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We study the effect of the coefficient 𝑓(𝑥) of the critical nonlinearity on the number of positive solutions for a 𝑝-𝑞-Laplacian
equation. Under suitable assumptions for 𝑓(𝑥) and 𝑔(𝑥), we should prove that for sufficiently small 𝜆 > 0, there exist at least
𝑘 positive solutions of the following 𝑝-𝑞-Laplacian equation, −Δ 𝑝𝑢 − Δ 𝑞𝑢 = 𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨𝑢|
𝑝
∗

−2𝑢 + 𝜆𝑔 (𝑥)
󵄨󵄨󵄨󵄨󵄨 𝑢|

𝑟−2𝑢 in Ω, 𝑢 = 0 on 𝜕Ω,

where Ω ⊂ R𝑁 is a bounded smooth domain, 𝑁 > 𝑝, 1 < 𝑞 < 𝑁(𝑝 − 1)/(𝑁 − 1) < 𝑝 ≤ max{𝑝, 𝑝∗ − 𝑞/(𝑝 − 1)} < 𝑟 < 𝑝∗,
𝑝∗ = 𝑁𝑝/(𝑁 − 𝑝) is the critical Sobolev exponent, and Δ 𝑠𝑢 = div(|∇𝑢|𝑠−2∇𝑢 is the 𝑠-Laplacian of 𝑢.

1. Introduction

This paper is concerned with the multiplicity of positive
solutions to the following p-q-Laplacian equationwith critical
nonlinearities:

−Δ𝑝𝑢 − Δ 𝑞𝑢 = 𝑓 (𝑥) |𝑢|
𝑝
∗

−2𝑢 + 𝜆𝑔 (𝑥) |𝑢|
𝑟−2𝑢 in Ω,

𝑢 = 0 on 𝜕Ω,

(𝐸𝜆)

where Ω ⊂ R𝑁 is a bounded smooth domain with smooth
boundary 𝜕Ω, 1 < 𝑞 < 𝑝 < 𝑁, 𝜆 > 0, and Δ 𝑠𝑢 =

div(|∇𝑢|𝑠−2∇𝑢) is the 𝑠-Laplacian of 𝑢, and assume that

(𝐻1) 1 < 𝑞 < 𝑁(𝑝 − 1)/(𝑁 − 1) < 𝑝 ≤ max{𝑝, 𝑝∗ − 𝑞/(𝑝 −
1)} < 𝑟 < 𝑝∗ = 𝑁𝑝/(𝑁 − 𝑝);

(𝐻2) 𝑓 and 𝑔 are positive continuous functions inΩ;
(𝐻3) There exist 𝑘 points 𝑎1, 𝑎2, . . . , 𝑎𝑘 inΩ such that 𝑓(𝑎𝑖)

are strict local maxima satisfying

𝑓 (𝑎𝑖) = max
𝑥∈Ω

𝑓 (𝑥) = 1 for 1 ≤ 𝑖 ≤ 𝑘, (1)

and for some𝛽 > 𝑁/(𝑝−1),𝑓(𝑥) = 𝑓(𝑎𝑖)+𝑂(|𝑥−𝑎𝑖|𝛽)
as 𝑥 → 𝑎𝑖 uniformly in 𝑖.

Problem (𝐸𝜆) comes, for example, from a general
reaction-diffusion system

𝑢𝑡 = div [𝐻 (𝑢) ∇𝑢] + 𝑐 (𝑥, 𝑢) , (2)

where 𝐻(𝑢) = |∇𝑢|𝑝−2 + |∇𝑢|𝑞−2. This system has a wide
range of applications in physics and related science such as
biophysics, plasma physics, and chemical reaction design. In
such applications, the function u describes a concentration,
the first term on the right-hand side of (2) corresponds to
the diffusion with a diffusion coefficient 𝐻(𝑢), whereas the
second one is the reaction and relates to sources and loss
processes. Typically, in chemical and biological applications,
the reaction term 𝑐(𝑥, 𝑢) has a polynomial form with respect
to the concentration 𝑢.

The stationary solution of (2) was studied by many
authors; that is, many works are considered the solutions of
the following problem:

− div [𝐻 (𝑢) ∇𝑢] = 𝑐 (𝑥, 𝑢) . (3)

See [1–5] for different 𝑐(𝑥, 𝑢). In the present paper we are
concerned with problem (𝐸𝜆) in a bounded domain with
𝑐(𝑥, 𝑢) = 𝑓(𝑥)|𝑢|𝑝

∗

−2𝑢 + 𝜆𝑔(𝑥)|𝑢|𝑟−2𝑢 in (3). Recently, in [6],
the authors obtain the existence of catΩ(Ω) positive solutions
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of problem (𝐸𝜆) for 𝑁 > 𝑝2 and 𝑓(𝑥) ≡ 𝑔(𝑥) ≡ 1 when
condition (𝐻1) holds, where catΩ(Ω) denotes the Lusternik-
Schnirelmann category ofΩ in itself.

Specially, if 𝑝 = 𝑞, (𝐸𝜆) can be reduced to the following
elliptic problems:

−Δ𝑝𝑢 = 𝑓 (𝑥) |𝑢|
𝑝
∗

−2𝑢 + 𝜆𝑔 (𝑥) |𝑢|
𝑟−2𝑢 in Ω,

𝑢 = 0 on 𝜕Ω.
(4)

After the well-known results of Brézis and Nirenberg [7],
who studied (4) in the case of 𝑝 = 𝑟 = 2 and 𝑓(𝑥) ≡
𝑔(𝑥) ≡ 1, a lot of problems involving the critical growth in
bounded and unbounded domains have been considered; see,
for example, [8–10] and reference therein. In particular, the
first multiplicity result for (4) has been achieved by Rey in [11]
in the semilinear case. Precisely Rey proved that if𝑁 ≥ 5, 𝑝 =
𝑟 = 2, and 𝑓(𝑥) ≡ 𝑔(𝑥) ≡ 1, for 𝜆 small enough, problem (4)
has at least catΩ(Ω) solutions. Furthermore, Alves and Ding
in [12] obtained the existence of catΩ(Ω) positive solutions to
problem (4) with 𝑝 ≥ 2, 𝑟 ∈ [𝑝, 𝑝∗), and 𝑓(𝑥) ≡ 𝑔(𝑥) ≡ 1.
Finally, we mention that [13] studied (4) when 1 < 𝑟 < 𝑝 < 𝑁
and 𝑓, 𝑔 are sign-changing and verified the existence of two
positive solutions for 𝜆 ∈ (0, 𝜆0) for some positive constant
𝜆0.

The main purpose of this paper is to analyze the effect of
the coefficient 𝑓(𝑥) of the critical nonlinearity to prove the
multiplicity of positive solutions of problem (𝐸𝜆) for small
𝜆 > 0. By the similar argument in [14], we can construct the
𝑘 compact Palais-Smale sequences that are suitably localized
in correspondence of 𝑘 maximum points of 𝑓. Under some
assumptions (𝐻1)–(𝐻3), we could show that there are at least
𝑘 positive solutions of problem (𝐸𝜆) for sufficiently small 𝜆 >
0.

This paper is organized as follows. First of all, we study
the argument of the Nehari manifoldM𝜆. Next, we prove the
existence of a positive solution𝑢0 ∈ M𝜆. Finally, we show that
the condition (𝐻3) affects the number of positive solution of
(𝐸𝜆); that is, there are at least 𝑘 critical points 𝑢𝑖 ∈ M𝜆 of 𝐽𝜆
such that 𝐽𝜆(𝑢𝑖) = 𝛼

𝑖

𝜆
((PS)-value) for 1 ≤ 𝑖 ≤ 𝑘.

The main results of this paper are given as follows.

Theorem 1. Suppose that (H1)–(H3) hold; then problem (𝐸𝜆)

has a positive solution 𝑢0 in𝑊
1,𝑝

0
(Ω) for all 𝜆 > 0.

Theorem 2. Suppose that (H1)–(H3) hold; then there exists a
𝜆0 > 0 such that for any 𝜆 ∈ (0, 𝜆0), problem (𝐸𝜆) admits at
least 𝑘 positive solutions in𝑊1,𝑝

0
(Ω).

2. Preliminaries

In what follows, we denote by ‖ ⋅ ‖𝑝, | ⋅ |𝑝 the norms on
𝑊

1,𝑝

0
(Ω) and 𝐿𝑝(Ω), respectively; that is,

‖𝑢‖𝑝 = (∫
Ω

|∇𝑢|
𝑝𝑑𝑥)

1/𝑝

, |𝑢|𝑝 = (∫
Ω

|𝑢|
𝑝𝑑𝑥)

1/𝑝

. (5)

We denote the dual space of𝑊1,𝑝

0
(Ω) by𝑊󸀠(Ω). Set also

𝐷1,𝑝 (R𝑁)

:= {𝑢 ∈ 𝐿𝑝
∗

(R𝑁) : 𝜕𝑢
𝜕𝑥𝑖

∈ 𝐿𝑝 (R𝑁) for 𝑖 = 1, 2, . . . , 𝑁}

(6)

equipped with the norm

‖𝑢‖∗ = (∫
R𝑁
|∇𝑢|

𝑝𝑑𝑥)
1/𝑝

. (7)

We will denote by 𝑆 the best Sobolev constant as follows:

𝑆 = inf
𝑢∈𝑊
1,𝑝

0
(Ω)\{0}

‖𝑢‖
𝑝

𝑝

|𝑢|
𝑝

𝑝∗

. (8)

It is well known that 𝑆 is independent of Ω and is never
achieved except when Ω = R𝑁 (see [15]). Throughout this
paper, we denote the Lebesgue measure of Ω by |Ω| and
denote a ball centered at 𝑎 ∈ R𝑁 with radius 𝑟 by 𝐵𝑟(𝑎) and
also denote positive constants (possibly different) by 𝐶, 𝐶𝑖.
𝑂(𝜀𝑡) denotes |𝑂(𝜀𝑡)|/𝜀𝑡 ≤ 𝐶, 𝑜(𝜀𝑡) denotes |𝑜(𝜀𝑡)|/𝜀𝑡 → 0 as
𝜀 → 0, and 𝑜𝑛(1) denotes 𝑜𝑛(1) → 0 as 𝑛 → ∞.

Associated with (𝐸𝜆), we consider the energy functional
𝐽𝜆 in𝑊

1,𝑝

0
(Ω), for each 𝑢 ∈ 𝑊1,𝑝

0
(Ω),

𝐽𝜆 (𝑢) =
1

𝑝
‖𝑢‖

𝑝

𝑝
+
1

𝑞
‖𝑢‖

𝑞

𝑞
−

1

𝑝∗
∫
Ω

𝑓 (𝑥) |𝑢|
𝑝
∗

𝑑𝑥

−
1

𝑟
∫
Ω

𝜆𝑔 (𝑥) |𝑢|
𝑟𝑑𝑥.

(9)

It is well known that 𝐽𝜆 is of 𝐶
1 in𝑊1,𝑝

0
(Ω) and the solutions

of (𝐸𝜆) are the critical points of the energy functional 𝐽𝜆 (see
[16]).

We define the Nehari manifold

M𝜆 := {𝑢 ∈ 𝑊
1,𝑝

0
(Ω) \ {0} : ⟨𝐽

󸀠

𝜆
(𝑢) , 𝑢⟩ = 0} , (10)

where

⟨𝐽󸀠
𝜆
(𝑢) , 𝑢⟩ = ‖𝑢‖

𝑝

𝑝
+ ‖𝑢‖

𝑞

𝑞
− ∫

Ω

𝑓 (𝑥) |𝑢|
𝑝
∗

𝑑𝑥

− ∫
Ω

𝜆𝑔 (𝑥) |𝑢|
𝑟𝑑𝑥 = 0.

(11)

The Nehari manifold M𝜆 contains all nontrivial solutions of
(𝐸𝜆).

Note that 𝐽𝜆 is not bounded frombelow in𝑊1,𝑝

0
(Ω). From

the following lemma, we have that 𝐽𝜆 is bounded from below
on the Nehari manifoldM𝜆.

Lemma 3. Suppose that 1 < 𝑞 < 𝑝 < 𝑟 < 𝑝∗ and (H2) hold.
Then for any 𝜆 > 0, one has that 𝐽𝜆 is bounded from below on
M𝜆. Moreover, 𝐽𝜆(𝑢) > 0 for all 𝑢 ∈ M𝜆.
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Proof. For 𝑢 ∈ M𝜆, (10) leads to

𝐽𝜆 (𝑢) = (
1

𝑝
−
1

𝑟
) ‖𝑢‖

𝑝

𝑝
+ (

1

𝑞
−
1

𝑟
) ‖𝑢‖

𝑞

𝑞

+ (
1

𝑟
−

1

𝑝∗
)∫

Ω

𝑓 (𝑥) |𝑢|
𝑝
∗

𝑑𝑥 > 0.

(12)

Define

𝛼𝜆 := inf
𝑢∈M
𝜆

𝐽𝜆 (𝑢) . (13)

Now we show that 𝐽𝜆 possesses the mountain-pass (MP,
in short) geometry.

Lemma 4. Suppose 1 < 𝑞 < 𝑝 < 𝑟 < 𝑝∗ and (H2) holds. Then
for any 𝜆 > 0, one has that

(i) there exist positive numbers 𝑅 and 𝑑0 such that 𝐽𝜆(𝑢) ≥
𝑑0 for ‖𝑢‖𝑝 = 𝑅;

(ii) there exists 𝑢 ∈ 𝑊
1,𝑝

0
(Ω) such that ‖𝑢‖𝑝 > 𝑅 and

𝐽𝜆(𝑢) < 0.

Proof. (i) By (8), the Hölder inequality, and the Sobolev
embedding theorem, we have that

𝐽𝜆 (𝑢) ≥
1

𝑝
‖𝑢‖

𝑝

𝑝
−

1

𝑝∗
∫
Ω

𝑓 (𝑥) |𝑢|
𝑝
∗

𝑑𝑥

−
1

𝑟
∫
Ω

𝜆𝑔 (𝑥) |𝑢|
𝑟𝑑𝑥

≥
1

𝑝
‖𝑢‖

𝑝

𝑝
−

1

𝑝∗
𝑆−𝑝
∗

/𝑝
‖𝑢‖

𝑝
∗

𝑝

−
1

𝑟
𝜆
󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨∞|Ω|

(𝑝
∗

−𝑟)/𝑝
∗

𝑆−𝑟/𝑝‖𝑢‖
𝑟

𝑝
.

(14)

Hence, there exist positive 𝑅 and 𝑑0 such that 𝐽𝜆(𝑢) ≥ 𝑑0 for
‖𝑢‖ = 𝑅.

(ii) For any 𝑢 ∈ 𝑊1,𝑝

0
(Ω) \ {0}, from

𝐽𝜆 (𝑡𝑢) =
𝑡𝑝

𝑝
‖𝑢‖

𝑝

𝑝
+
𝑡𝑞

𝑞
‖𝑢‖

𝑞

𝑞
−
𝑡𝑝
∗

𝑝∗
∫
Ω

𝑓 (𝑥) |𝑢|
𝑝
∗

𝑑𝑥

−
𝑡𝑟

𝑟
∫
Ω

𝜆𝑔 (𝑥) |𝑢|
𝑟𝑑𝑥,

(15)

we have lim𝑡→∞𝐽𝜆(𝑡𝑢) = −∞. For fixed some 𝑢 ∈ 𝑊1,𝑝

0
(Ω) \

{0}, there exist 𝑡 > 0 such that ‖𝑡𝑢‖𝑝 > 𝑅 and 𝐽𝜆(𝑡𝑢) < 0. Let
𝑢 = 𝑡𝑢.

Define

𝜙𝜆 (𝑢) := ⟨𝐽
󸀠

𝜆
(𝑢) , 𝑢⟩ . (16)

Then for 𝑢 ∈ M𝜆,

⟨𝜙󸀠
𝜆
(𝑢) , 𝑢⟩ = 𝑝‖𝑢‖

𝑝

𝑝
+ 𝑞‖𝑢‖

𝑞

𝑞

− 𝑝∗ ∫
Ω

𝑓 (𝑥) |𝑢|
𝑝
∗

𝑑𝑥 − 𝑟∫
Ω

𝜆𝑔 (𝑥) |𝑢|
𝑟𝑑𝑥

= (𝑝∗ − 𝑟)∫
Ω

𝜆𝑔 (𝑥) |𝑢|
𝑟𝑑𝑥

− (𝑝∗ − 𝑝) ‖𝑢‖
𝑝

𝑝
− (𝑝∗ − 𝑞) ‖𝑢‖

𝑞

𝑞

= (𝑝 − 𝑟) ‖𝑢‖
𝑝

𝑝
+ (𝑞 − 𝑟) ‖𝑢‖

𝑞

𝑞

+ (𝑟 − 𝑝∗) ∫
Ω

𝑓 (𝑥) |𝑢|
𝑝
∗

𝑑𝑥 < 0.

(17)

Lemma 5. Suppose that 1 < 𝑞 < 𝑝 < 𝑟 < 𝑝∗ and (H2) holds.
If 𝑢0 ∈ M𝜆 satisfies

𝐽𝜆 (𝑢0) = min
𝑢∈M
𝜆

𝐽𝜆 (𝑢) = 𝛼𝜆, (18)

then 𝑢0 is a solution of (𝐸𝜆).

Proof. By (17), ⟨𝜙󸀠
𝜆
(𝑢), 𝑢⟩ < 0 for 𝑢 ∈ M𝜆. Since 𝐽𝜆(𝑢0) =

min𝑢∈M
𝜆

𝐽𝜆(𝑢), by the Lagrange multiplier theorem, there is
𝜏 ∈ R such that 𝐽󸀠

𝜆
(𝑢0) = 𝜏𝜙

󸀠

𝜆
(𝑢0) in𝑊

󸀠(Ω). This implies that

0 = ⟨𝐽󸀠
𝜆
(𝑢0) , 𝑢0⟩ = 𝜏 ⟨𝜙

󸀠

𝜆
(𝑢0) , 𝑢0⟩ . (19)

It then follows that 𝜏 = 0 and 𝐽󸀠
𝜆
(𝑢0) = 0 in𝑊󸀠(Ω). Thus, 𝑢0

is a nontrivial solution of (𝐸𝜆) and 𝐽𝜆(𝑢0) = 𝛼𝜆.

Lemma 6. Suppose that 1 < 𝑞 < 𝑝 < 𝑟 < 𝑝∗ and (H2)
holds. For each 𝑢 ∈ 𝑊1,𝑝

0
(Ω)\{0}, there exists a unique positive

number 𝑡𝑢 such that 𝑡𝑢𝑢 ∈ M𝜆 and 𝐽𝜆(𝑡𝑢𝑢) = sup
𝑡≥0
𝐽𝜆(𝑡𝑢)

for any 𝜆 > 0.

Proof. For fixed 𝑢 ∈ 𝑊1,𝑝

0
(Ω) \ {0}, consider

ℎ (𝑡) = 𝐽𝜆 (𝑡𝑢) =
𝑡𝑝

𝑝
‖𝑢‖

𝑝

𝑝
+
𝑡𝑞

𝑞
‖𝑢‖

𝑞

𝑞

−
𝑡𝑝
∗

𝑝∗
∫
Ω

𝑓 (𝑥) |𝑢|
𝑝
∗

𝑑𝑥 −
𝑡𝑟

𝑟
∫
Ω

𝜆𝑔 (𝑥) |𝑢|
𝑟𝑑𝑥.

(20)

Since ℎ(0) = 0, lim𝑡→∞ℎ(𝑡) = −∞, by Lemma 4(i), then it is
easy to see that there exists a unique positive number 𝑡𝑢 such
that sup

𝑡≥0
ℎ(𝑡) is achieved at 𝑡𝑢. This means that ℎ󸀠(𝑡𝑢) = 0;

that is, 𝑡𝑢𝑢 ∈ M𝜆.

We will denote by 𝛼̃𝜆 the MP level:

𝛼̃𝜆 := inf
𝑢∈𝑊
1,𝑝

0
(Ω)\{0}

sup
𝑡≥0

𝐽𝜆 (𝑡𝑢) . (21)

Then we have the following result.

Lemma 7. Suppose that 1 < 𝑞 < 𝑝 < 𝑟 < 𝑝∗ and (H2) holds,
then 𝛼𝜆 = 𝛼̃𝜆 for any 𝜆 > 0.
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Proof. By Lemma 6, we have

𝛼̃𝜆 = inf
𝑢∈𝑊
1,𝑝

0
(Ω)\{0}

sup
𝑡≥0

𝐽𝜆 (𝑡𝑢) = inf
𝑡
𝑢
𝑢∈M
𝜆

𝐽𝜆 (𝑡𝑢𝑢)

≥ inf
𝑢∈M
𝜆

𝐽𝜆 (𝑢) = 𝛼𝜆.
(22)

On the other hand, for 𝑢 ∈ M𝜆, by Lemma 6, we have 𝑡𝑢 = 1
and 𝐽𝜆(𝑢) = sup

𝑡≥0
𝐽𝜆(𝑡𝑢). Hence,

𝛼𝜆 = inf
𝑢∈M
𝜆

𝐽𝜆 (𝑢) = inf
𝑢∈M
𝜆

sup
𝑡≥0

𝐽𝜆 (𝑡𝑢)

≥ inf
𝑢∈𝑊
1,𝑝

0
(Ω)\{0}

sup
𝑡≥0

𝐽𝜆 (𝑡𝑢) = 𝛼̃𝜆.
(23)

Now the desired result follows from (22) and (23).

Remark 8. By Lemma 7 and the definition, it is apparent that
𝛼𝜆
1

≤ 𝛼𝜆
2

if 𝜆1 ≥ 𝜆2; that is, 𝛼𝜆 is nonincreasing in 𝜆.
Moreover, by Lemma 4(i), for any 𝜆0 > 0, there exists a
𝑑 = 𝑑(𝜆0), related to the MP geometry, such that

0 < 𝑑 ≤ 𝛼𝜆 ≤ 𝛼0 ∀𝜆 ∈ [0, 𝜆0] . (24)

Here 𝛼0 is the MP level associated to the functional

𝐽0 (𝑢) =
1

𝑝
‖𝑢‖

𝑝

𝑝
+
1

𝑞
‖𝑢‖

𝑞

𝑞
−

1

𝑝∗
∫
Ω

𝑓 (𝑥) |𝑢|
𝑝
∗

𝑑𝑥. (25)

3. (PS)𝑐-Condition in 𝑊
1,𝑝

0
(Ω) for 𝐽𝜆

First, we define the Palais-Smale (denote by (PS)) sequence,
(PS)-value, and (PS)-conditions in𝑊1,𝑝

0
(Ω) for 𝐽𝜆.

Definition 9. (i) For 𝑐 ∈ R, a sequence {𝑢𝑛} is a (PS)𝑐-sequence
in 𝑊1,𝑝

0
(Ω) for 𝐽𝜆 if 𝐽𝜆(𝑢𝑛) = 𝑐 + 𝑜𝑛(1) and 𝐽

󸀠

𝜆
(𝑢𝑛) = 𝑜𝑛(1)

strongly in𝑊󸀠(Ω) as 𝑛 → ∞.
(ii) 𝑐 ∈ R is a (PS)-value in𝑊1,𝑝

0
(Ω) for 𝐽𝜆 if there exists a

(PS)𝑐-sequence in𝑊
1,𝑝

0
(Ω) for 𝐽𝜆.

(iii) 𝐽𝜆 satisfies the (PS)𝑐-condition in 𝑊
1,𝑝

0
(Ω) if every

(PS)𝑐-sequence {𝑢𝑛} in𝑊
1,𝑝

0
(Ω) for 𝐽𝜆 contains a convergent

subsequence.

Applying Ekeland’s variational principle and using the
same argument as in Cao and Zhou [17] or Tarantello [18],
we have the following lemma.

Lemma 10. Suppose that 1 < 𝑞 < 𝑝 < 𝑟 < 𝑝∗ and (H2) holds.
Then for any 𝜆 > 0, there exists a (PS)𝛼

𝜆

-sequence {𝑢𝑛} inM𝜆

for 𝐽𝜆.

To prove the existence of positive solutions, we claim
that 𝐽𝜆 satisfies the (PS)𝑐-condition in 𝑊

1,𝑝

0
(Ω) for 𝑐 ∈

(0, (1/𝑁)𝑆𝑁/𝑝).

Lemma 11. Suppose that 1 < 𝑞 < 𝑝 < 𝑟 < 𝑝∗, |𝑓|∞ = 1, and
(H2) holds. Then for any 𝜆 > 0, 𝐽𝜆 satisfies the (PS)𝑐-condition
in𝑊1,𝑝

0
(Ω) for all 𝑐 ∈ (0, (1/𝑁)𝑆𝑁/𝑝).

Proof. Let {𝑢𝑛} ⊂ 𝑊
1,𝑝

0
(Ω) be a (PS)𝑐-sequence for 𝐽𝜆 which

satisfies

𝐽𝜆 (𝑢𝑛) = 𝑐 + 𝑜𝑛 (1) , 𝐽󸀠
𝜆
(𝑢𝑛) = 𝑜𝑛 (1) in 𝑊󸀠

(Ω) . (26)

Then

𝑐 + 𝑠𝑛 +
𝑡𝑛
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩
𝑝

≥ 𝐽𝜆 (𝑢𝑛) −
1

𝑟
⟨𝐽󸀠

𝜆
(𝑢𝑛) , 𝑢𝑛⟩

= (
1

𝑝
−
1

𝑟
)
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩
𝑝

𝑝
+ (

1

𝑞
−
1

𝑟
)
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩
𝑞

𝑞

+ (
1

𝑟
−

1

𝑝∗
)∫

Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥

≥
𝑟 − 𝑝

𝑟𝑝

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩
𝑝

𝑝
,

(27)

where 𝑠𝑛 = 𝑜𝑛(1), 𝑡𝑛 = 𝑜𝑛(1), as 𝑛 → ∞. It follows that {𝑢𝑛}
is bounded in 𝑊1,𝑝

0
(Ω). Thus, there exist a subsequence still

denoted by {𝑢𝑛} and 𝑢 ∈ 𝑊
1,𝑝

0
(Ω) such that

𝑢𝑛 ⇀ 𝑢 weakly in 𝑊
1,𝑝

0
(Ω) ,

𝑢𝑛 󳨀→ 𝑢 strongly in 𝐿𝑠 (Ω) ∀1 ≤ 𝑠 < 𝑝
∗,

𝑢𝑛 󳨀→ 𝑢 a.e. in Ω.

(28)

Furthermore, we have that 𝐽󸀠
𝜆
(𝑢) = 0 in 𝑊󸀠(Ω). By 𝑔 being

continuous onΩ, we get

𝜆∫
Ω

𝑔 (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
𝑟
𝑑𝑥 = 𝜆∫

Ω

𝑔 (𝑥) |𝑢|
𝑟𝑑𝑥 + 𝑜𝑛 (1) . (29)

Let V𝑛 = 𝑢𝑛 − 𝑢. Then by 𝑓 being positive continuous on Ω
and Brézis-Lieb lemma (see [19]), we obtain

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
𝑝

𝑝
=
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩
𝑝

𝑝
− ‖𝑢‖

𝑝

𝑝
+ 𝑜𝑛 (1) ,

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
𝑞

𝑞
=
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩
𝑞

𝑞
− ‖𝑢‖

𝑞

𝑞
+ 𝑜𝑛 (1) ,

∫
Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥

= ∫
Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥 − ∫
Ω

𝑓 (𝑥) |𝑢|
𝑝
∗

𝑑𝑥 + 𝑜𝑛 (1) .

(30)

From (26)–(30), we can deduce that

1

𝑝

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
𝑝

𝑝
+
1

𝑞

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
𝑞

𝑞
−

1

𝑝∗
∫
Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥

= 𝑐 − 𝐽𝜆 (𝑢) + 𝑜𝑛 (1) ,

(31)

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
𝑝

𝑝
+
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
𝑞

𝑞
= ∫

Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥 + 𝑜𝑛 (1) . (32)

Without loss of generality, we may assume that

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
𝑝

𝑝
= 𝑎 + 𝑜𝑛 (1) ,

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
𝑞

𝑞
= 𝑏 + 𝑜𝑛 (1) . (33)
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So (32) and |𝑓|
∞
= 1 imply that

∫
Ω

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥 ≥ ∫
Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥 = 𝑎 + 𝑏 + 𝑜𝑛 (1) . (34)

By the Sobolev inequality and (33) and (34), we have ‖V𝑛‖
𝑝

𝑝
≥

𝑆(∫
Ω
|V𝑛|

𝑝
∗

𝑑𝑥)𝑝/𝑝
∗

and

𝑎 ≥ 𝑆(𝑎 + 𝑏)
𝑝/𝑝
∗

≥ 𝑆𝑎𝑝/𝑝
∗

. (35)

If 𝑎 > 0, then (35) implies that 𝑎 ≥ 𝑆𝑁/𝑝, combined with (31),
(33)–(35) and Lemma 3, 1 < 𝑞 < 𝑝 < 𝑝∗, as 𝑛 → ∞; we get

𝑐 =
𝑎

𝑝
+
𝑏

𝑞
−
𝑎 + 𝑏

𝑝∗
+ 𝐽𝜆 (𝑢) ≥

1

𝑁
𝑎 ≥

1

𝑁
𝑆𝑁/𝑝, (36)

which is a contradiction. So, we have 𝑎 = 0; 𝐽𝜆 satisfies the
(PS)𝑐-condition in𝑊1,𝑝

0
(Ω) for all 𝑐 ∈ (0, (1/𝑁)𝑆𝑁/𝑝).

4. Existence of 𝑘 Positive Solutions

In this section, we first give some preliminary notations and
useful lemmas.

Choose 𝑟0 > 0 small enough such that 𝐵𝑟
0

(𝑎𝑖) ⊂ Ω and
𝐵𝑟
0

(𝑎𝑖) ∩ 𝐵𝑟
0

(𝑎𝑗) = ⌀ for 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑘.
Define

𝑄𝑖 (𝑢) =
∫
Ω
𝜙𝑖 (𝑥) |𝑢|

𝑝
∗

𝑑𝑥

∫
Ω
|𝑢|𝑝
∗

𝑑𝑥
,

𝜙𝑖 (𝑥) = min {1, 󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑎
𝑖󵄨󵄨󵄨󵄨󵄨} , 1 ≤ 𝑖 ≤ 𝑘.

(37)

Then we have the following separation result.

Lemma 12. If 𝑄𝑖(𝑢) ≤ 𝑟0/3 and 𝑄𝑗(𝑢) ≤ 𝑟0/3 for 𝑢 ∈

𝑊
1,𝑝

0
(Ω) \ {0}, then 𝑖 = 𝑗.

Proof. For any 𝑢 ∈ 𝑊1,𝑝

0
(Ω) \ {0} satisfying𝑄𝑖(𝑢) ≤ 𝑟0/3 (1 ≤

𝑖 ≤ 𝑘), we get
𝑟0
3
∫
Ω

|𝑢|
𝑝
∗

𝑑𝑥 ≥ ∫
Ω

𝜙𝑖 (𝑥) |𝑢|
𝑝
∗

𝑑𝑥

≥ ∫
Ω\𝐵
𝑟
0

(𝑎𝑖)

𝜙𝑖 (𝑥) |𝑢|
𝑝
∗

𝑑𝑥

≥ 𝑟0 ∫
Ω\𝐵
𝑟
0

(𝑎𝑖)

|𝑢|
𝑝
∗

𝑑𝑥,

(38)

which implies that

∫
Ω

|𝑢|
𝑝
∗

𝑑𝑥 ≥ 3∫
Ω\𝐵
𝑟
0

(𝑎𝑖)

|𝑢|
𝑝
∗

𝑑𝑥, 1 ≤ 𝑖 ≤ 𝑘. (39)

Hence, from (39), we obtain

2∫
Ω

|𝑢|
𝑝
∗

𝑑𝑥 ≥ 3(∫
Ω\𝐵
𝑟
0

(𝑎𝑖)

|𝑢|
𝑝
∗

𝑑𝑥 + ∫
Ω\𝐵
𝑟
0

(𝑎𝑗)

|𝑢|
𝑝
∗

𝑑𝑥)

≥ 3∫
Ω

|𝑢|
𝑝
∗

𝑑𝑥 if 𝑖 ̸= 𝑗,

(40)

which is a contradiction.

For 𝑖 = 1, 2, . . . , 𝑘, we set

N
𝑖

𝜆
:= {𝑢 ∈ M𝜆 : 𝑄𝑖 (𝑢) <

𝑟0
3
}

𝜕N𝑖

𝜆
:= {𝑢 ∈ M𝜆 : 𝑄𝑖 (𝑢) =

𝑟0
3
} ,

(41)

and define

𝛼𝑖
𝜆
:= inf

N𝑖
𝜆

𝐽𝜆 (𝑢) , 𝛼̃𝑖
𝜆
:= inf

𝜕N𝑖
𝜆

𝐽𝜆 (𝑢) . (42)

Now let us assume that (𝐻1)–(𝐻3) hold. From conditions
(𝐻2) and (𝐻3), we can choose a 𝜌 ∈ (0, 𝑟0/2) small enough
and there exist some positive constants 𝛾1, 𝛾2 such that for
1 ≤ 𝑖 ≤ 𝑘, we have

⋃
1≤𝑖≤𝑘

𝐵2𝜌 (𝑎
𝑖) ⊂ Ω,

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑎
𝑖)
󵄨󵄨󵄨󵄨󵄨 ≤ 𝛾1

󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑎
𝑖󵄨󵄨󵄨󵄨󵄨
𝛽

∀𝑥 ∈ 𝐵2𝜌 (𝑎
𝑖),

𝑔 (𝑥) ≥ 𝛾2 ∀𝑥 ∈ ⋃
1≤𝑖≤𝑘

𝐵2𝜌 (𝑎
𝑖),

(43)

for some 𝛽 > 𝑁/(𝑝 − 1). For 𝑖 ∈ {1, 2, . . . , 𝑘} and 𝜀 > 0, we
define

𝑢𝑎
𝑖

𝜀
(𝑥) =

𝜂𝑖 (𝑥)

(𝜀 +
󵄨󵄨󵄨󵄨𝑥 − 𝑎

𝑖󵄨󵄨󵄨󵄨
𝑝/(𝑝−1)

)
(𝑁−𝑝)/𝑝

,

V𝑎
𝑖

𝜀
(𝑥) = 𝜀

(𝑁−𝑝)/𝑝
2

𝑢𝑎
𝑖

𝜀
(𝑥) ,

(44)

where 𝜂𝑖 ∈ 𝐶∞
0
(𝐵2𝜌(𝑎

𝑖)) is a function such that 0 ≤ 𝜂𝑖(𝑥) ≤

1 and 𝜂𝑖(𝑥) ≡ 1 on 𝐵𝜌(𝑎
𝑖). Then we obtain the following

estimates (see [20]):

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨
𝑢𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑡

𝑑𝑥

=

{{{{{{{{
{{{{{{{{
{

𝐾1𝜀
(𝑁(𝑝−1)−𝑡(𝑁−𝑝))/𝑝 + 𝑂 (1) , 𝑡 >

𝑁 (𝑝 − 1)

𝑝
,

𝐾1 |ln 𝜀| + 𝑂 (1) , 𝑡 =
𝑁 (𝑝 − 1)

𝑝
,

𝑂 (1) , 𝑡 <
𝑁 (𝑝 − 1)

𝑝
,

(45)

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨
∇𝑢𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑡

𝑑𝑥

=

{{{{{{{{
{{{{{{{{
{

𝐾2𝜀
(𝑡+𝑁(𝑝−1)−𝑡𝑁)/𝑝 + 𝑂 (1) , 𝑡 >

𝑁 (𝑝 − 1)

𝑝
,

𝐾2 |ln 𝜀| + 𝑂 (1) , 𝑡 =
𝑁 (𝑝 − 1)

𝑝
,

𝑂 (1) , 𝑡 <
𝑁 (𝑝 − 1)

𝑝
.

(46)
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From (43)–(46) [13, Lemma 4.2] and conditions (𝐻2)-(𝐻3),
we can deduce the following estimates:

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨
∇V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥 = 𝐾2 + 𝑂 (𝜀(𝑁−𝑝)/𝑝) ,

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨
∇V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥 = 𝐾2 + 𝑂(𝜀𝑞(𝑁−𝑝)/𝑝
2

) ,

(47)

∫
Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
∗

𝑑𝑥 = 𝐾
𝑝
∗

/𝑝

3
+ 𝑂 (𝜀𝑁/𝑝) , (48)

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨
V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥 = 𝐾1𝜀
((𝑝−1)/𝑝)(𝑁−𝑟((𝑁−𝑝)/𝑝)) + 𝑂(𝜀𝑟(𝑁−𝑝)/𝑝

2

) ,

(49)

where 𝐾1, 𝐾2, and 𝐾3 are positive constants independent of
𝜀, and 𝑆 = 𝐾2/𝐾3 is the best Sobolev constant given in (8).

Next, we will investigate the effect of the coefficient 𝑓(𝑥)
to find some Palais-Smale sequences which are used to prove
Theorem 2.

Lemma 13. If (H1)–(H3) hold, then for any 𝑖 ∈ {1, 2, . . . , 𝑘}
and any 𝜆 > 0, there exists a 𝜀0 > 0 such that for 𝜀 ∈ (0, 𝜀0) one
has

sup
𝑡≥0

𝐽𝜆 (𝑡V
𝑎
𝑖

𝜀
) <

1

𝑁
𝑆𝑁/𝑝 uniformly in 𝑖. (50)

In particular, 0 < 𝛼𝜆 ≤ 𝛼𝑖𝜆 < (1/𝑁)𝑆
𝑁/𝑝 for all 𝜆 > 0.

Proof. By Lemma 6, there exists a 𝑡𝑖
𝜀
> 0 such that 𝑡𝑖

𝜀
V𝑎
𝑖

𝜀
∈ M𝜆.

Furthermore,

𝑄𝑖 (𝑡
𝑖

𝜀
V𝑎
𝑖

𝜀
) =

∫
Ω
𝜙𝑖 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨
V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
∗

𝑑𝑥

∫
Ω

󵄨󵄨󵄨󵄨󵄨V
𝑎𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨
𝑝∗

𝑑𝑥

=
∫
Ω
𝜀

𝜙𝑖 (𝑎
𝑖 + 𝜀𝑦)

󵄨󵄨󵄨󵄨󵄨𝜂𝑖 (𝑎
𝑖 + 𝜀𝑦)𝑉 (𝑦)

󵄨󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑦

∫
Ω
𝜀

󵄨󵄨󵄨󵄨𝜂𝑖 (𝑎
𝑖 + 𝜀𝑦)𝑉 (𝑦)

󵄨󵄨󵄨󵄨
𝑝∗

𝑑𝑦

󳨀→ 𝜙𝑖 (𝑎
𝑖) = 0 as 𝜀 󳨀→ 0,

(51)

where Ω𝜀 = {𝑥 : 𝜀𝑥 + 𝑎𝑖 ∈ Ω} and 𝑉(𝑦) =

1/(1 + |𝑦|𝑝/(𝑝−1))
(𝑁−𝑝)/𝑝

. Hence, there exists an 𝜀1 > 0 small
enough such that for any 𝜀 ∈ (0, 𝜀1), we have

𝑄𝑖 (𝑡
𝑖

𝜀
V𝑎
𝑖

𝜀
) <

𝑟0
3
, (52)

which implies 𝑡𝑖
𝜀
V𝑎
𝑖

𝜀
∈ N𝑖

𝜆
for any 𝜀 ∈ (0, 𝜀1), and then

0 < 𝛼𝜆 ≤ 𝛼
𝑖

𝜆
≤ 𝐽𝜆 (𝑡

𝑖

𝜀
V𝑎
𝑖

𝜀
) ≤ sup

𝑡≥0

𝐽𝜆 (𝑡𝑡
𝑖

𝜀
V𝑎
𝑖

𝜀
) = sup

𝑡≥0

𝐽𝜆 (𝑡V
𝑎
𝑖

𝜀
) .

(53)

Set

ℎ (𝑡) = 𝐽𝜆 (𝑡V
𝑎
𝑖

𝜀
) =

𝑡𝑝

𝑝

󵄩󵄩󵄩󵄩󵄩󵄩
V𝑎
𝑖

𝜀

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
𝑑𝑥 +

𝑡𝑞

𝑞

󵄩󵄩󵄩󵄩󵄩󵄩
V𝑎
𝑖

𝜀

󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

𝑞

−
𝑡𝑝
∗

𝑝∗
∫
Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
∗

𝑑𝑥 −
𝑡𝑟

𝑟
∫
Ω

𝜆𝑔 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥.

(54)

Since ℎ(0) = 0, lim𝑡→+∞ℎ(𝑡) = −∞, then there exists a 𝑡𝜀
such that sup

𝑡≥0
𝐽𝜆(𝑡V

𝑎
𝑖

𝜀
) = 𝐽𝜆(𝑡𝜀V

𝑎
𝑖

𝜀
) hold, and then 𝑡𝜀 satisfies

0 = ℎ󸀠 (𝑡𝜀) = 𝑡
𝑝−1

𝜀

󵄩󵄩󵄩󵄩󵄩󵄩
V𝑎
𝑖

𝜀

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
+ 𝑡𝑞−1

𝜀

󵄩󵄩󵄩󵄩󵄩󵄩
V𝑎
𝑖

𝜀

󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

𝑞

− 𝑡𝑝
∗

−1

𝜀
∫
Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
∗

𝑑𝑥 − 𝑡𝑟−1
𝜀

∫
Ω

𝜆𝑔 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥;

(55)

then we have

󵄩󵄩󵄩󵄩󵄩󵄩
V𝑎
𝑖

𝜀

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
+ 𝑡𝑞−𝑝

𝜀

󵄩󵄩󵄩󵄩󵄩󵄩
V𝑎
𝑖

𝜀

󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

𝑞
> 𝑡𝑝

∗

−𝑝

𝜀
∫
Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
∗

𝑑𝑥. (56)

From (47) and (48), fixing any 𝜀2 > 0 small enough, there
exists 𝑇1 > 0 such that

𝑡𝜀 ≤ 𝑇1 for any 𝜀 ∈ (0, 𝜀2) . (57)

Also, from (55), we obtain

󵄩󵄩󵄩󵄩󵄩󵄩
V𝑎
𝑖

𝜀

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
< 𝑡𝑝

∗

−𝑝

𝜀
∫
Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
∗

𝑑𝑥 + 𝑡𝑟−𝑝
𝜀

󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨∞ ∫

Ω

𝜆
󵄨󵄨󵄨󵄨󵄨󵄨
V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥.

(58)

From (47)–(49) and (58), there exist 𝜀3 > 0 and 𝑇2 > 0 such
that

𝑡𝜀 ≥ 𝑇2 for any 𝜀 ∈ (0, 𝜀3) . (59)

Let 𝜀4 = min{𝜀1, 𝜀2, 𝜀3} > 0; then

0 < 𝑇2 ≤ 𝑡𝜀 ≤ 𝑇1 ∀𝜀 ∈ (0, 𝜀4) , (60)

where 𝑇1 and 𝑇2 are independent of 𝜀. From [13, Lemma 4.2]
and conditions (𝐻2)-(𝐻3), we also have

sup
𝑡≥0

(
𝑡𝑝

𝑝

󵄩󵄩󵄩󵄩󵄩󵄩
V𝑎
𝑖

𝜀

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
−
𝑡𝑝
∗

𝑝∗
∫
Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
∗

𝑑𝑥)

=
1

𝑁
𝑆𝑁/𝑝 + 𝑂 (𝜀(𝑁−𝑝)/𝑝) .

(61)
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By (43), (46)–(49), (60), and (61), for 𝜀 ∈ (0, 𝜀4), we obtain

ℎ (𝑡𝜀) ≤ sup
𝑡≥0

(
𝑡𝑝

𝑝

󵄩󵄩󵄩󵄩󵄩󵄩
V𝑎
𝑖

𝜀

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
−
𝑡𝑝
∗

𝑝∗
∫
Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
∗

𝑑𝑥)

+
𝑡𝑞
𝜀

𝑞

󵄩󵄩󵄩󵄩󵄩󵄩
V𝑎
𝑖

𝜀

󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

𝑞
−
𝑡𝑟

𝑟
∫
Ω

𝜆𝑔 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥

≤
1

𝑁
𝑆𝑁/𝑝 + 𝑂 (𝜀(𝑁−𝑝)/𝑝) +

𝑇
𝑞

1

𝑞

󵄩󵄩󵄩󵄩󵄩󵄩
V𝑎
𝑖

𝜀

󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

𝑞

−
𝑇𝑟
2

𝑟
𝜆𝛾2 ∫

Ω

󵄨󵄨󵄨󵄨󵄨󵄨
V𝑎
𝑖

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥

≤
1

𝑁
𝑆𝑁/𝑝 + 𝐶1𝜀

(𝑁−𝑝)/𝑝

+ 𝐶2𝜀
𝑞(𝑁−𝑝)/𝑝

2

− 𝐶3𝜀
(𝑝/(𝑝−1))(𝑁−𝑟((𝑁−𝑝)/𝑝)),

(62)

where 𝐶1, 𝐶2, 𝐶3 are positive constants independent of 𝜀.
Since 1 < 𝑞 < 𝑁(𝑝−1)/(𝑁−1) < 𝑝 ≤ max{𝑝, 𝑝∗−𝑞/(𝑝−1)} <
𝑟 < 𝑝∗, we obtain that

𝑁 − 𝑝

𝑝
>
𝑞 (𝑁 − 𝑝)

𝑝2
>

𝑝

𝑝 − 1
(𝑁 − 𝑟

𝑁 − 𝑝

𝑝
) ; (63)

then there exists an 𝜀0 ∈ (0, 𝜀3) such that ℎ(𝑡𝜀) =

sup
𝑡≥0
𝐽𝜆(𝑡V

𝑎
𝑖

𝜀
) < (1/𝑁)𝑆𝑁/𝑝 uniformly in 𝑖 for all 𝜀 ∈ (0, 𝜀0).

Moreover, from (53), we have 0 < 𝛼𝜆 ≤ 𝛼𝑖
𝜆
< (1/𝑁)𝑆𝑁/𝑝 for

all 1 ≤ 𝑖 ≤ 𝑘 and 𝜆 > 0. This completes the proof.

Proof of Theorem 1. From Lemmas 5, 10, 11, and 13, we get
for all 𝜆 > 0 that there exists a 𝑢0 such that 𝐽󸀠

𝜆
(𝑢0) =

0 and 𝐽𝜆(𝑢0) = 𝛼𝜆. Set 𝑢+ = max{𝑢, 0}. Replace the
terms ∫

Ω
𝑓(𝑥)|𝑢|𝑝

∗

𝑑𝑥 and ∫
Ω
𝑔(𝑥)|𝑢|𝑟𝑑𝑥 of the functional

𝐽𝜆 by ∫
Ω
𝑓(𝑥)𝑢

𝑝
∗

+ 𝑑𝑥 and ∫
Ω
𝑔(𝑥)𝑢𝑟

+
𝑑𝑥, respectively. It then

follows that 𝑢0 is a nonnegative solution of (𝐸𝜆). Applying the
maximumprinciple, (𝐸𝜆) admits at least one positive solution
𝑢0 in𝑊

1,𝑝

0
(Ω).

By studying the argument as in [21, Theorem III 3.1] and
[22], we obtain the following lemma.

Lemma 14. Let {𝑢𝑛} ⊂ 𝑊
1,𝑝

0
(Ω) be a nonnegative function

sequence with |𝑢𝑛|𝑝∗ = 1 and ‖𝑢𝑛‖
𝑝

𝑝
→ 𝑆. Then there exists a

sequence (𝑦𝑛, 𝜎𝑛) ∈ Ω × R+ such that

V𝑛 (𝑥) := 𝜎
(𝑁−𝑝)/𝑝

𝑛
𝑢𝑛 (𝜎𝑛𝑥 + 𝑦𝑛) (64)

contains a convergent subsequence denoted again by {V𝑛} such
that

V𝑛 󳨀→ V in 𝐷1,𝑝 (R𝑁) , (65)

where V(𝑥) > 0 in R𝑁. Moreover, we have 𝜎𝑛 → 0,
(1/𝜎𝑛) dist(𝑦𝑛, 𝜕Ω) → ∞, and 𝑦𝑛 → 𝑦 ∈ Ω as 𝑛 → ∞.

Lemma 15. Suppose that (H2) and (H3) hold. Then for any
𝑖 ∈ {1, 2, . . . , 𝑘}, there exists 𝜆̃𝑖 > 0 such that

𝛼̃𝑖
𝜆
>
1

𝑁
𝑆𝑁/𝑝 ∀𝜆 ∈ (0, 𝜆̃𝑖) . (66)

Proof. Fix 𝑖 ∈ {1, 2, . . . , 𝑘}. Assume the contrary; that is, there
then exists a sequence {𝜆𝑛} with 𝜆𝑛 → 0+ as 𝑛 → ∞ such
that 𝛼̃𝑖

𝜆
𝑛

→ 𝑐 ≤ (1/𝑁)𝑆𝑁/𝑝. Consequently, there exists a
sequence {𝑢𝑛} ⊂ 𝜕N

𝑖

𝜆
𝑛

such that, as 𝑛 → ∞,

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩
𝑝

𝑝
+
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩
𝑞

𝑞
= ∫

Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥

+ 𝜆𝑛 ∫
Ω

𝑔 (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
𝑟
𝑑𝑥 + 𝑜𝑛 (1) ,

(67)

and by Remark 8, we have that there exists a 𝑑 > 0 such that

0 < 𝑑 ≤ lim inf
𝑛→∞

𝛼𝜆
𝑛

≤ lim
𝑛→∞

𝐽𝜆
𝑛

(𝑢𝑛) = 𝑐 ≤
1

𝑁
𝑆𝑁/𝑝, (68)

where 𝑑 is independent of 𝜆𝑛 for all 𝑛. It then follows easily
that {𝑢𝑛} is uniformly bounded in𝑊1,𝑝

0
(Ω), and since 𝑔(𝑥) is

continuous onΩ, we obtain

𝜆𝑛 ∫
Ω

𝑔 (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
𝑟
𝑑𝑥 = 𝑜𝑛 (1) as 𝑛 󳨀→ ∞. (69)

From (67)–(69), we may assume that there exist 𝑎 ≥ 0 and
𝑏 ≥ 0 such that

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩
𝑝

𝑝
= 𝑎 + 𝑜𝑛 (1) ,

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩
𝑞

𝑞
= 𝑏 + 𝑜𝑛 (1) . (70)

So (70) and |𝑓|
∞
= 1 imply that

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝
∗

𝑝∗
≥ ∫

Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥 = 𝑎 + 𝑏 + 𝑜𝑛 (1) . (71)

By (70), (71), and the Sobolev inequality, we have

𝑎 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩
𝑝

𝑝
≥ 𝑆 lim

𝑛→∞

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝

𝑝∗

≥ 𝑆 lim
𝑛→∞

(∫
Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥)
𝑝/𝑝
∗

≥ 𝑆(𝑎 + 𝑏)
𝑝/𝑝
∗

≥ 𝑆𝑎𝑝/𝑝
∗

,

(72)

which implies 𝑎 = 0 or 𝑎 ≥ 𝑆𝑁/𝑝. If 𝑎 = 0, then by (72) we
have that 𝑏 = 0. From 𝑎 = 𝑏 = 0, we can deduce that 𝑐 = 0
which is a contradiction. Hence,

𝑎 ≥ 𝑆𝑁/𝑝. (73)

On the other hand, by 𝐽𝜆
𝑛

(𝑢𝑛) = 𝑐 + 𝑜𝑛(1), 𝑐 ≤ (1/𝑁)𝑆𝑁/𝑝,
and (69)–(71), we get

𝑎

𝑝
+
𝑏

𝑞
−
𝑎 + 𝑏

𝑝∗
= lim

𝑛→∞
𝐽𝜆
𝑛

(𝑢𝑛) = 𝑐 ≤
1

𝑁
𝑆𝑁/𝑝. (74)

This implies that

𝑎

𝑁
≤ (

𝑎

𝑝
−

𝑎

𝑝∗
) + (

𝑏

𝑞
−

𝑏

𝑝∗
) = 𝑐 ≤

1

𝑁
𝑆𝑁/𝑝. (75)

Hence, together with (73), we get 𝑎 = S𝑁/𝑝 and 𝑏 = 0, and
then, from (71) and (72), we also have

lim
𝑛→∞

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝
∗

𝑝∗
= lim

𝑛→∞
∫
Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥 = 𝑎 = 𝑆𝑁/𝑝. (76)
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Set 𝑤𝑛 = 𝑢𝑛/|𝑢𝑛|𝑝∗ ; then we have

󵄨󵄨󵄨󵄨𝑤𝑛

󵄨󵄨󵄨󵄨𝑝∗ = 1, lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩
𝑝

𝑝
= lim

𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩
𝑝

𝑝

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝

𝑝∗

= 𝑆. (77)

Using Lemma 14, there exists a sequence (𝑦𝑛, 𝜎𝑛) ∈ Ω × R+
such that the sequence

V𝑛 (𝑥) := 𝜎
(𝑁−𝑝)/𝑝

𝑛
𝑤𝑛 (𝜎𝑛𝑥 + 𝑦𝑛) (78)

converges strongly to V ∈ 𝐷1,𝑝(R𝑁), 𝜎𝑛 → 0, 𝑦𝑛 → 𝑦 ∈ Ω,
and (1/𝜎𝑛) dist(𝑦𝑛, 𝜕Ω) → ∞ as 𝑛 → ∞.

LetΩ𝑛 = {𝑥 : 𝜎𝑛𝑥+𝑦𝑛 ∈ Ω}. Since 𝜎𝑛 → 0, 𝑦𝑛 → 𝑦 ∈ Ω,
and (1/𝜎𝑛) dist(𝑦𝑛, 𝜕Ω) → ∞ as 𝑛 → ∞, then Ω𝑛 → R𝑁
as 𝑛 → ∞. Observe that 𝑄𝑖(𝑤𝑛) = 𝑄𝑖(𝑢𝑛) = 𝑟0/3. By the
Lebesgue dominated convergence theorem, we have

𝑟0
3
= lim

𝑛→∞
𝑄𝑖 (𝑤𝑛) = lim

𝑛→∞

∫
Ω
𝜙𝑖 (𝑥)

󵄨󵄨󵄨󵄨𝑤𝑛

󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥

∫
Ω

󵄨󵄨󵄨󵄨𝑤𝑛

󵄨󵄨󵄨󵄨
𝑝∗

𝑑𝑥

= lim
𝑛→∞

∫
Ω
𝜙𝑖 (𝑥)

󵄨󵄨󵄨󵄨V𝑛 ((𝑥 − 𝑦𝑛)/𝜎𝑛)
󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥

∫
Ω

󵄨󵄨󵄨󵄨V𝑛 ((𝑥 − 𝑦𝑛)/𝜎𝑛)
󵄨󵄨󵄨󵄨
𝑝∗

𝑑𝑥

= lim
𝑛→∞

∫
Ω
𝑛

𝜙𝑖 (𝜎𝑛𝑥 + 𝑦𝑛)
󵄨󵄨󵄨󵄨V𝑛 (𝑥)

󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥

∫
Ω
𝑛

󵄨󵄨󵄨󵄨V𝑛 (𝑥)
󵄨󵄨󵄨󵄨
𝑝∗

𝑑𝑥
= 𝜙𝑖 (𝑦) ,

(79)

which implies that 𝑦 ̸= 𝑎𝑖 by the definition of 𝜙𝑖(𝑥). On the
other hand, by the Lebesgue dominated convergence theorem
again and (76), we get

1 = lim
𝑛→∞

∫
Ω

𝑓 (𝑥)
󵄨󵄨󵄨󵄨𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥

= lim
𝑛→∞

∫
Ω
𝑛

𝑓 (𝜎𝑛𝑥 + 𝑦𝑛)
󵄨󵄨󵄨󵄨V𝑛 (𝑥)

󵄨󵄨󵄨󵄨
𝑝
∗

𝑑𝑥 = 𝑓 (𝑦) ,

(80)

which is impossible, because 𝑓(𝑥) is not a constant function
by condition (𝐻3).

According to Lemma 13, we have

0 < 𝛼𝜆 ≤ 𝛼
𝑖

𝜆
<
1

𝑁
𝑆𝑁/𝑝 ∀𝜆 > 0. (81)

According to Lemma 15, for each 𝑖 ∈ {1, 2, . . . , 𝑘}, there exists
𝜆̃𝑖 > 0 such that

𝛼̃𝑖
𝜆
>
1

𝑁
𝑆𝑁/𝑝 ∀𝜆 ∈ (0, 𝜆̃𝑖) . (82)

Let 𝜆0 = min1≤𝑖≤𝑘𝜆̃𝑖 > 0. Then for each 𝑖 ∈ {1, 2, . . . , 𝑘}, by
(81) and (82), we obtain that

𝛼𝑖
𝜆
< 𝛼̃𝑖

𝜆
∀𝜆 ∈ (0, 𝜆0) . (83)

Hence

𝛼𝑖
𝜆
= inf

𝑢∈N𝑖
𝜆
∪𝜕N𝑖
𝜆

𝐽𝜆 (𝑢) ∀𝜆 ∈ (0, 𝜆0) . (84)

Applying Ekeland’s variational principle and using the
standard computation, we have the following lemma.

Lemma 16. If 𝜆 ∈ (0, 𝜆0), then for each 𝑖 ∈ {1, 2, . . . , 𝑘}, there
exists a (PS)𝛼𝑖

𝜆

-sequence {𝑢𝑖
𝑛
} ⊂ N𝑖

𝜆
in𝑊1,𝑝

0
(Ω) for 𝐽𝜆.

Proof. See Cao and Zhou [17] or Tarantello [18].

Proof of Theorem 2. By Lemma 16, for all 𝜆 ∈ (0, 𝜆0), there
exists a (PS)𝛼𝑖

𝜆

-sequence {𝑢𝑖
𝑛
} ⊂ N𝑖

𝜆
in𝑊1,𝑝

0
(Ω) for 𝐽𝜆 where

1 ≤ 𝑖 ≤ 𝑘. From (81), we have

𝛼𝑖
𝜆
∈ (0,

1

𝑁
𝑆𝑁/𝑝) . (85)

Note that 𝐽𝜆 satisfies the (PS)𝑐-condition for 𝑐 ∈

(0, (1/𝑁)𝑆𝑁/𝑝). Hence, we obtain that 𝐽𝜆 at least 𝑘 critical
points inM𝜆 for all 𝜆 ∈ (0, 𝜆0). Set 𝑢+ = max{𝑢, 0}. Replace
the terms ∫

Ω
𝑓(𝑥)|𝑢|𝑝

∗

𝑑𝑥 and ∫
Ω
𝑔(𝑥)|𝑢|𝑟𝑑𝑥 of the functional

𝐽𝜆 by ∫
Ω
𝑓(𝑥)𝑢

𝑝
∗

+ 𝑑𝑥 and ∫
Ω
𝑔(𝑥)𝑢𝑟

+
𝑑𝑥, respectively. It then

follows that (𝐸𝜆) has 𝑘 nonnegative solutions. Applying
the maximum principle, (𝐸𝜆) admits at least 𝑘 positive
solutions.
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