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This paper aims to theoretically and numerically assess the effect of setting artificial-induced joints (AIJs) during construction
period of amass concrete structure to release the early-stage thermal stress.With respect to the coupling influences of various factors
such as size and boundary of AIJs, an analytical model for its cracking strength on the setting section of mass concrete is proposed
based on double-parameter fracture theory. A kind of hyper-finite element analysis (FEA) for many array AIJs in simplified plane
pate is also presented by using bilinear cohesive force distribution. The results from the present model and numerical simulation
were compared to those of experimental data to prove the efficiency and accuracy of the analytical model and FEA. The model
presented in this study for the cracking strength of AIJs provides a simple useful tool to accurately evaluate how many early stress
AIJs reduced.The theoretical solution and FEA results could also be significantly contributed to find the “just” and “perfect” release
of the temperature stress and to improve the design level of AIJs in mass concrete structure.

1. Introduction

In the past decades, mass concrete structures such as super
long underground sidewall, large basement slab, and roller
compacted concrete (RCC) have been widely used in the
practical construction like subway station [1], high-rise
building [2], and RCC arch dam [3]. The early irregular
cracks caused by the thermal stress of mass concrete during
construction period are a worldwide problem to the structure
[4, 5], andhow to effectively control the early-age temperature
cracks in the mass concrete structure is significantly con-
cerned by researchers [6–8]. Up to now, many methods have
been introduced and applied to eliminate these early random
cracks, such as adopting deformation joints [9], setting post-
poured strips [2], and using high performance materials
[10–13]. Although the above methods to some extent can
inhibit the growth of random early-age cracks, there are still
problems during the realistic applications [2, 10, 14].

Recently, therefore, more attention has been paid to a
new method of setting artificial-induced joints (AIJs) in

construction period to reduce the early-age thermal stress of
mass concrete [1, 15, 16]. Figure 1 illustrates the joint treatment
by this new method for different types of mass concrete (i.e.,
super long underground sidewall, large basement slab, and
RCC arch dam). As can be seen from Figure 1(c), the cross
section of mass concrete consists of many embedded gaps
phase-to-phase arrayed if the setting of AIJs in RCC is taken
as an example in the present study.The size of each embedded
gap is 2𝑎×2𝑐; the vertical andhorizontal distance between two
adjacent embedded gap centres are 2𝑏 and 2𝑑, respectively.
Cross section embedded AIJs are expected to be cracked
prior to avoiding random cracks in other parts/sections of
the structures when the early temperature rises in mass
concrete due to the heat of cement hydration (Figure 1(c)).
Then backfill grouting is applied in the cracking section when
the chemical reaction of hydration heat has been done during
the construction period of mass concrete structures.

The cracking strength of AIJs which is related to the size,
the shape of each embedded gap, the distance between two
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Figure 1: The detailed joint treatments of AIJs for different mass concrete.

cross section embeddedAIJs, and so forth is themost key and
important parameter in the study of AIJs in mass concrete.
This is because only the right value of cracking strength can be
expected to avoid random cracks in other parts/sections and
thereby to “just” and “perfectly” release temperature stress in
mass concrete. If the value of cracking strength is too small
or large, the cross section embedded AIJs cannot be cracked
firstly or cannot completely reduce the early stress of other
parts/sections. In this situation, the setting of AIJs to inhibit
the growth of random early-age cracks will to some extent
be limited. Therefore it is of great importance to accurately
predict the cracking strength of AIJs in evaluating the effect
of controlling the early stress in mass concrete structures.
Up to now, the accurately analytical solution of cracking
strength to “just” and “perfectly” release temperature stress
in mass concrete is still not yet available although some
experimental investigation, theoretical model, and numerical
simulation have been carried out [15–17]. This is because
there are so many complex factors such as boundary of
cross section, different size, shape of AIJs, concrete strength,
and construction schedule which affect the cracking strength
[16, 17]. Therefore, it is necessary and of great importance
to illustrate the highly precise model and accurate FEA for
the prediction of cracking strength of AIJs so as to be able to
evaluate its effect on releasing the early stress [18–20].

In this paper, an analytical model of the cracking strength
of AIJs in RCC is studied and improved after considering the
various factors such as size and boundary of AIJs.Then a kind
of hyper-finite element method along with the experimental
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Figure 2: Model of penetrated crack in infinite plate.

data is present. The results from the present model and
numerical simulation are discussed and further verified. The
model presented in this study for the cracking strength is a
simple and useful tool to accurately evaluate the reduction
of early-age stress. The theoretical solution and FEA results
could also be contributed to find the “just” and “perfect”
release of the temperature stress and to improve the design
level of AIJs in mass concrete structure.

2. Analytical Model of Cracking
Strength for AIJs

The analytical solution of cracking strength for AIJs in
Figure 1(c) can be simplified as a problem of penetrated
crack in an infinite plate due to the fact that the length
of arch direction is often hundreds of meters (Figure 2).
The vertical distance between two adjacent embedded gap
centres in Figure 2 is 2𝑤. Similar to the development of
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Table 1: The indexes for cracking process of AIJ.

Fracture energy parameters Cracking strength parameters Crack length parameters Phase of process
𝐺 < 𝐺

𝑠
𝜎 < 𝜎

𝑠
𝑎 = 𝑎
0

Before cracking initiation
𝐺
𝑠
≤ 𝐺 ≤ 𝐺

𝑢
𝜎
𝑠
≤ 𝜎 ≤ 𝜎max 𝑎

0
⩽ 𝑎 ⩽ 𝑎

𝑐
Stable growth

𝐺 > 𝐺
𝑢

𝜎 > 𝜎max 𝑎 > 𝑎
𝑐

Unstable propagation

other cracks in concretes, the AIJs also include cracking
initiation, stable growth, and unstable propagation process
for mass concrete. As assumed, 𝜎 is the tensile strength along
the arch direction, and 𝜎

𝑠
and 𝜎max represent initial and

unstable cracking strength, respectively. The propagation of
AIJs occurredwhen thermal stress away from theAIJs is up to
𝜎
𝑠
, thereby weakening the cross sections. Similarly, AIJs start

to be unstably fractured as thermal stress comes to unstable
cracking strength 𝜎max. Apparently, one can find that there is
a stable propagation stage of the cracking of AIJs between 𝜎

𝑠

and 𝜎max.
As mentioned above, the values of 𝜎

𝑠
and 𝜎max are

influenced by many factors [16, 17]. In the present study, the
coupling effect of these factors such as boundary of cross
section, different size, and concrete strength on the cracking
strength of AIJs can be expressed as the following equations
[16, 17]:

𝜎 = 𝐴 (𝛼
0
) 𝑓
𝑡
(1 + 𝐵 (𝛼

0
)
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0
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, (3)

where𝛼
0
is the ratio of initiation crack length to depth and𝐺

𝐹

is the fracture energy of concretematerials.𝑓
𝑡
and𝐸 represent

the tensile strength and elastic modulus of RCC, respectively.
𝐴(𝛼
0
) and 𝑌(𝛼

0
) are the functions of 𝛼

0
and can be varied

from different types of structure.
Although the fracture energy 𝐺

𝐹
in (3) can be generally

used to describe the average amount of energy consumed
during the breaking down process of AIJs in mass concrete,
it cannot effectively express the respective consumption of
energy during two important stages of cracking expansion,
namely, the stable growth and unstable propagation pro-
cess [21]. To characterize the energy release ratio in the
above different crack expanding periods, 𝐺

𝐹
is divided into

two fracture parameters: initiation fracture energy 𝐺
𝑠
and

unstable fracture energy 𝐺
𝑢
. 𝐺
𝑠
is associated with cracking

initiation stress 𝜎
𝑠
and initial crack length 𝛼

0
, while 𝐺

𝑢
is

related to maximum stress 𝜎max and critical effective crack
length 𝑎

𝑐
. More information about the parameters is shown

in Table 1.
The solution of 𝐺

𝑢
can be determined by experimental

test of the three-point bending beams [21]:
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Figure 3: Bilinear cohesive force model of mass concrete.

where 𝐵 and 𝑆 are the specimen thickness and loading span,
respectively. 𝛼 = 𝑎

𝑐
/𝐷 is the ratio of the critical effective crack

length to beam depth𝐷,𝑃max is themaximum load, and𝑉(𝛼)

is a coefficient related to 𝛼:

𝑉
󸀠

(𝛼) =
2𝛼

(1 − 𝛼)
3
[5.58 − 19.57𝛼 + 36.82𝛼

2

− 34.94𝛼
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4

] + (
𝛼
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2
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2
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3

) .

(5)

If the contribution of energy due to cohesive forces is
defined as 𝐺

𝑐
, the initiation fracture energy 𝐺

𝑠
can also be

given as

𝐺
𝑠
= 𝐺
𝑢
− 𝐺
𝑐
, (6)

where 𝐺
𝑐
can be obtained by integration method of cohesive

forces on the crack surface.
According to fracture theory, the softening models of

concrete [21] can be simplified into the bilinear cohesive force
model to describe the cracking behaviors of mass concrete, as
illustrated in Figure 3. The expression is

𝑎
𝑐
= 𝑎
0
+ Δ𝑎
∗

𝑐
= 𝑎
0
+

4𝑟
0

𝑐
1
+ 𝑐
2

− 𝑟
0
. (7)

In (7), Δ𝑎∗
𝑐
is the effective crack propagation length, w is the

crack opening displacement, and 𝑤
0
is the critical value of

𝑤. 𝑟
0
can be regarded as crevice genesis zone, which can be

evaluated by the following expression:

𝑟
0
=

𝐸𝐺
𝑢

2𝜋𝑓
2

𝑡

. (8)

The stress distribution of the cross section where AIJs
embedded will be more affected by the plasticity of concrete
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Figure 4: Crack-singular-analytical element loaded by the linear
cohesive force.

materials with the lager values of the fracture energy of
RCC. As a result, the initiation cracking strength 𝜎

𝑠
and the

unstable cracking strength 𝜎max of AIJs in mass concrete can
be determined by the above values of 𝐺

𝑠
and 𝐺

𝑢
in (4) and

(6). The initiation cracking strength 𝜎
𝑠
can be given as

𝜎
𝑠
= (

𝐸𝐺
𝑠

2𝑊
)

1/2

[tan(
𝜋

2

𝑎

𝑊
)]

−1/2

. (9)

After the stable growth and unstable propagation stage of
AIJs, the critical value of unstable cracking strength 𝜎max can
also be written as

𝜎max = (
𝐸𝐺
𝑢

2𝑊
)

1/2

[tan(
𝜋

2

𝑎
𝑐

𝑊
)]

−1/2

. (10)

3. The Hyper-Finite Element Analysis for AIJs

Among the fracturemodels of concretematerials proposed by
researchers, the fictitious crack model is famous and widely
used. It is especially suitable for FEM analysis of AIJs in mass
concrete. However, there still exist many difficulties to obtain
accurate stress distribution on the vicinity of the crack tip
even though a refined mesh is used [21]. An effective way to
solve the problem in this study is to apply a hyperelement on
the vicinity of AIJs tip based on the Hamiltonian theory of
elasticity. Thereafter, the cracking strength of FEM analysis
for AIJs inmass concrete is described when the hyperelement
is combined with general finite elements.

For bilinear cohesive force distribution in fictitious crack
model shown in Figure 4, the propagation process of AIJs
in mass concrete can be considered as propagation of elastic
cracks, which is a function of a cohesive distribution close
force 𝜎(𝑥) along the propagation length Δ𝑎. The region
of cross section embedded AIJs is dispersed with a ring
hyperelement surrounding the crack tip and also ordinary
finite elements around the hyperelement, as is illustrated in
Figure 4. The equation of variation in the form of Hamilto-
nian for the crack-ring-singular element loaded by the linear
cohesive force can be expressed as

𝛿{∫

𝜋

0

∫

ln𝑅2

ln𝑅1
{𝑆
𝑟

𝜕𝑢

𝜕𝜉
+ 𝑆
𝑟𝜃

𝜕V
𝜕𝜉

+ ]𝑆
𝑟
(𝑢 +

𝜕V
𝜕𝜃

) + 𝑆
𝑟𝜃
(
𝜕𝑢

𝜕𝜃
− V) +

𝐸

2
(𝑢 +

𝜕V
𝜕𝜃

)

2

−
1

2𝐸
[(1 − ]2) 𝑆2

𝑟
+ 2 (1 + ]) 𝑆2

𝑟𝜃
]} 𝑑𝜉 𝑑𝜃}

− ∫

ln𝑅2

ln𝑅1
{[𝑘
3
exp (2𝜉) + 𝑘

4
exp (𝜉)] ∙ V}

𝜃=𝜋
𝑑𝜉 = 0,
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where 𝑢 and V are the radial and tangential displacement,
respectively. 𝑞 = {𝑢, V}𝑇 is its displacement vector, 𝑆

𝑟
= 𝑟𝜎
𝑟
,
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𝑇 is the dual vector.
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0
.

Assuming that there are 𝑛
𝑟
nodes on the hyperelement

and the unknown variables of each node are displacements of
𝑢, V except for the node at 𝜃 = 0 which has only one variable
𝑢, so the hyperelement has 2𝑛

𝑟
− 1 degrees of freedom. If 𝜇
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complete state function vector expansion is expressed as
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where 𝑐
𝛼𝑖
, 𝑐
𝛽𝑖

(𝑖 = 1, 2, 𝐿, 2𝑛
𝑟
− 1) are unknown generalized

constants and Ṽ(𝜉, 𝜃) is a special solution:
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𝑟
, 𝑆
𝑟𝜃
}
𝑇

= 𝑘
4
exp (𝜉) {

1 − ]
𝐸

, 0, 1, 0}

𝑇

− 𝑘
3
exp (2𝜉)

⋅ {
1 − 3]
6𝐸

cos 𝜃, 5 + ]
6𝐸

sin 𝜃,
1

3
cos 𝜃, 1

3
sin 𝜃}

𝑇

.

(14)

If 𝑐 and 𝑑 are the generalized constant vector and
the nodal displacement vector, respectively, the relationship
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𝑗 = 2𝑘 − 1, 𝑘 = 2, 3, . . . , 𝑛
𝑟
, 𝑖 = 1, 2, . . . , 2𝑛

𝑟
− 1,

(𝑇
22
)
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= 𝑢
𝛽𝑖

󵄨󵄨󵄨󵄨󵄨

𝜉=ln𝑅2
𝜃=𝜃1=0

, 𝑗 = 1, 𝑖 = 1, 2, . . . , 2𝑛
𝑟
− 1,

(𝑇
22
)
𝑗𝑖
= 𝑢
𝛽𝑖

󵄨󵄨󵄨󵄨󵄨

𝜉=ln𝑅2
𝜃=𝜃𝑘

,

𝑗 = 2𝑘 − 2, 𝑘 = 2, 3, . . . , 𝑛
𝑟
, 𝑖 = 1, 2, . . . , 2𝑛

𝑟
− 1,

(𝑇
22
)
𝑗𝑖
= V
𝛽𝑖

󵄨󵄨󵄨󵄨󵄨

𝜉=ln𝑅2
𝜃=𝜃𝑘

,

𝑗 = 2𝑘 − 1, 𝑘 = 2, 3, . . . , 𝑛
𝑟
, 𝑖 = 1, 2, . . . , 2𝑛

𝑟
− 1,

(17)

where 𝜃
𝑘
(𝑘 = 1, 2, 𝐿𝑛

𝑟
) are tangential coordinates of node 𝜃.

The solution can be carried out by iterating over (13) and
(11). 𝑅

0
and load vector 𝐹

0
can be obtained by the integration

of partial stiffness matrix of hyperelement:

𝑅
0
= 𝑇
−𝑇

∙ 𝑅
𝑐
∙ 𝑇
−1

, 𝑅
𝑐
= [

𝑅
11

𝑅
12

𝑅
21

𝑅
22

] ,

𝑅
0
= 𝑇
−𝑇

∙ (𝐹
𝑐
+ 𝑅
𝑐
∙ 𝑇
−1

∙ 𝑑) , 𝐹
𝑐
= [𝐹
1
, 𝐹
2
]
𝑇

,

(18)

where 𝑅
0
and 𝐹

0
are

(𝑅
11
)
𝑗𝑖
= ∫

𝜋

0

[𝑆
𝑟𝛼𝑖

(𝜉, 𝜃) 𝑢
𝛼𝑗
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𝑟𝜃𝛼𝑖

(𝜉, 𝜃) V
𝛼𝑗
(𝜉, 𝜃)]
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𝑟
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(19)
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Table 2: The FEM and experimental results of unstable fracture
energy 𝐺

𝑢
(N/m).

Specimen designation Experimental value FEM
A1 64.95 61.33
A2 62.05 63.25
A3 62.08 62.22
B1 68.44 66.82
B2 57.67 64.37
B3 66.06 65.92

4. Efficiency and Accuracy of
the Present Method

To obtain parameters of fracture energy (𝐺
𝑠
and 𝐺

𝑢
) for AIJs

of mass concrete, two types of beams with sizes of 800 ×

200 × 100mm and 1600 × 400 × 200mm were prepared for
three-point bendingmeasurement.Thenumerical results and
laboratory measurement were then compared to verify the
analytical model developed in this study, as well as investigate
the accuracy of FEM analysis for prediction. According to
the experimental data of RCC and (4)-(5), the values for
𝐺
𝑠
and 𝐺

𝑢
are shown in Figure 5. It can be seen that the

evaluated values of 𝐺
𝑠
and 𝐺

𝑢
are independent of both size

and boundary.The average values of𝐺
𝑠
and𝐺

𝑢
for both series

are 15.32N/m and 64.82N/m, respectively. And these values
are applied to calculate the cracking strength for AIJs in the
following discussions.

4.1. FEM Simulation of Three-Point Bending Beams. For the
FEM simulation of three-point bending beams, the tangential
stress distribution near the crack tip is illustrated in Figure 6.
Here, the critical crack length for stable propagation and
unstable propagation is 30mm and 50mm, respectively. The
numerical results of unstable fracture energy 𝐺

𝑢
for three-

point bending beams, as well as its experimental results,
are present in Table 2. It can be seen that the prediction
given by the present FEM is in a good agreement with the
experimental data, which demonstrates that the FEManalysis
is efficient and accurate for 𝐺

𝑢
prediction.

4.2. Results of Cracking Strength for AIJs in Mass Concrete.
Whether AIJs in the early period ofmass concrete will induce
crack or not is important because there is no longer effect if
setting of AIJs on the cross section is carried out after thermal
stress is released. As a result, the “just” and “perfectly”
cracking strength of AIJs in depositing concrete construction
period is a key parameter alongwith the increase of altitude of
mass concrete like RCC. Taking into account representative
altitude of RCC, the cross section embedded AIJs of mass
concrete can be considered as penetrated cracks in infinite
plate for the simplification of hyper-finite element analysis
(Figure 2).The typical local mesh for artificial-induced joints
is shown in Figure 7.

The cracking strength for AIJs in mass concrete predicted
by the present model is listed in Table 3. It can be found from
Table 3 that the results fromFEAare in consistencewith those

14.8915.1014.9615.40

13.42

15.56

Series A of specimens
Series B of specimens

(a) Values for 𝐺
𝑠
(N/m)

64.95
62.0562.08

68.44

57.67

66.06

Series A of specimens
Series B of specimens

(b) Values for 𝐺
𝑢
(N/m)

Figure 5: Experimental data for 𝐺
𝑠
and 𝐺

𝑢
of RCC three-point

bending beams: series A: 800×200×100mm; series B: 1600×400×

200mm.

from analytical models, indicating that the proposed model
can be used to accurately assess the effects of AIJs on releasing
the early stress in mass concrete. One can also see when the
relative cracking strength of AIJs (i.e., 𝜎

𝑠
/𝑓
𝑡
and 𝜎max/𝑓𝑡 for

2𝑎 = 0.3m, 2𝑏 = 0.6m to 0.9m) reaches about 30%–36% and
55%–58% separately, the AIJs will be initiated to propagate
and to be in unstable propagation process, respectively.While
for 2𝑎 = 0.6m, 2𝑏 = 1.2m to 1.5m, the above two values of
relative cracking strength slightly decrease to about 23%–28%
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Table 3: Cracking strength for AIJs in mass concrete.

Analytical model FEM Analytical model FEM

Cracking strength 2𝑎 = 0.3m
2𝑏 = 0.6m 2𝑏 = 0.9m

𝜎max 1.294 1.339 1.374 1.365
𝜎max/𝑓𝑡 0.552 0.571 0.586 0.582
𝜎
𝑠

0.788 0.693 0.837 0.851
𝜎
𝑠
/𝑓
𝑡

0.336 0.296 0.357 0.363

Cracking strength 2𝑎 = 0.6m
2𝑏 = 1.2m 2𝑏 = 1.5m

𝜎max 1.102 1.293 1.113 1.019
𝜎max/𝑓𝑡 0.470 0.551 0.475 0.435
𝜎
𝑠

0.557 0.612 0.578 0.658
𝜎
𝑠
/𝑓
𝑡

0.237 0.261 0.247 0.281
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Figure 6: Tangential stress distribution near the crack tip: (a)
the subcritical point under maximum load and (b) an unstable
propagation point.

and 43%–55%. These results can be considered as the basic
findings to assess the reduction of early stress of AIJs in mass
concrete structure.

5. Conclusions

The effect of setting artificial-induced joints (AIJs) during the
construction period of mass concrete structures to release
the early-stage thermal stress is theoretically and numerically
assessed in this study. An analytical model which is related
to the cracking strength of AIJs on the setting section of
mass concrete, along with its hyper-finite element analysis
in simplified plane pate, is also proposed based on the
consideration on coupling influence of various factors such

Figure 7: Local mesh of hyper-FEM for AIJs (number of hyperele-
ment: 41, radius: 0.175m, nodes: 4420, and elements: 8138).

as size and boundary effect. The numerical results, together
with the experimental data, prove that the analytical model
suggested in this study is efficient and accurate in assessing
the cracking strength of AIJs. The basic findings can also be
used to describe the effects of AIJs on “just” and “perfect”
releasing the early-age stress as well as further improve the
design level of AIJs in the mass concrete.
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