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A biclustering problem consists of objects and an attribute vector for each object. Biclustering aims at finding a bicluster—a subset of
objects that exhibit similar behavior across a subset of attributes, or vice versa. Biclustering in matrices with binary entries (“0”/“1”)
can be simplified into the problem of finding submatrices with entries of “1.” In this paper, we consider a variant of the biclustering
problem: the 𝑘-submatrix partition of binary matrices problem. The input of the problem contains an 𝑛 × 𝑚 matrix with entries
(“0”/“1”) and a constant positive integer 𝑘. The 𝑘-submatrix partition of binary matrices problem is to find exactly 𝑘 submatrices
with entries of “1” such that these 𝑘 submatrices are pairwise row and column exclusive and each row (column) in thematrix occurs
in exactly one of the 𝑘 submatrices. We discuss the complexity of the 𝑘-submatrix partition of binary matrices problem and show
that the problem is NP-hard for any 𝑘 ≥ 3 by reduction from a biclustering problem in bipartite graphs.

1. Introduction

The problems considered in this paper are biclustering prob-
lems. Biclustering is an important optimization problem
with applications in many fields including bioinformatics
(especially in gene expression data analysis), identifying web
communities, network information security analysis, and
many more [1–3]. Biclustering is also known as block clus-
tering, coclustering, or two-way clustering. The earliest bi-
clustering algorithm that can be found in the literature is
the so-called direct clustering by Hartigan in the 1970s [4,
5]. Since then, many approaches to biclustering have been
proposed, such as the direct clustering algorithm [4], the
node-deletion algorithm [6], the FLOC algorithm [7], the
biclustering via spectral bipartite graph partitioning algo-
rithm [8], the biclustering via GIBBS sampling algorithm [9],
and the algorithm for finding an order-preserving submatrix
[10]. For more on biclustering, see [3, 11, 12].

The basic model for biclustering is as follows. Let a
dataset of 𝑚 objects and 𝑛 attributes be given as a matrix
𝐴 = [𝑎

𝑖𝑗
]
𝑚∗𝑛

, where the value of 𝑎
𝑖𝑗
is the value of the 𝑗th

attribute of the 𝑖th object; the simplest aim of biclustering is
to find a subset of rows (objects) that exhibit similar behavior
across a subset of columns (attributes), or vice versa. In
this case, the combination of the subset of objects and the
subset of attributes is called a bicluster. A bicluster forms a
contiguous rectangle after an appropriate reordering of rows
and columns; that is, a bicluster is a submatrix of 𝐴.

In some applications, the main goal of biclustering is
to simultaneously find many submatrices (biclusters) in
a matrix. Madeira and Oliveira discussed this issue and
summarized eight biclustering patterns [11]. Five of these
patterns are presented in Figure 1: (1) exclusive row and
column biclusters (Figure 1(a)), with each row (column)
occurring in exactly one bicluster; (2) exclusive row biclusters
(Figure 1(b)), with each rowoccurring in exactly one bicluster
and each column occurring in at least one bicluster; (3) exclu-
sive column biclusters (Figure 1(c)), with each column occur-
ring in exactly one bicluster and each row occurring in at
least one bicluster; (4) checkerboard structure (Figure 1(d)),
with each entry of the matrix occurring in exactly one
bicluster; and (5) arbitrarily positioned overlapping biclusters
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Figure 1: Biclustering patterns: (a) exclusive row and columnbiclusters, (b) exclusive rowbiclusters, (c) exclusive columnbiclusters, (d) check-
erboard structure, and (e) arbitrarily positioned overlapping biclusters.

(Figure 1(e)), with no limiting condition of rows (columns)
overlapping or entries overlapping.

In many applications, a biclustering problem consists of
a matrix that has entries of “1” or “0,” which is also called
a binary matrix. The goal of biclustering in binary matrices
is to find submatrices with entries of “1.” For example,
when applying biclustering to text mining, a dataset of 𝑚
documents and 𝑛 words is arranged in a binary matrix 𝐴 =
[𝑎
𝑖𝑗
]
𝑚∗𝑛

, where rows correspond to documents and columns
correspond to words. If an entry (𝑖, 𝑗) of thematrix is “1,” then
word 𝑗 is present in document 𝑖. If the entry is “0,” then the
word is not present. The question is whether we can find 𝑘
submatriceswith entries of “1” such that these submatrices are
pairwise row and column exclusive, and each row (column)
occurs in exactly one submatrix. Clearly, if the answer is
“yes,” then these documents can be partitioned into 𝑘 groups,
and documents in the same group have a good chance of
belonging to the same domain.

The text mining problem described above can be
abstracted as the 𝑘-submatrix partition of binary matrices
problem (𝑘-SPBM). Given an 𝑛 × 𝑚 binary matrix and a
constant positive integer 𝑘, 𝑘-SPBM is to find 𝑘 submatrices
with entries “1” such that these 𝑘 submatrices are pairwise row
and column exclusive and each row (column) of the matrix
occurs in exactly one of these submatrices. The bicluster
pattern of 𝑘-SPBM belongs to pattern (a) in Figure 1. To the
best of our knowledge, the hardness of 𝑘-SPBM remains an
open problem, for each 𝑘 ≥ 3.

We will show that 𝑘-SPBM is NP-complete by reduction
from the partition of a bipartite graph into 𝑘 bicliques
problem (𝑘-PBB) that is a variant of biclustering problems in
bipartite graphs; that is, an instance of 𝑘-PBB is a bipartite
graph. A bipartite graph is a graph whose vertex set can be
partitioned into two disjoint sets such that no two graph ver-
tices within the same set are adjacent. For a biclustering prob-
lem in bipartite graphs, the goal is to find bicliques according
to some scoring criterion. A biclique, which is also called a
complete bipartite graph, is a special type of bipartite graph
for which every pair of vertices in the two sets are adjacent.

In recent years, much study has focused on algorithms
and complexity of biclustering problems in bipartite graphs.
Peeters, Dawande et al., and Amit proved that the maxi-
mum edge biclique problem [13], the maximum edge weight
biclique problem [14], the bicluster graph editing problem
[15], the exact cardinality biclique problem [16], and the
minimum edge deletion biclique problem [16], among others,
are NP-complete.

When Heydari et al. studied the biclustering of an attack
graph problem in information security, they first proposed
the partition of a bipartite graph into bicliques problem
(PBB). Heydari et al. showed that PBB is NP-complete [17].
Furthermore, Bein et al. discussed the 𝑘-PBB problem, where
𝑘 is a constant positive integer. Here, 𝑘-PBB is a parameter-
ized version of PBB; it aims at partitioning the vertex set of
a bipartite graph into 𝑘 subsets such that each vertex subset
can induce a biclique. 𝑘-PBB defines a family of problems for
any 𝑘 ≥ 3. Bein et al. first proposed the 𝑘-PBB problem and
indicated that the question of whether 𝑘-PBB is NP-complete
for 𝑘 ≥ 3 remains open [18].

Contribution of this paper is that it focuses on the
complexity of several biclustering problems. The main result
shows that 3-PBB, 𝑘-PBB (𝑘 > 3), and 𝑘-SPBM (𝑘 ≥ 3) are all
NP-complete.

Organization of the paper is as follows: in Section 2, we
introduce the 𝑘-PBB and 𝑘-SPBM problems. In Section 3, we
first show that 3-PBB is NP-complete by reduction from a
variant of the monotone one-in-three 3SAT problem (MO3),
which is a well-known NP-complete problem [19, 20], and,
then, we show that 𝑘-PBB (𝑘 > 3) is NP-complete by
reduction from 3-PBB. In Section 4, we prove that 𝑘-SPBM
(𝑘 ≥ 3) is NP-complete by reduction from 𝑘-PBB. Finally, in
Section 6, we present our conclusions.

2. Preliminaries

In this paper, we study two problems: the 𝑘-SPBM problem
and the 𝑘-PBB problem. Next, we present the formal descrip-
tions of 𝑘-SPBM and 𝑘-PBB.

(1)The 𝑘-submatrix partition of binary matrices problem
(𝑘-SPBM).

The input to the 𝑘-SPBM problem is typically a binary
matrix. Let 𝐴 = [𝑎

𝑖𝑗
]
𝑚∗𝑛

be an 𝑛 × 𝑚 binary matrix. Denote
the set of row vectors and the set of column vectors by 𝑅 =
{1, . . . , 𝑚} and 𝐶 = {1, . . . , 𝑛}, respectively. Suppose 𝑅

1
⊑ 𝑅

and 𝐶
1
⊑ 𝐶; then the public entries of row vectors {𝛼

𝑖
| 𝑎
𝑖𝑗
∈

𝛼
𝑖
, 𝑖 ∈ 𝑅

1
, 𝑗 ∈ 𝐶} and column vectors {𝛽

𝑗
| 𝑎
𝑖𝑗
∈ 𝛽
𝑗
, 𝑖 ∈

𝑅, 𝑗 ∈ 𝐶
1
} form a matrix [𝑎

𝑖𝑗
: 𝑖 ∈ 𝑅

1
, 𝑗 ∈ 𝐶

1
] that is called

a submatrix of 𝐴 induced by 𝑅
1
and 𝐶

1
, which is denoted

by 𝐴[𝑅
1
, 𝐶
1
]. Clearly, 𝐴 = 𝐴[𝑅, 𝐶]. Let 𝐴

1
= 𝐴[𝑅

1
, 𝐶
1
],

𝐴
2
= 𝐴[𝑅

2
, 𝐶
2
] be submatrices of 𝐴. If 𝑅

1
∩ 𝑅
2
= 0, then 𝐴

1

and 𝐴
2
are row exclusive; if 𝐶

1
∩ 𝐶
2
= 0, then 𝐴

1
and 𝐴

2
are

column exclusive. 𝑘-SPBM is to find exactly 𝑘 exclusive row
and column submatriceswith entries of “1” in a binarymatrix.
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The 𝑘-SPBM problem can be stated formally as follows.

Instance: an 𝑚 × 𝑛 binary matrix 𝐴, and a constant
positive integer 𝑘.
Question: are there 𝑘 submatrices with entries “1”
𝐴[𝑅
1
, 𝐶
1
], . . . , 𝐴[𝑅

𝑘
, 𝐶
𝑘
] of 𝐴 such that the 𝑘 subma-

trices are pairwise row and column exclusive, and𝑅
1
∪

⋅ ⋅ ⋅ ∪ 𝑅
𝑘
= {1, 2, . . . , 𝑚}, 𝐶

1
∪ ⋅ ⋅ ⋅ ∪ 𝐶

𝑘
= {1, 2, . . . , 𝑛}?

𝐴[𝑅
1
, 𝐶
1
], . . . , 𝐴[𝑅

𝑘
, 𝐶
𝑘
] are called a 𝑘-submatrix parti-

tion of 𝐴.
(2) The partition of a bipartite graph into 𝑘-bicliques

problem (𝑘-PBB).
An instance of 𝑘-PBB is a bipartite graph. All bipartite

graphs in the paper are simple bipartite graphs, that is, do not
contain parallel edges or self-loops. Let 𝐺 = (𝑋, 𝑌, 𝐸) be a
bipartite graph. For convenience in writing, vertices in𝑋 are
called left-vertices, and vertices in 𝑌 are called right-vertices
of𝐺. In other words,𝑋 and𝑌 are the left-vertex set and right-
vertex set of 𝐺, respectively. We denote by 𝐸(𝐺) and 𝑉(𝐺) its
set of edges and its set of vertices, respectively. For a vertex
V ∈ 𝑉(𝐺), we denote the set of neighbors of vertex V by Γ(V). A
biclique in𝐺 corresponds to a subset of𝑉(𝐺), say, 𝐶 = 𝐴∪𝐵,
such that 𝐴 ⊆ 𝑋, 𝐵 ⊆ 𝑌, and for each 𝑢 ∈ 𝐴, V ∈ 𝐵 the edge
(𝑢, V) ∈ 𝐸.

We say that there exists a 𝑘-biclique partition for a
bipartite graph 𝐺 if 𝑉(𝐺) can be partitioned into exactly 𝑘
disjoint sets 𝑉

1
, 𝑉
2
, . . . , 𝑉

𝑘
such that, for 1 ≤ 𝑖 ≤ 𝑘, the

subgraph induced by 𝑉
𝑖
is a biclique. The 𝑘-PBB problem

is the problem of determining whether there is a 𝑘-biclique
partition for a bipartite graph𝐺, where 𝑘 is a constant positive
integer.The 𝑘-PBB problem can be stated formally as follows.

Instance: a finite bipartite graph 𝐺 = (𝑋, 𝑌, 𝐸) and a
constant positive integer 𝑘 ≤ min{|𝑋|, |𝑌|}.
Question: does there exist a 𝑘-biclique partition for𝐺?

3. The Complexity of 𝑘-PBB

In this section, we first show the NP-completeness of 𝑘-PBB
when 𝑘 = 3 (i.e., 3-PBB). We then show that 𝑘-PBB is NP-
complete for any constant integer 𝑘 (𝑘 > 3) by reduction from
3-PBB. Finally, we conclude that 𝑘-PBB is NP-complete for
any constant integer 𝑘 (𝑘 ≥ 3).

3.1. The NP-Completeness of 3-PBB. In order to prove the
hardness of 3-PBB, we first introduce the monotone one-in-
three 3SAT problem (MO3), which was proved to be NP-
complete by Schaefer in 1978 [19]. Then, we show that a
variant of MO3 is NP-complete. Finally, we prove that 3-PBB
is NP-complete by reduction fromMO3.

Belowwe define the terms we will use in describingMO3.
Let 𝑈 = {𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
} be a set of Boolean variables. If

𝑢
𝑖
∈ 𝑈, then 𝑢

𝑖
and 𝑢

𝑖
are literals over 𝑈. 𝑢

𝑖
is called a

positive variable, and 𝑢
𝑖
is called a negative variable. A truth

assignment for 𝑈 is a function 𝑡 :→ 𝑇, 𝐹. For 𝑢
𝑖
∈ 𝑈, if

𝑡(𝑢
𝑖
) = 𝐹, we say that 𝑢

𝑖
is “TRUE” under 𝑡; if 𝑓(𝑢

𝑖
) = 𝐹,

we say that 𝑢
𝑖
is “FALSE.”

TheMO3 problem, which is a variant of 3SAT, is specified
as follows.

Instance: set𝑈 = {𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
} of Boolean variables,

collection 𝐶 = {𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑚
} of clauses over𝑈, where

each clause 𝑐 ∈ 𝐶 has |𝑐| = 3, and 𝑐 does not contain
a negative variable; that is, 𝑐

𝑖
= {𝑢
𝑥
, 𝑢
𝑦
, 𝑢
𝑧
}, 𝑢
𝑥
, 𝑢
𝑦
,

𝑢
𝑧
∈ 𝑈, 1 ≤ 𝑖 ≤ 𝑚.

Question: is there a truth assignment for 𝑈 such that
each clause in 𝐶 has exactly one true literal?

In the MO3 problem, a clause over 𝑈 contains only
positive variables. For an MO3 instance, a clause over 𝑈 is
satisfied by a truth assignment if and only if it has exactly
one “TRUE” literal (and thus exactly two “FALSE” literals)
under the assignment. A collection 𝐶 of clauses over 𝑈 is
satisfiable if and only if there exists a truth assignment for 𝑈
that simultaneously satisfies all the clauses in 𝐶.

For example, we are given Boolean variable set 𝑈 =

{𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
}, and a clause collection 𝐶 = {𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
},

where 𝑐
1
= {𝑢
1
, 𝑢
2
, 𝑢
3
}, 𝑐
2
= {𝑢
2
, 𝑢
3
, 𝑢
4
} and 𝑐

3
= {𝑢
1
, 𝑢
2
, 𝑢
4
}.

Let [𝑎(𝑢
1
), 𝑎(𝑢
2
), 𝑎(𝑢
3
), 𝑎(𝑢
4
)] = [𝐹, 𝑇, 𝐹, 𝐹]; then, the values

of the variables in 𝑐
1
, 𝑐
2
, and 𝑐

3
are (𝐹, 𝑇, 𝐹), (𝑇, 𝐹, 𝐹),

and (𝐹, 𝑇, 𝐹), which means that 𝑐
1
, 𝑐
2
, and 𝑐

3
are satisfied.

Therefore, 𝑎(⋅) is a feasible solution of this MO3 instance.
For an arbitrary MO3 instance, we can assume that the

three literals in each clause are not from the same variable,
in which case the clause is not satisfied. Moreover, a clause
in which two literals are from the same variable can be
transformed into six clauses with pairwise different variables.
The approach is as follows.

Suppose that 𝑐
𝑘
= {𝑢

𝑖
, 𝑢
𝑖
, 𝑢
𝑗
} is a clause of an MO3

instance. We create four new variables 𝑢
𝑖1
, 𝑢
𝑖2
, 𝑢
𝑖3
, and 𝑢

𝑖4
.

Then, we construct six clauses over 𝑢
𝑖
, 𝑢
𝑗
, and the four new

variables: 𝑐
𝑘
[1] = {𝑢

𝑖1
, 𝑢
𝑖2
, 𝑢
𝑖3
}, 𝑐
𝑘
[2] = {𝑢

𝑖1
, 𝑢
𝑖2
, 𝑢
𝑖
}, 𝑐
𝑘
[3] =

{𝑢
𝑖2
, 𝑢
𝑖3
, 𝑢
𝑖
}, 𝑐
𝑘
[4] = {𝑢

𝑖1
, 𝑢
𝑖2
, 𝑢
𝑖4
}, 𝑐
𝑘
[5] = {𝑢

𝑖2
, 𝑢
𝑖3
, 𝑢
𝑖4
}, and

𝑐
𝑘
[6] = {𝑢

𝑖
, 𝑢
𝑖4
, 𝑢
𝑗
}. Clearly, the clause {𝑢

𝑖
, 𝑢
𝑖
, 𝑢
𝑗
} is satisfied

if and only if 𝑎(𝑢
𝑖
) = 𝐹 and 𝑎(𝑢

𝑗
) = 𝑇. Moreover, a truth

assignment for the variables 𝑢
𝑖1
, 𝑢
𝑖2
, 𝑢
𝑖3
, and 𝑢

𝑖4
exists such

that each clause in 𝑐
𝑘
[1∼6] is satisfied if and only if 𝑎(𝑢

𝑖
) = 𝐹

and 𝑎(𝑢
𝑗
) = 𝑇.

Thus, an arbitrary MO3 instance can be transformed into
an MO3 instance with pairwise different variables in each
clause in polynomial time. Therefore, we haveTheorem 1.

Theorem 1. MO3 with pairwise different variables in each
clause is NP-complete.

Throughout this paper, we assume without loss of gener-
ality that, for an instance of MO3, the three literals of each
clause are pairwise different. Next, we discuss the complexity
of 3-PBB; that is, we proveTheorem 2.

Theorem 2. 3-PBB is NP-complete.

The proof of Theorem 2 consists of two steps. First, let a
variable set 𝑈 = {𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
} and a clause collection 𝐶 =

{𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑚
} be an instance ofMO3; thenwe build a bipartite

graph 𝐵 = (𝑋[𝐵], 𝑌[𝐵], 𝐸[𝐵]) that is an instance of 3-PBB.
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Second, we show that 𝐶 is satisfied if and only if there exists
a 3-biclique partition for 𝐵.

3.1.1. The Construction of a Bipartite Graph 𝐵 from an MO3
Instance. Given an instance of MO3, we build a bipartite
graph 𝐵 that is an instance of 3-PBB in three steps. In the first
step, we construct three components𝑇

𝑖1
,𝑇
𝑖2
, and𝑇

𝑖3
from the

clause 𝑐
𝑖
(1 ≤ 𝑖 ≤ 𝑚). In the second step, we merge 𝑇

𝑖1
, 𝑇
𝑖2
,

and 𝑇
𝑖3
into a bipartite graph 𝐵

𝑖
. In the final step, we merge

𝑚 𝐵
𝑖
’s into a bipartite graph 𝐵.

Step 1. For each clause 𝑐
𝑖
∈ 𝐶, we construct three components

that are associated with the three literals in 𝑐
𝑖
. Each of these

components is a bipartite graph.
Suppose that 𝑐

𝑖
= {𝑢
𝑥
, 𝑢
𝑦
, 𝑢
𝑧
} ∈ 𝐶.Thus, we construct the

components 𝑇
𝑖1
, 𝑇
𝑖2
, and 𝑇

𝑖3
. The three components contain

vertices 𝑢
𝑥
, 𝑢
𝑦
, and 𝑢

𝑧
, which correspond to the variables

𝑢
𝑥
, 𝑢
𝑦
, and 𝑢

𝑧
of 𝑐
𝑖
, respectively. In the following, we will

indiscriminately use the notation 𝑢
𝑥
, 𝑢
𝑦
, or 𝑢

𝑧
to represent

a vertex or a variable.
The key idea used in this step of construction is that

each of the three components contains a bipartite subgraph
isomorphic to 𝐵

𝑐
illustrated in Figure 2. Moreover, for an

arbitrary 3-biclique partition of 𝑇
𝑖𝑗

(𝑗 ∈ {1, 2, 3}), the
structure of 𝑇

𝑖𝑗
ensures that

(1) {𝑙
0
, 𝑟
0
}, {𝑙
1
, 𝑟
1
}, and {𝑙

2
, 𝑟
2
} are always partitioned into

different bicliques,
(2) 𝑢
𝑥
, 𝑢
𝑦
, or 𝑢

𝑧
only belongs to those bicliques that

contain {𝑙
0
, 𝑟
0
} or {𝑙

1
, 𝑟
1
}.

This is our basic way of encoding the idea that 𝑢
𝑖
∈ 𝑈

can be set to either 𝑇 or 𝐹; if 𝑢
𝑖
belongs to a biclique that

contains {𝑙
0
, 𝑟
0
}, we set 𝑢

𝑖
= 𝐹, and if 𝑢

𝑖
belongs to a biclique

that contains {𝑙
1
, 𝑟
1
}, we set 𝑢

𝑖
= 𝑇.

𝑇
𝑖1
= (𝐿
𝑖1
, 𝑅
𝑖1
, 𝐸
𝑖1
) contains 13 vertices and 21 edges, as

shown in Figure 3(a). Figures 3(b)–3(d) show three 3-biclique
partitions of 𝑇

𝑖1
. In Figures 3(b)–3(d), the vertices with the

same color induce a biclique. In fact, there exist exactly three
3-biclique partitions for 𝑇

𝑖1
, as shown in Figures 3(b)–3(d).

Lemma 3. For an arbitrary 3-biclique partition of 𝑇
𝑖1
, {𝑙
0
, 𝑟
0
},

{𝑙
1
, 𝑟
1
}, and {𝑙

2
, 𝑟
2
} are always partitioned into different

bicliques. (For the sake of readability, we defer the proof to the
Appendix. The complete proof is in Appendix A.)

Based on Lemma 3, each vertex in 𝑇
𝑖1
is assigned a value

for denoting a 3-biclique partition of 𝑇
𝑖1
by the assignment

function 𝑓 : (𝑇
𝑖1
) → {0, 1, 2}. According to a 3-biclique

partition of 𝑇
𝑖1
, the function 𝑓(⋅) is defined as

𝑓 (V) =
{{

{{

{

0 V and (𝑙
0
, 𝑟
0
) belong to the same biclique

1 V and (𝑙
1
, 𝑟
1
) belong to the same biclique

2 V and (𝑙
1
, 𝑟
1
) belong to the same biclique.

(1)

Lemma 4. There exist exactly three 3-biclique partitions for
𝑇
𝑖1
. Accordingly, the values of the vertices 𝑢

𝑥
, 𝑑
𝑖2
, and 𝑑

𝑖3

are (𝑓(𝑢
𝑥
), 𝑓(𝑑

𝑖2
), 𝑓(𝑑

𝑖3
)) ∈ {(1, 2, 1), (0, 2, 2), (0, 0, 1)}. (The

proof is in Appendix B.)

l2

l1

l0

r1

r2

r0

Figure 2: 𝐵
𝑐
.

𝑇
𝑖2
= (𝐿
𝑖2
, 𝑅
𝑖2
, 𝐸
𝑖2
) is presented in Figure 4(a). 𝑇

𝑖2
con-

tains 12 vertices and 17 edges. Figures 4(b) and 4(c) show
two 3-biclique partitions of 𝑇

𝑖2
. In Figures 4(b) and 4(c), the

vertices with the same color induce a biclique. In fact, there
exist exactly two 3-biclique partitions for 𝑇

𝑖2
, as shown in

Figures 4(b) and 4(c).

Lemma 5. For an arbitrary 3-biclique partition of 𝑇
𝑖2
, {𝑙
0
, 𝑟
0
},

{𝑙
1
, 𝑟
1
}, and {𝑙

2
, 𝑟
2
} are always partitioned into different

bicliques. (The proof is in Appendix C.)

Based on Lemma 5, the same approach that was used
for 𝑇
𝑖1
is used to assign values to the vertices of 𝑇

𝑖2
. Again,

we suppose that 𝑓 : 𝑉(𝑇
𝑖2
) → {0, 1, 2} is the assignment

function for 𝑇
𝑖2
. The assignment method for 𝑓(⋅) is the same

as that in Formula (1).

Lemma 6. There exist exactly two 3-biclique partitions for
𝑇
𝑖2
. Accordingly, the values of the vertices 𝑢

𝑦
and 𝑑

𝑖2
are

(𝑓(𝑢
𝑦
), 𝑓(𝑑

𝑖2
)) ∈ {(0, 2), (1, 0)}. (The proof is in Appendix D.)

𝑇
𝑖3
= (𝐿
𝑖3
, 𝑅
𝑖3
, 𝐸
𝑖3
) is isomorphic to 𝑇

𝑖2
. To obtain 𝑇

𝑖3
in

Figure 5, we only need to rename the vertices 𝑑
𝑖2
, 𝑢
𝑦
, 𝑚
𝑖1
, 𝑙
2
,

𝑙
1
, 𝑙
0
, 𝑛
𝑖1
, 𝑛
𝑖2
, 𝑛
𝑖3
, 𝑟
2
, 𝑟
1
, and 𝑟

0
of 𝑇
𝑖2
as 𝑑
𝑖3
, 𝑢
𝑧
, 𝑜
𝑖1
, 𝑙
2
, 𝑙
0
, 𝑙
1
,

𝑝
𝑖1
, 𝑝
𝑖2
, 𝑝
𝑖3
, 𝑟
2
, 𝑟
0
, and 𝑟

1
, respectively. We present Lemmas 7

and 8 on 𝑇
𝑖3
without proof. The proofs are similar to those of

Lemmas 5 and 6.

Lemma 7. For an arbitrary 3-biclique partition of 𝑇
𝑖3
, {𝑙
0
, 𝑟
0
},

{𝑙
1
, 𝑟
1
}, and {𝑙

2
, 𝑟
2
} are always partitioned into different

bicliques.

Again, we assign the vertices of 𝑇
𝑖3
using Formula (1).

Lemma 8. There exist exactly two 3-biclique partitions for
𝑇
𝑖3
. Accordingly, the values of the vertices 𝑢

𝑧
and 𝑑

𝑖3
are

(𝑓(𝑢
𝑧
), 𝑓(𝑑

𝑖3
)) ∈ {(1, 2), (0, 1)}.

Step 2. We merge 𝑇
𝑖1
, 𝑇
𝑖2
, and 𝑇

𝑖3
into a bipartite graph 𝐵

𝑖

(1 ≤ 𝑖 ≤ 𝑚) that is associated with the clause 𝑐
𝑖
∈ 𝐶.

For the bipartite graphs 𝑇
11
, 𝑇
12
, 𝑇
13
, . . ., 𝑇

𝑚1
, 𝑇
𝑚2
, and

𝑇
𝑚3

(1 ≤ 𝑖 ≤ 𝑚) constructed as before, we first merge
𝑇
𝑖1
, 𝑇
𝑖2
, and 𝑇

𝑖3
into 𝐵

𝑖
before building an instance 𝐵 of

3-PBB. Suppose that 𝐵
𝑖
= (𝑋[𝐵

𝑖
], 𝑌[𝐵

𝑖
], 𝐸[𝐵

𝑖
]) and 𝐵 =

(𝑋[𝐵], 𝑌[𝐵], 𝐸[𝐵]).
The left and right vertex sets of𝐵

𝑖
are obtained bymerging

the left and right vertex sets of 𝑇
𝑖1
, 𝑇
𝑖2
, and 𝑇

𝑖3
:

𝑋[𝐵
𝑖
] = 𝐿
𝑖1
∪ 𝐿
𝑖2
∪ 𝐿
𝑖3
,

𝑌 [𝐵
𝑖
] = 𝑅
𝑖1
∪ 𝑅
𝑖2
∪ 𝑅
𝑖3
.

(2)
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Figure 3: 𝑇
𝑖1
and the three 3-biclique partitions of 𝑇

𝑖1
.
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Figure 4: 𝑇
𝑖2
and the two 3-biclique partitions of 𝑇

𝑖2
.
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Figure 5: 𝑇
𝑖3
.

In words, each vertex of 𝑉(𝐵
𝑖
) belongs to 𝑉(𝑇

𝑖1
), 𝑉(𝑇

𝑖2
),

or 𝑉(𝑇
𝑖3
), and vice versa, and vertices with the same vertex

label in 𝑇
𝑖1
, 𝑇
𝑖2
, and 𝑇

𝑖3
are merged into one vertex in 𝐵

𝑖
as

follows: the vertices with the same label, including 𝑙
0
, 𝑟
0
, 𝑙
1
,

𝑟
1
, 𝑙
2
, and 𝑟

2
in 𝑇
𝑖1
, 𝑇
𝑖2
, and 𝑇

𝑖3
, are merged into one group of

vertices labeled 𝑙
0
, 𝑟
0
, 𝑙
1
, 𝑟
1
, 𝑙
2
, and 𝑟

2
in 𝐵
𝑖
; two vertices 𝑑

𝑖2

in 𝑇
𝑖1
and 𝑑

𝑖2
in 𝑇
𝑖2
are merged into one vertex labeled 𝑑

𝑖2
in

𝐵
𝑖
; and two vertices 𝑑

𝑖3
in 𝑇
𝑖1
and 𝑑

𝑖3
in 𝑇
𝑖3
are merged into

one vertex labeled 𝑑
𝑖3
in 𝐵
𝑖
. In 𝑇
𝑖2
and 𝑇

𝑖3
, no other vertices

exist with the same label except for 𝑙
0
, 𝑟
0
, 𝑙
1
, 𝑟
1
, 𝑙
2
, and 𝑟

2
.

𝐸(𝐵
𝑖
) has two portions. Let 𝐸[𝐵

𝑖
] = 𝐸
1
[𝐵
𝑖
] ∪ 𝐸
2
[𝐵
𝑖
]. The

first portion𝐸
1
[𝐵
𝑖
] can be obtained bymerging𝐸(𝑇

𝑖1
),𝐸(𝑇

𝑖2
),

and 𝐸(𝑇
𝑖3
):

𝐸
1
[𝐵
𝑖
] = {(𝑙, 𝑟) | (𝑙, 𝑟) ∈ 𝐸𝑖1 or (𝑙, 𝑟) ∈ 𝐸𝑖2

or (𝑙, 𝑟) ∈ 𝐸𝑖3} .
(3)

Clearly, the edges with the same vertex label in 𝑇
𝑖1
, 𝑇
𝑖2
,

and 𝑇
𝑖3

are merged into one edge of 𝐸
1
[𝐵
𝑖
], respectively,

and 𝑇
𝑖1
, 𝑇
𝑖2
, and 𝑇

𝑖3
are bipartite subgraphs of 𝐵

𝑖
. To ensure

that there exists a 3-biclique partition for 𝐵
𝑖1
, we require

the addition of more edges as the other portion of 𝐸(𝐵
𝑖
) as

follows: the edges of𝑇
𝑖1
and𝑇
𝑖2
among the nonpublic vertices

are added, as denoted by 𝐸
2
[𝐵
𝑖
, 1, 2]; the edges of 𝑇

𝑖2
and

𝑇
𝑖3
among the nonpublic vertices are added, as denoted by

𝐸
2
[𝐵
𝑖
, 2, 3]; and the edges of 𝑇

𝑖3
and 𝑇

𝑖1
among the nonpublic

vertices are added, as denoted by 𝐸
2
[𝐵
𝑖
, 3, 1]. For two graphs,



6 Mathematical Problems in Engineering

if a vertex label occurs exactly one of the two graphs, then the
vertex corresponding to this label is called a nonpublic vertex.
These three additional edge sets are formally stated as follows:

𝐸
2
[𝐵
𝑖
, 1, 2] = {(𝑙, 𝑟) | 𝑙 ∈ 𝐿 𝑖1 − (𝐿 𝑖1 ∩ 𝐿 𝑖2) ,

𝑟 ∈ 𝑅
𝑖2
− (𝑅
𝑖1
∩ 𝑅
𝑖2
)}

∪ {(𝑙, 𝑟) | 𝑙 ∈ 𝐿 𝑖2 − (𝐿 𝑖1 ∩ 𝐿 𝑖2) ,

𝑟 ∈ 𝑅
𝑖1
− (𝑅
𝑖1
∩ 𝑅
𝑖2
)} ,

𝐸
2
[𝐵
𝑖
, 2, 3] = {(𝑙, 𝑟) | 𝑙 ∈ 𝐿 𝑖2 − (𝐿 𝑖2 ∩ 𝐿 𝑖3) ,

𝑟 ∈ 𝑅
𝑖3
− (𝑅
𝑖2
∩ 𝑅
𝑖3
)}

∪ {(𝑙, 𝑟) | 𝑙 ∈ 𝐿 𝑖3 − (𝐿 𝑖2 ∩ 𝐿 𝑖3) ,

𝑟 ∈ 𝑅
𝑖2
− (𝑅
𝑖2
∩ 𝑅
𝑖3
)} ,

𝐸
2
[𝐵
𝑖
, 3, 1] = {(𝑙, 𝑟) | 𝑙 ∈ 𝐿 𝑖3 − (𝐿 𝑖3 ∩ 𝐿 𝑖1) ,

𝑟 ∈ 𝑅
𝑖1
− (𝑅
𝑖3
∩ 𝑅
𝑖1
)}

∪ {(𝑙, 𝑟) | 𝑙 ∈ 𝐿 𝑖1 − (𝐿 𝑖3 ∩ 𝐿 𝑖1) ,

𝑟 ∈ 𝑅
𝑖3
− (𝑅
𝑖3
∩ 𝑅
𝑖1
)} .

(4)

Hence, the second portion of 𝐸(𝐵
𝑖
) can be obtained:

𝐸
2
[𝐵
𝑖
] = 𝐸
2
[𝐵
𝑖
, 1, 2] ∪ 𝐸

2
[𝐵
𝑖
, 2, 3] ∪ 𝐸

2
[𝐵
𝑖
, 3, 1] . (5)

For 𝐵
𝑖
and its bipartite subgraphs 𝑇

𝑖1
, 𝑇
𝑖2
, and 𝑇

𝑖3
,

Proposition 9 holds.

Proposition 9. A bipartite subgraph of 𝐵
𝑖
induced by 𝑉(𝑇

𝑖𝑗
)

is isomorphic to 𝑇
𝑖𝑗
, where 𝑗 ∈ {1, 2, 3}. (The proof is in

Appendix E.)

Figure 6 illustrates the process of building𝐵
𝑖
from𝑇

𝑖1
,𝑇
𝑖2
,

and 𝑇
𝑖3
. The meaning of Figure 6 is as follows.

(1) Figure 6(a) shows the public vertices. The white ver-
tex set is a public vertex set of 𝑇

𝑖1
, 𝑇
𝑖2
, and 𝑇

𝑖3
. The

gray vertex 𝑑
𝑖2
is a public vertex of 𝑇

𝑖1
and 𝑇

𝑖2
. The

blue vertex 𝑑
𝑖3
is a public vertex of 𝑇

𝑖1
and 𝑇

𝑖3
.

(2) Figure 6(b) depicts how to obtain 𝑉(𝐵
𝑖
) and 𝐸

1
[𝐵
𝑖
].

The white vertices of 𝑇
𝑖1
, 𝑇
𝑖2
, and 𝑇

𝑖3
, the gray vertex

of 𝑇
𝑖1
and 𝑇

𝑖2
, and the blue vertex of 𝑇

𝑖1
and 𝑇

𝑖3
are

merged together, respectively. Here, 𝑢
𝑥
, 𝑢
𝑦
, and 𝑢

𝑧

cannot be merged because they are pairwise different.
As shown in Figure 6(b), the edge set is 𝐸

1
[𝐵
𝑖
].

(3) Figure 6(c) displays the following additional edge
sets: 𝐸

2
[𝐵
𝑖
, 1, 2] (yellow edge set), 𝐸

2
[𝐵
𝑖
, 2, 3] (black

edge set), and 𝐸
2
[𝐵
𝑖
, 3, 1] (red edge set). For the

sake of clarity, 𝐸
1
[𝐵
𝑖
] is not illustrated in Figure 6(c).

If 𝐸
1
[𝐵
𝑖
] is added to Figure 6(c), then 𝐵

𝑖
will be

obtained.

Step 3. Wemerge 𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑚
into 𝐵 that is associated with

an instance of MO3.

The steps used to merge 𝐵
𝑖
(1 ≤ 𝑖 ≤ 𝑚) are similar to

those in merging 𝑇
𝑖1
, 𝑇
𝑖1
, and 𝑇

𝑖3
as above. 𝑉(𝐵) is obtained

by merging 𝑉(𝐵
𝑖
)’s (1 ≤ 𝑖 ≤ 𝑚):

𝑋[𝐵] =

𝑚

⋃

𝑖=1

𝑋[𝐵
𝑖
] ,

𝑌 [𝐵] =

𝑚

⋃

𝑖=1

𝑌 [𝐵
𝑖
] .

(6)

In words, each vertex of 𝑉(𝐵) belongs to 𝑉(𝐵
𝑖
) (1 ≤

𝑖 ≤ 𝑚) and vice versa, and vertices with the same vertex
label in 𝐵

𝑖
’s are merged into one vertex in 𝐵 as follows: the

𝑚 group vertices labeled {𝑙
0
, 𝑟
0
, 𝑙
1
, 𝑟
1
, 𝑙
2
, 𝑟
2
} in 𝐵

1
, 𝐵
2
, . . . , 𝐵

𝑚

are merged into one group in 𝐵 and are still labeled
{𝑙
0
, 𝑟
0
, 𝑙
1
, 𝑟
1
, 𝑙
2
, 𝑟
2
}, and if a variable 𝑢

𝑖
∈ 𝑈 appears 𝑡 times in

the clause collection 𝐶, then in 𝐵, the 𝑡 vertices labeled 𝑢
𝑖
in

𝑡 𝐵
𝑖
’s are merged into one vertex 𝑢

𝑖
. Therefore, each variable

corresponds to exactly one vertex in 𝐵.
𝐸(𝐵) has two portions. Let 𝐸[𝐵] = 𝐸

1
[𝐵] ∪ 𝐸

2
[𝐵].

The first portion 𝐸
1
[𝐵] can be obtained by merging 𝐸(𝐵

1
),

𝐸(𝐵
2
), . . . , 𝐸(𝐵

𝑚
); that is,

𝐸
1 [𝐵] = {(𝑙, 𝑟) | (𝑙, 𝑟) ∈ 𝐸 [𝐵𝑖] , 1 ≤ 𝑖 ≤ 𝑚} . (7)

Similarly, the edges with the same vertex label in 𝐵
𝑖
’s

(1 ≤ 𝑖 ≤ 𝑚) are merged into one edge of 𝐸
1
[𝐵], and 𝐵

𝑖
’s

are bipartite subgraph of 𝐵. To ensure that there exists a
3-biclique partition for 𝐵, we require the addition of more
edges to be the other portion of 𝐸(𝐵): the edges among the
nonpublic vertices of 𝐵

𝑖
and 𝐵

𝑗
are added as the edge set

𝐸
2
[𝐵, 𝑖, 𝑗], where 𝑖 ̸= 𝑗.These additional edge sets are formally

stated as follows:

𝐸
2
[𝐵, 𝑖, 𝑗] = {(𝑙, 𝑟) | 𝑙 ∈ 𝑋 [𝐵𝑖] − (𝑋 [𝐵𝑖] ∩ 𝑋 [𝐵𝑗]) ,

𝑟 ∈ 𝑌 [𝐵
𝑗
] − (𝑌 [𝐵

𝑖
] ∩ 𝑌 [𝐵

𝑗
])}

∪ {(𝑙, 𝑟) | 𝑙 ∈ 𝑋 [𝐵𝑗] − (𝑋 [𝐵𝑖] ∩ 𝑋 [𝐵𝑗]) ,

𝑟 ∈ 𝑌 [𝐵
𝑖
] − (𝑌 [𝐵

𝑖
] ∩ 𝑌 [𝐵

𝑗
])} .

(8)

Consequently, the second portion of 𝐸(𝐵) can be
obtained:

𝐸
2 [𝐵] =

𝑚−1

⋃

𝑖=1

𝑚

⋃

𝑗=𝑗+1

𝐸
2
[𝐵, 𝑖, 𝑗] . (9)

This completes the construction of the bipartite graph 𝐵.
𝐵 obtained by merging𝑚 𝐵

𝑖
’s has at most 23∗𝑚 vertices and

85 × 𝑚 + 𝐶
2

𝑚
× 140 edges. Therefore, 𝐵 can be constructed in

polynomial time.
For 𝐵, 𝐵

𝑖
, and 𝑇

𝑖𝑗
(1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 3), Proposition 10

holds.

Proposition 10. A bipartite subgraph of 𝐵 induced by 𝑉(𝐵
𝑖
)

is isomorphic to 𝐵
𝑖
, and a bipartite subgraph of 𝐵 induced by

𝑉(𝑇
𝑖𝑗
) is isomorphic to 𝑇

𝑖𝑗
, where 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 3. (The

proof is in Appendix F.)
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Figure 6: The construction of 𝐵
𝑖
by merging 𝑇

𝑖1
, 𝑇
𝑖2
, and 𝑇

𝑖3
.

Next, we show that there does not exist a 2-biclique
partition for 𝐵; that is, if there exists a 𝑘-biclique partition
for 𝐵, then 𝑘 ≥ 3.

Lemma 11. If there exists a 𝑘-biclique partition for 𝐵, then
𝑘 ≥ 3.

Proof. An arbitrary vertex V ∈ 𝐿
𝑖𝑗
is adjacent to at most

two of 𝑟
0
, 𝑟
1
, and 𝑟

2
in 𝑇
𝑖𝑗
. In the process of building

𝐵, there is no additional edge whose end vertex is in
{𝑙
0
, 𝑙
1
, 𝑙
2
, 𝑟
0
, 𝑟
1
, 𝑟
2
}. Therefore, an arbitrary vertex V ∈ 𝑋[𝐵]

is adjacent to, at most, two of 𝑟
0
, 𝑟
1
, and 𝑟

2
, such that 𝑟

0
, 𝑟
1
,

and 𝑟
2
belong to at least two bicliques. If 𝑟

0
, 𝑟
1
, and 𝑟

2
are

partitioned into two bicliques, then suppose that {𝑟
𝑥
, 𝑟
𝑦
} and

{𝑟
𝑧
} are partitioned into different bicliques, where 𝑥, 𝑦, 𝑧 ∈

{1, 2, 3}, 𝑥 ̸= 𝑦, 𝑥 ̸= 𝑧, 𝑦 ̸= 𝑧. Based on the process of building
𝐵, (𝑙
𝑥
, 𝑟
𝑦
) ∉ 𝐸[𝐵], and (𝑙

𝑥
, 𝑟
𝑧
) ∉ 𝐸[𝐵]. Thus, 𝑙

𝑥
, 𝑟
𝑥
, 𝑟
𝑦
, and

𝑟
𝑧
of 𝐵 belong to at least three bicliques, and the lemma

follows.

In the following, we prove that if there exists a 3-biclique
partition for 𝐵, then Lemmas 12 and 13 hold.

Lemma 12. If there exists at least one 3-biclique partition for𝐵,
then {𝑙

0
, 𝑟
0
}, {𝑙
1
, 𝑟
1
}, and {𝑙

2
, 𝑟
2
} will always be partitioned into

three different bicliques for an arbitrary 3-biclique partition of
𝐵.

Proof. There are only three edges (𝑙
0
, 𝑟
0
), (𝑙
1
, 𝑟
1
), and (𝑙

2
, 𝑟
2
)

between {𝑙
0
, 𝑙
1
, 𝑙
2
} and {𝑟

0
, 𝑟
1
, 𝑟
2
} in 𝐵. Therefore, if 𝑟

0
, 𝑟
1
, and

𝑟
2
are partitioned into three bicliques, then {𝑙

0
, 𝑟
0
}, {𝑙
1
, 𝑟
1
},

and {𝑙
2
, 𝑟
2
} must be partitioned into three bicliques. More-

over, because an arbitrary vertex V ∈ 𝑋[𝐵] is adjacent to at
most two vertices of {𝑟

0
, 𝑟
1
, 𝑟
2
}, 𝑟
0
, 𝑟
1
, and 𝑟

2
belong to at least

two bicliques in a 3-biclique partition of 𝐵. We next show that
𝑟
0
, 𝑟
1
, and 𝑟

2
do not belong to two bicliques using proof by

contradiction.
Suppose that 𝑟

0
, 𝑟
1
, and 𝑟

2
belong to two bicliques.We can

assume without loss of generality that 𝑋[𝐵] ∪ 𝑌[𝐵] = 𝑉
𝑏1
∪

𝑉
𝑏2
∪ 𝑉
𝑏3
is a 3-biclique partition of 𝐵, {𝑟

𝑥
, 𝑟
𝑦
} ⊆ 𝑉

𝑏1
, {𝑟
𝑧
} ⊆

𝑉
𝑏2
, where 𝑥, 𝑦, 𝑧 ∈ {0, 1, 2}, 𝑥 ̸= 𝑦, 𝑦 ̸= 𝑧, 𝑥 ̸= 𝑧. Because

(𝑙
𝑥
, 𝑟
𝑦
) ∉ 𝐸

𝐵
, (𝑙
𝑦
, 𝑟
𝑥
) ∉ 𝐸

𝐵
, (𝑙
𝑥
, 𝑟
𝑧
) ∉ 𝐸

𝐵
, (𝑙
𝑦
, 𝑟
𝑧
) ∉ 𝐸

𝐵
, we

have {𝑙
𝑥
, 𝑙
𝑦
} ⊆ 𝑉

𝑏3
. Thus, there exists 𝑇

𝑖𝑗
= (𝐿
𝑖𝑗
, 𝑅
𝑖𝑗
, 𝐸
𝑖𝑗
),

1 ≤ 𝑖 ≤ 𝑚, 𝑗 ∈ {1, 2, 3}, such that {𝑙
𝑥
, 𝑙
𝑦
, V
𝑟
} ⊆ 𝑉

𝑏3
, V
𝑟
∈

𝑅
𝑖𝑗
\ {𝑟
0
, 𝑟
1
, 𝑟
2
}. Because {V

𝑟
, 𝑟
0
, 𝑟
1
, 𝑟
2
} ⊆ 𝑅
𝑖𝑗
, the vertices in 𝑅

𝑖𝑗
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Figure 7: If 𝑇
𝑖𝑗
is 𝑇
𝑖1
, then the vertices of 𝐿

𝑖𝑗
will belong to three bicliques.
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Figure 8: If 𝑇
𝑖𝑗
is 𝑇
𝑖2
, then the vertices of 𝐿

𝑖𝑗
will belong to three bicliques.

are partitioned into three bicliques in a 3-biclique partition of
𝐵. By Proposition 10, the edge subset of𝐵 induced by𝑉(𝑇

𝑖𝑗
) is

exactly𝐸
𝑖𝑗
.We next show that the vertices in𝐿

𝑖𝑗
also belong to

three bicliques. Consider the following three cases: 𝑇
𝑖𝑗
= 𝑇
𝑖1
,

𝑇
𝑖𝑗
= 𝑇
𝑖2
, and 𝑇

𝑖𝑗
= 𝑇
𝑖3
.

(1) If 𝑇
𝑖𝑗
= 𝑇
𝑖1
, then V

𝑟
∈ {𝑞
𝑖1
, 𝑞
𝑖2
, 𝑞
𝑖3
, 𝑞
𝑖4
}. As shown

in Figure 7(a), if V
𝑟
is 𝑞
𝑖4
, then there are no edges

between {𝑢
𝑥
, 𝑑
𝑖2
, 𝑑
𝑖3
} and 𝑞

𝑖4
. Moreover, 𝑢

𝑥
, 𝑑
𝑖2
, and

𝑑
𝑖3
cannot simultaneously belong to either𝑉

𝑏1
or𝑉
𝑏2
.

Therefore, the vertices in 𝐿
𝑖𝑗
belong to three bicliques.

As shown in Figures 7(b)–7(d), if V
𝑟
∈ {𝑞
𝑖1
, 𝑞
𝑖2
, 𝑞
𝑖3
},

we distinguish three cases. For an arbitrary V
𝑟
∈

{𝑞
𝑖1
, 𝑞
𝑖2
, 𝑞
𝑖3
}, V
𝑟
is not adjacent to two of 𝑢

𝑥
, 𝑑
𝑖2
, and

𝑑
𝑖3
(the brown vertices), and these two vertices cannot

simultaneously belong to 𝑉
𝑏1

or 𝑉
𝑏2
. Therefore, the

vertices of 𝐿
𝑖𝑗
belong to three bicliques.

(2) If 𝑇
𝑖𝑗
= 𝑇
𝑖2
, then V

𝑟
∈ {𝑛
𝑖1
, 𝑛
𝑖2
, 𝑛
𝑖3
}. As shown in

Figures 8(a)–8(c), we distinguish three cases. For an
arbitrary V

𝑟
∈ {𝑛
𝑖1
, 𝑛
𝑖2
, 𝑛
𝑖3
}, V
𝑟
is not adjacent to two

of 𝑢
𝑦
, 𝑑
𝑖2
, and𝑚

𝑖1
(the brown vertices), and these two

vertices cannot simultaneously belong to 𝑉
𝑏1

or 𝑉
𝑏2
.

Therefore, the vertices of 𝐿
𝑖𝑗
belong to three bicliques.

(3) If 𝑇
𝑖𝑗
= 𝑇
𝑖3
, then because 𝑇

𝑖2
and 𝑇

𝑖3
are isomorphic,

the vertices of 𝐿
𝑖𝑗
also belong to three bicliques.

By (1), (2), and (3), either the left or right vertices of
𝑇
𝑖𝑗
are always partitioned into three bicliques in a 3-biclique

partition of 𝐵. Thus,𝑉
𝑏1
∩𝑉(𝑇

𝑖𝑗
), 𝑉
𝑏2
∩𝑉(𝑇

𝑖𝑗
), or𝑉

𝑏3
∩𝑉(𝑇

𝑖𝑗
)

induces a biclique in a 3-biclique partition of 𝐵, respectively.
The three bicliques are a 3-biclique partition of 𝑇

𝑖𝑗
. From

Lemmas 3, 5, and 7, 𝑟
0
, 𝑟
1
, and 𝑟

2
must belong to three

different bicliques, which contradicts the supposition that 𝑟
0
,

𝑟
1
, and 𝑟

2
belong to two bicliques. The lemma follows.

Lemma 13. Let 𝑋[𝐵] ∪ 𝑌[𝐵] = 𝑉(𝐵) = 𝑉
𝑏1
∪ 𝑉
𝑏2
∪ 𝑉
𝑏3

be
a 3-biclique partition of 𝐵. Then, 𝐿

𝑖𝑗
∪ 𝑅
𝑖𝑗
= 𝑉(𝑇

𝑖𝑗
) = [𝑉

𝑏1
∩

𝑉(𝑇
𝑖𝑗
)]∪[𝑉

𝑏2
∩𝑉(𝑇

𝑖𝑗
)]∪[𝑉

𝑏3
∩𝑉(𝑇

𝑖𝑗
)] is a 3-biclique partition

of 𝑇
𝑖𝑗
.

Proof. From Lemma 12, {𝑙
0
, 𝑟
0
}, {𝑙
1
, 𝑟
1
}, and {𝑙

2
, 𝑟
2
} are always

partitioned into three different bicliques in a 3-biclique
partition of 𝐵. Thus, for 𝑇

𝑖𝑗
in 𝐵, the vertices of either its

𝐿
𝑖𝑗
or 𝑅
𝑖𝑗
all belong to three bicliques. By Proposition 10, the

bipartite subgraph of𝐵 induced by𝑉(𝑇
𝑖𝑗
) is𝑇
𝑖𝑗
.Therefore, the

edges between 𝐿
𝑖𝑗
and 𝑅

𝑖𝑗
must belong to 𝐸

𝑖𝑗
in a 3-biclique

partition of 𝐵. From the definition of a biclique, the lemma
follows.
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3.1.2. Completing the NP-Completeness Proof of 3-PBB. It is
easy to see that 3-PBB ∈ NP because, for a given bipartite
graph 𝐵, a nondeterministic algorithm need only guess a
partition with size 3 of 𝑉(𝐵) that partitions 𝑉(𝐵) into three
groups and check in polynomial time whether the bipartite
subgraph induced by each vertex group is a biclique.

Previously, we constructed a bipartite graph 𝐵 =

(𝑋[𝐵], 𝑌[𝐵], 𝐸[𝐵]) from a variable set 𝑈 = {𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
}

and a clause collection 𝐶 = {𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑚
}. All that remains

to be shown is that there exists a truth assignment for 𝑈
such that 𝐶 is satisfied if and only if there exists a 3-biclique
partition for 𝐵.
(→ ) Assume that 𝐴 : 𝑈 → {𝑇, 𝐹} is a truth assignment

that satisfies 𝐶. We first assign each vertex of 𝐵 in three steps
and then show that there exists a 3-biclique partition for 𝐵.

(1) Let 𝑐
𝑖
= (𝑢
𝑥
, 𝑢
𝑥
, 𝑢
𝑦
) ∈ 𝐶; then the value of 𝑐

𝑖
is

(𝐴(𝑢
𝑥
), 𝐴(𝑢

𝑦
), 𝐴(𝑢

𝑧
)) ∈ {(𝑇, 𝐹, 𝐹), (𝐹, 𝐹, 𝑇), (𝐹, 𝑇, 𝐹)}.

The 3-biclique partitions of 𝑇
𝑖1
, 𝑇
𝑖2
, and 𝑇

𝑖3
are

given from the values of 𝐴(𝑢
𝑥
), 𝐴(𝑢

𝑦
), and 𝐴(𝑢

𝑧
), as

presented in Table 1. Based on Lemmas 3, 5, and 7, we
set each vertex of 𝑇

𝑖1
, 𝑇
𝑖2
, and 𝑇

𝑖3
to “0,” “1,” or “2” by

Formula (1) and Table 1.
(2) We assign a value to each vertex of 𝑉(𝐵

𝑖
) as follows:

if a vertex V ∈ 𝐵
𝑖
has the same label with a vertex

𝑤 ∈ 𝑇
𝑖𝑗
(1 ≤ 𝑗 ≤ 3), then set V equal to the value

of 𝑤. As shown in Table 1, a key observation is that
vertices with the same label in 𝑇

𝑖1
, 𝑇
𝑖2
, and 𝑇

𝑖3
are

assigned an identical value by a 3-biclique partitions
of 𝑇
𝑖1
, 𝑇
𝑖2
, or 𝑇
𝑖3
and the true assignment of 𝑈. This

ensures that each vertex of 𝑉(𝐵
𝑖
) cannot be assigned

different values.
(3) Similarly as step (2), we assign a value to each vertex

of 𝑉(𝐵) as follows: if a vertex V ∈ 𝑉(𝐵) has the same
label with a vertex𝑤 ∈ 𝐵

𝑖
(1 ≤ 𝑗 ≤ 3), then set V equal

to the value of 𝑤. Clearly, by the truth assignment,
even if a variable occurs in more than one clause of
𝐶, the variable has exactly one value; therefore, even
if a variable corresponds to more than one vertex
in different 𝐵

𝑖
’s, these vertices corresponding to this

variable are assigned an identical value, and it is not
hard to see that each vertex of {𝑙

0
, 𝑟
0
, 𝑙
1
, 𝑟
1
, 𝑙
2
, 𝑟
2
} has

an identical value in different 𝐵
𝑖
’s by Formula (1). In

addition, except for 𝑢
𝑥
, 𝑢
𝑦
, 𝑢
𝑧
, 𝑙
0
, 𝑟
0
, 𝑙
1
, 𝑟
1
, 𝑙
2
, and 𝑟

2
,

there do not exist other vertices with the same label
in different 𝐵

𝑖
’s. It follows that vertices with the same

label in different 𝐵
𝑖
’s have an identical value. This

ensures that each vertex of 𝑉(𝐵) cannot be assigned
different values.

Next, to prove that there exists a 3-biclique partition for
𝐵, it suffices to show that vertices with an identical value form
a biclique of 𝐵. In other words, we only need to show that if
V and 𝑤 belong to the left and right vertex sets, respectively,
and their values are identical, then (V, 𝑤) ∈ 𝐸[𝐵]. If V and 𝑤
belong to the same 𝑇

𝑖𝑗
, and their values are identical, then V

and 𝑤 certainly belong to a biclique, and (V, 𝑤) ∈ 𝐸
𝑖𝑗
∈ 𝐸[𝐵]

must hold. If V and 𝑤 belong to different 𝑇
𝑖𝑗
’s, then the edge

(V, 𝑤) must be added in the process of merging 𝑇
𝑖𝑗
’s into 𝐵

𝑖

or merging 𝐵
𝑖
’s into 𝐵; that is, (V, 𝑤) ∈ 𝐸[𝐵]. Therefore, the

vertices of 𝐵 with an identical value certainly form a biclique
of 𝐵.
(←) Suppose that 𝑉(𝐵) = 𝑉

𝑏1
∪ 𝑉
𝑏2
∪ 𝑉
𝑏3

is a 3-
biclique partition of 𝐵. Based on Lemma 12, a 3-biclique
partition of 𝐵 always partitions {𝑙

0
, 𝑟
0
}, {𝑙
1
, 𝑟
1
}, and {𝑙

2
, 𝑟
2
}

into three different bicliques. By Formula (1), each vertex of
𝐵 is set to “0,” “1,” or “2.” We next show that the vertices
that correspond to a clause 𝑐

𝑖
= {𝑢
𝑥
, 𝑢
𝑦
, 𝑢
𝑧
} are assigned

(𝑓(𝑢
𝑥
), 𝑓(𝑢

𝑦
), 𝑓(𝑢

𝑧
)) ∈ {(1, 0, 0), (0, 0, 1), (0, 1, 0)}.

Based on Lemma 13, [𝑉
𝑏1
∩ 𝑉(𝑇

𝑖𝑗
)] ∪ [𝑉

𝑏2
∩ 𝑉(𝑇

𝑖𝑗
)] ∪

[𝑉
𝑏3
∩ 𝑉(𝑇

𝑖𝑗
)] is a 3-biclique partition of 𝑇

𝑖𝑗
. Therefore, we

can directly consider obtaining the assignment of 𝑢
𝑥
, 𝑢
𝑦
, and

𝑢
𝑧
from a 3-biclique partition of 𝑇

𝑖𝑗
.

When 𝑇
𝑖𝑗

is 𝑇
𝑖1
, based on Lemma 4, we have

(𝑓(𝑢
𝑥
), 𝑓(𝑑

𝑖2
), 𝑓(𝑑

𝑖3
)) ∈ {(1, 2, 1), (0, 2, 2), (0, 0, 1)}. Because

𝑑
𝑖2

of 𝑇
𝑖1

and 𝑑
𝑖2

of 𝑇
𝑖2

are of the same vertex, and 𝑑
𝑖3

of 𝑇
𝑖1
and 𝑑

𝑖3
of 𝑇
𝑖3
are of the same vertex in 𝐵, then the

assignment of 𝑑
𝑖2
in 𝑇
𝑖1
is the same as that of 𝑑

𝑖2
in 𝑇
𝑖2
, and

the assignment of 𝑑
𝑖3
in 𝑇
𝑖1
is the same as that of 𝑑

𝑖3
in 𝑇
𝑖3
.

Therefore, the assignments of 𝑑
𝑖2
in 𝑇
𝑖2
and 𝑑

𝑖3
in 𝑇
𝑖3
must

satisfy (𝑓(𝑑
𝑖2
), 𝑓(𝑑

𝑖3
)) ∈ {(2, 1), (2, 2), (0, 1)}. When 𝑇

𝑖𝑗
is 𝑇
𝑖2

or 𝑇
𝑖3
, based on Lemmas 6 and 8, we have (𝑓(𝑢

𝑦
), 𝑓(𝑑

𝑖2
)) ∈

{(0, 2), (1, 0)}, (𝑓(𝑢
𝑧
), 𝑓(𝑑

𝑖3
)) ∈ {(1, 2), (0, 1)}. Therefore,

to ensure that (𝑓(𝑑
𝑖2
), 𝑓(𝑑

𝑖3
)) ∈ {(2, 1), (2, 2), (0, 1)} holds,

we must have (𝑓(𝑢
𝑦
), 𝑓(𝑢

𝑧
)) ∈ {(0, 0), (0, 1), (1, 0)} hold.

It follows that if there is a 3-biclique partition for 𝐵, then
(𝑓(𝑢
𝑥
), 𝑓(𝑢

𝑦
), 𝑓(𝑢

𝑧
)) ∈ {(1, 0, 0), (0, 0, 1), (0, 1, 0)} holds.

Because each variable corresponds to exactly one vertex
in 𝐵, it is easy to obtain a truth assignment for all the
variables: 𝐴 : 𝑈 → {𝑇, 𝐹} from the vertex values of
𝐵. We merely set 𝐴(𝑢

𝑡
) = 𝑇 if the assignment of 𝑢

𝑡
is

𝑓(𝑢
𝑡
) = 1 in 𝐵 and set 𝐴(𝑢

𝑡
) = 𝐹 if the assignment of

𝑢
𝑡
is 𝑓(𝑢

𝑡
) = 0 in 𝐵. After this assignment is made, an

arbitrary clause 𝑐
𝑖
= {𝑢
𝑥
, 𝑢
𝑦
, 𝑢
𝑧
} of an MO3 instance is set to

(𝐴(𝑢
𝑥
), 𝐴(𝑢

𝑦
), 𝐴(𝑢

𝑧
)) ∈ {(𝑇, 𝐹, 𝐹), (𝐹, 𝐹, 𝑇), (𝐹, 𝑇, 𝐹)}, which

satisfies the clause collection 𝐶 of the MO3 instance.

3.2.TheNP-Completeness of 𝑘-PBB (𝑘 > 3). To prove theNP-
completeness of 𝑘-PBB for any 𝑘 > 3, we provide a reduction
from 3-PBB as follows.

Theorem 14. 𝑘-PBB (𝑘 > 3) is NP-complete, where 𝑘 is a
constant positive integer.

Proof. It is easy to see that 𝑘-PBB ∈ NP because a nonde-
terministic algorithm need only guess a partition with size
𝑘 of 𝑉(𝐺), which partitions 𝑉(𝐺) into 𝑘 groups for a given
bipartite graph 𝐺, and check in polynomial time whether the
bipartite subgraph that is induced by each vertex group is a
biclique.

We provide a reduction from 3-PBB. Given an input
instance 𝐺

1
= (𝑋

1
, 𝑌
1
, 𝐸
1
) of 3-PBB, we form an instance

𝐺
2
= (𝑋
2
, 𝑌
2
, 𝐸
2
) of 𝑘-PBB (𝑘 > 3) as follows:𝑋

2
= 𝑋
1
∪{𝑙[𝑖] |

1 ≤ 𝑖 ≤ 𝑘 − 3}; 𝑌
2
= 𝑌
1
∪ {𝑟[𝑖] | 1 ≤ 𝑖 ≤ 𝑘 − 3};

𝐸
2
= 𝐸
1
∪ {(𝑙[𝑖], 𝑟[𝑖])|1 ≤ 𝑖 ≤ 𝑘 − 3}. That is, we add 2(𝑘 − 3)

vertices and (𝑘 − 3) independent edges to 𝐺
1
for building 𝐺

2
.

Then𝐺
2
= (𝑋
2
, 𝑌
2
, 𝐸
2
) becomes an instance of 𝑘-PBB (𝑘 > 3).

The subgraph formed by these additional vertices and edges
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Table 1: The relationship between the clause 𝑐
𝑖
= {𝑢
𝑥
, 𝑢
𝑦
, 𝑢
𝑧
} and the vertex values of 𝐵

𝑖
.

(𝐴(𝑢
𝑥
), 𝐴(𝑢

𝑦
), 𝐴(𝑢

𝑧
)) (𝑇, 𝐹, 𝐹) (𝐹, 𝑇, 𝐹) (𝐹, 𝐹, 𝑇)

3-biclique partitions of 𝑇
𝑖1

{𝑙
0
, 𝑟
0
, 𝑞
𝑖1
, 𝑞
𝑖2
, 𝑞
𝑖4
}/

{𝑙
1
, 𝑟
1
, 𝑢
𝑥
, 𝑑
𝑖3
}/

{𝑙
2
, 𝑟
2
, 𝑑
𝑖2
, 𝑞
𝑖3
}

{𝑙
0
, 𝑟
0
, 𝑢
𝑥
, 𝑑
𝑖2
}/

{𝑙
1
, 𝑟
1
, 𝑑
𝑖3
, 𝑞
𝑖1
}/

{𝑙
2
, 𝑟
2
, 𝑞
𝑖2
, 𝑞
𝑖3
, 𝑞
𝑖4
}

{𝑙
0
, 𝑟
0
, 𝑢
𝑥
, 𝑞
𝑖2
}/

{𝑙
1
, 𝑟
1
, 𝑞
𝑖1
, 𝑞
𝑖3
, 𝑞
𝑖4
}/

{𝑙
2
, 𝑟
2
, 𝑑
𝑖2
, 𝑑
𝑖3
}

3-biclique partitions of 𝑇
𝑖2

{𝑙
0
, 𝑟
0
, 𝑢
𝑦
, 𝑛
𝑖3
}/

{𝑙
1
, 𝑟
1
, 𝑛
𝑖1
, 𝑛
𝑖2
}/

{𝑙
2
, 𝑟
2
, 𝑑
𝑖2
, 𝑚
𝑖1
}

{𝑙
0
, 𝑟
0
, 𝑑
𝑖2
, 𝑛
𝑖1
}/

{𝑙
1
, 𝑟
1
, 𝑢
𝑦
, 𝑚
𝑖1
}/

{𝑙
2
, 𝑟
2
, 𝑛
𝑖2
, 𝑛
𝑖3
}

{𝑙
0
, 𝑟
0
, 𝑢
𝑦
, 𝑛
𝑖3
}/

{𝑙
1
, 𝑟
1
, 𝑛
𝑖1
, 𝑛
𝑖2
}/

{𝑙
2
, 𝑟
2
, 𝑑
𝑖2
, 𝑚
𝑖1
}

3-biclique partitions of 𝑇
𝑖3

{𝑙
0
, 𝑟
0
, 𝑢
𝑧
, 𝑜
𝑖1
}/

{𝑙
1
, 𝑟
1
, 𝑑
𝑖3
, 𝑝
𝑖1
}/

{𝑙
2
, 𝑟
2
, 𝑝
𝑖2
, 𝑝
𝑖3
}

{𝑙
0
, 𝑟
0
, 𝑢
𝑧
, 𝑜
𝑖1
}/

{𝑙
1
, 𝑟
1
, 𝑑
𝑖3
, 𝑝
𝑖1
}/

{𝑙
2
, 𝑟
2
, 𝑝
𝑖2
, 𝑝
𝑖3
}

{𝑙
0
, 𝑟
0
, 𝑝
𝑖1
, 𝑝
𝑖2
}/

{𝑙
1
, 𝑟
1
, 𝑢
𝑧
, 𝑝
𝑖3
}/

{𝑙
2
, 𝑟
2
, 𝑑
𝑖3
, 𝑜
𝑖1
}

consists of 𝑘 − 3 disjoint bicliques, and each biclique contains
only one edge.

We have that there exists a 3-biclique partition for 𝐺
1
if

and only if there exists a 𝑘-biclique partition for 𝐺
2
by the

observation of 𝐺
1
and 𝐺

2
. The theorem follows.

ByTheorems 2 and 14, we get that Corollary 15 holds.

Corollary 15. 𝑘-PBB is NP-complete for 𝑘 ≥ 3, where 𝑘 is a
constant positive integer.

4. The Complexity of 𝑘-SPBM

Next, we discuss the complexity of 𝑘-SPBM.We show that 𝑘-
SPBM is NP-complete for any 𝑘 ≥ 3.

Theorem 16. 𝑘-SPBM is NP-complete for an arbitrary 𝑘 ≥ 3,
where 𝑘 is a constant positive integer.

Proof. It is easy to see that 𝑘-SPBM belongs to NP, given
a binary matrix 𝐴, because a nondeterministic algorithm
need only guess 𝑘 submatrices with entries “1” of 𝐴 and
check in polynomial time whether these submatrices are a 𝑘-
submatrix partition of 𝐴.

In what follows, we reduce 𝑘-PBB to 𝑘-SPBM. Assume
that 𝐵 = (𝑋, 𝑌, 𝐸) is an instance of 𝑘-PBB, where 𝑋 =

{𝑥[1], 𝑥[2], . . . , 𝑥[𝑚]}, 𝑌 = {𝑦[1], 𝑦[2], . . . , 𝑦[𝑛]}. Thus, we
construct an𝑚×𝑛 binary matrix𝐴 = [𝑎

𝑖𝑗
]
𝑚∗𝑛

, and we assign
“0” or “1” to each entry of 𝐴 by the following:

𝑎
𝑖𝑗
= {
1, (𝑥 [𝑖] , 𝑦 [𝑗]) ∈ 𝐸,

0, (𝑥 [𝑖] , 𝑦 [𝑗]) ∉ 𝐸.
(10)

We next show that there exists a 𝑘-biclique partition for 𝐵 if
and only if 𝐴 has a 𝑘-submatrix partition.
(→ ) Suppose that 𝑋 ∪ 𝑌 = 𝑉

1
∪ 𝑉
2
∪ ⋅ ⋅ ⋅ ∪ 𝑉

𝑘
is a 𝑘-

biclique partition of 𝐵. A submatrix 𝐴
𝑖
of 𝐴 can be obtained

from the vertex set𝑉
𝑖
as follows. Let𝑉

𝑖
= 𝑋
𝑖
∪𝑌
𝑖
, and let𝑋

𝑖
=

{𝑥[𝑖
1
], . . . , 𝑥[𝑖

𝑝
]} and 𝑌

𝑖
= {𝑦[𝑗

1
], . . . , 𝑦[𝑗

𝑞
]} be the left and

right vertex sets of 𝐵, respectively. Then let 𝑅
𝑖
= {𝑖
1
, . . . , 𝑖

𝑝
},

𝐶
𝑖
= {𝑗
1
, . . . , 𝑗

𝑞
}. Thus, a submatrix 𝐴

𝑖
= 𝐴[𝑅

𝑖
, 𝐶
𝑖
] of 𝐴

is selected. Note that, because 𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑘
are a 𝑘-biclique

partition of 𝐵, 𝑅
𝑖
∩ 𝑅
𝑗
= 0, 𝐶

𝑖
∩ 𝐶
𝑗
= 0, where 𝑖 ̸= 𝑗, and

𝑅
1
∪ ⋅ ⋅ ⋅ ∪ 𝑅

𝑘
= {1, . . . , 𝑚}, 𝐶

1
∪ ⋅ ⋅ ⋅ ∪ 𝐶

𝑘
= {1, 2, . . . , 𝑛}.

Moreover, for 𝑗
𝑠
∈ 𝑅
𝑖
, 𝑗
𝑡
∈ 𝐶
𝑖
. Because (𝑥[𝑖

𝑠
], 𝑦[𝑗
𝑡
]) ∈ 𝐸,

𝑎
𝑗
𝑠
𝑗
𝑡

= 1; that is, each entry of 𝐴
𝑖
is “1.” Thus, 𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑘

are a 𝑘-submatrix partition of 𝐴.
(←) Assume that 𝐴

1
= 𝐴[𝑅

1
, 𝐶
1
], . . . , 𝐴

𝑘
= 𝐴[𝑅

𝑘
, 𝐶
𝑘
]

are submatrices of 𝐴, where 𝑅
𝑖
∩ 𝑅
𝑗
= 0 (𝑖 ̸= 𝑗), 𝐶

𝑖
∩ 𝐶
𝑗
=

0 (𝑖 ̸= 𝑗), 𝑅
1
∪⋅ ⋅ ⋅∪𝑅

𝑘
= {1, . . . , 𝑚}, 𝐶

1
∪⋅ ⋅ ⋅∪𝐶

𝑘
= {1, 2, . . . , 𝑛},

and each entry of 𝐴
𝑖
is “1.” Then, for the vertex set 𝑉

𝑖
=

{𝑥[𝑖
𝑠
], 𝑦[𝑗
𝑡
]|𝑖
𝑠
∈ 𝑅
𝑖
, 𝑗
𝑡
∈ 𝐶
𝑖
} obtained from 𝑅

𝑖
and 𝐶

𝑖
,

where 1 ≤ 𝑖 ≤ 𝑘, the bipartite subgraph of 𝐵 induced by
𝑉
𝑖
is a biclique because each entry of 𝐴

𝑖
is “1.” Moreover, as

𝐴
1
, . . . , 𝐴

𝑘
are pairwise row and column exclusive and each

row (column) of𝐴 occurs in exactly one of these submatrices,
𝑋 ∪ 𝑌 = 𝑉

1
∪ 𝑉
2
⋅ ⋅ ⋅ ∪ 𝑉

𝑘
is a 3-biclique partition of 𝐵.

5. Applications

Large binarymatrices arise inmany applications, for example,
market-basket data analysis, text mining, and community
detection. In addition, we can transform a real matrix into
a binary matrix in biclustering for convenient analysis [11,
21–24]; the same approach can be used for clustering [25–
27]. Recently, because of its prevalence and importance, the
biclustering problem in binary matrices has been widely
applied to many domains [3, 24, 28], such as the following.

(1) Market-basket analysis: this goal aims at finding
groups of customers who have similar purchasing
preferences toward a subset of products. We are
given a binary matrix with rows that correspond to
customers and columns that correspond to products.
If entry (𝑖, 𝑗) of the matrix is “1,” then customer 𝑖
purchased product 𝑗. If the entry is “0,” then the
customer did not purchase that product. Clearly, a
submatrix with entries “1” formed by a subset of
rows and a subset of columns can reveal that the
corresponding customers have similar purchasing
preferences [3].

(2) Gene expression data analysis: this analysis searches
for groups of genes that have similar expression
levels toward a subset of conditions. We are given
a binary matrix with rows that correspond to genes
and columns that correspond to conditions. If entry
(𝑖, 𝑗) of the matrix is “1,” then gene 𝑖 was switched
on under condition 𝑗. If the entry is “0,” then the
gene was not switched on under the condition. A
submatrix with entries “1” formed by a subset of
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rows and a subset of columns can reveal that it is
highly likely that these genes in the submatrix either
perform similar functions or are involved in the same
biological process [11].

(3) There are also many other applications, including
community detection and text mining.

The model of 𝑘-SPBM can be used to analyze data that
belong to different domains and can help extract previously
unknown interesting patterns of biclusters.

6. Conclusions and Future Work

We have first proved that 3-PBB is NP-complete by reduction
from MO3. Moreover, we have proved that 𝑘-PBB (𝑘 > 3)
is NP-complete by reduction from 3-PBB, thus proving that
𝑘-PBB (𝑘 ≥ 3) is NP-complete. Finally, we have shown that
𝑘-SPBM (𝑘 ≥ 3) is NP-complete from the NP-completeness
of 𝑘-PBB (𝑘 ≥ 3).

Because 𝑘-SPBM (𝑘 ≥ 3) is NP-complete, the problem
has no polynomial time algorithm. Determining an efficient
exact algorithm or an approximation algorithm is important,
and it requires further research. We intend to study this
problem in the future. Moreover, the complexity of some
variants of finding bicliques in bipartite graphs is open, for
example, themaximum ±1 edge weight biclique problem [15].
Additionally, we plan to study complexity and algorithms for
these problems.

Appendices

A. Proof of Lemma 3

Proof. Obviously, for a 3-biclique partition of 𝑇
𝑖1
, 𝑞
𝑖1
and 𝑞
𝑖2

belong to 1 or 2 bicliques. If 𝑞
𝑖1
and 𝑞
𝑖2
belong to 2 bicliques,

with (𝑑
𝑖2
, 𝑞
𝑖1
) ∉ 𝐸
𝑖1
and (𝑑

𝑖2
, 𝑞
𝑖2
) ∉ 𝐸
𝑖1
, then 𝑑

𝑖2
, 𝑞
𝑖1
, and 𝑞

𝑖2

belong to three different bicliques. Moreover, (𝑞
𝑖4
, 𝑑
𝑖2
) ∉ 𝐸
𝑖1
;

therefore, either 𝑞
𝑖4
and 𝑞
𝑖1
or 𝑞
𝑖4
and 𝑞
𝑖2
belong to the same

biclique. Thus, if there exists a 3-biclique partition for 𝑇
𝑖1
,

there are three cases to be considered: (1) 𝑞
𝑖1
and 𝑞

𝑖2
belong

to 1 biclique; (2) 𝑞
𝑖1
and 𝑞
𝑖2
belong to 2 bicliques, and 𝑞

𝑖4
and

𝑞
𝑖1
belong to the same biclique; and (3) 𝑞

𝑖1
and 𝑞
𝑖2
belong to

2 bicliques and 𝑞
𝑖4
and 𝑞
𝑖2
belong to the same biclique. Below

we discuss the three cases.

(1) In case 1, as shown in Figure 3(b), suppose that
𝑉(𝑇
𝑖1
) = 𝑉

𝑏1
∪ 𝑉
𝑏2
∪ 𝑉
𝑏3

is an arbitrary 3-biclique
partition of 𝑇

𝑖1
. Because 𝑙

0
is a unique vertex that is

adjacent to 𝑞
𝑖1
and 𝑞

𝑖2
, and (𝑙

1
, 𝑞
𝑖2
) ∉ 𝐸

𝑖1
, we can

assume without loss of generality that {𝑙
0
, 𝑞
𝑖1
, 𝑞
𝑖2
} ⊆

𝑉
𝑏1
and {𝑙

1
} ⊆ 𝑉
𝑏2
. Because (𝑟

2
, 𝑙
1
) ∉ 𝐸
𝑖1
and (𝑟

2
, 𝑙
0
) ∉

𝐸
𝑖1
, we have {𝑟

2
} ⊆ 𝑉

𝑏3
. Because (𝑢

𝑥
, 𝑞
𝑖1
) ∉ 𝐸

𝑖1
and

(𝑢
𝑥
, 𝑟
2
) ∉ 𝐸
𝑖1
, and 𝑟

1
is a unique vertex that is adjacent

to 𝑙
1
and 𝑢

𝑥
, thus, we have {𝑙

1
, 𝑢
𝑥
, 𝑟
1
} ⊆ 𝑉

𝑏2
. Because

(𝑙
2
, 𝑞
𝑖1
) ∉ 𝐸

𝑖1
and (𝑙

2
, 𝑟
1
) ∉ 𝐸

𝑖1
, (𝑑
𝑖2
, 𝑞
𝑖1
) ∉ 𝐸

𝑖1
and

(𝑑
𝑖2
, 𝑟
1
) ∉ 𝐸
𝑖1
, and (𝑞

𝑖3
, 𝑙
0
) ∉ 𝐸
𝑖1
and (𝑞

𝑖3
, 𝑢
𝑥
) ∉ 𝐸
𝑖1
, we

have {𝑙
2
, 𝑑
𝑖2
, 𝑟
2
, 𝑞
𝑖3
} ⊆ 𝑉
𝑏3
. Because (𝑑

𝑖3
, 𝑞
𝑖2
) ∉ 𝐸
𝑖1
and

(𝑑
𝑖3
, 𝑞
𝑖3
) ∉ 𝐸
𝑖1
, {𝑙
1
, 𝑢
𝑥
, 𝑑
𝑖3
, 𝑟
1
} ⊆ 𝑉
𝑏2
, (𝑟
0
, 𝑙
2
) ∉ 𝐸
𝑖1
and

(𝑟
0
, 𝑙
1
) ∉ 𝐸

𝑖1
, and (𝑞

𝑖4
, 𝑢
𝑥
) ∉ 𝐸

𝑖1
and (𝑞

𝑖4
, 𝑑
𝑖2
) ∉ 𝐸

𝑖1
,

thus, we have {𝑙
0
, 𝑟
0
, 𝑞
𝑖4
, 𝑞
𝑖1
, 𝑞
𝑖2
} ⊆ 𝑉

𝑏1
. We conclude

that, in case 1, each vertex set of {𝑙
0
, 𝑟
0
, 𝑞
𝑖4
, 𝑞
𝑖1
, 𝑞
𝑖2
},

{𝑙
1
, 𝑢
𝑥
, 𝑑
𝑖3
, 𝑟
1
}, and {𝑙

2
, 𝑑
𝑖2
, 𝑟
2
, 𝑞
𝑖3
} induces a biclique.

It follows that, in case 1, 𝑉(𝑇
𝑖1
) = {𝑙
0
, 𝑟
0
, 𝑞
𝑖4
, 𝑞
𝑖1
, 𝑞
𝑖2
} ∪

{𝑙
1
, 𝑢
𝑥
, 𝑑
𝑖3
, 𝑟
1
} ∪ {𝑙
2
, 𝑑
𝑖2
, 𝑟
2
, 𝑞
𝑖3
} is a unique 3-biclique

partition of 𝑇
𝑖1
.

(2) In case 2, as shown in Figure 3(c), suppose that
𝑉(𝑇
𝑖1
) = 𝑉

𝑏1
∪ 𝑉
𝑏2
∪ 𝑉
𝑏3

is an arbitrary 3-biclique
partition of 𝑇

𝑖1
. Because {𝑞

𝑖4
, 𝑞
𝑖1
}, {𝑞
𝑖2
}, and {𝑑

𝑖2
}

belong to different bicliques, we can assume without
loss of generality that {𝑞

𝑖4
, 𝑞
𝑖1
} ⊆ 𝑉
𝑏1
, {𝑞
𝑖2
} ⊆ 𝑉
𝑏2
, and

{𝑑
𝑖2
} ⊆ 𝑉

𝑏3
. Because (𝑑

𝑖3
, 𝑞
𝑖2
) ∉ 𝐸

𝑖1
, (𝑑
𝑖3
, 𝑞
𝑖4
) ∉ 𝐸

𝑖1
,

and 𝑟
2
is a unique vertex that has edges to 𝑑

𝑖2
and 𝑑

𝑖3
,

we have {𝑑
𝑖2
, 𝑑
𝑖3
, 𝑟
2
} ⊆ 𝑉
𝑏3
. Because (𝑙

1
, 𝑞
𝑖2
) ∉ 𝐸
𝑖1
and

(𝑙
1
, 𝑟
2
) ∉ 𝐸

𝑖1
, and (𝑢

𝑥
, 𝑞
𝑖1
) ∉ 𝐸

𝑖1
and (𝑢

𝑥
, 𝑟
2
) ∉ 𝐸

𝑖1
,

we have {𝑙
1
, 𝑞
𝑖4
, 𝑞
𝑖1
} ⊆ 𝑉
𝑏1
and {𝑢

𝑥
, 𝑞
𝑖2
} ⊆ 𝑉
𝑏2
. Because

(𝑞
𝑖3
, 𝑢
𝑥
) ∉ 𝐸

𝑖1
and (𝑞

𝑖3
, 𝑑
𝑖3
) ∉ 𝐸

𝑖1
, and (𝑟

0
, 𝑙
1
) ∉ 𝐸

𝑖1

and (𝑟
0
, 𝑑
𝑖3
) ∉ 𝐸

𝑖1
, we have {𝑙

1
, 𝑞
𝑖4
, 𝑞
𝑖1
, 𝑞
𝑖3
} ⊆ 𝑉

𝑏1

and {𝑢
𝑥
, 𝑟
0
, 𝑞
𝑖2
} ⊆ 𝑉

𝑏2
. Because (𝑙

0
, 𝑟
2
) ∉ 𝐸

𝑖1
and

(𝑙
0
, 𝑞
𝑖3
) ∉ 𝐸
𝑖1
, and (𝑙

2
, 𝑟
0
) ∉ 𝐸
𝑖1
and (𝑙

2
, 𝑞
𝑖1
) ∉ 𝐸
𝑖1
, we

have {𝑙
0
, 𝑢
𝑥
, 𝑟
0
, 𝑞
𝑖2
} ⊆ 𝑉

𝑏2
and {𝑙

2
, 𝑑
𝑖2
, 𝑑
𝑖3
, 𝑟
2
} ⊆ 𝑉

𝑏3
.

Because (𝑟
1
, 𝑙
0
) ∉ 𝐸

𝑖1
and (𝑟

1
, 𝑙
2
) ∉ 𝐸

𝑖1
, we have

{𝑙
1
, 𝑟
1
, 𝑞
𝑖4
, 𝑞
𝑖1
, 𝑞
𝑖3
} ⊆ 𝑉

𝑏1
. We conclude that, in case

2, each vertex set of {𝑙
0
, 𝑢
𝑥
, 𝑟
0
, 𝑞
𝑖2
}, {𝑙
1
, 𝑟
1
, 𝑞
𝑖4
, 𝑞
𝑖1
, 𝑞
𝑖3
},

and {𝑙
2
, 𝑑
𝑖2
, 𝑑
𝑖3
, 𝑟
2
} induces a biclique. It follows that,

in case 2,𝑉(𝑇
𝑖1
) = {𝑙
0
, 𝑢
𝑥
, 𝑟
0
, 𝑞
𝑖2
}∪{𝑙
1
, 𝑟
1
, 𝑞
𝑖4
, 𝑞
𝑖1
, 𝑞
𝑖3
}∪

{𝑙
2
, 𝑑
𝑖2
, 𝑑
𝑖3
, 𝑟
2
} is a unique 3-biclique partition of 𝑇

𝑖1
.

(3) In case 3, as shown in Figure 3(d), suppose that
𝑉(𝑇
𝑖1
) = 𝑉

𝑏1
∪ 𝑉
𝑏2
∪ 𝑉
𝑏3

is an arbitrary 3-biclique
partition of 𝑇

𝑖1
. Because {𝑞

𝑖1
}, {𝑞
𝑖4
, 𝑞
𝑖2
}, and {𝑑

𝑖2
}

belong to different bicliques, we can assume without
loss of generality that {𝑞

𝑖1
} ⊆ 𝑉
𝑏1
, {𝑞
𝑖4
, 𝑞
𝑖2
} ⊆ 𝑉
𝑏2
, and

{𝑑
𝑖2
} ⊆ 𝑉

𝑏3
. Because (𝑢

𝑥
, 𝑞
𝑖1
) ∉ 𝐸

𝑖1
, (𝑢
𝑥
, 𝑞
𝑖4
) ∉ 𝐸

𝑖1
,

and 𝑟
0
is a unique vertex that is adjacent to 𝑢

𝑥
and

𝑑
𝑖2
, we have {𝑢

𝑥
, 𝑑
𝑖2
, 𝑟
0
} ⊆ 𝑉

𝑏3
. Because (𝑙

1
, 𝑟
0
) ∉ 𝐸

𝑖1

and (𝑙
1
, 𝑞
𝑖2
) ∉ 𝐸

𝑖1
, (𝑑
𝑖3
, 𝑞
𝑖4
) ∉ 𝐸

𝑖1
and (𝑑

𝑖3
, 𝑟
0
) ∉

𝐸
𝑖1
, (𝑟
1
, 𝑑
𝑖2
) ∉ 𝐸

𝑖1
and Γ(𝑟

1
) ∩ (Γ(𝑢

𝑥
) ∩ Γ(𝑞

𝑖2
)) =

0, and (𝑙
2
, 𝑞
𝑖1
) ∉ 𝐸

𝑖1
and (𝑙

2
, 𝑟
0
) ∉ 𝐸

𝑖1
, we have

{𝑙
1
, 𝑑
𝑖3
, 𝑟
1
, 𝑞
𝑖1
} ⊆ 𝑉

𝑏1
and {𝑙

2
, 𝑞
𝑖4
, 𝑞
𝑖2
} ⊆ 𝑉

𝑏2
. Because

(𝑟
2
, 𝑢
𝑥
) ∉ 𝐸

𝑖1
and (𝑟

2
, 𝑙
1
) ∉ 𝐸

𝑖1
, and (𝑞

𝑖3
, 𝑑
𝑖3
) ∉ 𝐸

𝑖1

and (𝑞
𝑖3
, 𝑢
𝑥
) ∉ 𝐸
𝑖1
, we have {𝑙

2
, 𝑟
2
, 𝑞
𝑖3
, 𝑞
𝑖4
, 𝑞
𝑖2
} ⊆ 𝑉

𝑏2
.

Because (𝑙
0
, 𝑟
1
) ∉ 𝐸

𝑖1
and (𝑙

0
, 𝑟
2
) ∉ 𝐸

𝑖1
, we have

{𝑙
0
, 𝑢
𝑥
, 𝑑
𝑖2
, 𝑟
0
} ⊆ 𝑉

𝑏3
. We conclude that, in case 3,

each vertex set of {𝑙
0
, 𝑢
𝑥
, 𝑑
𝑖2
, 𝑟
0
}, {𝑙
1
, 𝑑
𝑖3
, 𝑟
1
, 𝑞
𝑖1
}, and

{𝑙
2
, 𝑟
2
, 𝑞
𝑖3
, 𝑞
𝑖4
, 𝑞
𝑖2
} induces a biclique. It follows that,

in case 3, 𝑉(𝑇
𝑖1
) = {𝑙

0
, 𝑢
𝑥
, 𝑑
𝑖2
, 𝑟
0
} ∪ {𝑙
1
, 𝑑
𝑖3
, 𝑟
1
, 𝑞
𝑖1
} ∪

{𝑙
2
, 𝑟
2
, 𝑞
𝑖3
, 𝑞
𝑖4
, 𝑞
𝑖2
} is a unique 3-biclique partition of

𝑇
𝑖1
.

Thus, there exist exactly three 3-biclique partitions for𝑇
𝑖1
.

The lemma follows.

B. Proof of Lemma 4

Proof. By Lemma 3, there exist exactly three 3-biclique parti-
tions for 𝑇

𝑖1
. Therefore, the lemma follows.
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C. Proof of Lemma 5

Proof. For a 3-biclique partition of 𝑇
𝑖2
, there are two cases to

be considered: (1) 𝑛
𝑖1
and 𝑛
𝑖2
belong to the same biclique, and

(2) 𝑛
𝑖1
and 𝑛
𝑖2
belong to different bicliques. Below we discuss

the two cases.
(1) In case 1, as shown in Figure 4(b), suppose that
𝑉(𝑇
𝑖2
) = 𝑉

𝑏1
∪ 𝑉
𝑏2
∪ 𝑉
𝑏3

is an arbitrary 3-biclique
partition of 𝑇

𝑖2
. Because 𝑙

1
is a unique vertex that

is adjacent to 𝑛
𝑖1
and 𝑛

𝑖2
, and 𝑚

𝑖1
has no edges to

𝑛
𝑖1
and 𝑛

𝑖2
, we can assume without loss of generality

that {𝑙
1
, 𝑛
𝑖1
, 𝑛
𝑖2
} ⊆ 𝑉

𝑏1
and {𝑚

𝑖1
} ⊆ 𝑉

𝑏2
. Because

(𝑙
0
, 𝑛
𝑖2
) ∉ 𝐸

𝑖2
and Γ(𝑙

0
) ∩ Γ(𝑚

𝑖1
) = 0, (𝑟

0
, 𝑚
𝑖1
) ∉

𝐸
𝑖2

and (𝑟
0
, 𝑙
1
) ∉ 𝐸

𝑖2
, and (𝑛

𝑖3
, 𝑚
𝑖1
) ∉ 𝐸

𝑖2
and

(𝑛
𝑖3
, 𝑙
1
) ∉ 𝐸

𝑖2
, we have {𝑙

0
, 𝑟
0
, 𝑛
𝑖3
} ⊆ 𝑉

𝑏3
. Because

(𝑑
𝑖2
, 𝑛
𝑖2
) ∉ 𝐸

𝑖2
and (𝑑

𝑖2
, 𝑛
𝑖3
) ∉ 𝐸

𝑖2
, (𝑙
2
, 𝑛
𝑖1
) ∉ 𝐸

𝑖2

and (𝑙
2
, 𝑟
0
) ∉ 𝐸
𝑖2
, and (𝑟

2
, 𝑙
1
) ∉ 𝐸
𝑖2
and (𝑟

2
, 𝑙
0
) ∉ 𝐸
𝑖2
,

we have {𝑙
2
, 𝑑
𝑖2
, 𝑚
𝑖1
, 𝑟
2
} ⊆ 𝑉

𝑏2
. Because (𝑟

1
, 𝑙
0
) ∉ 𝐸

𝑖2

and (𝑟
1
, 𝑙
2
) ∉ 𝐸

𝑖2
, we have {𝑙

1
, 𝑟
1
, 𝑛
𝑖1
, 𝑛
𝑖2
} ⊆ 𝑉

𝑏1
.

Because (𝑢
𝑦
, 𝑛
𝑖1
) ∉ 𝐸

𝑖2
and (𝑢

𝑦
, 𝑟
2
) ∉ 𝐸

𝑖2
, we have

{𝑙
0
, 𝑢
𝑦
, 𝑟
0
, 𝑛
𝑖3
} ⊆ 𝑉

𝑏3
. We conclude that, in case 1,

each vertex set of {𝑙
1
, 𝑟
1
, 𝑛
𝑖1
, 𝑛
𝑖2
}, {𝑙
0
, 𝑢
𝑦
, 𝑟
0
, 𝑛
𝑖3
}, and

{𝑙
2
, 𝑑
𝑖2
, 𝑚
𝑖1
, 𝑟
2
} induces a biclique. It follows that, in

case 1, 𝑉(𝑇
𝑖2
) = {𝑙

1
, 𝑟
1
, 𝑛
𝑖1
, 𝑛
𝑖2
} ∪ {𝑙

0
, 𝑢
𝑦
, 𝑟
0
, 𝑛
𝑖3
} ∪

{𝑙
2
, 𝑑
𝑖2
, 𝑚
𝑖1
, 𝑟
2
} is a unique 3-biclique partition of 𝑇

𝑖2
.

(2) In case 2, as shown in Figure 4(c), suppose that
𝑉(𝑇
𝑖2
) = 𝑉

𝑏1
∪ 𝑉
𝑏2
∪ 𝑉
𝑏3

is an arbitrary 3-biclique
partition of 𝑇

𝑖2
. Because 𝑢

𝑦
and 𝑚

𝑖1
have no edges to

𝑛
𝑖1
and 𝑛
𝑖2
, and 𝑟

1
is a unique vertex that is adjacent to

𝑢
𝑦
and𝑚

𝑖1
, it follows that {𝑢

𝑦
, 𝑚
𝑖1
, 𝑟
1
}, {𝑛
𝑖1
}, and {𝑛

𝑖2
}

must belong to different bicliques. We can assume
without loss of generality that {𝑢

𝑦
, 𝑚
𝑖1
, 𝑟
1
} ⊆ 𝑉

𝑏1

and {𝑛
𝑖1
} ⊆ 𝑉

𝑏2
, {𝑛
𝑖2
} ⊆ 𝑉

𝑏3
. Because (𝑑

𝑖2
, 𝑛
𝑖2
) ∉

𝐸
𝑖2
and (𝑑

𝑖2
, 𝑟
1
) ∉ 𝐸

𝑖2
, (𝑟
0
, 𝑚
𝑖1
) ∉ 𝐸

𝑖2
and Γ(𝑟

0
) ∩

(Γ(𝑛
𝑖2
) = 0, and (𝑙

0
, 𝑛
𝑖2
) ∉ 𝐸

𝑖2
and (𝑙

0
, 𝑟
1
) ∉ 𝐸

𝑖2
, we

have {𝑙
0
, 𝑑
𝑖2
, 𝑟
0
, 𝑛
𝑖1
} ⊆ 𝑉

𝑏2
. Because (𝑛

𝑖3
, 𝑚
𝑖1
) ∉ 𝐸

𝑖2

and (𝑛
𝑖3
, 𝑑
𝑖2
) ∉ 𝐸

𝑖2
, (𝑟
2
, 𝑙
0
) ∉ 𝐸

𝑖2
and (𝑟

2
, 𝑢
𝑦
) ∉

𝐸
𝑖2
, and (𝑙

2
, 𝑟
1
) ∉ 𝐸

𝑖2
and (𝑙

2
, 𝑛
𝑖1
) ∉ 𝐸

𝑖2
, we have

{𝑙
2
, 𝑟
2
, 𝑛
𝑖3
, 𝑛
𝑖2
} ⊆ 𝑉

𝑏3
. Because (𝑙

1
, 𝑟
2
) ∉ 𝐸

𝑖2
and

(𝑙
1
, 𝑟
0
) ∉ 𝐸

𝑖2
, we have {𝑙

1
, 𝑢
𝑦
, 𝑚
𝑖1
, 𝑟
1
} ⊆ 𝑉

𝑏1
. We con-

clude that, in case 1, each vertex set of {𝑙
1
, 𝑢
𝑦
, 𝑚
𝑖1
, 𝑟
1
},

{𝑙
0
, 𝑑
𝑖2
, 𝑟
0
, 𝑛
𝑖1
}, and {𝑙

2
, 𝑟
2
, 𝑛
𝑖3
, 𝑛
𝑖2
} induces a biclique.

It follows that, in case 2, 𝑉(𝑇
𝑖2
) = {𝑙

1
, 𝑢
𝑦
, 𝑟
1
, 𝑚
𝑖1
} ∪

{𝑙
0
, 𝑑
𝑖2
, 𝑟
0
, 𝑛
𝑖1
} ∪ {𝑙
2
, 𝑟
2
, 𝑛
𝑖3
, 𝑛
𝑖2
} is a unique 3-biclique

partition of 𝑇
𝑖2
.

Thus, there exist exactly two 3-biclique partitions for 𝑇
𝑖2
.

The lemma follows.

D. Proof of Lemma 6

Proof. By Lemma 5, there exist exactly two 3-biclique parti-
tions for 𝑇

𝑖2
. Therefore, the lemma follows.

E. Proof of Proposition 9

Proof. Suppose that a bipartite subgraph of 𝐵
𝑖
induced by

𝐿
𝑖𝑗
∪ 𝑅
𝑖𝑗
= 𝑉(𝑇

𝑖𝑗
) is 𝑇
𝑖𝑗
[𝐵
𝑖
] = (𝐿

𝑖𝑗
, 𝑅
𝑖𝑗
, 𝐸


𝑖𝑗
[𝐵
𝑖
]). It suffices

to prove that 𝐸
𝑖𝑗
[𝐵
𝑖
] = 𝐸

𝑖𝑗
. By Formulae (4) and (5), for

an edge (𝑢, V) ∈ 𝐸
2
[𝐵
𝑖
], 𝑢 and V do not simultaneously

belong to 𝑇
𝑖𝑗
. That is, 𝐸

𝑖𝑗
[𝐵
𝑖
] ∩ 𝐸

2
[𝐵
𝑖
] = 0. Therefore, we

need only consider whether the edges in 𝐸
1
[𝐵
𝑖
] can lead to a

difference between 𝐸
𝑖𝑗
[𝐵
𝑖
] and 𝐸

𝑖𝑗
. By Formula (3), we have

𝐸
𝑖𝑗
⊑ 𝐸


𝑖𝑗
[𝐵
𝑖
]. For 𝑘 ̸= 𝑗, we next show that, if any edge of

𝑇
𝑖𝑘
does not belong to 𝑇

𝑖𝑗
, then it cannot become an edge

of 𝑇
𝑖𝑗
[𝐵
𝑖
]. To ensure this result, it suffices to show that the

public vertices of 𝑇
𝑖𝑗
and 𝑇

𝑖𝑘
induce isomorphic bipartite

subgraphs in 𝑇
𝑖𝑗
and 𝑇

𝑖𝑘
, respectively. In fact, the vertex set

(𝐿
𝑖1
∩ 𝐿
𝑖2
) ∪ (𝑅

𝑖1
∩ 𝑅
𝑖2
) = {𝑙

0
, 𝑙
1
, 𝑙
2
, 𝑟
0
, 𝑟
1
, 𝑟
2
, 𝑑
𝑖2
} induces

isomorphic bipartite subgraphs in 𝑇
𝑖1
and 𝑇

𝑖2
; the vertex set

(𝐿
𝑖1
∩ 𝐿
𝑖3
) ∪ (𝑅

𝑖1
∩ 𝑅
𝑖3
) = {𝑙

0
, 𝑙
1
, 𝑙
2
, 𝑟
0
, 𝑟
1
, 𝑟
2
, 𝑑
𝑖3
} induces

isomorphic bipartite subgraphs in 𝑇
𝑖1
and 𝑇

𝑖3
; the vertex set

(𝐿
𝑖2
∩𝐿
𝑖3
)∪(𝑅
𝑖2
∩𝑅
𝑖3
) = {𝑙
0
, 𝑙
1
, 𝑙
2
, 𝑟
0
, 𝑟
1
, 𝑟
2
} induces isomorphic

bipartite subgraphs in 𝑇
𝑖2
and 𝑇

𝑖3
. Thus, 𝐸

𝑖𝑗
[𝐵
𝑖
] = 𝐸



𝑖𝑗
[𝐵
𝑖
] ∩

𝐸
1
[𝐵
𝑖
] = 𝐸
𝑖𝑗
.

F. Proof of Proposition 10

Proof. Suppose that the bipartite subgraph induced by 𝑉(𝐵
𝑖
)

is 𝐵
𝑖
[𝐵] = (𝑋[𝐵

𝑖
], 𝑌[𝐵

𝑖
], 𝐸


𝑖
[𝐵]); we show that 𝐸

𝑖
[𝐵] = 𝐸[𝐵

𝑖
]

as follows. By Formulae (8) and (9), for an edge (𝑢, V) ∈ 𝐸
2
[𝐵],

𝑢 and V do not simultaneously belong to the same 𝐵
𝑖
. In other

words, 𝐸
𝑖
[𝐵] ∩ 𝐸

2
[𝐵] = 0. Thus, we need only to consider

whether an edge in 𝐸
1
[𝐵] can lead to a difference between

𝐸


𝑖
[𝐵] and 𝐸[𝐵

𝑖
]. From Formula (7), we have 𝐸[𝐵

𝑖
] ⊑ 𝐸



𝑖
[𝐵].

For 𝑗 ̸= 𝑖, we next show that, for an arbitrary edge of 𝐵
𝑗
, if

it does not belong to 𝐵
𝑖
, then it cannot become an edge of

𝐵
𝑖
[𝐵]. To ensure this result, it suffices to show that the public

vertices of 𝐵
𝑗
and 𝐵

𝑖
induce isomorphic bipartite subgraphs

in 𝐵
𝑗
and 𝐵

𝑖
, respectively. In fact, if 𝑐

𝑖
∩ 𝑐
𝑗
= 0, then (𝑋[𝐵

𝑖
] ∩

𝑋[𝐵
𝑗
]) ∪ (𝑌[𝐵

𝑖
] ∩ 𝑌[𝐵

𝑗
]) = {𝑙

0
, 𝑙
1
, 𝑙
2
, 𝑟
0
, 𝑟
1
, 𝑟
2
}. Obviously,

{𝑙
0
, 𝑙
1
, 𝑙
2
, 𝑟
0
, 𝑟
1
, 𝑟
2
} induces isomorphic bipartite subgraphs in

𝐵
𝑖
and𝐵

𝑗
. If 𝑐
𝑖
∩𝑐
𝑗
̸= 0, then (𝑋[𝐵

𝑖
]∩𝑋[𝐵

𝑗
])∪(𝑌[𝐵

𝑖
]∩𝑌[𝐵

𝑗
]) =

(𝑐
𝑖
∩ 𝑐
𝑗
) ∪ {𝑙
0
, 𝑙
1
, 𝑙
2
, 𝑟
0
, 𝑟
1
, 𝑟
2
}. Note that any vertex belonging

to 𝑐
𝑖
∩ 𝑐
𝑗
is always adjacent to 𝑟

0
and 𝑟
1
in 𝐵
𝑖
or 𝐵
𝑗
. Hence,

(𝑐
𝑖
∩ 𝑐
𝑗
) ∪ {𝑙

0
, 𝑙
1
, 𝑙
2
, 𝑟
0
, 𝑟
1
, 𝑟
2
} induces isomorphic bipartite

subgraphs in 𝐵
𝑖
and 𝐵

𝑗
. Therefore, the bipartite subgraph of

𝐵 induced by 𝑉(𝐵
𝑖
) is isomorphic to 𝐵

𝑖
. From Proposition 9,

the bipartite subgraph of 𝐵 induced by 𝑉(𝑇
𝑖𝑗
) is isomorphic

to 𝑇
𝑖𝑗
.
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