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This paper presents a two-stage recursive least squares (TSRLS) algorithm for the electric parameter estimation of the induction
machine (IM) at standstill. The basic idea of this novel algorithm is to decouple an identifying system into two subsystems by using
decomposition technique and identify the parameters of each subsystem, respectively.The TSRLS is an effective implementation of
the recursive least squares (RLS). Compared with the conventional (RLS) algorithm, the TSRLS reduces the number of arithmetic
operations. Experimental results verify the effectiveness of the proposed TSRLS algorithm for parameter estimation of IMs.

1. Introduction

Induction machines (IMs) are widely used in various indus-
trial applications thanks to their particular attractions of sim-
ple structure and high reliability [1]. But high-performance
control of IM is a persistent and challenging issue with
which many researchers are concerned. Among the research
results, field-oriented control (FOC) is proved to be a well-
established control scheme to implement AC drives for IM
that can realize high dynamic performance and satisfy rigor-
ous requirements for industrial applications [2, 3]. However,
good knowledge of electric parameters is a precondition for
the field-oriented controlled IM [4].

Traditional methods to obtain the IM electric parameters
known as locked-rotor and no-load tests have problems of
insufficient accuracy to apply in high-performance drive and
limited experimental conditions [5]. Therefore, a variety of
new IM parameter estimation techniques have emerged in
recent years. According to the operating conditions of the
IM while performing the parameter estimation, they can
be classified into “online” and “offline” estimations [6, 7].
Although online estimation can be adaptive for the variation
of parameters, the fraught global stability and the con-
siderable computational burden deteriorate its applications.

By contrast, offline estimation is a simpler choice and can act
as an indispensable guarantee for the start-up of the drive.
Moreover, the result values from offline estimation can be a
good initialization for performing an online estimation [6].

In [5, 6], “self-commissioning” is introduced which indi-
cates a present trend of performing an offline estimation at
standstill without any extra hardware andmaking the control
system operate automatically after the drive installation. Such
offline estimation methods have been discussed in many
literatures. The authors in [6] designed a parallel adaptive
observer with excellent noise rejection, which is used to give
a recursive estimate of the magnetic flux against magnetic
saturation and incorrect estimation of the magnetic parame-
ters. In [7], a method based on three frequency-domain tests
is adopted, with a phase-sensitive detection technique used
for noise immunity and measurement accuracy. In [8], the
authors present a current injection identificationmethod that
utilizes the general frequency characteristics of the rotor bar
to track the parameters by injecting two exciting currents
with different frequencies and employing closed-loop current
control, despite leaving the problem of inductance satura-
tion unsolved. Furthermore, the authors of [9] propose an
automatic procedure for the complete identification of the
inverse-Γ equivalent circuit for inductionmotors at standstill,
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which takes into account both the magnetic nonlinearity
and compensation of the inverter nonideality. Its step-by-
step approach makes use of the voltage inverter as a precise
voltage probe and avoids any direct voltage measurement.
The offline self-commissioning procedure for the automatic
IMparameter estimation in [10] also consists of a step-by-step
approach with several different test signals in sequence and
is capable of mapping both inverter and motor parameters
nonlinearities. And in [5], the RLS algorithm is applied to
estimate IM parameters based on continuous-time model at
standstill, and specifically, a vector constructing method is
used to cancel the normally indispensable analog or digital
differentiators.

Among the self-commissioning offline estimation meth-
ods, the recursive least squares (RLS) algorithm is a promi-
nent and widespread-used method that has advantages of
high identifying accuracy and compatibility for both online
and offline estimations [5, 11–15]. The RLS-based algorithms
described in [5, 11–15] have good performance, but the appli-
cability of performing these algorithms in real-time is gen-
erally limited by the complex mathematical operations; only
high-performance microcontroller can qualify for this work.

To reduce the computational complexity of the RLS, this
paper presents a two-stage recursive least squares (TSRLS)
algorithm for electric parameter estimation of the induction
machine at standstill.The basic idea is to decompose an iden-
tifying IM model into two parallel subsystems and identify
each subsystem, respectively. The proposed algorithm is an
effective implementation of recursive least squares algorithm.
Compared to the conventional RLS, the TSRLS can reduce
the computational burden. To facilitate the understanding,
the complete equations of this algorithm are presented and
compared to a straight implementation of the conventional
RLS equations.

The paper is organized as follows. In Section 2, the RLS
estimation model of the IM at standstill is introduced. In
Section 3, according to the discrete RLS estimation model of
the IM, the TSRLS algorithm for electric parameter estima-
tion of the IM at standstill is developed by the decomposition
approach. For comparison, the conventional RLS estimation
algorithm is given in Section 4. In Section 5, experimental
results are discussed. Finally, a conclusionwraps up the paper.

2. Induction Machine Model at Standstill

2.1. The Dynamic Model of the IM. As elaborated in [15], the
dynamic mathematical model of an IM in the stationary (𝛼𝛽)
reference frame is as follows:
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Assuming that the IM is at standstill, the machine is
controlled to produce zero electromagnetic torque with 𝜔

𝑟
=

0. The electromagnetic torque expression in (1) shows that if
only one phase of the equivalent machine model is excited by
the stator voltage, then the produced electromagnetic torque
is null. Since the 𝛼-axis and 𝛽-axis components of the stator
voltage have the same expressing form, the following relation
can be derived from (1) using only 𝛼-axis components and
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Performing Laplace transform to (2), we have
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Substituting (3) into (4), the following input-output relation
can be acquired in the Laplace domain:

𝐻(𝑠) =
𝑖
𝑠𝛼

𝑢
𝑠𝛼

=
𝑏
1
𝑠 + 𝑏
0

𝑠2 + 𝑎
1
𝑠 + 𝑎
0

, (5)

where

𝑏
1
=

1

𝜎𝐿
𝑠

,

𝑏
0
=

1

𝜎𝐿
𝑠
𝑇
𝑟

,



Mathematical Problems in Engineering 3

𝑎
1
=

𝑅
𝑠

𝜎𝐿
𝑠

+
1

𝜎𝑇
𝑟

,

𝑎
0
=

𝑅
𝑠

𝜎𝐿
𝑠
𝑇
𝑟

.

(6)

2.2. The RLS Estimation Model. In order to use the RLS
method, (5) should be rewritten into a linear regression
equation as follows:
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The three components of the linear regression equation (7)
can be expressed based on the above equations as
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Note that themeasured signal vector in (14) is of only first-
order instead of second-order because a second-order filter
Γ(𝑠) is used in advance.

Discretion of the RLS estimation model is required for its
digital implementation, so (7) is turned into discrete form as
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Supposing that 𝜃 is the estimated value of 𝜃, the following
parameters of the IM can be retrieved from (6) and (13):
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Figure 1: Schematic of the implementation of the IM parameter
estimation at standstill.
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The schematic of the implementation of the IMparameter
estimation is shown in Figure 1. The reference 𝛼-axis com-
ponent of the stator current 𝐼

𝑠𝛼

∗ consists of two sinusoidal
signals with distinct frequencies. The reference 𝛽-axis com-
ponent of the stator voltage𝑈

𝑠𝛽

∗ is set to zero.Therefore, there
will be no electromagnetic torque generated by the IM.

3. Two-Stage Recursive Least
Squares Algorithm

The basic idea of the TSRLS algorithm is to decouple the
system into two subsystems (i.e., decouple the parameter
vector and the measured signal vector into two subvectors,
resp.) and then identify the parameters of each subsystem
utilizing the RLS estimation. This algorithm can effectively
save computational cost compared to the conventional RLS.
Considering the noise and parameter errors, the discrete
linear regression equation of the system is described as
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where𝑤(𝑘) is a zero-mean white noise sequence with covari-
ance matrix 𝑄 = 𝜎
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two fictitious subsystems:

𝑦
1
(𝑘) = 𝜑

𝑎

𝑇

(𝑘) 𝜃
𝑎
+ 𝑤 (𝑘) ,

𝑦
2
(𝑘) = 𝜑

𝑏

𝑇

(𝑘) 𝜃
𝑏
+ 𝑤 (𝑘) .

(23)

These two subsystems contain the parameter vectors 𝜃
𝑎

and 𝜃
𝑏
that need to be identified. Consider the data from 𝑘 = 1

to 𝑘 = 𝑁 (𝑁 ≫ 4) and define the stacked output vectors
𝑌(𝑁),𝑌

1
(𝑁), and𝑌

2
(𝑁), the stackedmeasured signal vectors

Φ
𝑎
(𝑁), Φ

𝑏
(𝑁), and the stacked white noise vector𝑊(𝑁) as

𝑌 (𝑁) =

[
[
[
[
[
[

[

𝑦 (1)

𝑦 (2)

.

.

.

𝑦 (𝑁)

]
]
]
]
]
]

]

∈ R
𝑁

,

𝑊 (𝑁) =

[
[
[
[
[
[

[

𝑤 (1)

𝑤 (2)

.

.

.

𝑤 (𝑁)

]
]
]
]
]
]

]

∈ R
𝑁

,

Φ
𝑎
(𝑁) =

[
[
[
[
[
[
[

[

𝜑
𝑎

𝑇

(1)

𝜑
𝑎

𝑇

(2)

.

.

.

𝜑
𝑎

𝑇

(𝑁)

]
]
]
]
]
]
]

]

∈ R
𝑁×2

,
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Φ
𝑏
(𝑁) =

[
[
[
[
[
[
[

[

𝜑
𝑏

𝑇

(1)

𝜑
𝑏

𝑇

(2)

.

.

.

𝜑
𝑏

𝑇

(𝑁)

]
]
]
]
]
]
]

]

∈ R
𝑁×2

,

𝑌
1
(𝑁) =

[
[
[
[
[
[

[

𝑦
1
(1)

𝑦
1
(2)

.

.

.

𝑦
1
(𝑁)

]
]
]
]
]
]

]

∈ R
𝑁

,

𝑌
2
(𝑁) =

[
[
[
[
[
[

[

𝑦
2
(1)

𝑦
2
(2)

.

.

.

𝑦
2
(𝑁)

]
]
]
]
]
]

]

∈ R
𝑁

.

(24)

Then, we can obtain the following equations by using (22):

𝑌
1
(𝑁) = 𝑌 (𝑁) − Φ

𝑏
(𝑁) 𝜃
𝑏
, (25)

𝑌
2
(𝑁) = 𝑌 (𝑁) − Φ

𝑎
(𝑁) 𝜃
𝑎
. (26)

From (23) we have

𝑌
1
(𝑁) = Φ

𝑎
(𝑁) 𝜃
𝑎
+𝑊(𝑁) ,

𝑌
2
(𝑁) = Φ

𝑏
(𝑁) 𝜃
𝑏
+𝑊(𝑁) .

(27)

Define two quadratic criterion functions:

𝐽
1
(𝜃
𝑎
) =

󵄩󵄩󵄩󵄩𝑌1 (𝑁) − Φ𝑎 (𝑁) 𝜃𝑎
󵄩󵄩󵄩󵄩

2

,

𝐽
2
(𝜃
𝑏
) =

󵄩󵄩󵄩󵄩𝑌2 (𝑁) − Φ𝑏 (𝑁) 𝜃𝑏
󵄩󵄩󵄩󵄩

2

.

(28)

For these two optimization problems, let the partial
derivatives of 𝐽

1
(𝜃
𝑎
) and 𝐽

2
(𝜃
𝑏
) with respect to 𝜃

𝑎
and 𝜃

𝑏
be

zero, respectively; namely,

𝜕𝐽
1
(𝜃
𝑎
)

𝜕𝜃
𝑎

= −2Φ
𝑎

𝑇

(𝑁) [𝑌
1
(𝑁) − Φ

𝑎
(𝑁) 𝜃
𝑎
]

= −2Φ
𝑎

𝑇

(𝑁) [𝑌 (𝑁) − Φ
𝑏
(𝑁) 𝜃
𝑏
− Φ
𝑎
(𝑁) 𝜃
𝑎
]

= 0,

𝜕𝐽
2
(𝜃
𝑏
)

𝜕𝜃
𝑏

= −2Φ
𝑏

𝑇

(𝑁) [𝑌
2
(𝑁) − Φ

𝑏
(𝑁) 𝜃
𝑏
]

= −2Φ
𝑏

𝑇

(𝑁) [𝑌 (𝑁) − Φ
𝑎
(𝑁) 𝜃
𝑎
− Φ
𝑏
(𝑁) 𝜃
𝑏
]

= 0.

(29)

Thus, we have

Φ
𝑎

𝑇

(𝑁)Φ
𝑎
(𝑁) 𝜃
𝑎
(𝑁)

= Φ
𝑎

𝑇

(𝑁) [𝑌 (𝑁) − Φ
𝑏
(𝑁) 𝜃
𝑏
] ,

Φ
𝑏

𝑇

(𝑁)Φ
𝑏
(𝑁) 𝜃
𝑏
(𝑁)

= Φ
𝑏

𝑇

(𝑁) [𝑌 (𝑁) − Φ
𝑎
(𝑁) 𝜃
𝑎
] .

(30)

The matrices [Φ
𝑎

𝑇

(𝑁)Φ
𝑎
(𝑁)] and [Φ

𝑏

𝑇

(𝑁)Φ
𝑏
(𝑁)] are

nonsingular, because the measured signal vectors 𝜑
𝑎
(𝑡) and

𝜑
𝑏
(𝑡) are persistently exciting in the estimation system. From

the above two equations, we have the following least squares
estimations of 𝜃

𝑎
and 𝜃
𝑏
at iteration𝑁:

𝜃
𝑎
(𝑁) = [Φ

𝑎

𝑇

(𝑁)Φ
𝑎
(𝑁)]
−1

Φ
𝑎

𝑇

(𝑁)

⋅ [𝑌 (𝑁) − Φ
𝑏
(𝑁) 𝜃
𝑏
] ,

(31)

𝜃
𝑏
(𝑁) = [Φ

𝑏

𝑇

(𝑁)Φ
𝑏
(𝑁)]
−1

Φ
𝑏

𝑇

(𝑁)

⋅ [𝑌 (𝑁) − Φ
𝑎
(𝑁) 𝜃
𝑎
] .

(32)

To avoid computing the matrix inversion and reduce
the computational complexity, we define two covariance
matrices:

𝑃
𝑎
(𝑁) = [Φ

𝑎

𝑇

(𝑁)Φ
𝑎
(𝑁)]
−1

, (33)

𝑃
𝑏
(𝑁) = [Φ

𝑏

𝑇

(𝑁)Φ
𝑏
(𝑁)]
−1

. (34)

It follows that

𝑃
−1

𝑎
(𝑁 + 1) = 𝑃

−1

𝑎
(𝑁) + 𝜑

𝑎
(𝑁 + 1) 𝜑

𝑎

𝑇

(𝑁 + 1) , (35)

𝑃
−1

𝑏
(𝑁 + 1) = 𝑃

−1

𝑏
(𝑁) + 𝜑

𝑏
(𝑁 + 1) 𝜑

𝑏

𝑇

(𝑁 + 1) . (36)

In terms of (31), (33), (35), and the definitions of 𝑌(𝑁),
Φ
𝑎
(𝑁), and Φ

𝑏
(𝑁), we get

𝜃
𝑎
(𝑁 + 1) = 𝑃

𝑎
(𝑁 + 1)Φ

𝑎

𝑇

(𝑁 + 1) [𝑌 (𝑁 + 1)

− Φ
𝑏
(𝑁 + 1) 𝜃

𝑏
] = 𝑃
𝑎
(𝑁 + 1)

⋅ {Φ
𝑎

𝑇

(𝑁) [𝑌 (𝑁) − Φ
𝑏
(𝑁) 𝜃
𝑏
]

+ 𝜑
𝑎
(𝑁 + 1) [𝑦 (𝑁 + 1) − 𝜑

𝑏

𝑇

(𝑁 + 1) 𝜃
𝑏
]}

= 𝑃
𝑎
(𝑁 + 1)

⋅ {𝑃
−1

𝑎
(𝑁) 𝑃
𝑎
(𝑁)Φ

𝑎

𝑇

(𝑁) [𝑌 (𝑁) − Φ
𝑏
(𝑁) 𝜃
𝑏
]

+ 𝜑
𝑎
(𝑁 + 1) [𝑦 (𝑁 + 1) − 𝜑

𝑏

𝑇

(𝑁 + 1) 𝜃
𝑏
]}
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= 𝑃
𝑎
(𝑁 + 1) [𝑃

−1

𝑎
(𝑁 + 1)

− 𝜑
𝑎
(𝑁 + 1) 𝜑

𝑎

𝑇

(𝑁 + 1)] 𝜃
𝑎
(𝑁) + 𝑃

𝑎
(𝑁 + 1)

⋅ 𝜑
𝑎
(𝑁 + 1) [𝑦 (𝑁 + 1) − 𝜑

𝑏

𝑇

(𝑁 + 1) 𝜃
𝑏
]

= 𝜃
𝑎
(𝑁) + 𝑃

𝑎
(𝑁 + 1) 𝜑

𝑎
(𝑁 + 1) [𝑦 (𝑁 + 1)

− 𝜑
𝑏

𝑇

(𝑁 + 1) 𝜃
𝑏
− 𝜑
𝑎

𝑇

(𝑁 + 1) 𝜃
𝑎
(𝑁)] .

(37)

Analogously, the following relation is obtained from (32),
(34), and (36):

𝜃
𝑏
(𝑁 + 1) = 𝜃

𝑏
(𝑁) + 𝑃

𝑏
(𝑁 + 1) 𝜑

𝑏
(𝑁 + 1)

⋅ [𝑦 (𝑁 + 1)

− 𝜑
𝑎

𝑇

(𝑁 + 1) 𝜃
𝑎
− 𝜑
𝑏

𝑇

(𝑁 + 1) 𝜃
𝑏
(𝑁)] .

(38)

Applying the matrix inversion formula

[𝐴 + 𝐵𝐶]
−1

= 𝐴
−1

− 𝐴
−1

𝐵 [𝐼 + 𝐶𝐴
−1

𝐵]
−1

𝐶𝐴
−1 (39)

to (33) and (34) yields

𝑃
𝑎
(𝑁 + 1)

= 𝑃
𝑎
(𝑁) −

𝑃
𝑎
(𝑁) 𝜑

𝑎
(𝑁 + 1) 𝜑

𝑎

𝑇

(𝑁 + 1) 𝑃
𝑎
(𝑁)

1 + 𝜑
𝑎

𝑇
(𝑁 + 1) 𝑃

𝑎
(𝑁) 𝜑

𝑎
(𝑁 + 1)

,

(40)

𝑃
𝑏
(𝑁 + 1)

= 𝑃
𝑏
(𝑁) −

𝑃
𝑏
(𝑁) 𝜑

𝑏
(𝑁 + 1) 𝜑

𝑏

𝑇

(𝑁 + 1) 𝑃
𝑏
(𝑁)

1 + 𝜑
𝑏

𝑇
(𝑁 + 1) 𝑃

𝑏
(𝑁) 𝜑

𝑏
(𝑁 + 1)

.

(41)

Substituting (40) and (41) into the right side of (37) and
(38), the following recursive least squares algorithms are
obtained:

𝜃
𝑎
(𝑁 + 1) = 𝜃

𝑎
(𝑁) + 𝐺

𝑎
(𝑁 + 1)

⋅ [𝑦 (𝑁 + 1) − 𝜑
𝑏
(𝑁 + 1) 𝜃

𝑏
− 𝜑
𝑎
(𝑁 + 1) 𝜃

𝑎
(𝑁)] ,

(42)

𝐺
𝑎
(𝑁 + 1) = 𝑃

𝑎
(𝑁) 𝜑

𝑎

𝑇

(𝑁 + 1)

⋅ (1 + 𝜑
𝑎
(𝑁 + 1) 𝑃

𝑎
(𝑁) 𝜑

𝑎

𝑇

(𝑁 + 1))
−1

,

(43)

𝑃
𝑎
(𝑁 + 1) = 𝑃

𝑎
(𝑁) − 𝐺

𝑎
(𝑁 + 1) 𝜑

𝑎
(𝑁 + 1) 𝑃

𝑎
(𝑁)

𝑃
𝑎
(0) = 𝜎

2

𝐼,

(44)

𝜃
𝑏
(𝑁 + 1) = 𝜃

𝑏
(𝑁) + 𝐺

𝑏
(𝑁 + 1)

⋅ [𝑦 (𝑁 + 1) − 𝜑
𝑎
(𝑁 + 1) 𝜃

𝑎
− 𝜑
𝑏
(𝑁 + 1) 𝜃

𝑏
(𝑁)] ,

(45)

𝐺
𝑏
(𝑁 + 1) = 𝑃

𝑏
(𝑁) 𝜑

𝑏

𝑇

(𝑁 + 1)

⋅ (1 + 𝜑
𝑏
(𝑁 + 1) 𝑃

𝑏
(𝑁) 𝜑

𝑏

𝑇

(𝑁 + 1))
−1

,

(46)

𝑃
𝑏
(𝑁 + 1) = 𝑃

𝑏
(𝑁) − 𝐺

𝑏
(𝑁 + 1) 𝜑

𝑏
(𝑁 + 1) 𝑃

𝑏
(𝑁)

𝑃
𝑏
(0) = 𝜎

2

𝐼.

(47)

However, due to the unknown parameter vectors 𝜃
𝑏
and

𝜃
𝑎
in the right sides of (42) and (45), it is difficult to compute

their estimations 𝜃
𝑎
and 𝜃

𝑏
. The solution is to replace the

unknown 𝜃
𝑏
and 𝜃

𝑎
with their preceding estimations 𝜃

𝑏
(𝑁)

and 𝜃
𝑎
(𝑁), respectively; then (42) and (45) can be written as

𝜃
𝑎
(𝑁 + 1) = 𝜃

𝑎
(𝑁) + 𝐺

𝑎
(𝑁 + 1) [𝑦 (𝑁 + 1)

− 𝜑
𝑏
(𝑁 + 1) 𝜃

𝑏
(𝑁) − 𝜑

𝑎
(𝑁 + 1) 𝜃

𝑎
(𝑁)] ,

𝜃
𝑏
(𝑁 + 1) = 𝜃

𝑏
(𝑁) + 𝐺

𝑏
(𝑁 + 1) [𝑦 (𝑁 + 1)

− 𝜑
𝑎
(𝑁 + 1) 𝜃

𝑎
(𝑁) − 𝜑

𝑏
(𝑁 + 1) 𝜃

𝑏
(𝑁)] .

(48)

Based on the above analysis, the TSRLS algorithm can be
organized by the next two parts [16, 17]. The first part of the
TSRLS for parametric vector 𝜃

𝑎
estimation is

𝜃
𝑎
(𝑁 + 1) = 𝜃

𝑎
(𝑁) + 𝐺

𝑎
(𝑁 + 1) [𝑦 (𝑁 + 1)

− 𝜑
𝑏
(𝑁 + 1) 𝜃

𝑏
(𝑁) − 𝜑

𝑎
(𝑁 + 1) 𝜃

𝑎
(𝑁)]

= 𝜃
𝑎
(𝑁) + 𝐺

𝑎
(𝑁 + 1) [𝑦 (𝑁 + 1)

− 𝜑 (𝑁 + 1) 𝜃 (𝑁)] 𝜃
𝑎
(0) = 0,

(49)

𝐺
𝑎
(𝑁 + 1) = 𝑃

𝑎
(𝑁) 𝜑

𝑎

𝑇

(𝑁 + 1) (1

+ 𝜑
𝑎
(𝑁 + 1) 𝑃

𝑎
(𝑁) 𝜑

𝑎

𝑇

(𝑁 + 1))
−1

,

(50)

𝑃
𝑎
(𝑁 + 1) = 𝑃

𝑎
(𝑁) − 𝐺

𝑎
(𝑁 + 1) 𝜑

𝑎
(𝑁 + 1) 𝑃

𝑎
(𝑁)

𝑃
𝑎
(0) = 𝜎

2

𝐼,

(51)

𝜑
𝑎
(𝑁 + 1) = [𝑑

1
(𝑁 + 1) 𝑑

2
(𝑁 + 1)]

𝑇

. (52)

The second part for estimating the parametric vector 𝜃
𝑏
is

𝜃
𝑏
(𝑁 + 1) = 𝜃

𝑏
(𝑁) + 𝐺

𝑏
(𝑁 + 1) [𝑦 (𝑁 + 1)

− 𝜑
𝑎
(𝑁 + 1) 𝜃

𝑎
(𝑁) − 𝜑

𝑏
(𝑁 + 1) 𝜃

𝑏
(𝑁)]

= 𝜃
𝑏
(𝑁) + 𝐺

𝑏
(𝑁 + 1) [𝑦 (𝑁 + 1)

− 𝜑 (𝑁 + 1) 𝜃 (𝑁)] 𝜃
𝑏
(0) = 0,

(53)
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𝐺
𝑏
(𝑁 + 1) = 𝑃

𝑏
(𝑁) 𝜑

𝑏

𝑇

(𝑁 + 1) (1

+ 𝜑
𝑏
(𝑁 + 1) 𝑃

𝑏
(𝑁) 𝜑

𝑏

𝑇

(𝑁 + 1))
−1

,

(54)

𝑃
𝑏
(𝑁 + 1) = 𝑃

𝑏
(𝑁) − 𝐺

𝑏
(𝑁 + 1) 𝜑

𝑏
(𝑁 + 1) 𝑃

𝑏
(𝑁)

𝑃
𝑏
(0) = 𝜎

2

𝐼,

(55)

𝜑
𝑏
(𝑁 + 1) = [𝑑

3
(𝑁 + 1) 𝑑

4
(𝑁 + 1)]

𝑇

, (56)

where𝐺
𝑎
(𝑁+1) and𝐺

𝑏
(𝑁+1) are two gain vectors and𝑃

𝑎
(𝑁)

and 𝑃
𝑏
(𝑁) are two covariance matrices.

The steps involved in the TSRLS algorithm in (49)–(56)
to estimate the electric parameters of the IM are listed below.

(1) Set the initial values 𝑃
𝑎
(0) = 𝜎

2

𝐼, 𝑃
𝑏
(0) = 𝜎

2

𝐼, 𝜃
𝑎
(0) =

0, 𝜃
𝑏
(0) = 0, 𝑢

𝑠𝛼
(0) = 0, 𝑖

𝑠𝛼
(0) = 0, 𝜎2 = 9 × 10

6.

(2) Collect the input/output data𝑢
𝑠𝛼
(𝑁+1) and 𝑖

𝑠𝛼
(𝑁+1),

from 𝜑
𝑎
(𝑁 + 1) by (52) and 𝜑

𝑏
(𝑁 + 1) by (56).

(3) Compute𝐺
𝑎
(𝑁+1) by (50), 𝑃

𝑎
(𝑁+1) by (51),𝐺

𝑏
(𝑁+

1) by (54), and 𝑃
𝑏
(𝑁 + 1) by (55).

(4) Update the parameter estimations 𝜃
𝑎
(𝑁 + 1) and

𝜃
𝑏
(𝑁 + 1) by (49) and (53), respectively.

(5) Compute the electric parameter estimations of the IM
by (16).

(6) Increase 𝑁 by 1 and go to step (2), and continue the
recursive calculation.

The flowchart of computing the electric parameter estima-
tions 𝑅̂

𝑠
, 𝑅̂
𝑟
, 𝐿̂
𝑠
, 𝐿̂
𝑟
, and 𝐿̂

𝑚
is shown in Figure 2.

4. Conventional Recursive Least
Squares Algorithm

To compare with the proposed TSRLS algorithm, the con-
ventional RLS algorithm for parameter estimation of the IM
is introduced in this section briefly. Treating 𝜑(𝑘) as the
measured signal vector and 𝜃 as the parametric vector, 𝑦(𝑘)
is chosen as the prediction vector; minimizing the criterion
function

𝐽 (𝜃) =

𝑁

∑

𝑘=1

[𝑦 (𝑘) − 𝜑
𝑇

(𝑘) 𝜃]
2

(57)

leads to the following conventional recursive least squares
algorithm for estimating vector 𝜃:

𝜃 (𝑁 + 1) = 𝜃 (𝑁) + 𝐺 (𝑁 + 1)

⋅ [𝑦 (𝑁 + 1) − 𝜑 (𝑁 + 1) 𝜃 (𝑁)] 𝜃 (0) = 0,

𝐺 (𝑁 + 1) = 𝑃 (𝑁) 𝜑
𝑇

(𝑁 + 1)

⋅ (1 + 𝜑 (𝑁 + 1) 𝑃 (𝑁) 𝜑
𝑇

(𝑁 + 1))
−1

,

Start

Initial: N = 0

Collect input/output data and i

from 𝜑𝛼 and 𝜑b

Compute G𝛼 , Gb , P𝛼 , Pb

Update the estimates 𝜃̂𝛼 and 𝜃̂b

Obtain the electric parameter estimations

N = N+ 1

R̂s, R̂r, L̂s, L̂r, L̂m

us𝛼 s𝛼

Figure 2: Flowchart for computing the electric parameter estima-
tions using the TSRLS.

𝑃 (𝑁 + 1) = 𝑃 (𝑁) − 𝐺 (𝑁 + 1) 𝜑 (𝑁 + 1) 𝑃 (𝑁)

𝑃 (0) = 𝜎
2

𝐼,

𝜑 (𝑁 + 1)

= [𝑑
1
(𝑁 + 1) 𝑑

2
(𝑁 + 1) 𝑑

3
(𝑁 + 1) 𝑑

4
(𝑁 + 1)]

𝑇

,

(58)

where 𝐺(𝑁 + 1) and 𝑃(𝑁) are the gain vectors and the
covariance matrices, respectively.

5. Experimental Results

The experiments of this paper aim at making a comparison
between the TSRLS and the RLS and verifying the validity
and feasibility of the TSRLS parameter estimation algorithm
for the IM. The schematic of the proposed TSRLS parameter
estimation method is shown in Figure 1. The overall exper-
imental setup is shown in Figure 3 and the “real” electric
parameters of the IM, which are calculated from traditional
no-load and locked-rotor test, are listed in Table 1.The exper-
imental hardware consists of an Expert3 control system from
Myway Company and a three-phase, two-pole 1.5 kW IM.
The IM is mechanically coupled to a magnetic clutch (MC),
which provides rated load torque, even at very low speed.The
main processor in Expert3 control system is a floating point
processor TMS320C6713 with amax clock speed of 225MHz.
All the algorithms including the TSRLS, the RLS algo-
rithm, and some transformationmodules are implemented in
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Computer
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TX
RX

𝜔r

Udc ISU ISV

380V

(b)

Figure 3: Complete drive system. (a) Picture of the experimental setup. (b) Functional block diagram of the experimental setup.

Table 1: Real electric parameters of the IM and the nameplate data.

Parameter Value
Nominal power 1.5 kW
Nominal voltage 380V
Nominal current 3.8 A
Nominal speed 1450 rpm
Pole pairs 2
Rotor resistance 𝑅

𝑟
2.5Ω

Stator resistance 𝑅
𝑠

3.6Ω
Stator inductance 𝐿

𝑠
0.301H

Rotor inductance 𝐿
𝑟

0.302H
Mutual inductance 𝐿

𝑚
0.273H

TMS320C6713 with a 100 𝜇s sampling time.The data acquisi-
tion of the parameter estimations, measured variable values,
and their visualization are realized on the cockpit provided by
PEView9 software. Insulated Gate Bipolar Transistor (IGBT)
modules are driven by the PWM signal with a switching
frequency of 10 kHz and a dead time of 2 𝜇s. The stator phase
currents are measured via two hall-effect current sensors.
The rotor angle and speed of the IM are measured from an
incremental encoder with 2048 pulses per revolution.

(A) Experiment 1: Single-Phase AC Test. In this experiment,
the reference 𝛽-axis component of the stator voltage 𝑈

𝑠𝛽

∗ is
set to zero, whereas the 𝛼-axis component 𝑈

𝑠𝛼

∗ is generated
from the current proportional (𝑃) regulator. As stated in
[12], the injected waveform to induction machines must have
at least two different harmonics for retrieving all the four

Table 2: Estimated electric parameters of the IM and the real ones.

Parameter Real Estimated
Stator resistance 𝑅

𝑠
(Ω) 3.6 3.22

Rotor resistance 𝑅
𝑟
(Ω) 2.5 2.13

Rotor inductance 𝐿
𝑟
(H) 0.302 0.272

Stator inductance 𝐿
𝑠
(H) 0.301 0.26

Mutual inductance 𝐿
𝑚
(H) 0.273 0.23

Rotor time constant 𝑇
𝑟

0.121 0.128

𝜃 (𝜃
1
, 𝜃
2
, 𝜃
3
, 𝜃
4
) parameters, so the reference stator current

𝐼
𝑠𝛼

∗ is chosen as 𝐼
𝑠𝛼

∗

= 1.5 + 1 sin(157𝑡) + 1.5 sin(62.8𝑡) of
which alternating component is composed of two sinusoids
with different frequency at 10Hz and 25Hz, respectively. The
parameters of the first-order filter in measured signal vector
𝜑(𝑘) are ℎ

0
= 40 and ℎ

1
= 90, and the 𝑃 regulator has

the gain of 𝑘
𝑝
= 40. The experimental results are shown

in Figure 4. The actual stator current 𝐼
𝑠𝛼

is slightly smaller
than the reference stator current 𝐼

𝑠𝛼

∗ in Figure 4(a) because
only 𝑃 regulator is used in the current control loop. The
oscillograms of 𝐼

𝑠𝛼
, 𝑈
𝑠𝛼

∗, and (𝑑
1
, 𝑑
2
, 𝑑
3
, 𝑑
4
) are illustrated

in Figures 4(b), 4(c), and 4(d) and they are good enough to
ensure the accuracy of the TSRLS and RLS algorithm.

(B) Experiment 2: Parameter Estimation. The parametric
vector 𝜃 and the electric parameters of the IM estimated
by the RLS and TSRLS are shown in Figures 5 and 6. Note
that the difference in parameter estimations between the two
estimation algorithms at steady state is tiny. The estimated
electric parameters of the IM obtained by the TSRLS com-
pared to the real ones are listed in Table 2.The errors between
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Figure 4: Experimental waveforms.

real and estimated values are about 13%, in which the highest
15.7% appears in the mutual inductance. The convergence
time of these estimated electric parameters is less than
0.2 s. The accuracy of the estimated electric parameters is
sufficient for self-commissioning. The proposed method can
also provide a good initialization of the machine parameters
for online estimation techniques.

(C) Experiment 3: Online Verification for the Parameter
Estimation. To further verify the accuracy of the proposed
parameter estimation algorithm, the estimated parameter
values are applied to the flux-oriented controlled IM. The
estimated electric parameters of the IM are employed for the
design of PI controllers and the extended Kalman filter (EKF)
observer for rotor flux and speed estimation under speed-
sensorless condition. The performance of the FOC system of

IMdepends on the accuracy of rotor flux observation and slip
frequency calculation [18]. In this experiment, the reference
rotor flux is set to 0.5Wb. The machine is accelerated from
0 rpm to 600 rpm at 0.4 s and the load torque is set to 2 Nm at
all times. The experimental results are gathered in Figure 7.
Excellent speed-tracking performance is shown in Figures
7(a) and 7(b) and the error between the real and estimated
values is less than 5 rpm at steady state (the error is more than
30 rpm at standstill because the EKF observer is not fit for
low speed identification [19]). The two current components
𝐼
𝑠𝑑

and 𝐼
𝑠𝑞

are shown in Figure 7(c). In Figure 7(d), the
estimated rotor flux stabilizes at 0.5Wb, in accordance with
the reference value. From this experiment, it is suggested
that the estimated electric parameters of the IM are accurate
enough for ensuring successful start-up and performing a
practical field-oriented control.
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Figure 5: Experimental results for parametric vector 𝜃 estimation (RLS and TSRLS).

(D) Numerical Complexity of the Algorithm. To illustrate
the advantage of the proposed algorithm, the numbers of
arithmetic operations required during each sample period
by conventional RLS algorithm and the TSRLS are shown
in Table 3, respectively. The dimensions of the state vectors
𝜑(𝑡), 𝜑

𝑎
(𝑡), and 𝜑

𝑏
(𝑡) are, respectively, 𝑛, 𝑛

𝑎
, and 𝑛

𝑏
. To

perform conventional RLS algorithm in a sample period,
78 additions and 84 multiplications are calculated totally,
whereas the number of additions and multiplications of

the TSRLS algorithm in a sample period is 48 and 52, realizing
a 38.5% decrease of the number of additions and a 38.5%
decrease of the number of multiplications.

6. Conclusion

The real-time digital implementation of the conventional
recursive least squares algorithm for electric parameter esti-
mation of the IM at standstill requires a high-performance
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Figure 6: Experimental results for electric parameter estimation (RLS and TSRLS).

Table 3: RLS and TSRLS arithmetic operation requirements.

Algorithm Number of
multiplications Number of additions

RLS
(𝑛 = 4) 4𝑛

2

+ 5𝑛 (84) 4𝑛
2

+ 3𝑛 + 2 (78)

TSRLS
(𝑛
𝑎
= 𝑛
𝑏
= 2) 4𝑛

𝑎

2

+ 4𝑛
𝑏

2

+ 5𝑛 (52) 4𝑛
𝑎

2

+ 4𝑛
𝑏

2

+ 3𝑛 + 4 (48)

signal processor to perform complex mathematical calcula-
tions and manipulate a large amount of data. So this paper

proposes the novel two-stage recursive least squares algo-
rithm. The TSRLS can reduce computational cost effectively
compared to the conventional RLS. The experimental results
show that the TSRLS has good identifying performance. The
TSRLS algorithm provides a new idea to solve computational
complexity and allows using cheaper DSP in practical appli-
cations.
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Figure 7: Experimental results of online verification.
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