

P(𝜇
𝑍
)-integrally bounded fuzzy-valued functions. Then

for all 𝜏, 𝑎, 𝑡, 𝜏 ≤ 𝑎 ≤ 𝑡 it holds:

(a)

(F) ∫

𝑡

𝜏

𝑓 (𝑠) 𝑑𝑍
𝑠
= (F) ∫

𝑎

𝜏

𝑓 (𝑠) 𝑑𝑍
𝑠

⊕ (F) ∫

𝑡

𝑎

𝑓 (𝑠) 𝑑𝑍
𝑠
.

(17)

(b)

𝐷
2

𝐿
2,𝑑 ((F) ∫

𝑡

𝜏

𝑓
1
(𝑠) 𝑑𝑍

𝑠
, (F) ∫

𝑡

𝜏

𝑓
2
(𝑠) 𝑑𝑍

𝑠
)

≤ 2∫
(𝜏,𝑡]×Ω

𝐷
2

𝑅
𝑑 (𝑓1, 𝑓2) 𝑑𝜇𝑍.

(18)

(c) The mapping

[𝜏,∞) ∋ 𝑡 󳨃󳨀→ (F) ∫

𝑡

𝜏

𝑓 (𝑠) 𝑑𝑍
𝑠
∈ F

𝑏

𝑐
(𝐿

2,𝑑

) (19)

is right continuous with finite left-hand limits with
respect to the metric 𝐷

𝐿
2,𝑑 .

Remark 6. In [38] a slight extension of the notion of fuzzy
stochastic integral with respect to the semimartingale 𝑍 =

𝐴 + 𝑀 was proposed. Namely, it was defined as the sum:

(F) ∫

𝑡

0

𝑓 (𝑠) 𝑑𝐴
𝑠
⊕ (F) ∫

𝑡

0

𝑓 (𝑠) 𝑑𝑀
𝑠
. (20)

Although, in general, the fuzzy sets (F) ∫
𝑡

0
𝑓(𝑠)𝑑𝑍

𝑠
and

(F) ∫
𝑡

0
𝑓(𝑠)𝑑𝐴

𝑠
⊕ (F) ∫

𝑡

0
𝑓(𝑠)𝑑𝑀

𝑠
are different, however the

main properties of the sum (F) ∫
𝑡

0
𝑓(𝑠)𝑑𝐴

𝑠
⊕(F) ∫

𝑡

0
𝑓(𝑠)𝑑𝑀

𝑠

follow easily from the same ideas as in the case of the fuzzy
set (F) ∫

𝑡

0
𝑓(𝑠)𝑑𝑍

𝑠
for 𝑍 = 𝐴 and 𝑍 = 𝑀, respectively (see

[35]).

Remark 7. In Section 4, we will study the notion of fuzzy
stochastic integral driven by theWiener process and which is
understood as a fuzzy-valued random variable. We will show
there that such understood fuzzy-valued stochastic integrals
may have unbounded in 𝐿

2 level sets.

3. Fuzzy Stochastic Differential Equation
Driven by a Semimartingale

Below we establish recent result for two different approaches
for fuzzy stochastic differential equations.

3.1. A Direct Approach. For further considerations, we
assume that the 𝜎-field F is separable with respect to the
probability measure 𝑃 and𝑍 is a continuous semimartingale.
A direct approach is based on the framework of the metric
space (F𝑏

𝑐
(𝐿

2,𝑑
), 𝐷

𝐿
2,𝑑) (see [36]). Therefore, in this case

by a stochastic fuzzy differential equation (written in its
integral form), we mean the following relation in the space
(F𝑏

𝑐
(𝐿

2,𝑑
), 𝐷

𝐿
2,𝑑):

𝑋 (𝑡) = 𝑋
0
⊕ (F) ∫

𝑡

0

𝑓 (𝑠, 𝑋 (𝑠)) 𝑑𝑍
𝑠
, 𝑡 ∈ 𝐼, (21)

where𝑓 : 𝐼×Ω×F𝑏

𝑐
(𝐿

2,𝑑
) → F𝑏

𝑐
(𝑅

𝑑
) is a given fuzzy-valued

mapping and 𝑋
0
∈ F𝑏

𝑐
(𝐿

2,𝑑

0
) with 𝐿

2,𝑑

0
fl 𝐿

2
(Ω, F

0
, 𝑃; 𝑅

𝑑
).

Definition 8. By a solution to (21), one means a 𝐷
𝐿
2,𝑑-

continuousmapping𝑋 : 𝐼 → F𝑏

𝑐
(𝐿

2,𝑑
) such that (21) is satis-

fied. The solution 𝑋 of (21) is unique, if 𝑋(𝑡) = 𝑌(𝑡) for all
𝑡 ∈ 𝐼 where 𝑌 : 𝐼 → F𝑏

𝑐
(𝐿

2,𝑑
) is any other solution of (21).

Let 𝜃 and Θ denote zero elements in 𝑅
𝑑 and 𝐿

2,𝑑, res-
pectively. By 𝜃 and Θ̂, we denote their fuzzy counterparts; that
is, 𝜃 ∈ F𝑏

𝑐
(𝑅

𝑑
) such that [𝜃]𝛼 = {𝜃} for every 𝛼 ∈ [0, 1], and

similarly Θ̂ ∈ F𝑏

𝑐
(𝐿

2,𝑑
) with [Θ̂]

𝛼
= {Θ} for every 𝛼 ∈ [0, 1].

We assume that 𝑓 : 𝐼 × Ω ×F𝑏

𝑐
(𝐿

2,𝑑
) → F𝑏

𝑐
(𝑅

𝑑
) satisfies the

following conditions:

(f1) 𝑓 isP ⊗ B
𝐷
𝐿
2,𝑑

𝑆

| B
𝐷

R𝑑

𝑆

-measurable.

(f2) There exists a constant 𝐾 > 0 such that 𝑃-a.e. holds:

𝐷
𝑅
𝑑 (𝑓 (𝑡, 𝜔, 𝑢) , 𝑓 (𝑡, 𝜔, V)) ≤ 𝐾𝐷

𝐿
2,𝑑 (𝑢, V) (22)

for all 𝑡 ∈ 𝐼 and every 𝑢, V ∈ F𝑏

𝑐
(𝐿

2,𝑑
).

(f3) There exists a constant 𝐶 > 0 such that 𝑃-a.e. holds:

𝐷
𝑅
𝑑 (𝑓 (𝑡, 𝜔, 𝑢) , 𝜃) ≤ 𝐶 (1 + 𝐷

𝐿
2,𝑑 (𝑢, Θ̂)) (23)

for all 𝑡 ∈ 𝐼 and every 𝑢 ∈ F𝑏

𝑐
(𝐿

2,𝑑
).
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Then using fixed point argument and continuation pro-
cedure, one can show the following (see [36]).

Theorem9. Let𝑋
0
∈ F𝑏

𝑐
(𝐿

2,𝑑

0
) and let𝑓 : 𝐼×Ω×F𝑏

𝑐
(𝐿

2,𝑑
) →

F𝑏

𝑐
(𝑅

𝑑
) satisfy (f1)–(f3). Then there exists a unique solution to

(21) in the sense of Definition 8.

Now we consider (21) and equation with another initial
value 𝑌

0
∈ F𝑏

𝑐
(𝐿

2,𝑑

0
); that is

𝑌 (𝑡) = 𝑌
0
⊕ (F) ∫

𝑡

0

𝑓 (𝑠, 𝑌 (𝑠)) 𝑑𝑍
𝑠
, 𝑡 ∈ 𝐼. (24)

Let 𝑋,𝑌 denote the solutions to (21) and (24), respectively.
Then the following result holds (see [36]).

Theorem 10. Let 𝑋
0
, 𝑌

0
∈ F𝑏

𝑐
(𝐿

2,𝑑

0
) and let 𝑓 : 𝐼 × Ω ×

F𝑏

𝑐
(𝐿

2,𝑑
) → F𝑏

𝑐
(𝑅

𝑑
) satisfy conditions (f1)–(f3). Then

𝐷
𝐿
2,𝑑 (𝑋 (𝑡) , 𝑌 (𝑡)) ≤ √2𝑒

2𝐾
2
𝜇
𝑍
([0,𝑡]×Ω)

𝐷
𝐿
2,𝑑 (𝑋

0
, 𝑌

0
)

𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑡 ∈ 𝐼.

(25)

Corollary 11. Under assumptions of Theorem 10, we have

sup
𝑡∈𝐼

𝐷
𝐿
2,𝑑 (𝑋 (𝑡) , 𝑌 (𝑡)) ≤ √2𝑒

2𝐾
2
𝜇
𝑍
(𝐼×Ω)

𝐷
𝐿
2,𝑑 (𝑋

0
, 𝑌

0
) . (26)

For the stability of solution with respect to the right-hand
side, we consider the following sequence of equations (for 𝑛 =

1, 2, . . .):

𝑋
𝑛
(𝑡) = 𝑋

0
⊕ (F) ∫

𝑡

0

𝑓
𝑛
(𝑠, 𝑋

𝑛
(𝑠)) 𝑑𝑍

𝑠
, 𝑡 ∈ 𝐼. (27)

By 𝑋,𝑋
𝑛
we denote the corresponding solutions to (21) and

(27). Then we have [36].

Theorem 12. Let 𝑋
0
∈ F𝑏

𝑐
(𝐿

2,𝑑

0
). Suppose that 𝑓, 𝑓

𝑛
: 𝐼 × Ω ×

F𝑏

𝑐
(𝐿

2,𝑑
) → F𝑏

𝑐
(𝑅

𝑑
) satisfy conditions (f1)–(f3)with the same

Lipschitz constant 𝐾. If for every 𝑡 ∈ 𝐼 and every 𝑢 ∈ F𝑏

𝑐
(𝐿

2,𝑑
)

∫
[0,𝑡]×Ω

𝐷
2

𝑅
𝑑 (𝑓𝑛 (𝑠, 𝑢) , 𝑓 (𝑠, 𝑢)) 𝑑𝜇

𝑍
󳨀→ 0,

𝑎𝑠 𝑛 󳨀→ ∞,

(28)

then for every 𝑡 ∈ 𝐼

𝐷
𝐿
2,𝑑 (𝑋

𝑛
(𝑡) , 𝑋 (𝑡)) 󳨀→ 0, 𝑎𝑠 𝑛 󳨀→ ∞. (29)

Corollary 13. Under assumptions of Theorem 12 one has

sup
𝑡∈𝐼

𝐷
𝐿
2,𝑑 (𝑋

𝑛
(𝑡) , 𝑋 (𝑡)) 󳨀→ 0, 𝑎𝑠 𝑛 󳨀→ ∞, (30)

provided that for every 𝑢 ∈ F𝑏

𝑐
(𝐿

2,𝑑
)

∫
𝐼×Ω

𝐷
2

𝑅
𝑑 (𝑓𝑛 (𝑠, 𝑢) , 𝑓 (𝑠, 𝑢)) 𝑑𝜇

𝑍
󳨀→ 0,

𝑎𝑠 𝑛 󳨀→ ∞.

(31)

Remark 14. Setting 𝑍 as 𝑍(𝑡) = 𝑡 for 𝑡 ∈ 𝐼, 𝑓 : 𝐼 ×F𝑏

𝑐
(𝑅

𝑑
) →

F𝑏

𝑐
(𝑅

𝑑
), and 𝑋

0
∈ F𝑏

𝑐
(𝑅

𝑑
) in (21), we get the fuzzy initial

value problem:

𝑋
󸀠

(𝑡) = 𝑓 (𝑡, 𝑋 (𝑡)) ,

𝑋 (0) = 𝑋
0
,

(32)

where 󸀠 denotes the fuzzy Hukuhara derivative (cf. [11, 15,
16, 20] and references therein). Assumptions (f1)–(f3) in
this case reduce to the classical measurability, Lipschitz, and
growth conditions. Thus byTheorem 9, (32) admits a unique
solution. Also in this case,Theorems 10 and 12 andCorollaries
11 and 13 hold.

Remark 15. Using similar methods as in [35], one can prove
existence and uniqueness results to fuzzy stochastic integral
equation (with respect to continuous H2-semimartingale
𝑍 = 𝐴 + 𝑀)

𝑋 (𝑡) = 𝑋
0
⊕ (F) ∫

𝑡

0

𝑓 (𝑠, 𝑋 (𝑠)) 𝑑𝐴
𝑠

⊕ (F) ∫

𝑡

0

𝑓 (𝑠, 𝑋 (𝑠)) 𝑑𝑀
𝑠
, 𝑡 ∈ 𝐼,

(33)

or to its 𝑚-component version. Such results were established
in [38]. Further considerations for fuzzy stochastic equations
in the metric space (F𝑏

𝑐
(𝐿

2,𝑑
), 𝐷

𝐿
2,𝑑) setup and under weaker

assumptions than Lipschitz type can be found in [39].

3.2. A Stochastic Inclusion Approach. In this part, we present
a stochastic counterpart of the approach for the notion of
deterministic fuzzy differential equations proposed among
others in [1, 9, 12, 13, 18–20, 22, 29]where the fuzzy differential
equation has beenmeant as a systemof differential inclusions.
As previously, let 𝑍 be a given H2-semimartingale on a
filtered probability space (Ω, F, {F

𝑡
}
𝑡∈𝐼

, 𝑃). Let us recall that
by 𝑆

2 we denote the space of all {F
𝑡
}
𝑡∈𝐼

-adapted and càdlàg
processes (𝑥

𝑡
)
𝑡∈𝐼

such that the norm ‖𝑥‖
𝑆
2 fl ‖sup

𝑡∈𝐼
|𝑥

𝑡
|‖
𝐿
2,1

is finite. By ⟨⋅⟩ : 𝐿
2,𝑑

0
→ F𝑏

𝑐
(𝐿

2,𝑑

0
) we denote an embedding

of 𝐿2,𝑑

0
into F𝑏

𝑐
(𝐿

2,𝑑

0
); that is, for 𝑎 ∈ 𝐿

2,𝑑

0
, we have ⟨𝑎⟩(𝑧) =

I
{𝑎}

(𝑧) for 𝑧 ∈ 𝐿
2,𝑑

0
. We consider a fuzzy-valued function

𝑓 : 𝐼 ×Ω×𝑅
𝑑

→ F𝑏

𝑐
(𝑅

𝑑
) and 𝜉 ∈ 𝐿

2,𝑑

0
. We consider now the

formal relation (called here as a fuzzy stochastic differential
equation)

𝑑𝑋
𝑡
= 𝑓 (𝑡, 𝑋

𝑡−
) 𝑑𝑍

𝑡
, 𝑡 ∈ 𝐼,

𝑋
0
= ⟨𝜉⟩ .

(34)

Following [37], it is interpreted as a family of stochastic
integral inclusions

𝑥
𝑡
− 𝑥

𝑠
∈ ∫

𝑡

𝑠

[𝑓 (𝜏, 𝑥
𝜏−

)]
𝛼

𝑑𝑍
𝜏
, 0 ≤ 𝑠 < 𝑡 ≤ 𝑇,

𝑥
0
= 𝜉

(35)

for 𝛼 ∈ [0, 1]. It can be shown that, under appropriate
assumptions, solution sets of (35) are bounded and closed in a
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Banach space 𝑆2 and they generate a fuzzy set in 𝑆
2.Therefore,

for a fixed 𝛼 ∈ [0, 1], we define first the notion of a solution to
(35). Namely, by a strong solution to stochastic inclusion (35),
we mean a càdlàg and an {F

𝑡
}
𝑡∈𝐼

-adapted stochastic process
𝑥 = (𝑥

𝑡
)
𝑡∈𝐼

, 𝑥 ∈ 𝑆
2, such that

𝑥
𝑡
= 𝜉 + ∫

𝑡

0

𝑎
𝑠
𝑑𝑍

𝑠

for 𝑎 ∈ 𝑆
2

P ([𝑓 ∘ 𝑥
−
]
𝛼

, 𝜇
𝑍
) , 𝑡 ∈ 𝐼,

(36)

where [𝑓∘𝑥
−
]
𝛼
(𝑡, 𝜔) = [𝑓(𝑡, 𝜔, 𝑥

𝑡−
(𝜔)]

𝛼. Let Γ(𝑓, 𝜉, 𝛼) denote
the set of all strong solutions to (35). Then Γ(𝑓, 𝜉, 𝛼) ⊂ 𝑆

2.
Suppose Γ(𝑓, 𝜉, 𝛼) ̸= 0. Thus we have the following definition
of the fuzzy solution to (34) [37].

Definition 16. By the fuzzy solution to (34), onemeans a fuzzy
set 𝑋(𝑓, 𝜉) ∈ F𝑏

(𝑆
2
) such that [𝑋(𝑓, 𝜉)]

𝛼
= Γ(𝑓, 𝜉, 𝛼) for 𝛼 ∈

[0, 1].

To proceed further, we assume the following conditions:

(h1) 𝑍 is a given {F
𝑡
}
𝑡∈𝐼

-adapted,H2-semimartingale with
a decomposition 𝑍 = 𝑀 + 𝐴, where 𝐴 is an {F

𝑡
}
𝑡∈𝐼

-
adapted increasing predictable process.

(h2) 𝜇
𝑍
is absolutely continuous with respect to the prod-

uct measure 𝜆 ⊗ 𝑃 on the 𝜎-fieldP.
(h3) The function 𝑓 : 𝐼 × Ω × 𝑅

𝑑
→ F𝑏

𝑐
(𝑅

𝑑
) is P⊗

𝛽(𝑅
𝑑
)-measurable, while 𝑓(⋅, ⋅, 𝑥) is 𝐿

2

P(𝜇
𝑍
)-inte-

grally bounded for every 𝑥 ∈ 𝑅
𝑑.

(h4) There exists a constant 𝐾 > 0 such that 𝐷
𝑅
𝑑(𝑓(𝑡,

𝜔, 𝑥), 𝑓(𝑡, 𝜔, 𝑦)) ≤ 𝐾‖𝑥 − 𝑦‖
𝑅
𝑑 for every 𝑥, 𝑦 ∈ 𝑅

𝑑

and every (𝑡, 𝜔) ∈ 𝐼 × Ω.
(h5) There exists a constant 𝐶 > 0 such that 𝐷

2

𝑅
𝑑(𝑓(𝑡,

𝜔, 𝑥), 𝜃) ≤ 𝐶(1 + ‖𝑥‖
2
) for every 𝑥 ∈ 𝑅

𝑑 and every
(𝑡, 𝜔) ∈ 𝐼 × Ω.

Then we have the following result (see [37]).

Theorem 17. If conditions (h1)–(h5) hold, then there exists
a fuzzy solution in the sense of Definition 16 to the fuzzy
stochastic differential equation (34).

Remark 18. Taking 𝜉 ∈ 𝑅
𝑑 and 𝑍

𝑡
= 𝑡 in (34) for 𝑡 ∈ 𝐼, con-

dition (h1) is satisfied. If 𝑓 : 𝐼 × R𝑑
→ F𝑏

𝑐
(R𝑑

), then (34)
reduces to the deterministic fuzzy differential equation (cf.
[9, 13]):

𝑑𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) 𝑑𝑡,

𝑥 (0) = ⟨𝜉⟩

(37)

interpreted as the family of integral inclusions:

𝑥 (𝑡) − 𝑥 (𝑠) ∈ ∫

𝑡

𝑠

[𝑓 (𝜏, 𝑥 (𝜏))]
𝛼

𝑑𝜏,

𝑥 (0) = 𝜉

(38)

for 𝛼 ∈ [0, 1] and 0 ≤ 𝑠 < 𝑡 ≤ 𝑇. In this case, the space
𝑆
2 coincides with the space of continuous functions 𝐶(𝐼, 𝑅

𝑑
)

and we have

Γ (𝑓, 𝜉, 𝛼) fl {𝑥 ∈ 𝐶 (𝐼, 𝑅
𝑑

) : 𝑥 (𝑡) − 𝑥 (𝑠)

∈ ∫

𝑡

𝑠

[𝑓 (𝜏, 𝑥 (𝜏))]
𝛼

𝑑𝜏, 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇, 𝑥 (0) = 𝜉} .

(39)

Then under conditions (h2), (h3), and (h4) due to Theorem
17, there exists a fuzzy set𝑋(𝑓, 𝜉) ∈ F𝑏

(𝐶(𝐼, 𝑅
𝑑
) being a fuzzy

solution to (37) and such that [𝑋(𝑓, 𝜉)]
𝛼
= Γ(𝑓, 𝜉, 𝛼) for every

𝛼 ∈ [0, 1]. In fact, in this case, the set Γ(𝑓, 𝜉, 𝛼) is nonempty
and compact in 𝐶(𝐼, 𝑅

𝑑
) for every 𝛼 ∈ [0, 1]. Consequently,

the fuzzy solution 𝑋(𝑓, 𝜉) has compact level sets.

Remark 19. In [32] similar approach was used to fuzzy
stochastic differential equations driven by the Wiener pro-
cess.The idea implemented in this case was based onmartin-
gale problem approach for the existence of weak solutions to
the system of associated stochastic integral inclusions. Thus
the existence of fuzzy solutions could be achieved under
weaker conditions than Lipschitz continuity imposed on the
right-hand side of a fuzzy stochastic differential equation. But
also in this case its deterministic counterpart reduces to the
one described in Remark 18.

4. Fuzzy-Valued Stochastic Equations with
Fuzzy Stochastic Solutions

The approaches presented above, that is, direct and based on
stochastic inclusions, are different. It is easy to note that they
lead to the different notions of fuzzy-valued solutions. In the
first one the fuzzy solution is meant as a continuous fuzzy-
valued mapping 𝑋 : 𝐼 → F𝑏

𝑐
(𝐿

2,𝑑
) satisfying (21), while in

the second approach by a solution to (34)wemean an element
inF𝑏

(𝑆
2
) described in Definition 16. In a series of papers [33,

34, 40–44] another concept of the notion of fuzzy stochastic
integral equation was proposed. Generally speaking, it is
understood as the following relation:

𝑥 (𝑡) = 𝑥
0
⊕ (F) ∫

𝑡

0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

⊕ ⟨∫

𝑡

0

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑊 (𝑠)⟩𝑃-a.e., 𝑡 ∈ 𝐼,

(40)

where 𝑓 : 𝐼 × Ω × F𝑏

𝑐
(𝑅

𝑑
) → F𝑏

𝑐
(𝑅

𝑑
), 𝑔 : 𝐼 × Ω ×

F𝑏

𝑐
(𝑅

𝑑
) → 𝑅

𝑑, and 𝑥
0

: Ω → F𝑏

𝑐
(𝑅

𝑑
) are appropriately

measurable mappings while 𝑊 is the standard real Wiener
process. Similarly as earlier by ⟨⋅⟩ we denote an embedding
⟨⋅⟩ : 𝑅

𝑑
→ F𝑏

𝑐
(𝑅

𝑑
) of 𝑅𝑑 intoF𝑏

𝑐
(𝑅

𝑑
); that is, for 𝑎 ∈ 𝑅

𝑑 we
have ⟨𝑎⟩(𝑧) = I

{𝑎}
(𝑧) for 𝑧 ∈ 𝑅

𝑑. Hence ⟨∫
𝑡

0
𝑔(𝑠, 𝑥(𝑠))𝑑𝑊(𝑠)⟩

is fuzzy-valued random variable such that

[⟨∫

𝑡

0

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑊 (𝑠)⟩]

𝛼
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= ∫

𝑡

0

[𝑔 (𝑠, 𝑥 (𝑠))]
𝛼

𝑑𝑊 (𝑠)

= {∫

𝑡

0

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑊 (𝑠)}𝑃-a.e., 𝑡 ∈ 𝐼

(41)

and 𝛼 ∈ [0, 1]. It means that diffusion term above is single-
valued and therefore in fact no fuzziness is here incor-
porated. The symbol (F) ∫

𝑡

0
𝑓(𝑠, 𝑥(𝑠))𝑑𝑠 in (40) denotes

a fuzzy-valued Lebesgue stochastic integral such that
[(F) ∫

𝑡

0
𝑓(𝑠, 𝑥(𝑠))𝑑𝑠]

𝛼

= (A) ∫
𝑡

0
[𝑓(𝑠, 𝑥(𝑠))]

𝛼

𝑑𝑠 where the last
integral is a set-valued Aumann integral (of set-valued stoch-
astic process [𝑓 ∘ 𝑥]

𝛼

: 𝐼 × Ω → K𝑏

𝑐
(𝑅

𝑑
)) understood

as random set for every 𝑡 ∈ 𝐼. Then (see, e.g., [33, 40])
under the classical Lipschitz type assumption, there exists a
unique continuous stochastic fuzzy-valued process 𝑥 being a
solution to (40). Unfortunately, in the series of papers men-
tioned above, only such diffusion case was studied.Therefore
one can ask if it is possible to consider fuzzy stochastic differ-
ential equations with more general fuzzy-valued diffusion
terms and with solutions being fuzzy-valued stochastic pro-
cesses. Unfortunately, avoiding such trivial diffusion cases the
answer is negative in general. As it is shown below this prob-
lem is strictly connected with the lack of integrally bound-
edness in general of set-valued stochastic integrals treated
as set-valued random variables even for integrally bounded
or bounded integrands. Suppose that for a fuzzy stochastic
process ℎ we can define a fuzzy-valued Itô stochastic integral
which is assumed to be a fuzzy-valued random variable:

(F) ∫

𝑇

0

ℎ (𝑠) 𝑑𝑊 (𝑠) : Ω 󳨀→ F
𝑏

𝑐
(𝑅

𝑑

) . (42)

Then for every 𝛼 ∈ [0, 1] we have a set-valued random
mapping

[(F) ∫

𝑇

0

ℎ (𝑠) 𝑑𝑊 (𝑠)]

𝛼

: Ω 󳨀→ F
𝑏

𝑐
(𝑅

𝑑

) (43)

such that for every𝜔 ∈ Ω the family {[(F) ∫
𝑇

0
ℎ(𝑠)𝑑𝑊(𝑠)]

𝛼
(𝜔) :

𝛼 ∈ [0, 1]} (of convex and compact subsets of 𝑅
𝑑) satisfies

properties (a), (b), and (c) of Theorem 1, where

[(F) ∫

𝑇

0

ℎ (𝑠) 𝑑𝑊 (𝑠)]

𝛼

(𝜔)

fl [((F) ∫

𝑇

0

ℎ (𝑠) 𝑑𝑊 (𝑠)) (𝜔)]

𝛼

for 𝜔 ∈ Ω.

(44)

In order to have an extension (beyond the crisp case) of a
fuzzy stochastic integral as a fuzzy random variable, it should
coincide in a crisp casewith ordinary (single-valued) Itô’s sto-
chastic integral. Thus in the case when ℎ is such that
[ℎ(𝑡, 𝜔)]

𝛼

= {𝑎(𝑡, 𝜔)}, 𝛼 ∈ [0, 1], for some 𝑅
𝑑-valued

predictable (or nonanticipating in this case) and square inte-
grable stochastic process 𝑎, it follows that

[(F) ∫

𝑇

0

ℎ (𝑠) 𝑑𝑊 (𝑠)]

𝛼

= [⟨∫

𝑇

0

𝑎 (𝑠) 𝑑𝑊 (𝑠)⟩]

𝛼

= {∫

𝑇

0

𝑎 (𝑠) 𝑑𝑊 (𝑠)}𝑃-a.e.

(45)

for every 𝛼 ∈ [0, 1]. Thus in general, we should have

S
2

F
𝑇

([(F) ∫

𝑇

0

ℎ 𝑑𝑊]

𝛼

, 𝑃) ⊇ ∫

𝑇

0

[ℎ (𝑠)]
𝛼

𝑑𝑊 (𝑠) (46)

for every 𝛼 ∈ [0, 1], where S2

F
𝑇

([(F) ∫
𝑇

0
ℎ 𝑑𝑊]

𝛼
, 𝑃) denotes

the set of F
𝑇
-measurable and 𝐿

2-selections of set-valued
random variable [(F) ∫

𝑇

0
ℎ 𝑑𝑊]

𝛼. Note that in this case the
set ∫𝑇

0
[ℎ(𝑠)]

𝛼

𝑑𝑊(𝑠) is defined as in Section 2 and it is a set-
valued stochastic integral with respect to a semimartingale
which is now a Wiener process. Assume now that ℎ is such
that the sets [ℎ(𝑡, 𝜔)]

𝛼 are not singletons for all 𝛼 ∈ [0, 1] and
(𝑡, 𝜔) ∈ 𝐼 × Ω. Then it follows that the sets ∫

𝑇

0
[ℎ(𝑠)]

𝛼

𝑑𝑊(𝑠)

need not be singletons as well. Hence they need not be
decomposable subsets of the space 𝐿

2,𝑑

𝑇
fl 𝐿

2
(Ω, F

𝑇
, 𝑃; 𝑅

𝑑
)

(see [32, 53] for details) while the setS2

F
𝑇

([(F) ∫
𝑇

0
ℎ 𝑑𝑊]

𝛼
, 𝑃)

is closed and decomposable. Hence, we get

S
2

F
𝑇

([(F) ∫

𝑇

0

ℎ𝑑𝑊]

𝛼

, 𝑃)

⊇ cl
𝐿
2,𝑑

𝑇

dec(∫

𝑇

0

[ℎ (𝑠)]
𝛼

𝑑𝑊 (𝑠))

(47)

for all 𝛼 ∈ [0, 1], where cl
𝐿
2,𝑑

𝑇

dec(𝐴) denotes a closed
decomposable hull of a given set 𝐴 ⊂ 𝐿

2,𝑑

𝑇
(see, e.g., [54] for

details). Now, let us consider a special one-dimensional case
and the mapping ℎ : 𝐼×Ω → F𝑏

𝑐
(𝑅

1
) defined by ℎ(𝑡, 𝜔) fl 𝑢

for every (𝑡, 𝜔) ∈ 𝐼×Ω, where 𝑢 ∈ F𝑏

𝑐
(𝑅

1
) is such that 𝑢(𝑧) =

(𝑧+1)I
[−1,0)

(𝑧)+ (1−𝑧)I
[0,1]

(𝑧) for 𝑧 ∈ 𝑅
1. Hence [ℎ(𝑡, 𝜔)]

𝛼

=

[−1 + 𝛼, 1 − 𝛼] for 𝛼 ∈ [0, 1] and (𝑡, 𝜔) ∈ 𝐼 × Ω. Then by
virtue of Corollary 3.9 (as well as Corollary 3.11 and Remark
3.12) in [55] for such chosen mapping ℎ, it follows that the
set cl

𝐿
2,1

𝑇

dec(∫𝑇

0
[ℎ(𝑠)]

𝛼

𝑑𝑊(𝑠)) is unbounded as a subset of the
space 𝐿

2,1

𝑇
for every 𝛼 ∈ [0, 1). Therefore by (47) for every

𝛼 ∈ [0, 1) the set S2

F
𝑇

([(F) ∫
𝑇

0
ℎ 𝑑𝑊]

𝛼
, 𝑃) is unbounded in

𝐿
2,1

𝑇
too. Additinaly, byTheorem 3.1 in [56] there exists an F

𝑇
-

measurable multivalued mapping 𝐻
𝛼

𝑇
: Ω → K(𝑅

1
) such

that

S
2

F
𝑇

(𝐻
𝛼

𝑇
, 𝑃) = cl

𝐿
2,1

𝑇

dec(∫

𝑇

0

[ℎ (𝑠)]
𝛼

𝑑𝑊 (𝑠)) . (48)

Moreover, due toTheorem 2.2 in [56], one has

𝐸 {
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝐻

𝛼

𝑇

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨

2

𝑅
1}

= sup{𝐸 (V2) : V ∈ cl
𝐿
2,1

𝑇

dec(∫

𝑇

0

[ℎ (𝑠)]
𝛼

𝑑𝑊 (𝑠))}

(49)
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for every 𝛼 ∈ [0, 1]. By (47) and (48) it follows that 𝐻
𝛼

𝑇
⊆

[(F) ∫
𝑇

0
ℎ 𝑑𝑊]

𝛼
𝑃-a.s. for 𝛼 ∈ [0, 1] and therefore we also

have |||𝐻
𝛼

𝑇
|||

𝑅
1 ≤ |||[(F) ∫

𝑇

0
ℎ 𝑑𝑊]

𝛼
|||

𝑅
1𝑃-a.s. Hence, due to

unboundedness of the set cl
𝐿
2,1

𝑇

dec(∫𝑇

0
[ℎ(𝑠)]

𝛼

𝑑𝑊(𝑠)) and one

gets 𝐸{|||[(F) ∫
𝑇

0
ℎ 𝑑𝑊]

𝛼
|||

2

𝑅
1} = +∞ for every 𝛼 ∈ [0, 1).

This analysis shows that it is not true that a natural exten-
sion of the notion of fuzzy stochastic Itô’s integral, that is,
a fuzzy random variable (F) ∫

𝑇

0
ℎ𝑑𝑊, is integrably bounded

when fuzzy-valued integrands have nonsingle-valued 𝛼-level
sets. Notice also that if we have the equality in (47) thenwe get
the minimal possible (in the sense of inclusion) extension of
the notion of the fuzzy stochastic Itô’s integral. In this case one
has 𝐻

𝛼

𝑇
= [(F) ∫

𝑇

0
ℎ𝑑𝑊]

𝛼
𝑃-a.s. for 𝛼 ∈ [0, 1], and the whole

above analysis can be applied. Let us note also that the same
argumentation applies when we choose any point of time 𝑡 ∈

𝐼 instead of 𝑇. Another remark is that it is easy to see that due
to Corollary 3.9 (as well as Corollary 3.11 and Remark 3.12)
in [55]) one can construct many other examples of nontrivial
fuzzy integrands for which fuzzy stochastic Itô’s integrals are
not integrally bounded. This means that the fuzzy stochastic
integral equation

𝑥 (𝑡) = 𝑥
0
⊕ (F) ∫

𝑡

0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

⊕ (F) ∫

𝑡

0

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑊 (𝑠) 𝑃-a.e., 𝑡 ∈ 𝐼

(50)

may not be defined properly unless the diffusion term is crisp.
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[22] T. Rzeżuchowski and J. Wąsowski, “Differential equations with
fuzzy parameters via differential inclusions,” Journal of Math-
ematical Analysis and Applications, vol. 255, no. 1, pp. 177–194,
2001.

[23] D. Shang and X. Guo, “Adams predictor-corrector systems for
solving fuzzy differential equations,”Mathematical Problems in
Engineering, vol. 2013, Article ID 312328, 12 pages, 2013.

[24] M. L. Puri and D. A. Ralescu, “Differentials of fuzzy functions,”
Journal of Mathematical Analysis and Applications, vol. 91, no. 2,
pp. 552–558, 1983.

[25] B. Bede and S. G. Gal, “Generalizations of the differentiability
of fuzzy-number-valued functions with applications to fuzzy
differential equations,” Fuzzy Sets and Systems, vol. 151, no. 3,
pp. 581–599, 2005.



Mathematical Problems in Engineering 9

[26] B. Bede and S. G. Gal, “Solutions of fuzzy differential equa-
tions based on generalized differentiability,”Communications in
Mathematical Analysis, vol. 9, no. 2, pp. 22–41, 2010.

[27] B. Bede, I. J. Rudas, and A. L. Bencsik, “First order linear
fuzzy differential equations under generalized differentiability,”
Information Sciences, vol. 177, no. 7, pp. 1648–1662, 2007.

[28] T. Gnana Bhaksar, V. Lakshmikantham, andV.Devi, “Revisiting
fuzzy differential equations,” Nonlinear Analysis: Theory, Meth-
ods & Applications, vol. 58, no. 3-4, pp. 351–358, 2004.

[29] P. Diamond and P. Watson, “Regularity of solution sets for
differential inclusions quasi-concave in a parameter,” Applied
Mathematics Letters, vol. 13, no. 1, pp. 31–35, 2000.

[30] M. T. Malinowski and M. Michta, “Fuzzy stochastic integral
equations,” Dynamic Systems and Applications, vol. 19, no. 3-4,
pp. 473–493, 2010.

[31] M. T. Malinowski and M. Michta, “Stochastic fuzzy differential
equations with an application,” Kybernetika, vol. 47, no. 1, pp.
123–143, 2011.

[32] M.Michta, “On set-valued stochastic integrals and fuzzy stoch-
astic equations,” Fuzzy Sets and Systems, vol. 177, pp. 1–19, 2011.

[33] M. T.Malinowski, “Strong solutions to stochastic fuzzy differen-
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gration, Birkhäuser, Boston, Mass, USA, 1983.

[47] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Anal-
ysis, Volume I: Theory, Kluwer Academic Publishers, Boston,
Mass, USA, 1997.

[48] D. Qiu and L. Shu, “Supremum metric on the space of fuzzy
sets and common fixed point theorems for fuzzy mappings,”
Information Sciences, vol. 178, no. 18, pp. 3595–3604, 2008.

[49] A. Colubi, J. S. Domı́nguez-Menchero, M. López-Dı́az, and D.
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