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In order to interact with the multisensory world that surrounds us, we must integrate various sources of
sensory information (vision, hearing, touch. . .). A fundamental question is thus how the brain integrates
the separate elements of an object defined by several sensory components to form a unified percept. The
superior colliculus was the main model for studying multisensory integration. At the cortical level, until
recently, multisensory integration appeared to be a characteristic attributed to high-level association
regions. First, we describe recently observed direct cortico-cortical connections between different sen-
sory cortical areas in the non-human primate and discuss the potential role of these connections. Then,
we show that the projections between different sensory and motor cortical areas and the thalamus
enabled us to highlight the existence of thalamic nuclei that, by their connections, may represent an
alternative pathway for information transfer between different sensory and/or motor cortical areas.
The thalamus is in position to allow a faster transfer and even an integration of information across modal-
ities. Finally, we discuss the role of these non-specific connections regarding behavioral evidence in the
monkey and recent electrophysiological evidence in the primary cortical sensory areas.

1. Introduction

The cerebral network for multisensory integration was classi-
cally viewed as a hierarchically converging system in which the
different sensory channels were merging in the polysensory asso-
ciative areas of the frontal, temporal or parietal lobes. In support
of this view was the absence of strong anatomical links between
the areas of different modalities at the level of the first stages of
sensory processing (see Jones and Powell, 1970). Recent anatomi-
cal and electrophysiological studies in non-human primates as
well as human functional brain studies led to a reappraisal of this

concept (see Ghazanfar and Schroeder, 2006; Driver and Noesselt,
2008 for recent reviews) and highlight that the mechanisms for
multisensory interplay are believed to include several levels of
brain processing, from the thalamus to the primary sensory areas
and higher stages of sensory processing. Such an increase in the
diversity of the pathways by which multisensory interactions can
occur is probably reflecting an adaptive mechanism by which indi-
vidual perceptual or sensory-motor situations involve a specific
multisensory network. We describe in this review connections in
the brain that may represent the support for early multisensory
integration, such as cortico-cortical connections and connections
between the thalamus and the cortex.

2. Heteromodal connections: connections between different
sensory areas

The convergence of different sensory information channels in
polysensory cortical areas is now clearly established and will not
be detailed in the present report. Most areas in the parietal, tempo-
ral, or frontal regions of primates have connection patterns that re-
late them to more than one sensory modality. This is particularly
the case for the areas buried in the intraparietal sulcus (LIP, VIP)
which present anatomical links with cortical areas of different sen-
sory modalities (Lewis and Van Essen, 2000). For instance, in the
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monkey, the parietal area VIP receives inputs from visual, auditory,
somatosensory, vestibular, motor and polysensory areas (Duhamel
et al., 1998) that confer typical multimodal responses to the VIP
neurons (Bremmer et al., 2002; Schlack et al., 2005; Avillac et al.,
2007). Similarly, the connectivity pattern of the LIP (Andersen
et al., 1990; Blatt et al., 1990; Lewis and Van Essen, 2000) is consis-
tent with the multisensory properties reported for LIP neurons (Co-
hen et al., 2005; Russ et al., 2006; Gottlieb, 2007). The ventral part
of LIP connects with areas dealing with spatial information (visual
area MT and the auditory caudiomedial area; Andersen et al.,
1997), as well as with the frontal eye field (Schall et al., 1995),
whereas the dorsal part of LIP is connected with areas responsible
for the processing of visual information related to the form of ob-
jects in the inferotemporal cortex (ventral ‘‘what” visual pathway).
In parallel, the temporal region of the superior temporal sulcus
(STS) is connected with the visual occipital cortices (Seltzer and
Pandya, 1994) and with the secondary auditory area (area 22 of
Brodmann; Pandya and Seltzer, 1982) providing the multimodal
properties of neurons in area STP (Bruce et al., 1981; Baylis et al.,
1987; Hikosaka et al., 1988). Along the same line, the prefrontal
cortex, playing a role in temporal integration, receives projections
from the auditory and the visual cortices (e.g. Gaffan and Harrison,
1991; Romanski et al., 1999; Fuster et al., 2000). Still in the mon-
key, a network of inter-connected multisensory areas playing a
role in the perception of visual, auditory and tactile stimuli pre-
sented in a part of space close to the body was described, involving
the putamen, the premotor cortex, VIP and the parietal area 7b
(Graziano and Gross, 1998; Graziano, 2001).

The notion that multisensory integration is restricted to higher-
order areas has recently been challenged by human and animal
studies that have revealed that crossmodal interactions can occur
in unisensory areas at very low levels of cortical processing (Buchel
et al., 1998; Calvert et al., 1999, 2001; Macaluso et al., 2000; Sch-
roeder et al., 2001; Amedi et al., 2002; Ghazanfar et al., 2005;
Kriegstein et al., 2005; Miller and D’Esposito, 2005; Watkins
et al., 2006; Martuzzi et al., 2007; Kayser et al., 2007, 2008; Romei
et al., 2007, 2008; Wang et al., 2008) and more importantly at very
short latencies (Giard and Peronnet, 1999; Foxe et al., 2000; Mol-
holm et al., 2002; Murray et al., 2005; Senkowski et al., 2007; Sper-
din et al., 2009). Such a fast timing of multisensory interactions
rule out an origin in the multisensory areas mediated through
backward projections, and instead favor direct heteromodal con-
nections. Using anatomical tracers we have identified a set of het-
eromodal connections in the monkey that connect directly areas
devoted to different sensory modalities (see Fig. 1A and B).

2.1. Primary sensory areas receive non-specific inputs

Although somewhat surprising, there is evidence for the exis-
tence of multisensory neurons in areas traditionally considered
as unisensory, such as the visual cortex (between areas 17 and
18a) in the rat (Barth et al., 1995) and in the auditory cortex of
the monkey (Watanabe and Iwai, 1991; Schroeder et al., 2001;
Cappe et al., 2007b; Kayser et al., 2008) and of the ferret (Bizley
et al., 2007; Bizley and King, 2008). In addition, previous studies
have shown the existence of scattered projections of the auditory
cortex towards the visual area 18 in the rat and the cat (Miller
and Vogt, 1984; Innocenti et al., 1988). However, no similar result
had been observed in the monkey. But, very recently, the use of
anterograde and retrograde tracers in the monkey made it possible
to highlight direct projections of the auditory cortex to the primary
visual cortex V1 (Falchier et al., 2002), as well as of the associative
auditory cortex to the primary and secondary visual areas (Rock-
land and Ojima, 2003) (Fig. 1). These direct connections arise in
their majority from the parabelt auditory area located on the
supratemporal gyrus (Falchier et al., 2002). We have estimated that

about a third of the auditory projections originate from the ante-
rior bank of the lateral sulcus, but only a small fraction of these
projecting neurons are located in the primary auditory cortex. Such
results are similar to those observed in the cat (Hall and Lomber,
2008), in which the direct connections between the two primary
sensory areas (from A1 to A17) represent only a small percentage
(about 5%) of the auditory inputs to the primary visual area. In
the monkey we did not find that the auditory projection to V1
was reciprocal, but a recent anatomical study showed projections
from extrastriate visual area V2 to the auditory area Tpt (temporo-
parietal temporal area) in the superior temporal gyrus (Nascimen-
to-Silva et al., 2005), as well as to the auditory belt and parabelt
(see Falchier et al. in this issue), suggesting that early visual pro-
cessing can influence the auditory cortex (Fig. 1). Further, in the
same neuroanatomical study, we found that area STP located in
the anterior bank of the STS sends projections to V1 (Fig. 1A). Be-
cause this visual area also contains a large proportion of auditory
and somatosensory neurons (Bruce et al., 1981; Hikosaka et al.,
1988), this projection can also provide non-visual information to
the primary visual cortex.

The existence of heteromodal connections at early stages has
been confirmed in the New World monkey, the marmoset (Cappe
and Barone, 2005) (Fig. 1A and B). We found direct projections
from visual areas to the primary auditory cortex and to the primary
somatosensory cortex. We also demonstrated the existence of con-
nections between the primary somatosensory cortex and the pri-
mary auditory cortex. More precisely, these visuo-somatosensory
projections originated from visual areas (the ventral and dorsal
fundus of the superior temporal area – FSTv and FSTd – and middle
temporal crescent (MTc)) and were sent towards areas 1/3b.
Somatosensory projections to the auditory cortex arose from the
area S2 and the anterior bank of the lateral sulcus. Finally, a
visuo-auditoryprojection arose fromanarea anterior to the superior
temporal sulcus (STS) towards the auditory core. The heteromodal
connections between the primary somatosensory cortex and the
primary auditory cortex were also reported in the gerbils (Buding-
er et al., 2006). In marmosets, projections from the retroinsular
area of the somatosensory cortex to the caudiomedial belt auditory
area were also observed (de la Mothe et al., 2006a) in line with a
similar observation in the Old World monkey (Smiley et al., 2007).

In all cases, these heteromodal connections were described as
not very dense, representing only few hundred projecting neurons.
While this low strength of projection could be interpreted as of low
functional impact, it is important to consider that these projections
are observed following small size injections of retrogradely trans-
ported dyes covering only a restricted portion of the cortex. For
example, we estimated that these heteromodal projections consti-
tute only a few percent of the total cortical inputs of the somato-
sensory cortex of the marmoset. However, the non-visual
projections to the peripheral V1 can be as large as the projection
arising from the motion visual area MT/V5 (Falchier et al., 2002),
which is known to exert an influential impact on V1 responses
(Hupé et al., 1998). In addition, all of these heteromodal connec-
tions do not consist in scattered projecting neurons, but rather
have a topological organization (Batardiere et al., 1998) with a rel-
atively compact projection zones probably linked to cortical func-
tional modules. For example, in the cat, the auditory projection
from area PAF is organized with respect to the retinotopic organi-
zation of the primary visual cortex (Hall and Lomber, 2008).

In the sensory system of the monkey, the laminar organization
of the neurons of origin and of the terminals allows to distinguish
feedback (FB) and feedforward (FF) connections (Felleman and Van
Essen, 1991). While the role of FF and FB connections is only par-
tially understood (Salin and Bullier, 1995; Bullier, 2006), the nature
of these connections has been used to establish a hierarchical rela-
tionship between cortical areas (Maunsell and Van Essen, 1983;
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Felleman and Van Essen, 1991) and determine the direction of sen-
sory information transfer. Based on a quantitative analysis of the
laminar distribution of retrogradely labeled neurons, the hetero-
modal connections could be classified as FF or FB type (Cappe
and Barone, 2005). Indeed, both the visual projection from STS
and somatosensory projection to the primary auditory cortex are
of FB type with the majority of labeled cells located in infragranu-
lar layers. However, while the visual projections from the FST ven-
tral area to the primary somatosensory cortex show an anatomical
profile of FB type, the ones that originate from the visual areas FST
dorsal and MTc areas and targeting area 1/3b correspond to projec-
tions of FF type (Fig. 1). Lastly, in the marmoset, the projections

from polysensory areas of the frontal lobe to the auditory, somato-
sensory and visual cortices are of FB or FF type, depending on the
sensory projection and area to which it projects. This analysis
showed that heteromodal connections do not present a unique
profile of projections as they were found to be either of FB or FF
type (Fig. 1). This is of importance knowing that the FB and FF pat-
terns are usually associated with distinct functional influences on
the target neurons (Gonchar and Burkhalter, 1999).

Further, some uncertainty remains on the exact classification of
the heteromodal connections in the scheme of the FB/FF anatomi-
cal dichotomy. For example, Schroeder and his colleagues (2001)
observed that somatosensory responses in the caudal auditory belt

Fig. 1. (A) Flattened representation of the marmoset cortex (left, adapted from Lyon and Kaas, 2001) and the macaque monkey (right, adapted from Felleman and Van Essen
1991) showing some direct cortico-cortical connections between different sensory areas, as derived from the studies indicated below each panel (see also Falchier et al., in
this issue). (B) Cortico-cortical connections between different sensory areas at low-level and considered until recently as unisensory areas are represented schematically as
transversal arrows between several levels of processing of vision, audition and touch and are integrated in the hierarchical model of sensory processing.
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were initially focused on layer 4 according to the type of stimula-
tion, suggesting that the somatosensory inputs are transmitted via
a driving FF type connection. This contradicts the anatomical data
which have revealed two sources of somatosensory inputs to the
auditory belt: a weak direct projection from S2 (Cappe and Barone,
2005) and a substantial source of afferents located in the retroinsu-
lar cortex Ri (de la Mothe et al., 2006a,b; Smiley et al., 2007). In all
cases the projections towards the auditory cortex originated from
the infragranular layers, an anatomical feature of FB projections.
This discrepancy may be due to the fact that the source of somato-
sensory responses recorded in the auditory cortex is not cortical,
but instead originates from non-specific thalamic inputs (Cappe
et al., 2009a). It is also possible that the classical anatomical clas-
sification of FF and FB projections does not apply to heteromodal
projections when it comes to interactions between sensory modal-
ities. This would support the hypothesis according to which the
anatomical pattern of the cortico-cortical connections that involve
the polysensory areas of the frontal lobe depend on the intrinsic
architecture of areas linked together in terms of laminar differen-
tiation (Barbas and Rempel-Clower, 1997; Rempel-Clower and Bar-
bas, 2000). How this rule of a structural dependence about the
laminar organization of projections affects heteromodal connec-
tions remains to be determined.

2.2. Specificity of heteromodal connections: ethological role

In the somatosensory system, there is evidence for the existence
of a different connectivity pattern according to the body represen-
tation, especially in terms of density of connections between areas
(Krubitzer and Kaas, 1990; Huffman and Krubitzer, 2001). In the vi-
sual system, density and laminar profile of the connections be-
tween visual areas also differ depending on whether they involve
the representation of the central or peripheral visual field (Shipp
and Zeki, 1989; Kaas and Morel, 1993; Schall et al. 1995; Galletti
et al. 2001; Palmer and Rosa, 2006). Our connectivity data show
that heteromodal connections are also specific to the sensory rep-
resentation. We found that the visual projections to areas 1/3b are
restricted to the representation of certain body parts. Some visual
projections are targeting selectively the face (MTc) or the arm
(FSTd) representations in areas 1/3b. Because both injections sites
involved two areas (areas 1 and 3b), we cannot determine whether
this reflects the preferential connections to either area. Similarly,
auditory and multimodal projections to area V1 are prominent to-
wards the representation of the peripheral visual field (Falchier
et al., 2002), and only scattered neurons in the auditory cortex send
a projection to foveal V1 (Fig. 1A). The fact that the heteromodal
connections are coupling specific sensory representations across
modalities probably reflects an adaptive process for behavioral
specialization. For example, when comparing across species, it
has been inferred that the spatial efficiencies of the auditory and
visual modalities are tightly related (Heffner and Heffner, 1992),
in such a way that the main function of sound localization is to di-
rect the field of higher visual acuity to a sound source for further
analysis. Such complementarities can also be understood at the le-
vel of the heteromodal connections between the primary visual
and auditory areas. In the primary auditory cortex of the cat, the
auditory receptive fields are generally large (Clarey et al., 1995)
and for the majority of them, they extend over the pinna axis in
the peripheral space (Barone et al., 1996). Considering that only
the peripheral visual field representation of V1 receives significant
projections from the auditory cortex, such congruency in the spa-
tial features may serve to facilitate gaze orienting, and conse-
quently the relocation of foveal vision to peripheral locations in
the visual field. However, it should also be mentioned that facilita-
tive effects have been observed in humans when stimuli were cen-
trally presented in both auditory and visual modalities (Giard and

Peronnet, 1999; Molholm et al., 2002; Martuzzi et al., 2007).
Ethologically, a role in alertness for dangerous stimuli is highly
probable, an interpretation that can also be attributed to the
visuo-somatosensory projections: the specific link between the FST
visual complex and the representation of the face in the
somatosensory cortex could contribute to phenomena of avoidance
of a ‘‘dangerous” stimulus which may hit the body (Cooke and
Graziano, 2003, 2004). More recently, there is also evidence for
selective interactions between auditory-visual cues signaling
approach or looming (Maier et al., 2004, 2008; Cappe et al., 2009b).

3. Thalamocortical connections

3.1. Role of the thalamus

Although mutisensory integration has been shown to take place
essentially in the cerebral cortex and the superior colliculus (Stein
and Meredith, 1993), one may consider the possibility of comple-
mentary contributions taking place at a subcortical level. In this
context, given the extensive connections between the neocortex,
the superior colliculus and the thalamus, different authors have
proposed that subcortical structures integrate the senses even be-
fore the neocortex (Ghazanfar and Schroeder, 2006 for review). The
thalamus is a possible candidate considering its strong input–out-
put connections with multiple cortical areas, both sensory and
motor.

Along this line, one may take into account that many corticocor-
tical pathways are transmitting information relatively slowly. The
corticothalamic projections are usually seen as a specific feedback
projection, by which a given cortical area is controlling the tha-
lamic nucleus fromwhich it receives ascending input. However, re-
cent data provide evidence that a separate, highly specialized
corticothalamic projection is in a position to provide feedforward
projections from one cortical area to other cortical regions via
the thalamus (see for review Rouiller and Welker, 2000; Sherman
and Guillery, 2002, 2005; Sherman, 2007). In contrast to the feed-
back corticothalamic projection originating from cortical layer VI,
the feedforward corticothalamic projection comes from layer V
and terminates in the thalamus in the form of giant endings, which
can ensure highly secure and rapid synaptic transmission (Rouiller
and Welker, 2000). Such feedforward corticothalamic projections
with giant endings have been demonstrated for many sensory
and motor cortical areas (e.g. Darian-Smith et al., 1999; Ojima,
1994; Rockland, 1996; Rouiller and Durif, 2004; Rouiller et al.,
1998, 2003; Schwartz et al., 1991; Taktakishvili et al., 2002; Cappe
et al., 2007a), representing an anatomical support for fast interac-
tions between distant cortical regions, via the thalamus (see also
Feig and Harting, 1998; Sherman and Guillery, 2002; Van Horn
and Sherman, 2004). Such cortico-thalamo-cortical routing is thus
suitable for multisensory interplay by a convergence of different
modalities on the same thalamic nucleus that then in turn makes
this integrated information available to a target cortical region,
for instance the premotor cortex (PM) or the prefrontal cortex
(Pf). The pulvinar nucleus, among other associative thalamic nu-
clei, is a good candidate to play such an integrative role, based
on its connectivity with numerous cortical areas (e.g. Romanski
et al., 1997; Hackett et al., 1998; Gutierrez et al., 2000) and on elec-
trophysiological studies (Yirmiya and Hocherman, 1987; Gattass
et al., 1979).

This hypothesis was tested anatomically, taking advantage of
the availability of a large variety of neuroanatomical tracers in-
jected simultaneously in distinct cortical areas in the same animal
(Cappe et al., 2009a). We performed in two macaque monkeys
injections of neuroanatomical tracers in the rostral (RAC) and cau-
dal auditory cortex (CAC), posterior parietal somatosensory cortex
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(PE and PEa in area 5), and dorsal and ventral premotor cortical
areas (PMd, PMv) in order to assess their connectivity with the
thalamus (Cappe et al., 2009a). The results demonstrate the exis-
tence of thalamic nuclei exhibiting territories of projection to the
cerebral cortex overlapping across different modalities (sensory
and motor; Fig. 2). Indeed, thalamocortical projections, distinct
from the ones arising from specific unisensory sensory nuclei, were
observed from motor thalamic nuclei, such as the ventroanterior
nucleus (VA) to PE and to PEa. The central lateral nucleus (CL)
and the mediodorsal nucleus (MD) project to RAC, CAC, PEa, PE,
PMd and PMv. We found common territories of projection from
the nucleus LP to PMd, PMv, PEa and PE. It is also is of interest to
note that the medial geniculate nucleus (MGN), known as the main
auditory thalamic relay, projects also to the parietal cortex (PE in
particular) and the premotor cortex (PMd/PMv). Moreover, the tha-
lamic nucleus exhibiting the most significant overlap across
modalities is the medial pulvinar nucleus (PuM) with projections
from superimposed territories to all six cortical areas injected with
tracers. Projections from PuM to the auditory cortex were also de-
scribed by de la Mothe and her colleagues (2006b). We also found
projections to the areas injected from thalamic nuclei that are
more commonly considered as multisensory, such as the supragen-
iculate nucleus and the limitans nucleus. All these results are con-
sistent with the presence of thalamic territories possibly
integrating different sensory modalities with motor attributes. In
addition, considering also in this context the corticothalamic pro-
jection systems, the thalamus could represent an alternative path-

way to direct corticocortical interactions, by which information
can be transferred trans-thalamically across remote cortical areas
belonging to different sensory and/or motor modalities (Fig. 2).

3.2. Overlap between thalamocortical (TC) connections in the
thalamus and corticothalamic (CT) connections

The calculation of the degree of overlap throughout the thala-
mus between the different TC connections (Tanné-Gariépy et al.,
2002; Morel et al., 2005; Cappe et al., 2009a) allowed us to deter-
mine that the projections to areas of a same modality, such premo-
tor areas have a degree of overlap of 35% on average. If we consider
projections to areas of different modalities, there is a degree of
overlap that ranges from 4% to 12% throughout the thalamus be-
tween the auditory and premotor cortical areas and it can reach
30% in the caudal part of the thalamus. There is therefore a most
predominant degree of divergence in this part of the thalamus. In
addition, we conducted the same calculation of degree of overlap
focusing on the PuM nucleus because it appeared to be the tha-
lamic nucleus where the maximum overlap between TC projec-
tions was observed. The TC afferents to auditory and premotor
areas overlap in PuM to a degree ranging from 14% to 20%.

The significant overlap between the projections to the auditory
and premotor cortex in the thalamus is located mainly in the PuM,
VA and CL nuclei. The overlap between the projections to auditory
and parietal cortical areas concerns different thalamic nuclei such
as PuM, CL and, to a lesser extent, LP and PuL. The projections to
the premotor and posterior parietal cortex overlap primarily in
PuM, LP, MD and also in VA, VLpd and CL. At the PuM level, the
entanglement between projections to the different injected cortical
areas ranges from 2% to 23% across the cortical areas. In the PuM,
the main overlap is for projections directed to the auditory cortex
and premotor cortex. The notion that some thalamic nuclei can
contain an overlap between thalamocortical connections to differ-
ent sensory and premotor areas is illustrated in Fig. 2 (CT connec-
tions from area 5 are also indicated). Furthermore, we observed
that the thalamic nuclei PuM, LP and, to a lesser extent, VPL, CM,
CL and MD contained both the terminal fields of CT projections
from parietal areas PE and PEa (PEa only for MD), and the neurons
of origin of TC projections to auditory, parietal and premotor areas.
These results show that the connectivity of some nuclei in the thal-
amus (PuM, LP, VPL, CM, CL and MD) could enable them to inte-
grate information from different sensory modalities with or
without motor attributes (Cappe et al., 2007a, 2009a). Indeed,
these nuclei receive projections from parietal areas (Cappe et al.,
2007a) and send projections to premotor and auditory areas. These
interactions between the thalamus and the cortex could play a role
in multisensory and sensorimotor integration.

3.3. Role of the pulvinar

As previously described, the premotor cortex is an area of mul-
tisensory integration because it is a zone of convergence of visual,
auditory and somatosensory inputs (Graziano et al., 2000; Grazi-
ano, 2001). Sensory responses recorded in the premotor cortex in
monkeys are related to the motor intention, implying a role in
the preparation of voluntary movements (Boussaoud et al., 1995;
Wise et al., 1997). These multimodal inputs to the premotor cortex
come both from sensory association areas, and also from multisen-
sory areas of the parietal lobe (Tanné-Gariépy et al., 2002; Johnson
et al., 1996; Luppino et al. 1999; Shipp et al., 1998). The latencies of
the responses to sensory stimuli in the premotor cortex may be rel-
atively short, which is compatible with direct access through the
thalamus, for example, in agreement with recent anatomical stud-
ies (Morel et al., 2005; Cappe et al., 2009a) showing the existence
of inputs from PuM directed towards PMd and PMv. Indeed, the

Fig. 2. Thalamo-cortical (TC) connections originating from different thalamic nuclei
to distinct sensory (somatosensory area 5 – areas PE and PEa – and auditory areas –
mainly the belt and the parabelt of the auditory cortex) and motor cortical areas
(modified from Cappe et al., 2009a). Thalamic nuclei where overlaps of TC
connections occur are mentioned below the diagram. Thalamic nuclei which
contain cortico-thalamic connections (giant and small endings) from area 5 are also
indicated below the diagram.

ht
tp

://
do

c.
re

ro
.c

h

5



medial part of the pulvinar nucleus is the main candidate
(although other thalamic nuclei such as LP, VPL, MD or CL may also
play a role) to represent an alternative to cortico-cortical loops by
which information can be transferred between cortical areas
belonging to different sensory and sensorimotor modalities (Shipp,
2003). Interestingly, PuM also receives direct inputs from the supe-
rior colliculus (Stepniewska, 2004); information which is already
multimodal. It could be that loops between the cerebral cortex
and the pulvinar nucleus are part of mechanisms involved in mul-
tisensory integration observed in unisensory cortical areas (Crick
and Koch, 1998).

4. Role of non-specific connections?

Previous psychophysical studies in humans have shown that a
multisensory stimulation can give rise to a percept that differs
from that derived from a single modality (e.g. Stein and Meredith,
1993). Such multisensory processing can affect a range of different
behavioral parameters, such as reaction times (Welch and Warren,
1986; Raab, 1962), stimulus detection rate (Grant and Seitz, 2000),
accuracy of stimulus identification (Giard and Peronnet, 1999) as
well as learning effects on stimulus processing (Murray et al.,
2005; Lehmann and Murray, 2005). While for example the de-
crease in reaction times under multisensory conditions have been
largely reported for human subjects in auditory-visual recognition
tasks, no behavioral data to our knowledge are available in mon-
keys performing similar protocols. This lack of evidence in the
behaving monkey is regrettable as most of the heteromodal con-
nections have been revealed in non-human primates (see above).
Indeed, to investigate the role of these heteromodal connections,
we first searched for evidence of multisensory integration in the
monkey at the behavioral level, and then we investigated their
functional impact at the single cell level.

4.1. Behavioral evidence in the monkey

In a recent experiment, monkeys were trained to perform a sim-
ple detection task with visual, auditory or audio-visual stimuli
(Cappe et al., 2007b). The stimuli were presented with different
intensities and the reaction times (RTs) to detect theses stimuli
were compared. By varying the intensity of the individual auditory
and visual stimuli we have observed that under near-threshold
conditions, the multisensory stimuli had a significant facilitative
effect on reaction times and stimulus detection, a phenomenon
named the ‘‘redundant signal effect” (RSE; Raab, 1962). Two classes
of models can explain this effect: race and co-activation models.
According to the race model (Raab, 1962), neural interactions are
not required to obtain the RSE. Rather, stimuli independently com-
pete for response initiation and the faster of the two mediates
behavior on any given trial. Thus, simple probability summation
could produce the RSE. In contrast to this model, we observed in
the monkey shorter RTs for the multisensory stimuli than those ob-
tained for each unisensory stimuli, suggesting that the two compo-
nents of a multisensory stimulus are not processed independently,
but rather converge and are integrated in the central nervous sys-
tem. These data are in line with co-activation models (e.g., Miller,
1982), in which neural responses from stimulus pairs interact
and are pooled prior to behavioral response initiation, for which
the threshold is met more rapidly by multisensory stimuli than
by unisensory stimuli. In the monkey we have shown that the
auditory-visual effect, violating the ‘‘Race Model” (Miller, 1982),
disappeared at high intensities inferring that multisensory interac-
tion in the behaving monkey obeys the rule of inverse effectiveness
that proposes a higher multisensory benefit when the unisensory
stimuli are weak (Cappe et al., 2007b). The main unanswered ques-

tion is where in the brain is computed this integration that leads to
an increased efficiency of the sensory-motor output. However, re-
cent evidence points to a link between early non-linear auditory-
somatosensory interactions within posterior auditory cortices with
faster vs. slower RTs (Sperdin et al., 2009).

4.2. Electrophysiological evidence in the primary sensory areas

As mentioned earlier (see also other chapters in this issue),
many human studies conducted with EEG or fMRI have revealed
multisensory interactions in low-level cortices such as V1 (see
Ghazanfar and Schroeder, 2006 for a review and Martuzzi et al.,
2007; Romei et al., 2007, 2008 for recent evidences) and/or at a la-
tency that strongly suggests that such phenomena are supported
by the heteromodal connections directly linking areas of different
sensory modalities. For example, the visual information derived
from the lip movements during speech processing can affect di-
rectly the responses recorded in the auditory cortex (Besle et al.,
2004).

In the non-human primate (see also other chapters in this is-
sue), several electrophysiological experiments have similarly re-
vealed audio-visual interactions in the auditory cortex
(Ghazanfar et al., 2005; Bizley et al., 2007; Bizley and King, 2008;
Cappe et al., 2007b; Kayser et al., 2008) down to the level of A1
(Kayser et al., 2008). These recent results were highly complemen-
tary to the pioneer works of Schroeder’s laboratory that have re-
vealed the multimodal feature of the monkey auditory belt
where both visual and somatosensory responses can be evoked
(Schroeder et al., 2001; Schroeder and Foxe, 2002; Fu et al.,
2003). In the carnivore, while previous studies have reported that
the visual cortex can be activated by auditory stimuli (Spinelli
et al., 1968; Morrell, 1972; Fishman and Michael, 1973), intracellu-
lar recording in the primary visual cortex (A17) have recently failed
to find such auditory responses (Sanchez-Vives et al., 2006). Conse-
quently, because no evidence of auditory or visuo-auditory activity
was reported at the single cell level in the awake monkey and to
investigate the role of the A1 to V1 projection described in the ma-
caque, we performed an electrophysiological study of the effect of
an auditory stimulus on the neuronal activity of area V1 in a
behaving monkey performing an oculomotor task (Wang et al.,
2008). Three main points have to be highlighted from this study.
First, we did not find any auditory response in the set of single
units we tested. This is similar to what was reported in the primary
auditory cortex as electrophysiological recordings suggest that
non-auditory events are rather of modulatory influence and do
not drive activation at the spiking level, but rather are more evi-
dent in post-synaptic potentials (Lakatos et al., 2007). Second, in
the superior colliculus or in higher-order multisensory cortical
areas of the monkey such as the prefrontal, parietal or inferotem-
poral areas, the convergence of different sensory modalities is re-
flected mainly by a modulation (enhancement or depression) of
the strength of the sensory responses according to the spatial
and temporal congruencies of the two stimuli (Stein, 1998; Avillac
et al., 2007; Romanski, 2007). In V1 when presenting a spatially
congruent sound, we did not observe an enhancement in visual
neuronal activity even at low visual contrast. However, the visual
latency of V1 neurons was reduced by about 5% during a visuo-
auditory stimulation when using low saliency visual stimuli. The
superior colliculus, which is directly involved in the control of ocu-
lomotor behavior (Sparks, 2002), receives about a third of its corti-
cal afferents from the primary visual cortex (Collins et al., 2005).
Consequently, the decrease in V1 response latencies during multi-
sensory stimulation can act directly on the response of cells in the
SC and speed up the initiation of the saccadic command by the
brain stem oculomotor nucleus as demonstrated in the behaving
monkey (Bell et al., 2005). Lastly, the visuo-auditory interactions
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are dependent of the perceptual task in which the animal was en-
gaged. During a passive fixation task, V1 responses are not affected
by the simultaneous presentation a sound. The effect on responses
latencies is only observed when the visual cue is the target of the
ocular saccade. These results are in complete agreement with hu-
man studies showing different patterns of multisensory integra-
tion according to the behavioral context. First, in humans, the
detection or discrimination of multisensory objects, as well as
the perceptual expertise of subjects, differentially affect the tem-
poral aspects at which multisensory interactions occur (Fort
et al., 2002). Second, in blind patients, the cross-modal compensa-
tion that occurs following sensory deprivation (Bavelier and Nev-
ille, 2002; Bavelier et al., 2006) is expressed as a colonization of
the visual areas by somatosensory processing during Braille read-
ing but mainly during an active discrimination task (Sadato and
Hallett, 1999; see also Amedi et al., 2007).

To summarize, multisensory interactions can be expressed dif-
ferently as a function of the specific cortical areas under investiga-
tion. In primary areas such as V1 and A1, multisensory interaction
is predominantly of modulatory influence with no (or weak) re-
sponse to non-specific sensory stimuli. On the other hand, in asso-
ciation areas multisensory stimuli have a more pronounced impact
on both the strength and latencies of neuronal responses with a
proportion of cells showing such modulation being largely variable
across these areas (see Avillac et al., 2007; Romanski, 2007; Bizley
et al., 2007).

5. Conclusion

Thus, recent anatomical and electrophysiological approaches
provide evidence that multisensory interactions can be observed
at early stages of sensory processing. However, the complexity of
the connectivity network involved in multisensory interplay, that
includes cortical and thalamo-cortical pathways as well as the
diversity of interactions observed across the thalamus, the cortical
sensory or associative areas, favor a distributed system that is
probably adapted to specific behavioral situations. This is sug-
gested by the fact that heteromodal connections that have thus
far been identified are organized topologically and that at the neu-
ronal level, in multisensory situations the perceptual load of the
task will likely affect differently the neuronal responses. For this
reason, multisensory interactions are probably specific to each
individual area and only a comparative study of how neuronal
properties are diversified across areas would provide a better com-
prehension of multisensory interplay.
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