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We establish the stabilities and blowup results for the nonisentropic Euler-Poisson equations by the energy method. By analysing
the second inertia, we show that the classical solutions of the system with attractive forces blow up in finite time in some special
dimensions when the energy is negative. Moreover, we obtain the stabilities results for the system in the cases of attractive and
repulsive forces.

1. Introduction

The compressible nonisentropic Euler (𝛿 = 0) or Euler-
Poisson (𝛿 = ±1) system for fluids can be written as

𝜌
𝑡
+ ∇ ⋅ (𝜌𝑢) = 0,

(𝜌𝑢)
𝑡
+ ∇ ⋅ (𝜌𝑢 ⊗ 𝑢) + ∇𝑃 + 𝛽𝜌𝑢 = −𝛿𝜌∇Φ,

𝑆
𝑡
+ 𝑢 ⋅ ∇𝑆 = 0,

ΔΦ (𝑡, 𝑥) = 𝛼 (𝑁) 𝜌,

𝑃 = 𝐾𝜌
𝛾
𝑒
𝑆
,

(1)

where 𝛽 ≥ 0 is the frictional damping constant and 𝛼(𝑁) is a
constant related to the unit ball in R𝑁. 𝛼(1) = 2, 𝛼(2) = 2𝜋
and

𝛼 (𝑁) = 𝑁 (𝑁 − 2)𝑉 (𝑁) , (2)

where 𝑉(𝑁) is the volume of the unit ball in R𝑁. As usual,
𝜌 = 𝜌(𝑡, 𝑥) ≥ 0, 𝑢 = 𝑢(𝑡, 𝑥) ∈ R𝑁, and 𝑆(𝑡, 𝑥) are the density,
the velocity, and the entropy, respectively. 𝑃 is the pressure
function, for which the constants𝐾 ≥ 0 and 𝛾 ≥ 1.

When 𝛿 = 1, the system is self-attractive.The system (1) is
the Newtonian description of gaseous stars [1].When 𝛿 = −1,
the system comprises the Euler-Poisson equationswith repul-
sive forces and can be used as a semiconductor model [2, 3].

When 𝛿 = 0, the system comprises the compressible Euler
equations and can be applied as a classical model in fluid
mechanics [3]. For more classical and recent results in these
systems, readers can refer to [1, 4–10].

It is well known that the solution for the Poisson equation
(1)
4
can be written as

Φ (𝑡, 𝑥) = 𝛼 (𝑁)∫
R𝑁
𝐺 (𝑥 − 𝑦) 𝜌 (𝑡, 𝑦) 𝑑𝑦, (3)

where 𝐺 is the Green’s function for the Poisson equation in
the𝑁-dimensional spaces defined by

𝐺 (𝑥) :=

{{{{{

{{{{{

{

|𝑥| , 𝑁 = 1;

log |𝑥| , 𝑁 = 2;

−1

|𝑥|
𝑁−2
, 𝑁 ≥ 3.

(4)

Notation. In the following discussion, classical solutions
(𝜌, 𝑢, 𝑆) are 𝐶1 solutions with compact support Ω = Ω(𝑡) for
each fixed time 𝑡. We also denote the total mass by𝑀, where

𝑀 = ∫
Ω

𝜌 𝑑𝑥 = ∫
Ω(0)

𝜌
0
𝑑𝑥, (5)

where 𝜌
0
= 𝜌
0
(𝑥) := 𝜌(0, 𝑥).

Lastly, we will denote

𝑅 (𝑡) = the diameter of Ω (𝑡) . (6)
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2. Lemmas

In this section, we establish some lemmas for the proof of the
main results. The following lemma will be used to derive the
energy functional for 𝛾 > 1; namely,

𝐸 (𝑡) = ∫
Ω

(
1

2
𝜌 |𝑢|
2
+

1

𝛾 − 1
𝑃)𝑑𝑥 +

𝛿

2
∫
Ω

𝜌Φ𝑑𝑥 (7)

is conserved in time if the system (1) is not damped.

Lemma 1. For the classical solution (𝜌, 𝑢, 𝑆) of system (1), we
have

∫
Ω

𝑃
𝑡
𝑑𝑥 = (𝛾 − 1)∫

Ω

𝑢 ⋅ ∇𝑃𝑑𝑥, (8)

where 𝑃 is defined by (1)5.

Proof. We have

𝑃
𝑡
= 𝐾 (𝜌

𝛾
𝑒
𝑆
𝑆
𝑡
+ 𝑒
𝑆
𝛾𝜌
𝛾−1
𝜌
𝑡
) by (1)

5

= 𝑃𝑆
𝑡
+ 𝐾𝑒
𝑆
𝛾𝜌
𝛾−1
[−∇ ⋅ (𝜌𝑢)] by (1)

5
and (1)

1

= 𝑃 (−𝑢 ⋅ ∇𝑆) + 𝐾𝑒
𝑆
𝛾𝜌
𝛾−1
[−∇ ⋅ (𝜌𝑢)] by (1)

3

= −𝑃(

𝑁

∑
𝑖=1

𝑢
𝑖
𝜕
𝑖
𝑆) − 𝐾𝛾𝑒

𝑆
𝜌
𝛾−1
[

𝑁

∑
𝑖=1

(𝜌𝜕
𝑖
𝑢
𝑖
+ 𝑢
𝑖
𝜕
𝑖
𝜌)]

= −𝛾𝑃

𝑁

∑
𝑖=1

𝜕
𝑖
𝑢
𝑖
−

𝑁

∑
𝑖=1

[𝑃𝜕
𝑖
𝑆 + 𝐾𝛾𝑒

𝑆
𝜌
𝛾−1
𝜕
𝑖
𝜌] 𝑢
𝑖

by (1)
5

= −𝛾𝑃

𝑁

∑
𝑖=1

𝜕
𝑖
𝑢
𝑖
−

𝑁

∑
𝑖=1

(𝜕
𝑖
𝑃) 𝑢
𝑖

= −𝛾𝑃∇ ⋅ 𝑢 − 𝑢 ⋅ ∇𝑃.

(9)

Note that, by DivergenceTheorem,

−∫
Ω

𝑃∇ ⋅ 𝑢 𝑑𝑥 = ∫
Ω

𝑢 ⋅ ∇𝑃𝑑𝑥. (10)

Thus,

∫
Ω

𝑃
𝑡
𝑑𝑥 = (𝛾 − 1) ∫

Ω

𝑢 ⋅ ∇𝑃𝑑𝑥. (11)

Next, the results of the following two lemmas will be used
in the derivations of the energy functionals for both 𝛾 > 1 and
𝛾 = 1. It will be shown that in Section 3 the energy functional
for 𝛾 = 1 is

𝐸 (𝑡) = ∫
Ω

(
1

2
𝜌 |𝑢|
2
+ 𝐾𝜌𝑒

𝑆
(ln 𝜌 − 1)) 𝑑𝑥 + 𝛿

2
∫
Ω

𝜌Φ𝑑𝑥

(12)

which is conversed in time if the system (1) is not damped.

Lemma 2. For the classical solution (𝜌, 𝑢, 𝑆) of system (1), we
have

∫
Ω

(
1

2
𝜌 |𝑢|
2
)
𝑡

𝑑𝑥 = −∫
Ω

𝑢 ⋅ ∇𝑃 − 𝛿∫
Ω

(∇Φ) ⋅ (𝜌𝑢) 𝑑𝑥

− 𝛽∫
Ω

𝜌 |𝑢|
2
𝑑𝑥,

(13)

where 𝑃 is defined by (1)5 and Φ is the solution of (1)4.

Proof. We have

(
1

2
𝜌 |𝑢|
2
)
𝑡

(14)

= (𝜌𝑢)
𝑡
⋅ 𝑢 −

1

2
𝜌
𝑡
|𝑢|
2
(by product rule) (15)

= − (𝛿𝜌∇Φ + ∇ ⋅ (𝜌𝑢 ⊗ 𝑢) + ∇𝑃 + 𝛽𝜌𝑢) ⋅ 𝑢

+
1

2
(∇ ⋅ (𝜌𝑢)) |𝑢|

2 by (1)
1
and (1)

2
.

(16)

One can check a detail proof of the following equality in the
Appendix:

∫
Ω

(
1

2
|𝑢|
2
∇ ⋅ (𝜌𝑢) − 𝑢 ⋅ [∇ ⋅ (𝜌𝑢 ⊗ 𝑢)]) 𝑑𝑥 = 0. (17)

Thus,

∫
Ω

(
1

2
𝜌 |𝑢|
2
)
𝑡

𝑑𝑥 = −∫
Ω

(𝛿𝜌∇Φ + ∇𝑃 + 𝛽𝜌𝑢) ⋅ 𝑢 𝑑𝑥 (18)

by (16) and (17).
Thus, the proof is complete.

Lemma 3. For the classical solution (𝜌, 𝑢, 𝑆) of system (1), we
have

∫
Ω

(∇Φ) ⋅ (𝜌𝑢) 𝑑𝑥 = ∫
Ω

Φ𝜌
𝑡
𝑑𝑥 =

1

2
∫
Ω

[𝜌Φ]
𝑡
𝑑𝑥, (19)

whereΦ is the solution of (1)4.

Proof. We have

∫
Ω

(∇Φ) ⋅ (𝜌𝑢) 𝑑𝑥

= −∫
Ω

Φ∇ ⋅ (𝜌𝑢) 𝑑𝑥 by Divergence Theorem

= ∫
Ω

Φ𝜌
𝑡
𝑑𝑥 by (1)

1
.

(20)

Thus, the first equality in (19) holds.
Next,

∫
Ω

Φ𝜌
𝑡
𝑑𝑥 =

1

𝛼 (𝑁)
∫
Ω

ΦΔΦ
𝑡
𝑑𝑥 by (1)

4

=
1

𝛼 (𝑁)
∫
Ω

ΔΦΦ
𝑡
𝑑𝑥 by Green’s Formula

= ∫
Ω

𝜌Φ
𝑡
𝑑𝑥 by (1)

4
.

(21)

Thus, the second equality in (19) holds.
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The lemma below is crucial to obtaining the energy
functional for 𝛾 = 1. Comparing the left hand sides of (8)
and (22), we note that the left hand side of (22) (given in the
next lemma), which contains the term ln 𝜌 − 1, is nontrivial
to be found.

Lemma 4. For the classical solution (𝜌, 𝑢, 𝑆) of system (1) with
𝛾 = 1, we have

d
d𝑡
∫
Ω

𝐾𝜌𝑒
𝑆
(ln 𝜌 − 1) 𝑑𝑥 = ∫

Ω

𝑢 ⋅ ∇𝑃𝑑𝑥, (22)

where 𝑃 is defined by (1)5.

Proof. Note that

[𝜌𝑒
𝑆
(ln 𝜌 − 1)]

𝑡

= 𝑒
𝑆
[𝜌 (ln 𝜌 − 1)]

𝑡
+ [𝜌 (ln 𝜌 − 1)] 𝑒𝑆𝑆

𝑡

= 𝑒
𝑆
[𝜌
𝑡
+ (ln 𝜌 − 1) 𝜌

𝑡
] + 𝑒
𝑆
𝜌 (ln 𝜌 − 1) 𝑆

𝑡

= 𝑒
𝑆
(ln 𝜌) 𝜌

𝑡
+ 𝑒
𝑆
𝜌 (ln 𝜌 − 1) 𝑆

𝑡

= −𝑒
𝑆
(ln 𝜌) (∇ ⋅ (𝜌𝑢)) − 𝑒𝑆𝜌 (ln 𝜌 − 1) (𝑢 ⋅ ∇𝑆)

by (1)
1
and (1)

3
.

(23)

Thus,
d
d𝑡
∫
Ω

𝐾𝜌𝑒
𝑆
(ln 𝜌 − 1) 𝑑𝑥

= −∫
Ω

𝐾𝑒
𝑆
(ln 𝜌) [∇ ⋅ (𝜌𝑢)] 𝑑𝑥

− ∫
Ω

𝐾𝑒
𝑆
𝜌 (ln 𝜌 − 1) (𝑢 ⋅ ∇𝑆) 𝑑𝑥

= ∫
Ω

(𝜌𝑢) ⋅ ∇ [𝐾𝑒
𝑆
(ln 𝜌)] 𝑑𝑥

− ∫
Ω

𝐾𝑒
𝑆
𝜌 (ln 𝜌 − 1) (𝑢 ⋅ ∇𝑆) 𝑑𝑥

by Divergence Theorem

= ∫
Ω

𝑢 ⋅ [𝐾𝜌∇ (𝑒
𝑆 ln 𝜌) − 𝐾𝑒𝑆𝜌 (ln 𝜌 − 1) ∇𝑆] 𝑑𝑥

= ∫
Ω

𝑢 ⋅ [𝐾𝑒
𝑆
∇𝜌 + 𝐾𝑒

𝑆
𝜌∇𝑆] 𝑑𝑥

= ∫
Ω

𝑢 ⋅ ∇𝑃𝑑𝑥 by (1)
5
.

(24)

The proof is complete.

3. Main Results

In this section, we find out the energy functionals for the
system (1) in the case of 𝛾 > 1 (Proposition 5) and
𝛾 = 1 (Proposition 6). Moreover, we establish the stabilities
results (Proposition 8) and a blowup result (Proposition 9)
for system (1).

Proposition 5. For the classical solution (𝜌, 𝑢, 𝑆) of system (1)
with 𝛾 > 1, let

𝐸 (𝑡) = ∫
Ω

(
1

2
𝜌 |𝑢|
2
+

1

𝛾 − 1
𝑃)𝑑𝑥 +

𝛿

2
∫
Ω

𝜌Φ𝑑𝑥. (25)

Then,

𝐸̇ (𝑡) = −𝛽∫
Ω

𝜌 |𝑢|
2
𝑑𝑥, (26)

where 𝐸̇(𝑡) is the devertive of 𝐸(𝑡) with respect to 𝑡.
Thus, 𝐸(𝑡) is a decreasing function and is conserved if the

system is not damped.

Proof. By Lemma 1,
1

𝛾 − 1
∫
Ω

𝑃
𝑡
𝑑𝑥 = ∫

Ω

𝑢 ⋅ ∇𝑃𝑑𝑥. (27)

By Lemma 2,

∫
Ω

(
1

2
𝜌 |𝑢|
2
)
𝑡

𝑑𝑥 = −∫
Ω

𝑢 ⋅ ∇𝑃 − 𝛿∫
Ω

(∇Φ) ⋅ (𝜌𝑢) 𝑑𝑥

− 𝛽∫
Ω

𝜌 |𝑢|
2
𝑑𝑥.

(28)

By Lemma 3,

∫
Ω

(∇Φ) ⋅ (𝜌𝑢) 𝑑𝑥 =
1

2
∫
Ω

[𝜌Φ]
𝑡
𝑑𝑥. (29)

Thus, the proof is complete.

Proposition 6. For the classical solution (𝜌, 𝑢, 𝑆) of system (1)
with 𝛾 = 1, let

𝐸 (𝑡) = ∫
Ω

(
1

2
𝜌 |𝑢|
2
+ 𝐾𝜌𝑒

𝑆
(ln 𝜌 − 1)) 𝑑𝑥 + 𝛿

2
∫
Ω

𝜌Φ𝑑𝑥.

(30)

Then,

𝐸̇ (𝑡) = −𝛽∫
Ω

𝜌 |𝑢|
2
𝑑𝑥, (31)

where 𝐸̇(𝑡) is the derivative of 𝐸(𝑡) with respect to 𝑡.
Thus, 𝐸(𝑡) is a decreasing function and is conserved if the

system is not damped.

Proof. By Lemma 2,

∫
Ω

(
1

2
𝜌 |𝑢|
2
)
𝑡

𝑑𝑥 = −∫
Ω

𝑢 ⋅ ∇𝑃 − 𝛿∫
Ω

(∇Φ) ⋅ (𝜌𝑢) 𝑑𝑥

− 𝛽∫
Ω

𝜌 |𝑢|
2
𝑑𝑥.

(32)

By Lemma 3,

∫
Ω

(∇Φ) ⋅ (𝜌𝑢) 𝑑𝑥 =
1

2
∫
Ω

[𝜌Φ]
𝑡
𝑑𝑥. (33)

By Lemma 4,

d
d𝑡
∫
Ω

𝐾𝜌𝑒
𝑆
(ln 𝜌 − 1) 𝑑𝑥 = ∫

Ω

𝑢 ⋅ ∇𝑃𝑑𝑥. (34)

Thus, the proof is complete.
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Proposition 7. Let

𝐻(𝑡) = ∫
Ω

𝜌 |𝑥|
2
𝑑𝑥. (35)

We have

𝐻̈ (𝑡) = −𝛽𝐻̇ (𝑡) + 2∫
Ω

(𝜌 |𝑢|
2
+ 2𝑃) 𝑑𝑥 − 2𝜋𝛿𝑀

2
,

for 𝑁 = 2,

𝐻̈ (𝑡) = −𝛽𝐻̇ (𝑡) + 2∫
Ω

(𝜌 |𝑢|
2
+ 𝑁𝑃)𝑑𝑥

+ (𝑁 − 2) 𝛿∫
Ω

𝜌Φ𝑑𝑥, for 𝑁 ≥ 3,

(36)

where 𝐻̇(𝑡) = (d/d𝑡)𝐻(𝑡), 𝐻̈(𝑡) = (d/d𝑡)𝐻̇(𝑡), (𝜌, 𝑢, 𝑆) is a
classical solution of system (1), and𝑀 is defined by (5).

Proof.

𝐻̇ (𝑡) = −∫
Ω

∇ ⋅ (𝜌𝑢) |𝑥|
2
𝑑𝑥 by (1)

1

= ∫
Ω

∇ |𝑥|
2
⋅ (𝜌𝑢) 𝑑𝑥 by Divergence Theorem

= ∫
Ω

2𝑥 ⋅ (𝜌𝑢) 𝑑𝑥,

𝐻̈ (𝑡) = 2∫
Ω

𝑥 ⋅ (−∇ ⋅ (𝜌𝑢 ⊗ 𝑢) − ∇𝑃 − 𝛿𝜌∇Φ − 𝛽𝜌𝑢) 𝑑𝑥

by (1)
2

= −𝛽𝐻̇ (𝑡) + 2∫
Ω

𝑥 ⋅ (−∇ ⋅ (𝜌𝑢 ⊗ 𝑢) − ∇𝑃 − 𝛿𝜌∇Φ) 𝑑𝑥.

(37)

We split the last term of the above equality into three parts.
Firstly,

− ∫
Ω

𝑥 ⋅ [∇ ⋅ (𝜌𝑢 ⊗ 𝑢)] 𝑑𝑥

= −

𝑁

∑
𝑗=1

∫
Ω

𝑥
𝑗

𝑁

∑
𝑖=1

𝜕
𝑖
(𝜌𝑢
𝑖
𝑢
𝑗
) 𝑑𝑥 by definitions

= ∫
Ω

𝜌 |𝑢|
2
𝑑𝑥 by integration by parts.

(38)

Secondly,

−∫
Ω

𝑥 ⋅ ∇𝑃𝑑𝑥 = ∫
Ω

𝑃∇ ⋅ 𝑥 𝑑𝑥 by Divergence Theorem

= ∫
Ω

𝑁𝑃𝑑𝑥.

(39)

Thirdly,

− 𝛿∫
Ω

𝜌𝑥 ⋅ ∇Φ𝑑𝑥

= −𝛿𝛼 (𝑁)∫
Ω

∫
Ω

𝜌 (𝑥) 𝜌 (𝑦) [∇
𝑥
𝐺 (𝑥 − 𝑦) ⋅ 𝑥] 𝑑𝑦 𝑑𝑥

by (3)

=: −𝛿𝛼 (𝑁) 𝐼,

(40)

where ∇
𝑥
is the gradient operator with respect to the spatial

variable 𝑥.
Note that

𝐼 = ∫
Ω

∫
Ω

𝜌 (𝑥) 𝜌 (𝑦) [∇
𝑥
𝐺 (𝑥 − 𝑦) ⋅ 𝑥] 𝑑𝑦 𝑑𝑥

= ∫
Ω

∫
Ω

𝜌 (𝑥) 𝜌 (𝑦) [∇
𝑥
𝐺 (𝑥 − 𝑦) ⋅ (𝑥 − 𝑦)] 𝑑𝑦 𝑑𝑥

+ ∫
Ω

∫
Ω

𝜌 (𝑥) 𝜌 (𝑦) [∇
𝑥
𝐺 (𝑥 − 𝑦) ⋅ 𝑦] 𝑑𝑦 𝑑𝑥.

(41)

For𝑁 = 2,

∇
𝑥
𝐺 (𝑥) = ∇

𝑥
log |𝑥| = 1

|𝑥|
2
𝑥. (42)

Thus,

𝐼 = ∫
Ω

∫
Ω

𝜌 (𝑥) 𝜌 (𝑦) 𝑑𝑦 𝑑𝑥 − 𝐼,

𝐼 =
1

2
∫
Ω

∫
Ω

𝜌 (𝑥) 𝜌 (𝑦) 𝑑𝑦 𝑑𝑥 =
𝑀2

2
.

(43)

The result for𝑁 = 2 is established.
For𝑁 ≥ 3,

∇
𝑥
𝐺 (𝑥) = −∇

𝑥

1

|𝑥|
𝑁−2

= (𝑁 − 2)
1

|𝑥|
𝑁
𝑥. (44)

Thus,

𝐼 = ∫
Ω

∫
Ω

𝜌 (𝑥) 𝜌 (𝑦) [∇
𝑥
𝐺 (𝑥 − 𝑦) ⋅ (𝑥 − 𝑦)] 𝑑𝑦 𝑑𝑥

+ ∫
Ω

∫
Ω

𝜌 (𝑥) 𝜌 (𝑦) [∇
𝑥
𝐺 (𝑥 − 𝑦) ⋅ 𝑦] 𝑑𝑦 𝑑𝑥

= −
(𝑁 − 2)

𝛼 (𝑁)
∫
Ω

𝜌Φ𝑑𝑥 − 𝐼,

𝐼 = −
𝑁 − 2

2𝛼 (𝑁)
∫
Ω

𝜌Φ𝑑𝑥.

(45)

The results for𝑁 ≥ 3 are also established.

Now, we are ready to present the stability results.

Proposition 8. Considering the classical solutions of system
(1), we have the following.
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Case 1. For 𝛿 = 1, 𝛽 = 0, 𝑁 = 3 or 4, 𝛾 ≥ 2(𝑁 − 1)/𝑁, and
𝐸(0) ≥ 0, we have

lim
𝑡→∞

inf 𝑅 (𝑡)
𝑡
≥ √

(𝑁 − 2) 𝐸 (0)

𝑀
. (46)

Case 2. For 𝛿 = −1, 𝛽 = 0,𝑁 ≥ 4, and 𝛾 ≥ (𝑁+2)/𝑁, we have

lim
𝑛→∞

inf 𝑅 (𝑡)
𝑡
≥ √

2𝐸 (0)

𝑀
. (47)

Case 3. For 𝛿 = −1, 𝛽 = 0,𝑁 = 2, and 𝛾 > 1, we have

lim
𝑛→∞

inf 𝑅 (𝑡)
𝑡
≥ √𝜋𝑀. (48)

Proof. First of all, by definitions (35), (6), and (5), we always
have

𝐻(𝑡) = ∫
Ω(𝑡)

𝜌 |𝑥|
2
𝑑𝑥 ≤ 𝑅

2
(𝑡)𝑀. (49)

Case 1. By Propositions 5 and 7, we have

𝐻̈ (𝑡) = 2∫
Ω

(𝜌 |𝑢|
2
+ 𝑁𝑃) 𝑑𝑥 + (𝑁 − 2)∫

Ω

𝜌Φ𝑑𝑥

= 2∫
Ω

𝜌 |𝑢|
2
𝑑𝑥 + 2𝑁∫

Ω

𝑃𝑑𝑥

+ (𝑁 − 2) [2𝐸 (𝑡) −
2

𝛾 − 1
∫
Ω

𝑃𝑑𝑥 − ∫
Ω

𝜌 |𝑢|
2
𝑑𝑥]

= [2 − (𝑁 − 2)] ∫
Ω

𝜌 |𝑢|
2
𝑑𝑥

+ [2𝑁 −
2 (𝑁 − 2)

𝛾 − 1
]∫
Ω

𝑃𝑑𝑥 + 2 (𝑁 − 2) 𝐸 (𝑡)

≥ 2 (𝑁 − 2) 𝐸 (𝑡)

= 2 (𝑁 − 2) 𝐸 (0) .

(50)

Thus,

𝐻(𝑡) ≥ (𝑁 − 2) 𝐸 (0) 𝑡
2
+ 𝐻̇ (0) 𝑡 + 𝐻 (0) . (51)

In view of inequality (49), we have

𝑅 (𝑡)

𝑡
≥ √

(𝑁 − 2) 𝐸 (0)

𝑀
+
𝐻̇ (0)

𝑀𝑡
+
𝐻 (0)

𝑀𝑡2
. (52)

Thus,

lim
𝑡→∞

inf 𝑅 (𝑡)
𝑡
≥ √

(𝑁 − 2) 𝐸 (0)

𝑀
. (53)

Case 2. By Propositions 5 and 7, we have

𝐻̈ (𝑡) = 2∫
Ω

(𝜌 |𝑢|
2
+ 𝑁𝑃) 𝑑𝑥 + (𝑁 − 2)∫

Ω

𝜌 (−Φ) 𝑑𝑥

= 2 [2𝐸 (𝑡) −
2

𝛾 − 1
∫
Ω

𝑃𝑑𝑥 − ∫
Ω

𝜌 (−Φ) 𝑑𝑥]

+ 2𝑁∫
Ω

𝑃𝑑𝑥 + (𝑁 − 2) ∫
Ω

𝜌 (−Φ) 𝑑𝑥

≥ 4𝐸 (𝑡)

= 4𝐸 (0) .

(54)

Note that −Φ is a positive function for𝑁 ≥ 3 by (3) and (4).
Thus,

𝐻(𝑡) ≥ 2𝐸 (0) 𝑡
2
+ 𝐻̇ (0) 𝑡 + 𝐻 (0) . (55)

It follows that

lim
𝑛→∞

inf 𝑅 (𝑡)
𝑡
≥ √

2𝐸 (0)

𝑀
. (56)

Case 3. By Proposition 7, we have

𝐻̈ (𝑡) = 2∫
Ω

(𝜌 |𝑢|
2
+ 2𝑃) 𝑑𝑥 + 2𝜋𝑀

2

≥ 2𝜋𝑀
2
.

(57)

It follows that

lim
𝑛→∞

inf 𝑅 (𝑡)
𝑡
≥ √𝜋𝑀. (58)

Finally, we can give the blowup result.

Proposition 9. If 𝛿 = 1, 𝑁 ≥ 4, 1 < 𝛾 ≤ 2(𝑁 − 1)/𝑁, and
𝐸(0) < 0, then the classical solutions of (1) blow up in finite
time.

Proof.

Case 1 (𝛽 = 0). As before, we have, from Propositions 5 and
7, that

𝐻̈ (𝑡) = (4 − 𝑁)∫
Ω

𝜌 |𝑢|
2
𝑑𝑥 + [2𝑁 −

2 (𝑁 − 2)

𝛾 − 1
]∫
Ω

𝑃𝑑𝑥

+ 2 (𝑁 − 2) 𝐸 (𝑡)

≤ 0 + 0 + 2 (𝑁 − 2) 𝐸 (𝑡)

= 2 (𝑁 − 2) 𝐸 (0) .

(59)

It follows that

𝐻(𝑡) ≤ (𝑁 − 2) 𝐸 (0) 𝑡
2
+ 𝐻̇ (0) 𝑡 + 𝐻 (0) . (60)
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Suppose the solutions exist globally; then for sufficient large
𝑡, we see that 𝐻(𝑡) is negative as the leading coefficient of
the right hand side of (60) is negative. However, 𝐻(𝑡) is
nonnegative by definition (35). This is a contradiction. As a
result, the solutions blow up in finite time.

Case 2 (𝛽 ̸= 0). Now (59) becomes

𝐻̈ (𝑡) + 𝛽𝐻̇ (𝑡) ≤ 2 (𝑁 − 2) 𝐸 (0) . (61)

It follows by multipying an integral factor 𝑒𝛽𝑡 on both sides
and taking integration that

𝐻(𝑡) ≤ 𝐴
1
+ 𝐴
2
𝑒
−𝛽𝑡
+
2 (𝑁 − 2) 𝐸 (0)

𝛽
𝑡 (62)

for some constants 𝐴
1
and 𝐴

2
. Note that this implies that

𝐻(𝑡) is negative for sufficient large 𝑡 as 𝛽 > 0 and (𝑁 −
2)𝐸(0) < 0. Therefore, the solutions blow up in finite
time.

Appendix

We here complement the proof of Lemma 2 by proving the
equality (17); namely,

∫
Ω

(
1

2
|𝑢|
2
∇ ⋅ (𝜌𝑢) − 𝑢 ⋅ [∇ ⋅ (𝜌𝑢 ⊗ 𝑢)]) 𝑑𝑥 = 0. (A.1)

Proof. Firstly, by divergence theorem,

∫
Ω

1

2
|𝑢|
2
∇ ⋅ (𝜌𝑢) 𝑑𝑥 = −

1

2
∫
Ω

(𝜌𝑢) ⋅ ∇ |𝑢|
2
𝑑𝑥. (A.2)

Secondly, by definitions of the operations,

𝑢 ⋅ [∇ ⋅ (𝜌𝑢 ⊗ 𝑢)] =

𝑁

∑
𝑗=1

𝑢
𝑗
(

𝑁

∑
𝑖=1

𝜕
𝑖
(𝜌𝑢
𝑖
𝑢
𝑗
))

=

𝑁

∑
𝑗=1

𝑢
𝑗
(

𝑁

∑
𝑖=1

(𝑢
𝑗
𝜕
𝑖
(𝜌𝑢
𝑖
) + 𝜌𝑢

𝑖
𝜕
𝑖
𝑢
𝑗
))

=

𝑁

∑
𝑗=1

𝑢
2

𝑗

𝑁

∑
𝑖=1

𝜕
𝑖
(𝜌𝑢
𝑖
) +

𝑁

∑
𝑗=1

𝑢
𝑗

𝑁

∑
𝑖=1

𝜌𝑢
𝑖
𝜕
𝑖
𝑢
𝑗

= |𝑢|
2
∇ ⋅ (𝜌𝑢) +

𝑁

∑
𝑖=1

𝜌𝑢
𝑖

𝑁

∑
𝑗=1

1

2
𝜕
𝑖
𝑢
2

𝑗

= |𝑢|
2
∇ ⋅ (𝜌𝑢) +

1

2

𝑁

∑
𝑖=1

𝜌𝑢
𝑖
𝜕
𝑖
|𝑢|
2

= |𝑢|
2
∇ ⋅ (𝜌𝑢) +

1

2
(𝜌𝑢) ⋅ ∇ |𝑢|

2
.

(A.3)

Thus,

∫
Ω

𝑢 ⋅ [∇ ⋅ (𝜌𝑢 ⊗ 𝑢)] 𝑑𝑥

= ∫
Ω

(|𝑢|
2
∇ ⋅ (𝜌𝑢) +

1

2
(𝜌𝑢) ⋅ ∇ |𝑢|

2
)𝑑𝑥

= ∫
Ω

1

2
|𝑢|
2
∇ ⋅ (𝜌𝑢) 𝑑𝑥. by (A.2) .

(A.4)

Thus, equality (A.1) is established.
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