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In order to solve the large-scale integral dynamic scheduling of continuous berths and quay cranes problem, a method based
on rolling-horizon strategy is proposed. A multiobjective optimization model that is established minimizes the total penalty costs
considering vessels’ deviations to their preferred berthing positions, delayed times for berthing comparing to their estimated arrival
times, and delayed times for departure comparing to their estimated departure times. Then, the scheduling process was divided
into a set of continual scheduling interval according to the dynamic arrival sequences. Meanwhile, rolling-horizon strategies for
setting rolling and frozen windows and the parameter updating strategy are designed. The input parameters of the model in the
next rolling window are updated according to the optimal results of each time window which have been obtained. The model is
solved by choosing appropriate rolling and freezing window lengths that represents the numbers of adjacent vessels in the sequence
of calling vessels. The holistic optimal solution is obtained by gradually rolling and combining the results of each window. Finally, a
case study indicated that the rolling schedule can solve large-scale scheduling problems, and the efficiency of the proposed approach

relates to the size of rolling window, freeze ship quantity, and rolling frequency.

1. Introduction

Along with the rapid development of large-scale container
terminals and large container ships, the container handling
efficiency plays an increasingly important role in competition
environment of container terminals, which increases the
difficulty and complexity of large-scale integral dynamic
scheduling of berths and quay cranes. Berths and quay cranes
are critical resources in container terminals. So, the berth
allocation problem (BAP) and quay crane assignment prob-
lem (QCAP) are important issues which improve the whole
efficiency of a container terminal. A reasonable arrangement
of berth and quay cranes reduces the stay time of vessels
at berths as well as the operational cost and improves the
turnover rate of vessels at then container terminal and profit
and service ability of the container terminal. For most large-
scale container terminals in China, many methods men-
tioned in the literature cannot be applied in practice because
of unacceptable computational performance, even for solving

a 24-hour berth schedule. While rolling-horizon strategy is
widely used in real operational plan of container terminals,
especially suitable for dynamic continuous berth allocation
problem (DCBAP) which conforms well with real situations.
Rolling-horizon scheduling method is a decomposition strat-
egy for large-scale problem, which means to solve original
problem by decomposing it into small subproblems. It is an
effective method to solve large-scale complex problems [1-
3]. Berthing plan is a kind of multiprocessor task scheduling
[4, 5], so the rolling strategy can be used for reference.
Compared with the existing literature, including that
of [6], which formulated the continuous CBAP, the main
contributions of this paper are elucidated as follows. First, this
paper formulated two constraints including the adjustment
of the amount of quay cranes allocated to a vessel and the
limitation of total number. A mixed-integer multiobjective
optimization model was established which minimizes the
total penalty cost that consists of deviations of the solution to
the preferred berthing position and estimated berthing and



departure times. Then, the scheduling process was divided
into a set of continual scheduling intervals according to
the vessels’ arrival sequences. Third, this paper developed
the rolling-horizon strategies for setting rolling and frozen
windows and updating methods for the present window
based on past windows. Through large-scale numerical case
study; it is indicated that the model and rolling-horizon strat-
egy proposed in our paper can solve large-scale scheduling
problems and that the relationship between the efficiency
and the amount of vessels is almost linear; it can be applied
to decision support system for DCBAP large-scale container
terminals.

2. Related Studies

BAP and QCAP are two important issues in operations
optimization of container terminals. According to whether
mooring points are continuous, BAPs can be divided into
discrete BAP (DBAP) and continuous BAP (CBAP) [7]. In
DBAP, the available berths are regarded as a limited set
of mooring points. Vessels cannot berth across more than
one berth [8], while CBAP takes berths as a continuous
mooring space. Vessels can moor and be handled anywhere
in this space, not subjected to the limitations of berthing
positions [9]. According to the vessel’s arrival time, BAPs
can be classified into static BAP and dynamic BAP. Static
BAP means all the vessels have already arrived in port before
berth allocation [10]. While in Dynamic BAP, some vessels
are yet in terminal at the beginning of the berth allocation,
but others will arrive at a certain time during the allocation
[11]. The dynamic arrival sequence of the vessels provides the
foundation for the rolling scheduling in this work.
According to the literature, the CBAP can be divided into
two categories. The first is to consider BAP and QCAP as
two independent stages. In berth allocation, the duration of
a vessel is estimated by its capacity and distance between
the actual berthing position and the preference berthing
position. Then, the berthing position, berthing time, and
departure time can be obtained. However, It may cause
problems when BAP and QCAP are studied independently.
For instance, if the container terminal is busy, the limited
quay cranes cannot meet the demand of operations and
it may result in increasing waiting times of vessels at the
terminal, while if the container terminal is idle, it may result
in wasting resources [5, 10, 12, 13]. Considering that the
operation time of a vessel depends on the amount of cranes
assigned to it, the second method integrated scheduling
raised a lot of attention. In integrated scheduling, the amount
of quay cranes is taken into consideration in BAP. Imai
et al. [13] established a model for DBAP that optimized
the berth allocation and quay cranes assignment with the
consideration of path optimization of quay cranes. Legato et
al. [14] designed a model in stochastic dynamic environment
with the minimization of vessel’s operation time and quay
cranes. Though many models and algorithms are developed
for BAPs, the quay-crane constraints (the amount of quay
cranes allocated to a vessel determines the vessel’s handling
time and that the total number of quay cranes is limited) are
simplified for computing performance problem. For instance,
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Zhen et al. [15] conducted a scenario analysis that aimed at
the uncertainty of berth allocation by heuristic method. An
experiment which has a scale of 40 vessels was performed,
while the effect of the quantity of cranes on the operating
time was not considered. Sammarra et al. [16] solved a QCAP
with Tabu search algorithm and also ignored this effect. To
our knowledge, few literature studied large-scale scheduling
problems (e.g., over 80 vessels) that considered the two quay-
crane constraints.

The large-scale problems of dynamic CBAP with quay
assignment are difficult to be solved in acceptable computa-
tion times. Previous researches used heuristic algorithms, for
example, Tabu search and simulated annealing algorithm, to
solve the problems [14]. Exact algorithms are generally used
to solve small-scale problem [16]. Rolling-horizon scheduling
has been widely used in manufacture, and the main principle
is to solve a series of small optimization problems instead
of solving large-scale scheduling problem [17, 18]. Raa et al.
[19] solved the integral scheduling of dynamic DBAP and
QCAP by rolling-horizon scheduling, and the length of
rolling window was optimized by a hybrid heuristic algo-
rithm. Chang et al. [20] considered a CBAP from the
perspective of energy consumption and proposed the rolling-
horizon optimization strategy but ignored the impact of the
assignment of quay cranes on the results.

In this work, DCBAP considered dynamic berthing,
continuous berth allocation, and quay cranes assignment
at the same time. DCBAP conforms well with the actual
situation of dynamic optimization in container terminals.
Few literature have considered DCBAP. Kim and Park [21]
designed a two-phase solution procedure for DCBAP. The
first phase determines the berthing position and time of each
vessel as well as the number of cranes assigned to each vessel
at each time segment. In the second phase, the subgradient
optimization technique is applied to obtain a near-optimal
solution of the first phase. In this phase, a detailed schedule
for each quay crane is constructed. But in the experiment,
the method can only obtain approximate solutions for small-
or medium-sized problems with 9 quay cranes, 40 vessels,
and 1200 meters berthing line. Zhang et al. [22] considered
the coverage ranges of quay cranes and allowed for limited
adjustments of quay cranes during loading and discharging
based on Park and Kim [6]. Lim [23] transformed BAP to a
restricted form of the two-dimensional packing problem. A
graph-based representation is used to capture the problem,
and an effective heuristic is proposed to solve the problem.

3. DCBAP Problem

The scheduling of continuous berth allocation problem with
quay assignment needs to determine the berthing positions,
berthing times, and the handling cranes for all vessels at
each time. Generally, before the vessel moor alongside, the
container terminal will allocate a preferred berth that the
distance to the yard is the shortest. To improve the operating
efficiency and reduce the operation cost, the real berthing
time should be close to the expected berthing time. If
the berthing time delays, the vessel should speed down or wait



Mathematical Problems in Engineering

in the anchorage, which will increase fuel consumption and
affect the sail plan. The handling operations of a vessel should
be completed in time so it can depart in time; delays will cause
penalties and will reduce the service quality of the container
terminal.

The berth in most of modern large container terminals
is continuous. Park and Kim [6] solved DCBAP by dividing
berth and time into several intervals and established a two-
dimensional coordinate system with time as X-axis and berth
as Y-axis; the X-axis denotes the berthing times and the Y-
axis denotes the berthing positions. Both of the positions
and times are continuous, and each vessel can only occupy
one rectangle in the X-Y space. The horizontal length of
rectangle depends on vessel length, and the width of rectangle
depends on the container handling time that varies inversely
to the number of cranes assigned to this vessel. Each rectangle
represents a berth plan for a vessel. Based on the model
proposed by Park and Kim [6], the DCBAP model built
in this work considers the following reasonable situations.
First, each vessel has a preferred berth that is determined
in advance. Both of the position and time are continuous,
and each vessel can only occupy one rectangle. The width of
the rectangle is only related to vessel length and is irrelevant
to vessel type. Second, the horizontal length of rectangle
depends on the container handling time that varies inversely
to the cranes assigned to this vessel. Third, the quay cranes
available for each vessel are constrained by a minimum quan-
tity and maximum quantity. The two quantities usually are
determined by the contract between the shipping company
and the terminal. Fourth, the ship handling tasks must be
finished without interruption (when no crane is allocated to
the vessel).

4. Formulation

4.1. Notations

(1) Sets are as follows:

(a) sl ={1,2,...,sls}: the set of vessels;

(b) sm = {1,2,...,sms}: the set of berthing posi-
tions;

(c) sn = {1,2,...,sns}: the set of time segments.

(2) Parameters are as follows:

(a) ey: the expected arrival time of vessel k;

(b) ay: the total operation time of cranes, which
means the total amount of time segments
required to handle all containers for vessel k;

(c) by: the length of vessel k;

(d) dj: the due time for the departure of vessel k;

(e) s: the preferred berthing position of vessel k;

(f) ¢: the penalty cost per unit distance of vessel
k between the berthing position and preferred
berthing position;

(g) ¢: the penalty cost of vessel k per unit time of
arrival after e;;

(h) ¢+ the penalty cost of vessel k per unit time of
delay beyond the due time;
(i) li: the minimum quantity of cranes that should
be assigned to vessel k;
(j) uy: the maximum quantity of cranes that can be
assigned to vessel k;
(k) c: the total number of available cranes (C > u;);
(D) A ; if the cell (3, j) in the time-space grid is
occupied, it equals 1; otherwise, it is equal to 0;
(m) D;: the number of cranes that is assigned at time
j (the available cranes number equals ¢ — D s
(n) M: alarge positive real number.

(3) Decision variables are as follows:

(a) x; j: if the grid square (i, j) is covered by the
rectangle for vessel k € s, it is equal to 1;
otherwise, it is equal to 0;

(b) z; j: 1, if the preference point of vessel k € sv
is located at (i, j) in the lower-left comer point
of the rectangle corresponding to the vessel;
otherwise, it is equal to 0;

(¢) vij: L, if vessel k is operated at time segment j;
otherwise, it is equal to 0;

(d) uy;: 1, if vessel k is berthed at berthing position
i; otherwise, it is equal to 0;

(e) Y the number of cranes allocated to vessel k €
sv at time j;

(f) Cy: the completion time of container handling
for vessel k;

(g) BL,: the left most berthing position of a vessel

(h) BRy: the right most berthing position of a vessel
k;

(i) TL;: the delayed amount of berthing time of
vessel k;

(j) DL;: the delayed amount of departure time of
vessel k.

The following variables can be expressed by the above
variables and parameters:

(1) Bk = Yiesm, jesn(Zk,i,j71): the berthing position of vessel
k € sv;

(2) Ty = Yiesm,jesn(Zi,ij - J): the berthing time of vessel
k € sv;

(3) POS; ; = Yken(Zi,ij - k): the vessel that occupies the
cell (4, j) in the time-space grid.

4.2. The Model. The goals of the DCBAP include two aspects:
first, the optimization of berthing position, which means
that the berthing position should be as close as possible to
the preferred berthing position so as to reduce the time to
move the container from vessel to container yard and increase
the operation efficiency; second, the optimization of berthing
time, which means the operations should be completed as



early as possible in due time. Aimed at the optimization
of berth and time, a multiobjective model proposed as
(M1) minimizes the total penalty cost including deviation of
berthing, berthing delay, and departure delay. The objective
functions are defined in (1)-(4), and the constraints are
defined in (5)-(29). Consider the following:

(M1) Minimize f = (f", /%, f°), o)
f'= Z (BLy + BRy) Cll’ (2)
k
f*= 2. (PLe- ), 3)
k
=2 (1L q). (4)
k

s.t. BLk > Bk — Sk’ Vk, (5)
BR, > S, - B, Vk, (6)
TLk 2 Tk - ek; Vk) (7)
Tk 2 ek; Vk) (8)
DL, >C,—d,, Vk, 9)
Cez2Vi;(j+1), Vk (10)
Y X <L Vij, )

k
;ka S c, V], (12)
ZYk’j > ak, Vk, (13)

J
Vii <Y Vik, (14)
Yk,j S M ° Vk,j’ v]) ks (15)
Y +M(1-V;) 2k Vik (16)
Yejsue Vik (17)
Yij <) Xy ik, (18)
M-Vij2 Y Xy Viok, 19)
Uy, < ZXk’i’f’ Vi, k, (20)

J

M-Ug 2 Y Xy, ik 1)
j
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ib—ia+1< Y Uy,

ia<i<ib
22
+ M (2= Uyio = Uip) > @)
Vk, 1 <ia <ib < sms,
jb-ja+1< Y Vi,
ja<j<ijb
(23)
+M(2-Vijo=Vip)
Vk, 1 < ja < jb < sns,
Vij < Z Ziijar Vi ks (24)
i,ja<j
sz,i,j = 1, Vk, (25)
ij

> Xieij

i,,(i<ia, or, izia+by )

< M<1 - sz,ia,j>, (26)

J

Vk, 2 <ia < (sms-b),

Z Xij < M<1 - sz,l,j> ,  Vk, (27)
j

i, ,i>by
> Xiij
i,j,i=sms—by
(28)
<M <1 - sz,sms—bkﬂ,j) > Vk’
j

b= Y Xsy < M(1=Vig)s VK. (a)

i

The objective equation (1) specifies the total penalties
including the cost for deviation of the actual berthing posi-
tion to the preferred berthing position, the cost for vessels’
berthing delay, and the cost for vessels’ departure delay, as,
respectively, defined in (2)-(4). Equations (5)-(6) indicate
that the berthing position deviates to the preferred berthing
position. Equation (7) constrains the delayed amount of
berthing time of vessel. Equation (8) constrains that the
arrival time must be earlier than the berthing time. Equation
(9) calculates the delayed amount of departure time. Equation
(10) constrains that the departure time of vessel must be
later than the completion time. Equation (11) indicates that
each time-space grid can only be occupied by one vessel.
Equation (12) represents the fact that the total number of
cranes allocated to vessels at each time segment is restricted
by c. Equation (13) constrains that the total operation time
of the vessel should excess its total operation time of
cranes. Equations (14)-(15) restrict the sustainability of vessel
handling operation; that is, if the loading and unloading
operations of a vessel start, more than one crane should be
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allocated to it during the operation time until all loading
and unloading operations are completed. Equations (16)-
(17) indicate that the quantity of cranes available for each
vessel is restricted by the maximum and minimum quantities.
Equations (18)-(19) represent the relations between V. ; and
Xp,j- Equations (20)-(21) represent the relations between
Uy, and X ; ;. Equations (22)-(24) constrains that the vessel
occupies continuous time and space after berthing. Equation
(25) ensures that each vessel has only one preference point.
Equations (26)-(29) ensure that the time-space grid can only
be occupied by a vessel that is berthed and handled in the
schedule.

The multiobjective model (M) is transformed into a
single objective model. The objective of the new model is the
weighted sum of three objectives, namely, f = Y (W™ - f¥),
where a weight vector W™ (x € {1,2,3}) represents the
significance of the three subobjectives and the preferences of
decision-makers. Therefore, a new model (M2) is devised as
follows:

(M2) Minimize f=W".f"

s.t. Constraints (2)-(10) and (13)-(29).
(30)

5. Rolling-Horizon Strategy

In the process of the operation of the rolling scheduling,
all vessels that need to be allocated are classified as three
sets including vessels berthed set, set of vessels waiting for
berthing, and set of vessels waiting for scheduling. Vessels
berthed represent those whose handling operations have
already completed or are ongoing. The vessels waiting for
berthing are those who are in scheduling but have not
yet started the handling operations. The vessels waiting
for scheduling are those who have arrived at the port but
are not yet in the schedule. During the operations of the
container terminal, the vessels arrive to the port according
to the expected berthing time, and the vessels stay in the
set of vessels waiting for scheduling in order of arrival
times. In each optimization of rolling-horizon schedule, the
vessels that have finished the handling operation can be
removed from the rolling window and the vessels waiting
for scheduling will be added into the rolling window. Then,
the schedule of the present rolling window can be obtained
through optimal algorithm.

In the process of rolling scheduling, the input parameters
of vessels waiting for berthing are updated by the scheduling
information of vessels berthed. Based on the DCBAP model
(M2), a new model (M3) was proposed as (31)-(33). Equation
(32) expands (11), which indicates that a time-space grid can
be occupied by present scheduling vessels and the vessels
that have already berthed but the operation is still ongoing
right now. The parameter A is set as the time-space grids that
have been occupied in past rolling-horizon schedule (frozen
ship). That is, A represents the time-space grids occupied by
those vessels that have already been berthed. If the time-space
grid is occupied, set the element of A to I; otherwise, set
it to 0. Equation (33) expands (12), and the parameter D is

introduced to calculate the quantity of quay cranes occupied
by vessels berthed in the past rolling-horizon schedules in
each time so as to update the available quantity of quay cranes
in each time. Consider

(M3) Minimize f=W'- f'+W>. fZ+W>. f°, (3

s.t. Y (Xisj+Aij) <1 Viij, (32)
k
;Yk,j <c-Dj; Vj,

Constraints (2)-(10) and (13)-(29).
(33)

The rolling-horizon strategy decomposes the scheduling
horizon into a series of scheduling windows, and optimal
results for each window are obtained as a small-scale opti-
mization of (M3). Then, the scheduling window is shifted to
the next and the input parameters of (M3) are updated. The
transition interval length of a shift and the size of the rolling
window are basic factors of the rolling-horizon strategy. The
transition interval is the interval between present rolling
window and next rolling window. In general, decreasing the
transition interval length can make the optimal result close to
the result of global optimization; the number of iterations of
rolling-horizon optimization increases the computation time.
The rolling window for the tth time of rolling contains a set of
top k of vessels waiting for scheduling, defined as k(¢). k is the
size of the rolling window. When k is normal, the number of
the vessels in each rolling window equals to k except the last
rolling window which may be less than k. A smaller rolling
window indicates less vessels scheduled for each time and less
computation time, while the number of iterations of rolling
optimization improves the result compared to the result of
global optimization. Figure 1 shows the rolling strategy from
tth time to t + 1th time.

In the optimal results for the tth window of the rolling-
horizon optimization, the first A vessels are frozen from the
rolling window k(t) according to the sequence of scheduled
berthing times. A is the size of the frozen window in the
rolling-horizon strategy, that is, the transition interval. The
scheduled vessels in next time (¢ + 1) for rolling-horizon
optimization are obtained by merging the A scheduled vessels
into V(t — 1) which is the vessels scheduled at (¢ — 1)th time of
rolling-horizon optimization. The other vessels in k(t) which
are not frozen still stay in V(t) and wait for the next time
of rolling-horizon optimization. Then, a new time of rolling-
horizon optimization, k(t + 1), is obtained by choosing the
first k vessels from V(t) according to their berthing times. If
the vessels left in V (¢) are less than k, we choose all vessels left.
When all vessels are in V (), all the vessels are believed to have
been scheduled, and the entire rolling-horizon optimization
is finished. The holistic optimal solution is obtained by
the rolling-horizon optimization process and combining the
results returned at each rolling window.

Based on the above analysis, the rolling-horizon strategy
for DCBAP involves the following four steps.
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FIGURE 1: An illustration of rolling strategy.

Step 1. Sort all vessels that are to be scheduled according to
the arrival times, initialize the total vessels set as sl, and set
t=1.

Step 2. Initialize the set of scheduled vessels by setting V (¢) =
® and initialize the set of vessels waiting for scheduling by
setting V(¢) = sl, obtain the rolling window k(t) by choosing
the first k vessels in set V(t), and update V (t) by setting V() =
V() \ k(t). Then, the parameter A is updated according to
whether the time-space grid is occupied by those vessels that
have already berthed; update the parameter D by calculating
the quantity of quay cranes occupied in each time segment.

Step 3. After sl « k(t), solve (M2) and obtain the berthing
schedule of k(t); freeze the first A vessels from the rolling
window k(t) according to the sequence of scheduled berthing
times of vessels in optimal results; set the vessels scheduled
as V(t + 1) by merging the A scheduled vessels into V(¢); set
the vessels waiting for scheduling as V(¢ + 1) by merging the
vessels left in rolling window (k — 1) into V().

Step 4. If |V| = sls (all vessels have been scheduled), stop and
combine the results of each window as the optimal solution;
or else, sett =t + 1 and go to Step 2.

6. Experiments

The known data and the initialized schedule are set as follows.

(1) The length of the quay line is 1200 meters (m), which
is divided into 24 grids by the unit of 50 m, while the
planning horizon is divided into 48 grids (i.e., 48 time
segments). During this period, 20 vessels arrive at the
terminal for vessel handling operations successively.

(2) For vessel k, ¢, is generated from the uniform dis-
tribution U[1,37]. Similarly, r, is generated from

U[1, 18]; g is generated from U[10, 30]. d, is gener-
ated based on ¢, and a;.. The length of the vessel (b,) is
generated from U[4, 8] based on the setting of berth
axis. The maximum and minimum numbers of cranes
are set as Table 1.

1

. =

(3) The penalty cost per unit is set to the same value; ¢
100, ¢ = 200, and ¢ = 300 for all vessels.

(4) The maximum available crane number is set to ¢ = 9.
Set M = 9999.

(5) The size of the rolling window is set to k = 5. And the
length of the transition interval is set to A = 2.

Based on Table 1, CPLEX is used as the optimization
engine for solving the mixed-integer linear programming
model (M2), and the rolling-horizon strategy was imple-
mented with C#. A berthing schedule for 20 vessels in 48
hours is obtained, as shown in Figure 2. The berthing time,
departure time, berthing position, and quay cranes assigned
are indicated in Figure 2. Each rectangle represents a set if
time-space grids are occupied by berthing vessels, and the
number represents the quay cranes assigned to the vessel at
that time segment.

Two important parameters in the rolling strategy are the
size of rolling window (k) and transition interval (A). Table 2
presents a series of results of adjusting k and A. When A =
4, the total penalties decrease first and then increase along
with the increasing of k which changes from 5 to 8. The
minimum objective function value is A = 15600 when k =
7. When k changes from 5 to 7, the total penalty decreases
with the increase of the size of the rolling window (k). This
is mainly due to the fact that with the increase of the size
of the rolling window, the quantity of vessels scheduled at
a time increases, so that the result of the rolling-horizon
optimization gets close to that of the global optimization.
The decrease of total penalty decreases the berthing delay
penalty and departure delay penalty, because the penalty for
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TABLE 1: Input data of vessels.

Vessels ETA Operations Vessel length Due time Ref. position Min. cranes Max. cranes
e a b, d, T A U
1 1 15 8 1 1 3 6
2 2 10 4 14 16 2 4
3 4 27 6 16 3 3 6
4 4 1 4 17 10 2 4
5 5 24 7 17 5 3 6
6 9 30 6 16 14 3 5
7 10 21 5 20 7 3 5
8 10 16 4 20 13 3 5
9 13 23 5 23 10 3 5
10 16 18 6 26 15 3 6
11 17 15 6 27 2 3 6
12 20 20 6 30 10 3 5
13 21 21 6 31 15 2 5
14 26 18 4 36 8 3 6
15 27 20 4 37 6 3 6
16 27 17 6 37 15 3 5
17 27 22 5 37 9 3 5
18 28 15 7 38 1 3 6
19 34 18 6 44 6 3 5
20 36 24 6 46 7 3 6

S between the container terminal operators and the shipping

DA company. Moreover, optimal results can be reached under the

RARESIRTINE V1° ) P R o balance of the stakeholders.

204 1720 [N Ppp | EEEEEE RSO ERRI NS (30 R In the rolling-horizon strategy, decreasing the transition

o 16! b V(, : Vs Ty pe interval length will increase the rolling times but the result

£ e R T B EO R =~~i EEI can be improved. Based on the comparisons of the objectives

g 1| il 5333, Ly [ s and thfe vessel’s to.ta.l stay times when A 'changes frf)m 5,7,

B el P ORI SRR EE ERV ' | e and 8 in Table 2, it is found that decreasing A can improve

A 8 Vil 5 ‘ V7 s s besed the result. For instance, when k = 7 and A changes from 5 to

' Niiried 2323333 v b e 1 pvw 4, f, fl, fz, and f3 can be improved by 13.8%, 25%, 13.7%,

4 6‘6‘36‘3&6 R L sl L oAl 0%, and 5%, respectively. Obvious effects of optimization can

L el S NN also be seen in other experiments.
0 5 12 16 20 24 28 32 36 40 44 a3 When the size of the rolling window increases from 7
Time to 8, the rolling times increase, and the total penalty cost

FIGURE 2: The schedule of a DCBAP.

berthing delay or departure delay is much more than the
penalty for deviating from the preferred positions. So when
the size of the rolling window gets bigger, the optimal result
prefers to be deviated from the preferred position or assigns
more quay cranes instead of delay to keep the total penalty
lower. Meanwhile, with the increase of k, the utilization rate of
the quay cranes also increases, the fluctuation of quay cranes
(the variance yields of the quantity of quay cranes assigned to
vessels at each time) gets lower, the quantity of quay cranes
assigned to the vessel at each time increases the balancing
degree, the operation cost of quay cranes decreases, and the
total stay time at the terminal increases slightly. A reasonable
and efficient rolling-horizon schedule needs the cooperation

increases. The size of the rolling window and the quantity of
the frozen vessels have opposite effects on the rolling times.
The former has a negative correlation with rolling times
while the latter’s correlation with rolling times is positive.
Therefore, when the container terminal operator makes a
rolling-horizon schedule, the size of the rolling window and
quantity of the frozen vessels should be set reasonably, so as
to improve the efficiency of the rolling-horizon scheduling
process.

Still as presented in Table 2, the quantity of frozen vessels
is varied to study the effect of it on the result. With the
increase of the number of the frozen vessels, the penalty
increases and the performance of rolling-horizon strategy
decreases. With the increase of the frozen vessels, the number
of the fixed vessels in each time of rolling scheduling
increases. The fixed vessels are not involved in the next times
of optimization, so that the rolling-horizon optimization
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TABLE 2: The results under different A.
k A f 1! f? f TSP (h) FC LRW
5 3 17300 2400 13400 1500 80 1.597 6
5 4 17600 1800 14000 1800 100 1.436 5
6 4 16800 1700 13600 1500 100 1.388 5
7 4 15600 1500 12600 1500 95 1344 5
7 5 18100 2000 14600 1500 100 1.320 4
8 4 18100 2000 14600 1500 105 1.313 4
8 5 17600 2100 14000 1500 105 1.350 4

Note: TST: total time staying at terminal; FC: fluctuations of cranes; LRW: length of the rolling window.

10000 -
9000 -
8000 -
7000 A
6000 -
5000 -
4000 A
3000 -

(Total penalty cost, f (yuan))

2000 A
1000 -

(Rolling times, t)

-¢-k=5 —s— k=

7
—— k=6 e k=8

FIGURE 3: The penalty cost of each rolling time under different size
of rolling window.

method cannot obtain the best result. Setting the quantity of
the frozen ships to a small value may result in rolling too
many times and computing for a long time. Therefore, in
an actual schedule, a reasonable configuration of quantity of
frozen vessels can decrease the effect of the number of fixed
vessels and optimize the computation time as well as optimize
the performance of the rolling-horizon strategy.

The coupling degree of vessels’ arrival times has a big
impact on the efficiency of the rolling strategy. As shown
in Figure 3, when the size of the rolling window changes,
the similar tendency can be seen that the penalty costs
increase sharply in the third and fifth times of rolling under
different size of rolling windows. Due to the high coupling
degree in vessels’ arrival in the last time of rolling, vessels
arrive intensely and bring too many handling operations, so
resources including quay cranes and berths are occupied for
a long time and the available resources for the next rolling
schedule are insufficient. Therefore, the successor ships have
to delay the times for berth and departure. As a result, the
efficiency of the rolling schedule decreases and the penalty
increases.

The factors that affect the rolling strategy mainly include
the size of rolling window, quantity of the frozen vessels, and
the rolling times. So appropriate size of rolling window and
quantity of frozen vessels need to be chosen to improve the
performance of the rolling-horizon strategy. When choosing
the size of the rolling window, both operation penalty cost
and computation time should be considered. On the one
hand, the size should be bigger and the quantity of vessels
in the rolling window should be sufficient enough so that
the local optimal solution (returned by solving (M3)) will be
closer to the result of global optimization. Moreover, it will
decrease the operations cost of the container terminal and
improve the service quality. On the other hand, if the size is
too big and the computation time of each time of the rolling
window gets too long, which may lead to delay of the berthing
time of vessels and affect the normal operations of container
terminals and increase the cost inversely. So the size of the
rolling window should balance both cost and computation
times to improve the operation efficiency of the container
terminal. And based on this, an appropriate quantity of frozen
vessels should be chosen to achieve the best performance of
the rolling-horizon strategy.

In this paper, the multiobjective function is changed to
a single-objective function by using weighting efficient. In
order to analyze the tradeoft between berth deviation and
time delay, the objectives are divided into two categories,
berth-varied objective f', and time-varied objectives f* and
f>. The weights of f* and f° are set as equal. By adjusting
the weight of the objects W' =0.1,02,...,09, W? = 1 -
W), 10 experimental variables can be obtained based on M2.
Then, the objective function value can be calculated based
on each experimental variable. The change trend of the two
objective functions is shown in Figure 4. With the increase of
the weight W', the berthing deviation is reduced from 7200
to 0, and when W' = 0.9 each vessel can be assigned to the
preferred berth. But the result is that the waiting time for
handling is increasing and the number of vessels that delayed
departure and the delay time is also increasing, which lead
to the fact that the penalty cost including berthing delay and
departure delay increases to 152000, the waiting time is added
by 76%, and the departure delay is added by 57%. Therefore,
controlling weight W' reasonably can seek a balance between
the deviation from the preferred berth and the waiting time.

As shown in Table 2, the optimal solution is obtained
when k = 7, A = 4. So a comparative analysis between
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TaBLE 3: Comparison between rolling-horizon and normal schedule for different vessel quantity.

Quantity of vessels Scheduling method f e e e Computation time (s)
10 Rolling-horizon 4400 900 3200 300 564.4
Normal schedule 4000 900 2800 300 1133.3
1 Rolling-horizon 5300 900 4000 0 763.2
Normal schedule 5300 900 4400 0 2054.8
2 Rolling-horizon 6200 1200 5000 0 778.2
Normal schedule 6000 1000 5000 0 7871.1
3 Rolling-horizon 7000 1000 6000 0 853.3
Normal schedule 7000 1000 6000 0 21092.1
14 Rolling-horizon 7500 1300 6200 0 954.9
Normal schedule — — — — —
15 Rolling-horizon 8500 1300 7200 0 1125.7
Normal schedule — — — — —
8 30 2.50E + 04 -
7 25
6
~ 5 20 "’2 2.00E + 04
_E 4 15 "3:
>3 o
) 10 "5 - 1.50E + 04 ~
1 > g
0 0.1 02 03 04 05 06 07 08 09 0 B 100 + 04 1
Wl
e gl 5.00E + 03 4
P2

FIGURE 4: Tradeoff between penalty of berthing deviation and time
delay.

normal schedule and rolling schedule is conducted as shown
in Table 3, where “—” indicates that the result cannot afford
the CPLEX solver running out of memory.

As shown in Table 3, when using rolling-horizon strategy,
optimal results are obtained for all the six examples. While
using normal schedule, the solution cannot be obtained when
the quantity of vessels is increasing to 14. It indicates that
the rolling-horizon strategy can decrease the complexity of
computation compared to normal schedule and solve large-
scale problems.

When the quantity of vessels increases from 10 to 15,
the optimal result of the rolling-horizon strategy is similar
to that of the normal schedule. The rolling-horizon strategy
performs well. As shown in Figure 5, from the tendency of
computation time of the rolling-horizon strategy and normal
schedule, the time increases sharply with the increase of the
total quantity of vessels. When the total quantity of vessels
is 10, the computation time of normal schedule is twice that
of the rolling schedule. When the total quantity is 13, the
time of the normal schedule is 25 times that of the rolling
schedule. The computation time of normal schedule increases
exponentially with the number of vessels, and when the total
quantity is 14, the optimal result cannot be obtained. On

0.00E + 00

Quantity of vessels

--o - Rolling-horizon
—a— Normal schedule

FIGURE 5: The computation time tendency of rolling-horizon and
normal schedule.

the contrary, the computation time of the rolling-horizon
strategy increases slightly, which is directly in proportion
to the total quantity. The normal schedule searches for a
large amount of nodes once, which burdens the CPU and
memory much. The rolling schedule has better computational
efficiency than normal schedule, and it can solve large-scale
problems in the limited time.

Though in the above experiment only 20 vessels are con-
sidered in the problems, the quantity of the vessels is directly
in proportion to the computation time. So the rolling-horizon
strategy proposed in this paper can be used to solve large-
scale problems and meet practical requirements. Based on
the above experiments, the algorithm was performed to solve
large-scale problems whose quantities of vessels range from
40 to 200 and the planning horizons range from 48 to 400
hours. The results show that the computation performance is
also almost directly in proportion to the quantity.



10

7. Conclusions

To solve the large-scale integral scheduling of DCBAP, a
method based on the rolling-horizon strategy is developed
and a mixed-integer multiobjective linear programming
model is established. The model minimizes the total penalty
including deviation of berthing, berthing delay, and depar-
ture delay. Moreover, the model is revised for the rolling-
horizon strategy. The experimental results indicate that the
method can be applied to solve large-scale DCBAP prob-
lem with the computation time linear to the quantity of
involved vessels. In the rolling-horizon strategy, the param-
eters include the sizes of the rolling window and transition
intervals have big influences on the optimality and the overall
performance of the rolling-horizon strategy. The increase of
the length of the rolling window can improve the results,
while the computation time increases exponentially. The
decrease of the length of the transition interval increases
the rolling times and improves the results. The experiments
prove that the settings of k = 7, A = 4, can obtain better
results than other settings. Meanwhile, the high coupling
degree of vessels’ arrival times will decrease the efficiency
of the rolling strategy. The actual scheduling should choose
appropriate combination of the size of rolling window and
transition interval by a series of experiments on the balance
of optimality and computation performance to improve the
efficiency of berthing schedule and the service quantity of
the container terminal and decrease the operations cost.
The rolling-horizon strategy in this paper considers the
dynamic characteristics of the vessels’ expected berthing
time. Compared to the model proposed by Park and Kim
[6], the problem scale (vessels involved) is greatly expanded,
but the possibility that vessels may arrive and be scheduled
in advance is not considered. Besides, though the on-the-
shelf solver for mixed-integer linear programming model is
convenient for researching the effectiveness of the rolling-
horizon strategy, this solver becomes a bottleneck that
restricts improvement of the computing performance. To
meet the demands of practical applications, the work on the
way is to design a heuristic algorithm to solve the model
(M2) effectively and merge it into the rolling-horizon strategy
for further improving the optimality and computational
performance.
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