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Algebraic transition systems are extended from labeled transition systems by allowing transitions labeled by algebraic equations
for modeling more complex systems in detail. We present a deductive approach for specifying and verifying algebraic transition
systems. We modify the standard dynamic logic by introducing algebraic equations into modalities. Algebraic transition systems
are embedded in modalities of logic formulas which specify properties of algebraic transition systems.The semantics of modalities
and formulas is defined with solutions of algebraic equations. A proof system for this logic is constructed to verify properties of
algebraic transition systems. The proof system combines with inference rules decision procedures on the theory of polynomial
ideals to reduce a proof-search problem to an algebraic computation problem.The proof system proves to be sound but inherently
incomplete. Finally, a typical example illustrates that reasoning about algebraic transition systems with our approach is feasible.

1. Introduction

System verification requires a mathematical structure on
which the system in question is described precisely. Labeled
transition systems [1] are such structures proposed for this
purpose, which are widely used to specify hardware and
software systems [2], for example, integrated circuit system,
communication protocols, and concurrent algorithms. A
labeled transition system is a specified transition system (first
presented by Keller [3]) whose transitions are labeled by
abstract labels. Abstract labels are sufficient for modelling
atomic actions which trigger transitions of systems, but they
are insufficient to describe enough details on transitions of
complex systems. For instance, we concern much with the
details on how a train reduces its speed in the brake mode,
which is usually specified by mathematical equations.

Algebraic transition systems [4] are extended from labeled
transition systems by labeling transitions with algebraic
assertions, which are conjunctions of polynomial equations.
Transitions labeled with algebraic assertions are able to

describe how states change according to those polynomial
equations. That is very necessary for modelling complex
systems. What is more significant is that many mathematical
techniques on polynomials are available to the analysis of
complex systems, such as the theory of polynomial ideals [5].
On the other hand, conventional methods are not competent
for the verification for algebraic transition systems due to the
complexity of algebraic assertions. To the best of our knowl-
edge, there is no approach for reasoning about algebraic
transition systems. Our study is motivated mainly by this.

Our approach is related to theorem proving which is
a well-established verification method of labeled transition
systems. The theorem proving method [6, 7] tries to find a
proof of the desired property, which is written as a theorem
in logic languages. Another verificationmethod, calledmodel
checking, uses a finite-state traversal technique algorithm
[8, 9]. Hence model checking method automatically checks
whether a given system satisfies the desired properties by
traversing the state space of the system. However, model
checking requires systems to be finite-state systems or those
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systems whose state space can be divided into finite quotient
subspaces [10, 11]. While theorem proving method is not
restricted by finite-state systems andhence applies to complex
systems, most of which have infinite state spaces. Since the
state spaces of algebraic transition systems are defined on
R𝑛 which is infinite, we choose theorem proving method to
verify of algebraic transition systems.

Inspired by [4, 12–14], we present a deductive approach
for specifying and verifying algebraic transition systems.
Our approach includes a modification of dynamic logic
(𝐴𝐷𝐿) and a proof system for 𝐴𝐷𝐿. The 𝐴𝐷𝐿 is extended
from dynamic logic [15] by allowing algebraic equations in
modalities. There are two standard modalities [𝛼] and ⟨𝛼⟩
where 𝛼 is defined with algebraic equations. The [𝛼] refers
to the states reachable by all runs of 𝛼, while ⟨𝛼⟩ indicates
the states reachable by some runs of 𝛼. The formal semantics
of modalities is defined with zero sets of polynomials. These
modalities embedded in logical formulas are used to model
behaviors of algebraic transition systems. The properties of
algebraic transition systems are specified with𝐴𝐷𝐿 formulas.
The satisfaction of formulas is defined with zero sets of
polynomials and the semantics of modalities. For deciding
whether the desired properties are satisfied, a proof system
of the sequent-calculus style, called 𝐴𝐷𝐿 calculus, is con-
structed.This proof system aims to find a proof of the desired
properties with inference rules. Several special rules are
customized to handle modalities with algebraic equations by
reducing the proof-search problem to an algebraic computa-
tion problem.The algebraic computation procedures enhance
the reasoning power of our proof systems.The proof system is
proved to be sound but inherently incomplete as many other
proof systems. Reasoning about algebraic transition systems
with our approach is demonstrated with a typical example.

In recent decades, the deductive approach for specifying
and verifying transition systems has received fruitful results
[16]. TLA+ [17] is a specification language designed by Lam-
port for formally describing and reasoning about distributed
systems. Systems are specified in TLA+ as formulas of the
Temporal Logic of Actions (TLA) [6], which is a variant of
temporal logic. The TLA+ proof system (TLAPS) [18, 19] is a
general platform for development of TLA+ proofs. A whole
proof in TLAPS is decomposed into a collection of subproofs
which are sent to backend verifiers including SMT solvers,
theorem provers, and proof assistants. Compared with TLA+
and TLAPS, our approach is designed for the direct proof
of properties on algebraic transitions. With our approach
the proof problem is reduced to an algebraic computation
problem such as the ideal membership problem on ideal
theory. Our proof system can be considered as a backend
verifier of TLAPS for algebraic transition systems.

Combined with mathematical procedures, the deductive
approach can be used for the verification of more complex
systems, for example, real-time systems and reactive systems
[20–22]. Platzer [12, 23] developed a deductive framework for
the verification of hybrid systems, which are dynamic systems
containing continuous evolutions and discrete transitions. A
discrete transition in [12] is specified as an explicit assignment
of a variable. For instance, the primed variable 𝑥 in the
discrete transition𝑥 = 𝑓(𝑥

1
, . . . , 𝑥

𝑛
), which assigns the value

of 𝑓(𝑥
1
, . . . , 𝑥

𝑛
) to 𝑥

, can be immediately eliminated by
a replacement with 𝑓(𝑥

1
, . . . , 𝑥

𝑛
). In contrast, a transition

in algebraic transition system is modelled as an algebraic
equation. Consider the transition 𝑓(𝑥



, 𝑥
1
, . . . , 𝑥

𝑛
) = 0 as

an example. The primed variable 𝑥 in this transition will
be directly eliminated only if 𝑥 can be equivalently written
as a polynomial on 𝑥

1
, . . . , 𝑥

𝑛
, such as 𝑥 = 𝑓



(𝑥
1
, . . . , 𝑥

𝑛
).

In most cases, the transitions in algebraic transition systems
generalise the discrete parts of hybrid systems. Algebraic
transition systems cannot simply be seen as subsets of hybrid
systems and therefore are not covered by usual methods.
Somehow our approach can be considered as a complement
to usual methods for verifying complex systems.

The rest of this paper is organized as follows. Section 2
presents some preliminary concepts and some theorems
which lie in the core of our approach. We introduce our
understanding of algebraic transition systems in Section 3.
The algebraic modification of dynamic logic is described in
Section 4. In Section 5 we construct a proof system for this
logic and prove the soundness and inherent incompleteness
of the proof system in Section 7.Our approach is illustrated by
reasoning about a train control system in Section 6. Section 8
concludes with some ideas for future work.

2. Preliminary

In this section, we introduce several important conclusions
on polynomial ideal theory, which lie in the core of our
approach.

We beginwith the concepts of polynomials and ideals. Let
N be the set of natural numbers including 0,R the set of reals,
and C the set of complex numbers obtained as the algebraic
closure of the reals. Let V = {𝑥

1
, . . . , 𝑥

𝑛
} be a set of variables.

The set of polynomials on the variables, whose coefficients are
drawn from the reals, is denoted by R[𝑥

1
, . . . , 𝑥

𝑛
].

Definition 1 (zero set). Let 𝑓(𝑥
1
, . . . , 𝑥

𝑛
) ∈ R[𝑥

1
, . . . , 𝑥

𝑛
] be

a polynomial on V; the zero set of 𝑓(𝑥
1
, . . . , 𝑥

𝑛
), denoted by

Zero(𝑓), is the set of points in the complex plane such that

Zero (𝑓) = {�⃗� ∈ C𝑛 | 𝑓 (�⃗�) = 0} , (1)

where 𝑓(�⃗�) is obtained from 𝑓(𝑥
1
, . . . , 𝑥

𝑛
) by replacing all

variables with the elements of the point �⃗�.

Wewrite𝑓 instead of𝑓(𝑥
1
, . . . , 𝑥

𝑛
)when the variables are

understood in the context. Let 𝐹 = {𝑓
1
, . . . , 𝑓

𝑠
} be a finite set

of polynomials overR[𝑥
1
, . . . , 𝑥

𝑛
]; its corresponding zero set

is defined as

Zero (𝐹) = {�⃗� ∈ C𝑛 | 𝑓
𝑖
(�⃗�) = 0, ∀1 ≤ 𝑖 ≤ 𝑠} . (2)

We say the polynomial 𝑓 vanishes at the set Zero(𝐹) if 𝑓(�⃗�) =
0 for all �⃗� ∈ Zero(𝐹).

Definition 2 (ideals). A subset 𝐼 ⊆ R[𝑥
1
, . . . , 𝑥

𝑛
] is an ideal, if

and only if

(1) 0 ∈ 𝐼;
(2) for all 𝑓

1
, 𝑓
2
∈ 𝐼, (𝑓

1
+ 𝑓
2
) ∈ 𝐼;
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(3) if 𝑓 ∈ 𝐼 and 𝑔 ∈ R[𝑥
1
, . . . , 𝑥

𝑛
], then 𝑓𝑔 ∈ 𝐼, where 𝑓𝑔

indicates the product of polynomials 𝑓, 𝑔.

An ideal generated by a set of polynomials 𝐹 =

{𝑓
1
, . . . , 𝑓

𝑠
}, denoted by ⟨𝐹⟩, is the smallest ideal containing

𝐹 and equivalently

⟨𝐹⟩ = {

𝑠

∑

𝑖=1

𝑔
𝑖
𝑓
𝑖
| 𝑔
𝑖
∈R [𝑥

1
, . . . , 𝑥

𝑛
] , ∀1 ≤ 𝑖 ≤ 𝑠} . (3)

The ideal ⟨𝐹⟩ is said to be finitely generated if the set𝐹 is finite.
Hilbert’s basis theorem says that every ideal in C[𝑥

1
, . . . , 𝑥

𝑛
]

is finitely generated.
The basic relation of an ideal and its generators is that they

have the same zero set according to the following theorem.

Theorem 3. Given an ideal 𝐼 = ⟨𝐹⟩ generated by 𝐹 =

{𝑓
1
, . . . , 𝑓

𝑠
}, then the zero set of 𝐼 and the zero set of 𝐹 are the

same:

Zero (𝐼) = Zero (𝐹) . (4)

Proof. (1) Since 𝐹 ⊂ 𝐼, we immediately conclude that
Zero(𝐹) ⊃ Zero(𝐼). That is,

�⃗� ∈ Zero (𝐼) ⇒ (∀𝑓 ∈ 𝐼) [𝑓 (�⃗�) = 0]

⇒ (∀𝑓 ∈ 𝐹) [𝑓 (�⃗�) = 0] ⇒ �⃗� ∈ Zero (𝐹) .
(5)

(2) Conversely,

�⃗� ∈ Zero (𝐹) ⇒ 𝑓
1
(�⃗�) = ⋅ ⋅ ⋅ = 𝑓

𝑠
(�⃗�) = 0

⇒ (∀ℎ = 𝑔
1
𝑓
1
+ ⋅ ⋅ ⋅ + 𝑔

𝑠
𝑓
𝑠
) [ℎ (�⃗�) = 0]

⇒ (∀ℎ ∈ 𝐼) [ℎ (�⃗�) = 0] ⇒ �⃗� ∈ Zero (𝐼) .

(6)

Definition 4 (radical ideal). Let 𝐼 ⊂ R[𝑥
1
, . . . , 𝑥

𝑛
] be an ideal.

The radical of 𝐼, denoted by√𝐼, is the set

√𝐼 = {𝑓 | (∃𝑛 ∈ N) [𝑓
𝑛

∈ 𝐼]} . (7)

The following theorem asserts a significant relation
between zero sets and ideal membership, which is the
underlying algebraic principle of axiom rules in Section 5.

Theorem 5. Given 𝑓, 𝑓
1
, . . . , 𝑓

𝑠
∈ R[𝑥

1
, . . . , 𝑥

𝑛
] and 𝐹 =

{𝑓
1
, . . . , 𝑓

𝑠
}, if there is an integer 𝑞 ∈ N such that 𝑓𝑞 ∈ ⟨𝐹⟩,

that is, 𝑓 ∈ √⟨𝐹⟩, then 𝑓 vanishes at the zero set of 𝐹; that is,
Zero(𝐹) ⊂ Zero(𝑓). Equivalently,

𝑓 ∈ √⟨𝐹⟩ ⇒ Zero (𝐹) ⊂ Zero (𝑓) . (8)

Proof. This theorem immediately corresponds to one direc-
tion of the famous theorem called Hilbert’s Nullstellensatz.
The proof of Hilbert’s Nullstellensatz can be found in [5].

A fundamental question in ideal theory is checking
whether a given polynomial belongs to the radical of an ideal,
which is known as radical membership problem.This problem
involves the following theorem.

Theorem 6. Let 𝑓 ∈ R[𝑥
1
, . . . , 𝑥

𝑛
] be a polynomial and let

𝐼 = ⟨𝑓
1
, . . . , 𝑓

𝑠
⟩ ⊆ R[𝑥

1
, . . . , 𝑥

𝑛
] be an ideal. Then 𝑓 belongs

to the radical of the ideal 𝐼 if and only if the constant 1 belongs
to the ideal 𝐼 = ⟨𝑓

1
, . . . , 𝑓

𝑠
, 1 − 𝑦𝑓⟩ ⊂ R[𝑥

1
, . . . , 𝑥

𝑛
, 𝑦]; that is,

𝑓 ∈ √𝐼 ⇐⇒ 1 ∈ ⟨𝑓
1
, . . . , 𝑓

𝑠
, 1 − 𝑦𝑓⟩ , (9)

where 𝑦 is a new variable different from 𝑥
1
, . . . , 𝑥

𝑛
.

Proof. A proof of this theorem can be found in any standard
text on ideal theory (see Proposition 8 in [5]).

The core of solving radical membership problem requires
a special kind of generators, called reduced Gröbner basis.
Every ideal of R[𝑥

1
, . . . , 𝑥

𝑛
] has a unique finite reduced

Gröbner basis [24]. To determine if 𝑓 ∈ √⟨𝑓
1
, . . . , 𝑓

𝑠
⟩ ⊂

R[𝑥
1
, . . . , 𝑥

𝑛
], we compute the reduced Gröbner basis of the

ideal ⟨𝑓
1
, . . . , 𝑓

𝑠
, 1−𝑦𝑓⟩ ⊂ R[𝑥

1
, . . . , 𝑥

𝑛
, 𝑦]. If the result is {1},

then 𝑓 ∈ √𝐼. Otherwise, 𝑓 ∉ √𝐼.
Another application of reduced Gröbner basis, shown by

the following theorem, is deciding whether there exists a zero
set for a finite set of polynomials.

Theorem 7. Let 𝐹 ⊂ R[𝑥
1
, . . . , 𝑥

𝑛
] be a finite set of

polynomials and 𝐺 the reduced Gröbner basis for ⟨𝐹⟩. Then
𝐹 has an empty zero set if and only if 1 ∈ 𝐺; that is, Zero(𝐹) =
0 ⇔ 1 ∈ 𝐺.

Proof. Aproof of this theoremcanbe found inCorollary 4.3.7
in text [24].

3. Algebraic Transition Systems

In this section, we demonstrate how algebraic assertions
enrich the abstract labels of labeled transition systems.

Definition 8 (algebraic assertions). An algebraic assertion 𝜓
over the set of variables V is defined as a finite union of
polynomial equations of the form

𝜓
def
= 𝑓
1
= 0 ∧ 𝑓

2
= 0 ∧ ⋅ ⋅ ⋅ ∧ 𝑓

𝑠
= 0, (10)

where, for each 1 ≤ 𝑖 ≤ 𝑠, 𝑓
𝑖
∈ R[𝑥

1
, . . . , 𝑥

𝑛
].

For an algebraic assertion 𝜓, its zero set is defined as

Zero (𝜓) = {V⃗ ∈ C𝑛 | 𝑓
𝑖
(V⃗) = 0, ∀1 ≤ 𝑖 ≤ 𝑠} . (11)

We say that a point V⃗ ∈ C𝑛 satisfies 𝜓, denoted by V⃗ ⊨ 𝜓, if V⃗
belongs to the zero set of 𝜓; that is, V⃗ ∈ Zero(𝜓).

An algebraic transition system is specialized from a
labeled transition system. Each transition of an algebraic
transition system is labeled with an algebraic assertion
instead of an abstract label.

Definition 9 (algebraic transition system). An algebraic tran-
sition systemA is a tupleA = ⟨S,T, Ψ, 𝜆⟩, where

(i) S is the set of states;
(ii) T ⊂ S ×S is the set of transitions;
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(iii) Ψ is a set of algebraic assertions on V ∪ V including
the null label 𝜏;

(iv) 𝜆 : T → Ψ is a label function assigning each
transition to an algebraic assertion.

For an algebraic transition system A, a state 𝑠 ∈ S
is a function which maps each variable in V to a real.
According to the label function 𝜆, each transition 𝑡 ∈ T
is labeled with an algebraic assertion denoted by 𝜆(𝑡) ∈ Ψ.
The algebraic assertion 𝜆(𝑡) is defined on V ∪ V, where V
denotes the current-state variables and V denotes the next-
state variables.

The transition relation of A, which describes how states
change, is defined by algebraic assertions onV∪V. For each
𝑡 ∈ T, the transition relation 𝜌

𝑡
is determined by the label

𝜆(𝑡) as follows:

𝜌
𝑡
= {⟨𝑠, 𝑠



⟩ | 𝑠, 𝑠


∈S ∧ 𝜆 (𝑡) (𝑠, 𝑠


) = 0} , (12)

where 𝑠, 𝑠 indicate the current state and the next state,
respectively, and 𝜆(𝑡)(𝑠, 𝑠) is evaluated by substituting each
variable V ∈ V of 𝜆(𝑡) with the corresponding value in 𝑠

and each variable V ∈ V with the corresponding value
in 𝑠, respectively. In particular, the null label 𝜏 specifies an
identical relation on S; that is, 𝜌

𝜏
= {⟨𝑠, 𝑠⟩ | 𝑠 ∈ S}. The

transition labeled by 𝜓 from 𝑠 to 𝑠 is denoted by 𝑠
𝜓

→ 𝑠
.

An algebraic transition system is deterministic if there is
at most one transition and one label for any state; otherwise it
is nondeterministic. As for a deterministic algebraic transition
system, the next state is determined uniquely by the current
state. For instance, given an algebraic assertion 𝜓 def

= 𝑥


− 𝑥 −

1 = 0, the next state is obtained by adding 1 to the variable
𝑥 in the current state. We say the transition labeled by 𝜓 is
deterministic andnondeterministic if𝜓 def

= (𝑥


)
2

−𝑥
2

−3𝑥−2 =

0 (because the next state can take 𝑥 = 𝑥 + 1 or 𝑥 = 𝑥 + 2).
Obviously, an algebraic transitionmust be deterministic if for
all𝜓 ∈ Ψ each variable𝑥 ∈ V in𝜓 can bewritten as a unique
polynomial over V. In this case, each algebraic assertion can
be written as 𝜓 def

= ⋀
𝑖
𝑥


𝑖
= 𝑓
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
) with each 𝑥

𝑖
∈ V

and 𝑥
1
, . . . , 𝑥

𝑛
∈ V. Hence the value of each variable 𝑥

𝑖
in the

next state is uniquely determined by 𝑥
1
, . . . , 𝑥

𝑛
in the current

state according to 𝑓
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
).

Definition 10 (run). Given an algebraic transition system
A = ⟨S,T, Ψ, 𝜆⟩, a run 𝜎 of A is defined by a sequence of
transitions as follows:

𝜎 : 𝑠
0

𝜓0

→ 𝑠
1

𝜓1

→ 𝑠
2
⋅ ⋅ ⋅ , (13)

where the 𝑖th element of 𝜎 is denoted by 𝜎
𝑖
and for each 𝑖 ≥ 0

there exists a transition 𝜎
𝑖
= ⟨𝑠
𝑖
, 𝑠
𝑖+1
⟩ ∈ T from state 𝑠

𝑖
∈ S

to state 𝑠
𝑖+1

∈ S such that

𝜆 (𝜎
𝑖
) = 𝜓
𝑖
,

𝜓
𝑖
(𝑠
𝑖
, 𝑠
𝑖+1
) = 0.

(14)

� = � + aΔt

s = s + vΔt

� = 5

� = 10
a 

= −a

a
 = −a

Mo
de
 = Acc

Mode = DecMo
de =

Acc

Mode = Dec

𝜏

𝜏

𝜏

Figure 1: A simple train control system.

Example 11. In order to illustrate algebraic transition systems,
we present a simplified train control system shown in Figure 1.
Assume that a train has two modes: the acceleration mode
(Acc) and the deceleration mode (Dec). The train keeps
checking the current mode and velocity. If it is in mode
Acc and its velocity reaches 10, it will invert the acceleration
power (𝑎 = −𝑎) and change its mode to mode Dec. Then the
position 𝑠 of the train evolves with velocity V along 𝑠 = 𝑠+VΔ𝑡
and V = V+𝑎Δ𝑡. If the velocity of the train slows down to 5 in
mode Dec, it will invert its deceleration power (𝑎 = −𝑎) and
switch to mode Acc. Compared with real-time systems and
hybrid system, the behavior of algebraic transition systems is
discrete, such as the discrete behavior of the train with time
period Δ𝑡. Note that we use the relaxed version of algebraic
assertions. For instance, we write 𝑎 = −𝑎 as the relaxed
version of 𝑎 + 𝑎 = 0. The Dec and Acc can be any certain
constants.

In contrast with classical labeled transition systems with
abstract labels [3], algebraic transitions systems are widely
useful for modeling data flows, due to algebraic assertions
describing how data changes between states in detail. What is
more significant is that the introduction of concepts on ideal
theory leads to the presence of more powerful and efficient
algebraic methods for reasoning about complex systems.

4. Algebraic Dynamic Logic

In this section, we present algebraic dynamic logic (𝐴𝐷𝐿), in
which algebraic transition systems are modeled as modalities
by modifying first-order dynamic logic. Properties about the
behavior of algebraic transition systems can be expressed
as 𝐴𝐷𝐿 formulas. After introducing the syntax of algebraic
programs and formulas, we define an algebraic semantics of
𝐴𝐷𝐿, according to algebraic transition systems as mentioned
in Section 3.

4.1. Syntax. The formulas of𝐴𝐷𝐿 are strings built over a finite
set V = {𝑥

1
, . . . , 𝑥

𝑛
} of real-valued variables and a signature

Sig consisting of function symbols, predicate symbols, and
constant symbols. In algebraic dynamic logic, modalities are
extended to algebraic programs which are the combination of
algebraic assertions and operational connectives.
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Definition 12 (algebraic programs). The set of algebraic pro-
grams Prm(V, Sig) is defined inductively as follows.

(i) If 𝜓 is an algebraic assertion on V ∪ V defined in
Definition 8, then the assignment 𝜓 ∈ Prm(V, Sig) is
an algebraic program.

(ii) If𝜓 is an algebraic assertion onV, then the guard𝜓? ∈
Prm(V, Sig) is an algebraic program.

(iii) If 𝛼 and 𝛽 are algebraic programs, then the sequential
composition 𝛼; 𝛽 ∈ Prm(V, Sig).

(iv) If 𝛼 and 𝛽 are algebraic programs, then the nondeter-
ministic choice 𝛼 ∪ 𝛽 ∈ Prm(V, Sig).

(v) If 𝛼 is an algebraic program, then the iteration 𝛼∗ ∈
Prm(V, Sig).

As previouslymentioned, the effect of an assignment𝜓 def
=

⋀
𝑖
(𝑓
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
, 𝑥


1
, . . . , 𝑥



𝑛
) = 0) is specified as a transition

relation of algebraic transition systems. Furthermore, each 𝑓
𝑖

of 𝜓 simultaneously takes place to change the current state.
Assignments in computer programming languages are spe-
cial cases of algebraic assertions since each next-state variable
can easily be written as a unique polynomial in current-
state variables according to assignment statements.The guard
𝜓? is used to check whether the subsequent transition is
possible. For the guard of (𝜓?; 𝛼), the program 𝛼 is allowed to
happen, only when 𝜓 is satisfied in the current state. Not all
programs need a guard. Any programwithout a guard always
takes place. The program 𝛼; 𝛽 says that 𝛽 is executed after
doing 𝛼. The program 𝛼 ∪ 𝛽 means that one of 𝛼 and 𝛽 is
nondeterministically chosen and executed, and the program
𝛼
∗ says that 𝛼 is executed some finite number of times.
Due to the operational structure of programs in standard

dynamic logic [15], an algebraic transition system can be
translated into an algebraic programwithout effort. Algebraic
programs encode algebraic transition systems intomodalities
of 𝐴𝐷𝐿 formulas, which specify properties of algebraic
transition systems according to the following definition.

Definition 13 (formulas). The set of 𝐴𝐷𝐿 formulas
Frm(V, Sig) is obtained inductively as follows.

(i) If 𝑓(𝑥
1
, . . . , 𝑥

𝑛
) ∈ R[𝑥

1
, . . . , 𝑥

𝑛
] is a polynomial

defined over V, then 𝑓(𝑥
1
, . . . , 𝑥

𝑛
) = 0 ∈ Frm(V, Sig)

is an atomic formula.
(ii) If 𝜙, 𝜑 ∈ Frm(V, Sig), then ¬𝜙, (𝜙 ∧ 𝜑), (𝜙 ∨ 𝜑), (𝜙 →

𝜑) ∈ Frm(V, Sig).
(iii) If 𝜙 ∈ Frm(V, Sig) and 𝑥 ∈ V, then ∀𝑥𝜙, ∃𝑥𝜙 ∈

Frm(V, Sig).
(iv) If 𝜙 ∈ Frm(V, Sig) and 𝛼 ∈ Prm(V, Sig), then

[𝛼]𝜙, ⟨𝛼⟩𝜙 ∈ Frm(V, Sig).

The existential quantification can be defined with
universal quantification and ∃𝑥𝜙 is abbreviated to ¬∀𝑥 ¬𝜙.
The relation between [𝛼]𝜙 and ⟨𝛼⟩𝜙 is ⟨𝛼⟩𝜙 def

= ¬[𝛼]¬𝜙. The
formula [𝛼]𝜑 expresses that all runs of program 𝛼 lead to the
states on which the formula 𝜑 holds. Likewise, ⟨𝛼⟩𝜙 means
that there exists at least a run of program 𝛼 after which

the formula 𝜑 holds. As for [𝛼]𝜙 and ⟨𝛼⟩𝜙, the algebraic
program 𝛼 plays the role of encoding an algebraic transition
system, while 𝜙 claims that behavior of the algebraic
transition system satisfies the property specified by 𝜙. For
example, the formula ⟨𝑥 = 0; (𝑥



= 𝑥 + 1)
∗

⟩ (𝑥 − 3 = 0)

asserts that there exists a run during the loop of 𝑥 = 𝑥 + 1

such that 𝑥 reaches 3 eventually.
Variables occurring in the scope of the quantifiers ∀ and

∃ are bound to quantifiers, and variables of V occurring in
modalities are bound to modalities. Variables are free if they
are not in the scope of quantifiers and modalities. We assume
that all variables are not bound to both of quantifiers and
modalities at the same time.The interaction of quantifiers∀,∃
andmodalities [⋅], ⟨⋅⟩makes the formulas subtle. Particularly,
the order of quantifiers occurring before and after modalities
makes the understanding of formulas slightly different. For
instance, ∀𝑥[𝑥 = 𝑥]𝜙 means that all the choices of the
parameter 𝑥 valued to 𝑥 keep 𝜙 true. However, for [𝑥 =
𝑥]∀𝑥𝜙, the variable𝑥 in [𝑥 = 𝑥] is free anddifferent from𝑥 in
∀𝑥𝜙which is a parameter and can be substitutedwith another
variable symbol not occurring in𝜙.Theway of unifying quan-
tification and modalities in [15] is using a special wildcard
assignment to redefine quantification such that ∀𝑥𝜙 ↔ [𝑥



=

?]𝜙 and ∃𝑥𝜙 ↔ ⟨𝑥


= ?⟩𝜙, where the wildcard assignment
𝑥


= ? indicates an arbitrary assignment to 𝑥.

Example 14. We formalize the train control system shown in
Figure 1 into the following algebraic program:

train def
= ((Ac ∪ Dc) ; drive)∗ , (15)

where

Ac def
= (mode − Acc = 0)?; (V − 10 = 0)?;

𝑎


+ 𝑎 = 0 ∧mode − Dec = 0

Dc def
= (mode − Dec = 0)?; (V − 5 = 0)?;

𝑎


+ 𝑎 = 0 ∧mode − Acc = 0

drive def
= (V − V − 𝑎Δ𝑡 = 0) ∧ (𝑠 − 𝑠 − VΔ𝑡 = 0) .

(16)

We use nondeterministic choice ∪ to join Ac and Dc
together. In the phase of Ac, it tests whether the currentmode
is Acc and then checks whether the current velocity reaches
10. If so, themode switches toDec and the acceleration power
𝑎 is inverted. The subsequent action is executing drive in
which the velocity V and the position 𝑧 evolve along V − V −
𝑎Δ𝑡 = 0 and 𝑠 − 𝑠 − VΔ𝑡 = 0, respectively. The phase of Dc is
similar to Ac. The control system repeats (Ac ∪Dc; drive) for
indefinitely many times (or forever).

Furthermore, we express properties of the train control
system as 𝐴𝐷𝐿 formulas. For instance, the following state-
ment about the train control system “the velocity of the train
never reaches 11” is equivalently expressed as the formula

[train] ¬ (V − 11 = 0) . (17)
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4.2. Semantics. The semantics of 𝐴𝐷𝐿 is defined in the
fashion of Kripke [25], where possible worlds represent states
of algebraic transition systems and transition relations along
the runs of algebraic transition systems are represented as the
accessibility relation.

For the set V and signature Sig, an interpretation I is a
map, which maps each function symbol in Sig to an algebraic
assertion on V ∪ V and each predicate symbol in Sig to
an algebraic assertion on V. A state is a map 𝑠 : V →

R assigning a real value in R to each state variable in V
whose value is only changed by algebraic programs. The free
variables in V are mapped to the reals by an assignment 𝜁 :
V → R. These variables are also named logical variables.
There is no need to distinguish logical variables and state
variables except for the clarity of expressions.

The semantics of an algebraic program is interpreted as a
transition relation consisting of pairs of states, while the sat-
isfaction of an𝐴𝐷𝐿 formula is interpreted as a Boolean value
by a state with respect to an interpretation and an assignment.
We begin with the semantics of algebraic programs.

Definition 15 (semantics of algebraic programs). For each
algebraic program 𝛼 ∈ Prm(V, Sig), its semantics, denoted
by 𝛾(𝛼), specifies the state 𝑤 which is reachable from the
state V under the operation of 𝛼. 𝛾(𝛼) is inductively defined
as follows.

(i) 𝛾(𝛼) = {(V, 𝑤) | (V, 𝑤) ∈ Zero(𝜓)} if 𝛼 def
= 𝜓, where 𝜓

is an algebraic assertion on V ∪ V.

(ii) 𝛾(𝛼) = {(V, V) | V ∈ Zero(𝜓)} if 𝛼 def
= 𝜓?, where 𝜓 is an

algebraic assertion on V.
(iii) 𝛾(𝛼; 𝛽) = {(V, 𝑤) | (V, 𝑧) ∈ 𝛾(𝛼) and (𝑧, 𝑤) ∈ 𝛾(𝛽), for

some state 𝑧}.
(iv) 𝛾(𝛼 ∪ 𝛽) = 𝛾(𝛼) ∪ 𝛾(𝛽).
(v) (V, 𝑤) ∈ 𝛾(𝛼∗) if and only if there is a 𝑛 ∈ N and a state

sequence V = V
0
, . . . , V

𝑛
= 𝑤, with (V

𝑖
, V
𝑖+1
) ∈ 𝛾(𝛼) for

all 0 ≤ 𝑖 < 𝑛.

Note that the semantics of an algebraic program is defined
according to zero sets of the algebraic assertion. Let 𝛼 def

= 𝜓

be an algebraic program with the algebraic assertion 𝜓 def
=

⋀
𝑖
𝑓
𝑖
= 0 on V ∪ V; the semantics of 𝛼 is the common zero

set of all 𝑓
𝑖
. For example, the semantics of (𝑥 + 1)2 − (𝑥)2 = 0

is the set of points lying on the two lines 𝑥 − 𝑥 − 1 =

0 and 𝑥


+ 𝑥 + 1 = 0 in the 𝑥 − 𝑥
 plane. There may

exist more than one successive state for the current state. In
most cases, the successive states of a given state are uniquely
determined by algebraic programs.The guards in the form of
𝜓? are associated with those states which satisfy the algebraic
assertion 𝜓 for triggering the next program. An iteration 𝛼∗
points out all states reachable from the state V by successively
executing 𝛼 nondeterministically many times (zero or more).

The satisfaction of an 𝐴𝐷𝐿 formula 𝜙 involves an
interpretation I, an assignment 𝜁, and a state V. For a
formula 𝜙, we write I, 𝜁, V ⊨ 𝜙 and say that V and 𝜁 satisfy
𝜙 in I or that 𝜙 is true in state V with respect to I and 𝜁.

We omitI, 𝜁 and write V ⊨ 𝜙 whenI and 𝜁 are understood
in the context. The notation V ⊭ 𝜙 means that V does not
satisfy 𝜙. We use 𝜁[𝑥 → 𝑐] to denote the modification of
the assignment 𝜁 that agrees with 𝜁 except for the variable 𝑥
which is amended to 𝑐 ∈ R.

Definition 16 (satisfaction of formulas). For two𝐴𝐷𝐿 formu-
las 𝜙 and 𝜑, the satisfaction is inductively defined according
to the syntactic structure of 𝜙 and 𝜑.

(1) I, 𝜁, V ⊨ 𝑓(𝑥
1
, . . . , 𝑥

𝑛
) = 0 if and only if V ∈ Zero(𝑓).

(2) I, 𝜁, V ⊨ ¬𝜙 if and only ifI, 𝜁, V ⊭ 𝜙.
(3) I, 𝜁, V ⊨ 𝜙 ∧ 𝜑 if and only ifI, 𝜁, V ⊨ 𝜙 andI, 𝜁, V ⊨

𝜑. Similarly, for 𝜙 ∨ 𝜑, 𝜙 → 𝜑.
(4) I, 𝜁, V ⊨ ∀𝑥𝜙 if and only ifI, 𝜁[𝑥 → 𝑐], V ⊨ 𝜙 for all

𝑐 ∈ R.
(5) I, 𝜁, V ⊨ ∃𝑥𝜙 if and only if I, 𝜁[𝑥 → 𝑐], V ⊨ 𝜙 for

some 𝑐 ∈ R.
(6) I, 𝜁, V ⊨ [𝛼]𝜙 if and only if I, 𝜁, 𝑤 ⊨ 𝜙 for all states

𝑤 with (V, 𝑤) ∈ 𝛾(𝛼).
(7) I, 𝜁, V ⊨ ⟨𝛼⟩𝜙 if and only ifI, 𝜁, 𝑤 ⊨ 𝜙 for some state

𝑤 with (V, 𝑤) ∈ 𝛾(𝛼).

A formula 𝜙 is valid inI and written asI ⊨ 𝜙 if 𝜙 is true
on all states and all assignments in interpretationI. IfI ⊨ 𝜙

for all interpretationsI, we write ⊨ 𝜙 and say that 𝜙 is valid.
After giving the semantics of algebraic dynamic logic, in

order to prove the validity of 𝐴𝐷𝐿 formulas, such as (17), we
construct a proof system for 𝐴𝐷𝐿 in the next section.

5. Proof System

In this section, we construct a sequent calculus for algebraic
dynamic logic. In a sequent calculus a sequent is an expression
of the form Γ ⊢ Δ, where the antecedent Γ = (𝜙

1
, . . . , 𝜙

𝑚
)

and the succedent Δ = (𝜑
1
, . . . , 𝜑

𝑛
) are finite sequences of

formulas. The meaning of Γ ⊢ Δ is equivalently expressed as
the following formula:

𝜙
1
∧ ⋅ ⋅ ⋅ ∧ 𝜙

𝑚
→ 𝜑
1
∨ ⋅ ⋅ ⋅ ∨ 𝜑

𝑛
. (18)

That is to say, a sequent Γ ⊢ Δ is satisfied by a state V if and
only if V ⊨ 𝜙

1
∧⋅ ⋅ ⋅∧𝜙

𝑚
→ 𝜑
1
∨⋅ ⋅ ⋅∨𝜑

𝑛
. Equivalently, Vmakes

the sequent false if Vmakes 𝜙
1
, . . . , 𝜙

𝑚
all true and 𝜑

1
, . . . , 𝜑

𝑛

all false.
An inference rule is of the form

𝑆
1
⋅ ⋅ ⋅ 𝑆
𝑖

𝑆
, (19)

where both 𝑆
1
⋅ ⋅ ⋅ 𝑆
𝑖
and 𝑆 are sequents. The upper sequents

𝑆
1
⋅ ⋅ ⋅ 𝑆
𝑖
are called premises and the lower sequent 𝑆 is called

conclusion. The semantics of an inference rule is that each
state satisfying all premises also makes the conclusion true.
The direction of entailment is top-down which means that
premises logically imply the conclusion, while the direction
of applying rules is bottom-up.Thatmeans that the procedure
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of reasoning about a sequent starts from the conclusion at the
bottom to the premises at the top.

The proof system, called 𝐴𝐷𝐿 calculus, is constructed by
customizing inference rules whichmanipulate𝐴𝐷𝐿 formulas
in an algebraic fashion.The basic idea is evaluating the effects
of algebraic programs with algebraic methods mentioned in
Section 2 and transforming 𝐴𝐷𝐿 formulas into first-order
formulas without algebraic programs. 𝐴𝐷𝐿 calculus consists
of axiom rules, rules for logical operators, rules for quantifier,
rules for modalities, and programs.

5.1. Rules for Axioms. In this and the following sections, the
symbols Γ, Δ denote arbitrary sequences of 𝐴𝐷𝐿 formulas
and 𝜙, 𝜑 denote 𝐴𝐷𝐿 formulas unless otherwise noted.

Four basic rules (𝐴
1
)–(𝐴
4
) listed in (T1), named axiom

rules, are composed for closing a proof search. Rules
(𝐴
1
)–(𝐴
3
) are the same as in many other sequent calculus.

The axiom rule (𝐴
1
) treats a sequent with a common formula

in the antecedent and the succedent as an axiom, which can
be inferred from nothing (denoted by ⊥):

(𝐴
1
)

⊥

Γ, 𝜙 ⊢ Δ, 𝜙
(𝐴
2
)

⊥

Γ ⊢ True, Δ

(𝐴
3
)

⊥

Γ, False ⊢ Δ
(𝐴
4
)

⊥

Γ, 𝜙 ⊢ 𝜑, Δ
.

(T1)

In 𝐴
4
, 𝜙 and 𝜑 are atomic formulas which are expressed as

polynomials in variables of V, and Zero(𝜙) ⊆ Zero(𝜑).
Rule (𝐴

4
) is customized to coordinate mathematical

procedures on ideal theory implemented by computer algebra
systems, such as REDUCE, Maple, Mathematica, AXIOM,
and SINGULAR. Rule (𝐴

4
) reveals that any sequent whose

antecedent has a formula 𝜙 with its zero set included by the
zero set of one formula𝜑 of the succedent can be applied as an
axiom. ByTheorems 5 and 6, the inclusionZero(𝜙) ⊆ Zero(𝜑)
can be transformed into the radical membership problem
which is decided by radical membership algorithm on polyno-
mial ideals [5, 24].That is to say, if there is an atomic formula
𝜑 in the succedent such that 𝜑 belongs to the radical of the
ideal generated by polynomials in 𝜙 in the antecedent, that is,
𝜑 ∈ √⟨𝜙⟩, then the sequent can be applied as an axiom. The
radical membership algorithm is implemented in most com-
puter algebra systems, such as the RadicalMembership
command in Maple. The discussion on computer algebra
systems is not in the scope of this paper.

5.2. Rules for Logical Operators. The rules in (T2) are used to
handle standard logical operators.There are two cases for the

appearance of each logical operator, and each logical operator
needs dual rules (left rule and right rule):

(𝐿
1
)

Γ ⊢ 𝜙, Δ

Γ, ¬𝜙 ⊢ Δ
(𝐿
2
)

Γ, 𝜙 ⊢ Δ

Γ ⊢ ¬𝜙, Δ

(𝐿
3
)

Γ, 𝜙, 𝜑 ⊢ Δ

Γ, 𝜙 ∧ 𝜑 ⊢ Δ
(𝐿
4
)

Γ ⊢ 𝜙, Δ Γ ⊢ 𝜑, Δ

Γ ⊢ 𝜙 ∧ 𝜑, Δ

(𝐿
5
)

Γ, 𝜙 ⊢ Δ Γ, 𝜑 ⊢ Δ

Γ, 𝜙 ∨ 𝜑 ⊢ Δ
(𝐿
6
)

Γ ⊢ 𝜙, 𝜑, Δ

Γ ⊢ 𝜙 ∨ 𝜑, Δ

(𝐿
7
)

Γ, 𝜑 ⊢ Δ Γ ⊢ 𝜙, Δ

Γ, 𝜙 → 𝜑 ⊢ Δ
(𝐿
8
)

Γ, 𝜙 ⊢ 𝜑, Δ

Γ ⊢ 𝜙 → 𝜑, Δ
.

(T2)

Rules (𝐿
1
)–(𝐿
8
) are standard for propositional dynamic

logic. These rules decompose formulas with propositional
structures into smaller formulas with less logical operators.
Rules (𝐿

1
) and (𝐿

2
) are dual and aim to reduce the negative

operator ¬. Rule (𝐿
3
) just replaces the symbol ∧ with

a comma, since formulas are combined conjunctively in
antecedents of sequents by the definition of sequents. Rule
(𝐿
4
) branches the sequent containing the operator ∧ in the

succedent into two sequents, since conjuncts in the succedent
can be proved separately due to the semantics of sequents.
Dually, rule (𝐿

5
) is similar to (𝐿

4
) and (𝐿

6
) is similar to (𝐿

3
)

according to the semantics of sequents. Rule (𝐿
7
) derives

from rules (𝐿
5
) and (𝐿

1
) by the logical equivalence of (𝜙 →

𝜑) and (¬𝜙∨𝜑). Similarly, rule (𝐿
8
) is derived from rules (𝐿

6
)

and (𝐿
2
).

5.3. Rules for Quantifiers. Recall that variables of V occur-
ring in an algebraic program are bound to modalities. We
assume that each modality-bound variable is not bound to
any quantifier. A variable is free if it is not bound tomodalities
and quantifiers.

Definition 17 (substitution). A substitution of an algebraic
assertion or a formula for a free variable is defined as a
function which maps each object variable to a designated
polynomial. Let 𝑓 be a polynomial; the result of substituting
𝑓 in an algebraic assertion 𝜓 for a variable 𝑥 is denoted by
𝜓[𝑥 → 𝑓]. The result of substituting 𝑓 in a formula 𝜙 for a
variable 𝑥 is denoted by 𝜙[𝑥 → 𝑓].

A substitution with the result 𝜙[𝑥 → 𝑓] is admissible for
the formula 𝜙 if no variables 𝑦 in 𝑓 are bound in the formula
𝜙[𝑥 → 𝑓].That is to say, free variables in𝑓 are still free in the
formula 𝜙[𝑥 → 𝑓] after applying an admissible substitution.

Rule (𝑄
1
) and rule (𝑄

4
) are the usual 𝛾-rule in [7, 26],

while (𝑄
2
) and (𝑄

3
) correspond to the 𝛿+-rule in [26]. Rules

(𝑄
1
)–(𝑄
4
) are complete for quantifiers of classic first-order

logic.That is to say, everything about quantifiers of first-order
logic can be derived with (𝑄

1
)–(𝑄
4
) [7]:

(𝑄
1
)
Γ, 𝜙 [𝑥 → 𝑋] , ∀𝑥𝜙 ⊢ Δ

Γ, ∀𝑥𝜙 ⊢ Δ
(𝑄
2
)
Γ ⊢ 𝜙 [𝑥 → 𝑓 (𝑋

1
, . . . , 𝑋

𝑛
)] , Δ

Γ ⊢ ∀𝑥𝜙, Δ

(𝑄
3
)
Γ, 𝜙 [𝑥 → 𝑓 (𝑋

1
, . . . , 𝑋

𝑛
)] ⊢ Δ

Γ, ∃𝑥𝜙 ⊢ Δ
(𝑄
4
)
Γ ⊢ 𝜙 [𝑥 → 𝑋] , ∃𝑥𝜙, Δ

Γ ⊢ ∃𝑥𝜙, Δ
.

(T3)
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In (𝑄
1
)–(𝑄
4
), the variable 𝑥 is only bound to ∀𝑥 or ∃𝑥. In

(𝑄
1
) and (𝑄

4
), 𝑋 is a new free variable. In (𝑄

2
) and (𝑄

3
), 𝑓

is a new function symbol and𝑋
1
, . . . , 𝑋

𝑛
are all free variables

in ∀𝑥𝜙 and ∃𝑥𝜙.

5.4. Rules for Modalities and Programs. The rules for modali-
ties and programs are obtained from the rule schemata shown
in (T4), which can be applied in both sides of a sequent. Rule
schemata in (T4) analyze the effect of modalities by reducing
algebraic programs into simpler ones.

If
𝜙
1

𝜙
0

(20)

is an instance of one rule schema in (T4), then
Γ, 𝜙
1
⊢ Δ

Γ, 𝜙
0
⊢ Δ

,

Γ ⊢ 𝜙
1
, Δ

Γ ⊢ 𝜙
0
, Δ

(21)

are two inference rules of the𝐴𝐷𝐿 calculus.There is one rule
schema for each program structure (; , ?, ∪, ∗) and modalities
(⟨⋅⟩, [⋅]).

As mentioned previously, algebraic programs are defined
on V ∪ V. 𝐴𝐷𝐿 formulas, which are defined on V, only
assert properties on the final states of the runs of algebraic
programs. Confusions about variable may emerge when an
algebraic program needs to be lifted to a formula by rules
in (T4). For eliminating the confusion, variables of algebraic
programsneed be renumbered by the variable numbering pro-
cedure defined by the following definition when an algebraic
program is lifted to a formula with rule (𝑀

1
) and rule (𝑀

2
).

Definition 18 (variable numbering procedure). For each
sequent Γ ⊢ Δ, there always exists a procedure such that a
sequent, which does not produce any confusion about vari-
able, is obtained from Γ ⊢ Δ by numbering all occurrences of
variables.

Since every sequent is assumed to contain finite variables,
numbering finite variables is easy and immediately leads
to a variable numbering procedure. We assume that each
sequent, which produces variable confusions, is implicitly
numbered by the variable numbering procedure. For the
sake of succinctness, the description of this procedure is
not shown in detail. However, the effect of this procedure is
illustrated by Example 19:

(𝑀
1
)
∀𝑋
Ψ
(Ψ → 𝜙)

[Ψ] 𝜙
(𝑀
2
)
∃𝑋
Ψ
(Ψ ∧ 𝜙)

⟨Ψ⟩ 𝜙

(𝑀
3
)
Ψ → 𝜙

[Ψ?] 𝜙
(𝑀
4
)
Ψ ∧ 𝜙

⟨Ψ?⟩ 𝜙

(𝑃
1
)
[𝛼] [𝛽] 𝜙

[𝛼; 𝛽] 𝜙
(𝑃
2
)
⟨𝛼⟩ ⟨𝛽⟩ 𝜙

⟨𝛼; 𝛽⟩ 𝜙

(𝑃
3
)
[𝛼] 𝜙 ∧ [𝛽] 𝜙

[𝛼 ∪ 𝛽] 𝜙
(𝑃
4
)
⟨𝛼⟩ 𝜙 ∨ ⟨𝛽⟩ 𝜙

⟨𝛼 ∪ 𝛽⟩ 𝜙

(𝑃
5
)
𝜙 ∧ [𝛼; 𝛼

∗

] 𝜙

[𝛼
∗
] 𝜙

(𝑃
6
)
𝜙 ∨ ⟨𝛼; 𝛼

∗

⟩ 𝜙

⟨𝛼
∗
⟩ 𝜙

.

(T4)

In (𝑀
1
) and (𝑀

2
), Ψ denotes an algebraic assertion on

V ∪ V. In (𝑀
3
) and (𝑀

4
), Ψ denotes an algebraic assertion

on V. Variables bound to Ψ are denoted by𝑋
Ψ
.

Example 19. Consider the sequent

⊢ [𝑥
2

− (𝑥


)
2

− 4 = 0; 𝑥
2

− (𝑥


)
2

− 2 = 0]

(𝑥 − 2 = 0) .

(22)

It would have produced confusion of the variables 𝑥 and 𝑥
if we applied rules (𝑀

1
) and (𝑀

2
) directly. After doing the

variable numbering procedure, we get the following sequent:

⊢ [𝑥
2

0
− 𝑥
2

1
− 4 = 0; 𝑥

2

1
− 𝑥
2

2
− 2 = 0] (𝑥

2
− 2 = 0) , (23)

which produces no confusions when applying𝑀
1
and𝑀

2
.

Rules (𝑀
1
) and (𝑀

2
) are used to deal with assignment

programs in [⋅] and ⟨⋅⟩. The basic idea of (𝑀
1
) and (𝑀

2
)

is transforming an 𝐴𝐷𝐿 formula with assignment programs
into a standard first-order formula by lifting assignment
programs to logical formulas. (𝑀

1
) expresses that the formula

𝜙 always holds after executing the assignment program Ψ,
if Ψ implies 𝜙 for all values of variables bound to Ψ while
(𝑀
2
) expresses that 𝜙 holds for some execution of Ψ, if

both Ψ and 𝜙 hold for some value for variables bound to Ψ.
Both (𝑀

1
) and (𝑀

2
) properly reflect the underlying logical

principle that 𝐴𝐷𝐿 formulas with assignment programs can
be transformed into quantified formulas. The rules (𝑀

3
) and

(𝑀
4
) can be understood in the sameway as in [15], except that

the logical formula of test is replaced with a guard specified
by an algebraic assertion Ψ on V.

Rules (𝑃
1
)–(𝑃
6
) are used to decompose the structure

of programs into simpler programs. In order to prove the
sequential compositions of programs, nested modalities,
which are obtained by decomposing sequential compositions,
have to be proved by (𝑃

1
)-(𝑃
2
). Nondeterministic choices are

proved by proving the conjunction by (𝑃
3
) or disjunction by

(𝑃
4
) of its alternatives. (𝑃

5
) and (𝑃

6
) are the usual iteration

rules in dynamic logic [15], which unfold loops.

5.5. Miscellaneous Rules. Besides the rules mentioned previ-
ously, some miscellaneous rules are necessary to our proof
system.There are several types of rules listed in (T5).The first
type is the usual generalization rules (𝐺

1
and𝐺

2
) which allow

to derive [𝛼]𝜙 ⊢ [𝛼]𝜑 and ⟨𝛼⟩𝜙 ⊢ ⟨𝛼⟩𝜑 from ⊢ 𝜙 → 𝜑.
(𝐶
1
) is the usual cut rule [27] which does not make our

proof system prove more theorems but just allows the proofs
to be shorter and simpler. (𝐶

1
) states that when a formula 𝜙

can be concluded in the context and 𝜙 can also serve as a
premise for concluding other formulas, then the formula 𝜙
can be cut out from the context. However, when searching a
proof bottom-upwith the cut rule, it requires one to guess the
auxiliary formula 𝜙.

Rule (𝐼
1
) is a variant of the usual induction rule with the

inductive invariant 𝜙 [15]. It expresses that the invariant 𝜙will
be true after any number of iterations of 𝛼, if 𝜙 is true in the
current state and 𝜙 is still true after the execution of 𝛼 when
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� − 11 = 0 ⊢

� − 11 = 0)

11 = 0)

11 = 0)

11 = 0)

ΠL2
⊢ ¬( ⊢ ∀X𝛼(¬(� − 11 = 0) → [Ac ∪ Dc; drive] ¬ (� −

L4
⊢ ¬(� − ) 11 = 0))

11 = 0))

∧ ∀X𝛼(¬(� − 11 → [Ac ∪ Dc; drive] ¬ (� −
I1

⊢ [(Ac ∪ Dc; drive)∗] ¬ (� −

Figure 2: Verification of the train control system.

Π2

Π1
P3

¬ ⊢ [Ac][drive] ¬ (� − 11 = 0)

¬ ⊢ [Ac ∪ Dc][drive] ¬ (� −
P1

¬ ⊢ [Ac ∪ Dc; drive] ¬ (� −
L8

⊢ ¬ → [Ac ∪ Dc; drive] ¬ (� −
Q2

∀X𝛼(¬ → [Ac ∪ Dc; drive] ¬ (� −

− =

(� − 11 = 0)− =

(� − 11 = 0)− =

(� − 11 = 0)− =

11 = 0)=

11 = 0)=

(� − 11 = 0)=

(� − 11 = 0)=

11 = 0)=

11 = 0))=⊢

Figure 3: Proof of the right branch.

𝜙 holds for all bound variables of 𝛼. Rule (𝑂
1
) transforms a

finite set of atomic formulas with an empty zero set into the
Boolean value False.Whether atomic formulas have an empty
zero set is decided byTheorem 7. Consider

(𝐺
1
)

⊢ 𝜙 → 𝜑

[𝛼] 𝜙 ⊢ [𝛼] 𝜑
(𝐺
2
)

⊢ 𝜙 → 𝜑

⟨𝛼⟩ 𝜙 ⊢ ⟨𝛼⟩ 𝜑

(𝐶
1
)

Γ ⊢ 𝜙, Δ Γ, 𝜙 ⊢ Δ

Γ ⊢ Δ
(𝐼
1
)
𝜙 ∧ ∀𝑋

𝛼
(𝜙 → [𝛼] 𝜙)

[𝛼
∗
] 𝜙

(𝑂
1
)

False ⊢
Γ, 𝜙
1
, . . . , 𝜙

𝑛
⊢

(T5)

𝑋
𝛼
in (𝐼
1
) denotes all variables bound to the algebraic

program 𝛼. In rule (𝑂
1
) formulas 𝜙

1
, . . . , 𝜙

𝑛
are atomic such

that they have an empty zero set.

6. Verification Example

Reasoning about the safety property of the train control
system, which is formulated by (17), is shown in Figures 2–4.
Remark that we have assumed the parameter Δ𝑡 is constant;
that is, the time is discrete and modelled by Δ𝑡. In addition,
the train evolves its velocity per Δ𝑡 and keeps the velocity
fixed in each Δ𝑡. We start by writing the safety property
[train]¬(V − 11 = 0) into the proof obligation:

⊢ [train] ¬ (V − 11 = 0) . (24)

We use the rule (𝐼
1
) to eliminate the iteration operator and

split the sequent into two branches by applying rule (𝐿
4
).The

left branch derives the open sequent V − 11 = 0 ⊢ from ⊢

¬(V−11 = 0) by applying (𝐿
2
). Recall that by the semantics of

sequent the proof obligation is valid if all premises are valid.
Hence (24) is not valid if (V − 11 = 0) ⊢ is not valid. In other
words,

V ̸= 11 (25)

whichmakes (V−11 = 0) ⊢ valid must be initially guaranteed
in order to make (24) valid.

Γ0 , Γ1, ¬(� − 11 ⊢ 𝜙3

Γ0 , Γ1, ¬(� − ⊢ ∀� ∀s𝜙3

Γ0 , Γ1, ¬(� − 11 = 0) ⊢ [drive] ¬ (� − 11 = 0)

Γ0 , ¬(� − 11 = 0) ⊢ 𝜙2

Γ0 , ¬(� − 11 = 0) ⊢ ∀a ∀mode 𝜙2

Γ0 , ¬(� − 11 = 0) ⊢ 𝜙1

¬(� − 11 = 0),mode = Acc ⊢ � = 10→ 𝜙1

¬(� − 11 = 0),mode = Acc ⊢ 𝜙0

¬(� − 11 = 0) ⊢ mode = Acc → 𝜙0

¬(� − 11 = 0) ⊢ [Ac][drive] ¬ (� − 11 = 0)
M3

P1,M3

L8

L8

P1,M1

Q2

L8, L3

M1

Q2

L7, L3

L2, L1

= 0)=

11 = 0)=

Γ0 , Γ1, Γ2, �
 = 11 ⊢ � − 11 = 0=

Γ0 , Γ1, Γ2, ¬(� − 11 = 0) ⊢ ¬(� = 11)

Figure 4: The rest of proof.

The proof of the right branch (Π) goes on as shown in
Figure 2. Since there are no free variables in ∀𝑋

𝛼
(¬(V − 11 =

0) → [Ac∪Dc; drive]¬(V−11 = 0)), we replace each bound
variable V with a constant V when the rule (𝑄

2
) is applied.

Proving the sequent ¬(V − 11 = 0) ⊢ [Ac ∪ Dc][drive]¬(V −
11 = 0) is to prove both¬(V−11 = 0) ⊢ [Ac][drive]¬(V−11 =
0) and ¬(V − 11 = 0) ⊢ [Dc][drive]¬(V − 11 = 0) (denoted by
Π
1
in Figure 2).
The proof of the sequent ¬(V−11 = 0) ⊢ [Ac][drive]¬(V−

11 = 0) (Π
2
) is shown in Figure 3. For notional convenience,

the notions Γ
0
, Γ
1
, are Γ

2
are introduced as follows:

Γ
0

def
= V = 10, mode = Acc

Γ
1

def
= 𝑎


= −𝑎, mode = Dec

Γ
2

def
= 𝑠


= 𝑠 + VΔ𝑡, V = V + 𝑎Δ𝑡

𝜙
0

def
= [V = 10?; 𝑎 = −𝑎 ∧mode = Dec] [drive]

⋅ ¬ (V − 11 = 0)

𝜙
1

def
= [𝑎


= −𝑎 ∧mode = Dec] [drive]

⋅ ¬ (V − 11 = 0)

𝜙
2

def
= 𝑎


= −𝑎 ∧mode = Dec
→ [drive] ¬ (V − 11 = 0)

𝜙
3

def
= (V = V + 𝑎Δ𝑡) ∧ (𝑠 = 𝑠 + VΔ𝑡)

→ ¬(V = 11) .

(26)
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At the end of the proof in Figure 3, we obtain the sequent

Γ
0
, Γ
1
, Γ
2
, V = 11 ⊢ V − 11 = 0, (27)

where V denotes the initial velocity and V denotes the final
velocity after executing program [Ac ∪ Dc; drive]. Since
we have known that the initial velocity V does not equal 11
according to (25), the right side of (27) is false. Hence the left
side of (27) should be unsatisfiable tomake sequent (27) valid.
If we treat 𝑎, V, andΔ𝑡 as parameters of the train, then V−𝑎Δ𝑡−
11 = 0 is concluded from Γ

0
∧Γ
1
∧Γ
2
∧ V = 11 by eliminating

variables except 𝑎, V, Δ𝑡. If the assertion V − 𝑎Δ𝑡 − 11 = 0 is
not satisfied, sequent (27) will be valid. That means

V − 𝑎Δ𝑡 ̸= 11 (28)

implies ¬(V − 11 = 0) ⊢ [Ac][drive]¬(V − 11 = 0).
The proof of the sequent Π

1
is similar to Π

2
. In the same

way, we get the same assertion:

V − 𝑎Δ𝑡 ̸= 11 (29)

which implies ¬(V − 11 = 0) ⊢ [Dc][drive]¬(V − 11 =

0). Hence, the safety property on the train control system
specified by (17) is valid if the requirements specified by (25),
(28), and (29) are satisfied; that is,

V ̸= 11 ∧ (V − 𝑎Δ𝑡 ̸= 11) ⇒ [train] ¬ (V − 11 = 0) . (30)

7. Soundness and Incompleteness

7.1. Soundness. In this section, we prove that the 𝐴𝐷𝐿

calculus is sound; that is, verification with the 𝐴𝐷𝐿 calculus
always produces correct results.

Lemma 20. Given a formula 𝜙, two interpretations I, J,
assignments 𝜁, 𝜂, and states V,𝑤, ifI, 𝜁, V andJ, 𝜂,𝑤 agree on
all free variables of𝜙, thenI, 𝜁, V ⊨ 𝜙 if and only ifJ, 𝜂, 𝑤 ⊨ 𝜙.

Proof. This lemma can be proved by a simple induction
principle [28] on the structures of algebraic programs and
𝐴𝐷𝐿 formulas as in Section 4.2 using the semantics of
algebraic programs and 𝐴𝐷𝐿 formula satisfaction.

The soundness of the 𝐴𝐷𝐿 calculus is shown by the
following theorem, which says that all rules preserve the
validity of sequents.

Theorem 21. For all rules and rule schemata listed in (T1)–
(T5), if all premises of a rule are valid sequents which are true
in all states for all interpretations, then the conclusion is a valid
sequent.

Proof. We start by giving the proof of special rules for 𝐴𝐷𝐿
calculus such as (𝐴

4
), (𝑀
1
), (𝑀
2
), (𝑂
1
), and (𝐼

1
). The rest of

the rules are proved in an immediate way which can be easily
found in [15, 26, 28] and thus are skipped over here.

(i) Rule (𝐴
4
) is a sound rule for axioms. Let I be an

interpretation, 𝜁 an assignment, and V a state with
I, 𝜁, V ⊨ 𝜙∧Γ. Since the zero set of𝜙 in the antecedent

of the conclusion is a subset of the zero set of 𝜑 in
the succedent, that is, Zero(𝜙) ⊆ Zero(𝜑), we can
conclude that V ∈ Zero(𝜙) ⊆ Zero(𝜑). Then we
conclude that V ⊨ 𝜑 ∨ Δ by the definition of ⊨.
According to the semantics of sequents Γ, 𝜙 ⊢ 𝜑, Δ is
true for allI, 𝜁, V and can be applied as an axiom.

(ii) Rule (𝑄
4
) is sound. For any I, 𝜁, V with I, 𝜁, V ⊨

𝜙[𝑥 → 𝑋], we choose 𝜁(𝑋) as thewitness of∃𝑥𝜙 such
that the value of𝑋 in 𝜁 is assigned to the bound vari-
able 𝑥 in ∃𝑥𝜙. ThenI, 𝜁, V ⊨ ∃𝑥𝜙 can be concluded.
The proof of (𝑄

1
) is trivial since the premise and the

conclusion contain the common formula ∀𝑥𝜙.
(iii) The soundness proof of (𝑄

3
) is shown as follows.

Assume that there are I, V such that for some
𝜁 the formula 𝜙[𝑥 → 𝑓(𝑋

1
, . . . , 𝑋

𝑛
)] is true;

that is, I, 𝜁, V ⊨ 𝜙[𝑥 → 𝑓(𝑋
1
, . . . , 𝑋

𝑛
)]. We can

conclude that I, 𝜁, V ⊨ ∃𝑥𝜙 by choosing the value
𝜁(𝑓(𝑋

1
, . . . , 𝑋

𝑛
)) of 𝑓(𝑋

1
, . . . , 𝑋

𝑛
) as the witness of

∃𝑥𝜙. The soundness proof of (𝑄
2
) is dual.

(iv) (𝑀
1
) is sound. Assume that there are I, V such that

for all assignments 𝜁 the formula Ψ implies 𝜙; that is,
I, 𝜁, V ⊨ ∀𝑋

Ψ
(Ψ → 𝜙). Since all bound variables in

the modality [Ψ] are denoted by𝑋
Ψ
, we can conclude

that I, 𝜁, 𝑤 ⊨ 𝜙 for all 𝑤 with (V, 𝑤) ∈ 𝛾(Ψ) by the
definition of semantics of [⋅] and Lemma 20. Then
I, 𝜁, V ⊨ [Ψ]𝜙 is concluded.

(v) (𝑀
2
) is sound. Assume that there are I, V such that

for some assignment 𝜁 the formulaΨ∧𝜙 is true; that is,
I, 𝜁, V ⊨ ∃𝑋

Ψ
(Ψ ∧ 𝜙). We can conclude that (V, 𝑤) ∈

𝛾(Ψ) with 𝑤 = V[𝑋
Ψ
→ 𝜁(𝑋

Ψ
)] by the definition of

𝛾(Ψ). Then I, 𝜁, 𝑤 ⊨ 𝜙 is concluded by Lemma 20.
Hence we can conclude thatI, 𝜁, V ⊨ ⟨Ψ⟩𝜙.

(vi) (𝑂
1
) is sound. Since the zero set of atomic formulas

𝜙
1
, . . . , 𝜙

𝑛
is empty, there does not exist a state V

such that V ⊨ Γ ∧ 𝜙
1
∧ ⋅ ⋅ ⋅ ∧ 𝜙

𝑛
by the satisfaction of

formulas. So we can conclude that the antecedent is
unsatisfiable and is equivalent to False.

(vii) Rule schema (𝐼
1
) is sound. For any I, 𝜁, V with

I, 𝜁, V ⊨ 𝜙 ∧ ∀𝑋
𝛼
(𝜙 → [𝛼]𝜙), we conclude that

I, 𝜁, 𝑤 ⊨ 𝜙 for all states 𝑤 with (V, 𝑤) ∈ 𝛾(𝛼
∗

) by
Lemma 20. Hence we can further conclude that
I, 𝜁, V ⊨ [𝛼∗]𝜙 by the semantics of [𝛼∗].

7.2. Incompleteness. The following theorem shows the inher-
ent incompleteness of 𝐴𝐷𝐿 calculus.

Theorem 22. The 𝐴𝐷𝐿 calculus is inherently incomplete.

Proof. This theorem is proved by showing that the Peano
arithmetic producing natural numbers is definable in 𝐴𝐷𝐿.
Natural numbers are definable in modalities using iterations:

Nat (𝑛) ≡ ⟨𝑥 = 0; (𝑥 = 𝑥 + 1)
∗

⟩𝑥 = 𝑛. (31)

Hence the incompleteness theorem of Gödel [29] can be
applied in 𝐴𝐷𝐿 calculus. Hence we immediately conclude
that the 𝐴𝐷𝐿 calculus is incomplete.
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8. Conclusions and Future Work

In this paper, we present a deductive approach for reasoning
about algebraic transition system.This approachmodels alge-
braic transition systems as algebraic programs of𝐴𝐷𝐿, which
is obtained by allowing algebraic assertions in dynamic logic.
The properties of algebraic transition systems are formalized
as𝐴𝐷𝐿 formulas with our method.We explain the semantics
of algebraic programs in 𝐴𝐷𝐿 as transition relations of
algebraic transition systems and define the satisfaction of
𝐴𝐷𝐿 formulas zero sets of polynomials. A proof system for
𝐴𝐷𝐿, called𝐴𝐷𝐿 calculus, is constructed for reasoning about
algebraic transition systems. The 𝐴𝐷𝐿 calculus is proved to
be sound and is illustrated by the verification of the safety
property of the train control system.

Our approach combines mathematical procedures on
polynomial ideal theory with the deductive verification by
customizing special rules for handling algebraic programs.
The introduction of mathematical procedures enhances the
reasoning power of our proof system. However proofs of
properties related to iterations and quantifiersmay be tedious
and ineffective in complex cases. Future work includes
a closer investigation for effective rules of iterations and
quantifiers, for example, the invariant method [4, 30–32]
and quantifiers elimination [33–35]. On the other hand,
there are properties which cannot be formalized as the 𝐴𝐷𝐿
formulas such as properties with inequalities, since 𝐴𝐷𝐿
formulas are defined with algebraic assertions which actually
are polynomial equations. In addition to the future work,
more general 𝐴𝐷𝐿 formulas should include inequalities and
more complex structures, such as differential equations for
specifying hybrid systems.
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