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Delaunay refinement is a technique for generating unstructured meshes of triangles for sensor network configuration engineering
practice. A new method for solving Delaunay triangulation problem is proposed in this paper, which is called endpoint triangle’s
circumcircle model (ETCM). As compared with the original fractional node refinement algorithms, the proposed algorithm can
get well refinement stability with least time cost. Simulations are performed under five aspects including refinement stability, the
number of additional nodes, time cost, mesh quality after intruding additional nodes, and the aspect ratio improved by single
additional node. All experimental results show the advantages of the proposed algorithm as compared with the existing algorithms
and confirm the algorithm analysis sufficiently.

1. Introduction

Recently, the concept of intelligent network system is very
popular in the world. Actually, how can we deploy and
optimize the sensor? It is still a difficult issue to scientists that
affects both cost and detection capability, which are required
considerations of both coverage and connectivity. A sensor
node may perform the dual function of sensing the environ-
ment and acting as a relay node. In a real sensor network
system, all sensor nodes distribute as a discrete data set, which
will form a mesh network to provide monitoring of the envi-
ronment. The terms mesh network will be used throughout
this paper to describe a sensor network configuration [1].

Delaunay triangulation (DT) is an effective method to
carve up a discrete data region, which is especially widely
used in sensor network configuration engineering field [2–
5]. In most cases, there is a constricting relationship among
the discrete data.The discrete datamay comprise some vector
lines and close polygons, which must be included in the
result of partition. In general, the Delaunay triangulation
will not contain all edges of the graph. So far there are two
types of DT algorithm: constrained Delaunay triangulation
[6, 7] and conforming Delaunay triangulation [8, 9]. The
former method is a best approximation of the Delaunay

triangulation, given that it must contain all features in the
graph. Generally, the DT property cannot be preserved and
the quality of the mesh declines in constrained Delaunay
triangulation, which will influence the stability and con-
vergence of finite element numerical calculation. In the
meanwhile, the conforming DT method can be considered
as a degenerate Delaunay triangulation, whose relationships
to the constrained graph are that each vertex of the graph
is a vertex of the triangulation and each edge of the graph
is a union of edges of the triangulation and also satisfies
the DT property. But any introduced new node will lead the
original graph to change. Therefore, the method should be
used restrainedly depending on the actual situation.

Usually, constructing conforming DT is more difficult
than constructing constrained DT, as it requires a number
of points to achieve conformity. The core technique of the
conforming DT is to subdivide the constraints. This paper
presents a novel node refinement algorithm, which has better
triangulation quality and fewer additional nodes than other
algorithms.

The rest of this paper is organized as follows. In Section 2,
the basic Delaunay triangulation problem is briefly intro-
duced and the main idea of endpoint triangle’s circumcircle
model (ECTM) is described in detail in Section 3. Then
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the convergence and complexity of ECTM are analyzed in
Sections 4 and 5. Section 6 gives the simulation experiments’
results of the new ECTM with other methods. Finally, a
conclusion is drawn in Section 7.

2. Problem Description

Suppose Ω(𝑃, 𝐵) is a planer straight line graph, where 𝐵 =

𝐵
0
, 𝐵
1
, . . . , 𝐵

𝑀
, 𝐵
0
is exterior feature constraint, 𝐵

𝑗
> 0 are

interior feature constraints, and 𝑃 = 𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑁
is the

collection of all discrete points and endpoints of feature lines.
If𝐵
𝑖
is a close constraint, 𝑟

𝑖
describes the single connected

domain of𝐵
𝑖
;Ω(𝑃, 𝐵) should satisfy the following conditions.

All defined regions by interior constraints are in the
defined region by exterior constraints; namely, 𝑟

𝑖
⊂ 𝑟
0
.

The mutual parts of feature constraints are the finite
points in collection 𝑃; namely, 𝐵

𝑖
∩ 𝐵
𝑗

⊂ 𝑃, where 0 ≤ 𝑖 ̸=

𝑚 ≤ 𝑗.
For any Ω(𝑃, 𝐵) with the above conditions, inserting

some additional points on the features, how can we get a
geometrical equivalent DT graph by using the whole discrete
data and additional points corresponding to former graph?
Two types of refinement algorithms for conforming DT are
considered for solving the problem. One is refining feature
lines at first and then executing DT, such as in the literature
of [10–12]. Others have the different ideas exactly. Firstly
they execute DT and then refine the feature lines. References
[10, 13–17] are the representative algorithms.

Inspired by the algorithms of [14, 16, 17] an improved
feature refinement algorithm named endpoint triangle’s cir-
cumcircle model (ETCM) is proposed in this paper.

3. Endpoint Triangle’s Circumcircle Model

3.1. Basic Idea of ETCM Definition. Endpoint’s triangle con-
taining a feature is such a triangle which uses one of the
endpoints as a vertex and intersects one edge of the triangle
with the feature simultaneously.

Suppose 𝑠[𝑃
ℎ
𝑃
𝑒
] is a feature that is not contained in

DT meshes, Δ
ℎ
is the endpoint’s triangle of 𝑃

ℎ
, and Δ

𝑒
is

the endpoint’s triangle of 𝑃
𝑒
; Cir(Δ

ℎ
) and Cir(Δ

𝑒
) are the

circumcircles of Δ
ℎ
and Δ

𝑒
, respectively. The basic idea of

ETCM is as follows.
Let 𝐽
ℎ

= Cir(Δ
ℎ
) ∩ 𝑠[𝑃

ℎ
𝑃
𝑒
], 𝐽
𝑒

= Cir(Δ
𝑒
) ∩ 𝑠[𝑃

ℎ
𝑃
𝑒
]. If

𝐽
ℎ

∩ 𝐽
𝑒

= ⌀, choose the longer one between 𝐽
ℎ
and 𝐽
𝑒
as the

line to be inserted; the corresponding point of intersection is
as additional point.Then let the shorter one be the remainder
feature line; execute the approach to the shorter one as
mentioned above. It will stop execution until 𝐽

ℎ
󸀠 ∩𝐽
𝑒
󸀠 ̸= ⌀ and

take the midpoint of 𝐽
ℎ
󸀠 ∩ 𝐽
𝑒
󸀠 as additional point at that time.

In particular if the feature line being treated influences the
feature line which has been inserted, the influenced feature
line segment should be transacted again.

3.2. Description of ETCM. For designing the ECTM algo-
rithm, we must confirm a data structure at first. There
are mainly four structures being considered as shown in
Algorithm 1.

Triangle
int index;
intidx v[3];
bool cross;
Triangle ∗ neighbourtri[3];
Triangle ∗ front;
Triangle ∗ next;

FeatureSegment
int index
int idx vb;
int idx ve;
FeatureSegment ∗ front
FeatureSegment ∗ next;

TriIndex
Triangle ∗ pTri;
TriIndex ∗ front;
TriIndex ∗ next;

Vertex
int index;
Int 𝑥;
int 𝑦;
TriIndex ∗ neighbourtri;

Algorithm 1: Data structure of ETCM.

The structure Triangle records the information of trian-
gles, including the index number, the index of three vertexes,
the tag of intersection, the pointers of three neighboring
triangles, and the pointers indicating front or next in the
linked list.The structure TriIndex is a doubly linked list of tri-
angle. The structure FeatureSegment records the information
of constraint feature, including the index number, the index
of start point and endpoint, and the pointers indicating front
or next in the linked list. The structure Vertex records the
information of vertex, including the index number, the vertex
coordinate, and the head pointer of neighboring triangles list.
The data structure definitions are shown in Algorithm 1.

The overview of the ECTM algorithm is as shown in
Algorithm 2.

The function InsertNewNode(crosstri, 𝑃
𝑎
) is described as

shown in Algorithm 3.
For the ETCM algorithm, it can ensure the distribution of

additional points is unique. Due to the fact that the additional
point is in the influence polygons of feature segment, we can
search the additional points in the influence polygons instead
of in the whole domain. So it has a high-level efficiency
compared to other algorithms.

4. Convergence of the Number of
Additional Points

In the process of dealing with the feature line, take the point
corresponding to the longer one in the two interceptive seg-
ments, which is generated by the two endpoints’ circumcircles
and feature line as the adding point. It is the point that makes
the ratio largest between the interceptive segment and the
whole feature line and constructs two triangles which share
the interceptive segments and satisfy DT property. By dealing
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Input parameters: DT meshes and feature lines.
Step 1. Construct a stack 𝐹𝑆 𝑟𝑒𝑚𝑎𝑖𝑛 for storing the features waiting to be treated, and a doubly

linked list 𝐹𝑆 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 for storing the treated features.
Step 2.While 𝐹𝑆 𝑟𝑒𝑚𝑎𝑖𝑛 is not empty, popup a feature segment 𝑠[𝑃

𝑖
𝑃
𝑗
].

Step 3. If 𝑃
𝑗
belongs to the vertexes of the neighbor triangle of 𝑃

𝑖
, continue.

Else
Step 4. Find the triangles intersected with 𝑠[𝑃

𝑖
𝑃
𝑗
] by the topology relationship of meshes, and

construct the influence polygon of 𝑃
𝑖
𝑃
𝑗
named 𝑐𝑟𝑜𝑠𝑠𝑡𝑟𝑖.

Assign the value to the endpoints of feature segment: 𝑃
ℎ

= 𝑃
𝑖
, 𝑃
𝑒

= 𝑃
𝑗
, and Cir(Δ

ℎ
)

intersects 𝑠[𝑃
ℎ
𝑃
𝑒
] at 𝑄

1
, Cir(Δ

𝑒
) intersects 𝑠[𝑃

ℎ
𝑃
𝑒
] at 𝑄

2
.

Step 5.While (
󵄨󵄨󵄨󵄨𝑃ℎ𝑄1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑄2𝑃𝑒

󵄨󵄨󵄨󵄨 <
󵄨󵄨󵄨󵄨𝑃ℎ𝑃𝑒

󵄨󵄨󵄨󵄨)

Step 5-1. If (
󵄨󵄨󵄨󵄨𝑃ℎ𝑄1

󵄨󵄨󵄨󵄨 ≥
󵄨󵄨󵄨󵄨𝑄2𝑃𝑒

󵄨󵄨󵄨󵄨), take 𝑄
1
as adding point, i.e. 𝑃

𝑎
= 𝑄
1
.

link 𝑠[𝑃
ℎ
𝑄
1
] into 𝐹𝑆 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑.

Take 𝑃
𝑎
as the head of the remainder, 𝑃

𝑒
as the tail of the remainder.

Else
Step 5-2. Take 𝑄

2
as the adding point, i.e. 𝑃

𝑎
= 𝑄
2
.

link 𝑠[𝑄
2
𝑃
𝑒
] into 𝐹𝑆 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑.

Take 𝑃
𝑎
as the tail of the remainder, 𝑃

ℎ
as the head of the remainder.

Step 5-3. InsertNewNode(𝑐𝑟𝑜𝑠𝑠𝑡𝑟𝑖, 𝑃
𝑎
)

Step 5-4. Update 𝑄
1
, 𝑄
2

Cir(Δ
ℎ
) intersects 𝑠[𝑃

ℎ
𝑃
𝑒
] at 𝑄

1
, Cir(Δ

𝑒
) intersects 𝑠[𝑃

ℎ
𝑃
𝑒
] at 𝑄

2
.

Step 6. Take the midpoint of 𝑄
1
𝑄
2
as additional point 𝑃

𝑎
, link 𝑠[𝑃

ℎ
𝑃
𝑎
] and 𝑠[𝑃

𝑎
𝑃
𝑒
] into

𝐹𝑆 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑, and the remainder of feature segment is empty.
Step 7. InsertNewNode(𝑐𝑟𝑜𝑠𝑠𝑡𝑟𝑖, 𝑃

𝑎
) and return to Step 4.

Algorithm 2

Step 1. Find the triangle Δ𝑃
𝑎
or quadrangle ◻𝑃

𝑎
which includes 𝑃

𝑎
in the triangle marked by 𝑐𝑟𝑜𝑠𝑠𝑡𝑟𝑖.

Step 2. Search the triangles whose circumcircle contains 𝑃
𝑎
iteratively, construct the influence

polygons of 𝑃
𝑎
named 𝑒𝑓𝑓𝑡𝑟𝑖, and judge whether 𝑃

𝑎
is contained in a triangle by the sign of area coordinates.

Step 3. If the sharing edge of two triangles in 𝑒𝑓𝑓𝑡𝑟𝑖 is the feature segment having been treated,
take this edge out of 𝐹𝑆 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑, and push it into 𝐹𝑆 𝑟𝑒𝑚𝑎𝑖𝑛.

Step 4. Connect 𝑃
𝑎
with the vertexes of the influence polygons for constructing new triangles.

Replace the triangle recorded in 𝑒𝑓𝑓𝑡𝑟𝑖, then add the remainder of new triangles to the tail of the triangle array.
Step 5. Update 𝑐𝑟𝑜𝑠𝑠𝑡𝑟𝑖

Step 5-1. 𝑐𝑟𝑜𝑠𝑠𝑡𝑟𝑖 = 𝑐𝑟𝑜𝑠𝑠𝑡𝑟𝑖 − (𝑐𝑟𝑜𝑠𝑠𝑡𝑟𝑖 ∩ 𝑒𝑓𝑓𝑡𝑟𝑖);
Step 5-2. If (𝑠[𝑃

ℎ
𝑃
𝑒
] ∩ 𝑠[𝐶

𝑘
𝐶
𝑘+1

] ̸= ⌀, where 𝐶
𝑘
and 𝐶

𝑘+1
are two neighbor vertexes of influence polygons of 𝑃

𝑎
)

Step 5-3. If (𝑃
𝑎

= 𝑄
1
) Δ
ℎ

= Δ𝑃
𝑎
𝐶
𝑘
𝐶
𝑘+1

, add Δ
ℎ
to the head of 𝑐𝑟𝑜𝑠𝑠𝑡𝑟𝑖.

Else
Step 5-4. Δ

𝑒
= Δ𝑃
𝑎
𝐶
𝑘
𝐶
𝑘+1

, add Δ
𝑒
to the tail of 𝑐𝑟𝑜𝑠𝑠𝑡𝑟𝑖.

Step 6. Update topology relationship of triangles by the method in [18].

Algorithm 3

with the remainder feature line as the above operation, until
the intersection of two interceptive segments is not empty,
there is no doubt that the quantity of additional points for
each single feature line would be least compared to any other
method. But for the whole planer straight line graph, it is
not true in fact. Because of some triangle taking the treated
feature segment as its edge, that may become a part of the
influence polygon of the feature segment being processed. So
the influenced feature segment should be treated again, which
would produce some new additional points.

Assume that, in a planer straight line graph with 𝑁

points and 𝑀 edges, 𝐴𝐵 is a feature line, Circle(𝐴) is the
largest circle comprising no other points and features except
𝐴, and Circle(𝐵) has the same definition as Circle(𝐴). If

Circle(𝐴) = Circle(𝐵), stop refining 𝐴𝐵. If Circle(𝐴) ̸=

Circle(𝐵), Circle(𝐴) ∩ 𝐴𝐵 = 𝐴
󸀠, Circle(𝐵) ∩ 𝐴𝐵 = 𝐵

󸀠, the
length of 𝐴

󸀠
𝐵
󸀠 is 𝐷, and 𝑑 is the smallest distance between

𝐴
󸀠
𝐵
󸀠 and other points or edges, divide 𝐴

󸀠
𝐵
󸀠 into [𝐷/2𝑑]

segments; each segment length is no longer than 2𝑑. So
the circle which takes each segment as its diameter has the
character of containing no other points inside. Including𝐴𝐴

󸀠

and 𝐵𝐵
󸀠, [𝐷/2𝑑] + 1 new points would be added on 𝐴𝐵, that

is,𝑂(1). Because the number of additional points for a feature
line does not influence the embedded feature line, the number
of all additional points is 𝑂(𝑁) at best.

Actually, it has redundancy in refining 𝐴
󸀠
𝐵
󸀠 by using

the method mentioned above. In ECTM algorithm, it only
deals with the influenced polygons. So the average radius of
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(a) DT
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(b) CDT
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(c) Algorithm Tsai
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(d) Algorithm Lu
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(e) Algorithm Sapidis
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Figure 1: Continued.
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(g) Algorithm Mei (2)
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Figure 1: Triangulation results of node refinement algorithms with 60 nodes and 9 feature segments.

the gained Circle(𝑃
𝑖
) is larger, and the number of additional

points is smaller. Thus the number of additional points by
using ETCM algorithm is convergent.

5. Time Complexity of ETCM

Suppose that𝑇
𝑐

𝑗
is the time cost for calculating the position of

the 𝑗th additional point and 𝑇
𝑖

𝑗
is the time cost for inserting

the 𝑗th additional point. It was pointed out in literature [19]
that the average neighboring triangle number with a point is
about six in a DT mesh. So for finding an endpoint’s triangle,
averaged six intersection judgments would be needed, and
then the second triangle intersected with the feature line can
be confirmed in the meantime. If a feature line crosses with
𝑛 triangles, averaged 6 + (𝑛 − 2) × 2 intersection judgments
are required to the influence range of the feature line, and
the time cost is a constant for calculating the intersection
point between a circumcircle and a feature line; that is, 𝑇

𝑐

𝑗
=

𝑂(1). So for finding the triangle or quadranglewhich contains
additional point, 𝑛 − 1 times of judgments whether a point is
included in a triangle are needed, and the time cost of each
judgment is also a constant. In literature [9], it was shown that
that is a linear process, so𝑇

𝑖

𝑗
= 𝑂(1).The time complexity can

be calculated as follows:

𝑇
𝑐

=

𝑁

∑

𝑖=1

𝑇
𝑐

𝑗
≤ 𝑁 × max {𝑇

𝑐

𝑗
} 󳨐⇒ 𝑇

𝑐
= 𝑂 (𝑁)

𝑇
𝑖
=

𝑁

∑

𝑖=1

𝑇
𝑖

𝑗
≤ 𝑁 × max {𝑇

𝑖

𝑗
} 󳨐⇒ 𝑇

𝑖
= 𝑂 (𝑁) .

(1)

So

𝑇ECTM = 𝑇
𝑖
+ 𝑇
𝑐

= 𝑂 (𝑁) , (2)

where 𝑇
𝑐 is the time cost for calculating the positions of all

additional points and 𝑇
𝑖 is the time cost for inserting all

additional points.

6. Experiments Results and Analysis

6.1. Assessment Criteria. There are no criteria for evaluating
the performance of refinement embedding algorithms in the
existing references. So we give five assessment criteria as
follows:

(1) stability of refinement;
(2) number of additional nodes, which means that, by

using as small number of additional points as possi-
ble, we can change the original datum set as little as
possible;

(3) time cost;
(4) the quality of the mesh after intruding additional

nodes: when AAR is 0.5 approximately, it indicates a
result of fine quality;

(5) the average aspect ratio (AAR) improved by single
additional point. The model is given by the following
equation:

AAR
𝑝

=
(AARrefine − AARCDT)

𝑛
, (3)

where AAR is the average of all aspect ratios of meshes,
AARrefine is the AAR after refinement, AARCDT is the AAR
after constrained DT, and 𝑛 is the number of additional
points.

6.2. Performance Test. The performance tests were per-
formed for all refinement algorithms previously described
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Figure 3: Time cost of inserting feature segment.

including Tsai [15], Lu et al. [13], Sapidis and Perucchio [14],
Wei et al. [17], and ETCM.

Take 15 planer straight line graphs as testing datum,which
comprises a group uniformity distribution random points of
each.The coordinates of the points are all in [0, 1000], and the
number of feature lines is 15% of the number of the points.
The testing environment is on a computer with P4 2.8G, 256
× 2M RAM, Windows XP, and Visual C++ 6.0, and the time
cost testing tool is CodeTest4.0.

Figure 1 shows a group of resulting mesh of a planer
straight line graph, where the thick dashed lines are feature
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Figure 4: AAR of node refinement algorithms.

lines and square points are additional points. Figures 2 to 5
show the performance evaluating results. For testing stability
of refinement, we adopt the method that exchanges the two
endpoints of each feature line and then judge whether the DT
results are conformable.

In the refinement stability test result as Figure 1, all algo-
rithms have unique result except algorithm Mei. It indicates
that, except Mei, all the other algorithms are stable. Figure 2
shows that method in which Tsai requires the largest number
of additional nodes, methods Lu and Sapidis take the second
place, and methods Mei and ETCM need nearly the same
least number. From Figure 3, we can conclude that method
Tsai’s time cost is the biggest and ETCM cost the least
time. In particular, ECTM’s time cost curve is with the least
undulation, which shows a nearly linear relationship with the
number of points. It indicates that the time cost of ETCM
is mainly affected by points’ number and hardly affected by
the distribution of the points. The robustness of ETCM is
best. The AAR results are shown in Figure 4; all refinement
algorithms can make the AAR of the meshes resume to or be
better than the AAR of meshes before inserting feature lines.
Method Lu has the most obvious improvement, Tsai’s effect is
the worst, and the other threemethods are almost at the same
level. Figure 5 shows the AAR improved by single additional
point.MethodTsai has theworst capability, Lu is a little better,
and the others are pretty much the same thing.

7. Conclusions

Based on the performance analysis of the DT algorithm,
a new refinement algorithm named endpoint triangle’s cir-
cumcircle model (ETCM) is proposed in this paper. The
performance analysis is given and confirmed by simulations.
Simulation results show that ETCM achieves as well as
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Figure 5: Improved AAR of each new node.

the best in refinement stability, additional point number, and
mesh quality. In particular, the time cost of ETCM isminimal,
and it is influenced by the data distribution least. Hence, it
can be concluded that the proposed refinement technique
ECTM can be used to solve some practical problems with
faster requirement by maintaining good quality of solution.
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