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We consider a ratio-dependent predator-prey system with a mate-finding Allee effect on prey. The stability properties of the
equilibria and a complete bifurcation analysis, including the existence of a saddle-node, aHopf bifurcation, and, a Bogdanov-Takens
bifurcations, have been proved theoretically and numerically. The blow-up method has been applied to investigate the structure of
a neighborhood of the origin. Our mathematical results show the mate-finding Allee effect can reduce the complexity of system
behaviors by making the complicated equilibrium less complicated, and it can be a destabilizing force as well, which makes the
system has a high possibility of being threatened with extinction in ecology.

1. Introduction

Just as pointed out by Berryman in [1] that “this dynamical
relationship between predators and their prey has long been
and will continue to be one of the dominant themes in both
ecology and mathematical ecology due to its universal exis-
tence and importance”, both ecologists and mathematicians
are interested in the dynamical analysis of predator-prey
models. It is well known that the classical Gause type
predator-prey system is written by

d𝑁
d𝜏

= 𝐺 (𝑁)𝑁 − 𝑓 (𝑁, 𝑃) 𝑃,

d𝑃
d𝜏

= 𝑒𝑓 (𝑁, 𝑃) − 𝑚𝑃,

(1)

where 𝑁(𝜏) and 𝑃(𝜏) are the densities of prey and predator,
respectively, 𝑒 represents the trophic efficiency or the conver-
sion efficiency of predator, and the parameter𝑚 characterizes
the predator natural mortality rate. The functional response
𝑓(𝑁, 𝑃), which quantifies the amount of prey consumed per
predator per unit time and plays an important role in
predator-prey dynamics, is conventionally modeled as prey-
dependent, where the prey consumption rate by an average
predator is only a function of prey density alone; that is,
𝑓(𝑁, 𝑃) = 𝑓(𝑁). Different prey-dependent response types

(e.g., the mass-action approach in Lotka-Volterra model and
Holling types I–III) have been used to model the predator-
prey interactions and get success in describing some ecolog-
ical communities. When the spatial structure of one or both
of the interacting populations is involved, it would be more
plausible to take the predator-dependent functional form,
where both predator and prey densities affect the response,
for example, Hassell and Varley function response [2] and
Beddington-DeAngelis functional response functional [3]. In
this paper, we are interested in one important form
of predator-dependent functional response, called ratio-
dependent response; that is, the functional response depends
on the term 𝑁/𝑃 and the corresponding Monod-Holling
hyperbolic form is

𝑓(
𝑁

𝑃
) =

𝑎𝑁

𝑁 + 𝑎ℎ𝑃
, (2)

where 𝑎 is the maximum prey consumption rate and ℎ is the
predator handling time, which is proposed by Arditi and
Ginzburg [4] and studied by many authors; see, for example,
Berezovskaya et al. [5, 6], Kuang et al. [7–10], and Zhang et al.
[11, 12] in which we know this ratio-dependent functional
response providesmore reasonable explanations and accurate
predictions when community-level situations of food chains
and food webs are considered.
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Another function𝐺(𝑁) in (1) is the per capita growth rate
of prey population in the absence of predators. The classical
view of popular dynamics is that the major ecological force
at work is the release from the constraints of intraspecific
competition when a population is small or at low density.The
fewer we are, the more we all have and the better welfare be
there. In general, 𝐺(𝑁) takes the form

𝐺 (𝑁) = 𝑟 (1 −
𝑁

𝐾
) , (3)

where 𝑟 and 𝐾 are the intrinsic growth rate and the envi-
ronment carrying capacity of prey, respectively. However, the
ecologist Allee gathered sufficient experimental and observa-
tional data to conclude that the evolution of social structures
was not only driven by competition, but that cooperation
was another, if not themost, fundamental principle in animal
species [13]. The dynamical consequences of this importance
of animal aggregations directly led to what Odum called in
1953 “the Allee principle,” now known as the Allee effect [14].

There are two conventional types of Allee effects: compo-
nent Allee effect and demographic Allee effect. The positive
relationship between any component of individual fitness and
population size can be regarded as a component Allee effect,
while a demographic Allee effect is linked to the level of
overall individual fitness [15].Moreover, a demographic Allee
effect is strong if there exists an Allee threshold, below which
the per capita growth rate becomes negative.The classical and
simplest types of demographic Allee effects are considered
commonly, which takes the mathematical form of

𝐺 (𝑁) = 𝑟 (𝑁 − 𝐴) (1 −
𝑁

𝐾
) , (4)

where𝐴 denotes the Allee threshold if𝐴 > 0. Much work has
been done on strongAllee effects; see, Hilker et al. [16, 17], Shi
et al. [18, 19], and González-Olivares et al. [20, 21] and their
citations. A wide range of mechanisms which may result in
Allee effects are considered and discovered, from fertilization
efficiency in sessile organisms to pollen limitation in plants
and to cooperative hunting in animals. So far, one of themost
important and probably the most studied mechanisms for
Allee effects is called made-finding; that is, individuals in a
population fail to find a suitable mate at low density, thus
resulting in fewer reproductive outputs and examples include
Glanville fritillary butterfly [15], sheep ticks, and whales [15,
22], and such mechanismmay cause a mate-finding (compo-
nent) Allee effect potentially. Mathematically, a mate-finding
process can be modeled by a female mating rate which has
positive dependence on density, denoted by 𝑀(𝑁). The
hyperbolic function

𝑀(𝑁) =
𝑁

𝑁 + 𝜃
, (5)

where 𝜃 scales the mate-finding Allee effects, is widely used
[15, 22–24].

In our paper, we aim to study a predator-prey system
which is subject to the ratio-dependent functional response
and a mate-finding Allee effect, and we believe it will give

people a better understanding of Allee effects in predator-
prey systems. More precisely, we consider the following
system:

d𝑁
d𝜏

= 𝑏𝑁
𝑁

𝜃 + 𝑁
− 𝑑𝑁(1 +

𝑁

𝐾
) −

𝑎𝑁𝑃

𝑁 + 𝑎ℎ𝑃
,

d𝑃
d𝜏

=
𝑒𝑎𝑁𝑃

𝑁 + 𝑎ℎ𝑃
− 𝑚𝑃,

(6)

with the initial conditions𝑁(0) > 0,𝑃(0) > 0. By introducing
the dimensionless variables given by 𝑡 = 𝑑𝜏, 𝑥 = 𝑁/𝐾, and
𝑦 = 𝑎ℎ𝑃/𝐾, then the system (6) becomes

d𝑥
d𝑡

= 𝑔𝑥
𝑥

𝛿 + 𝑥
− 𝑥 (1 + 𝑥) −

𝛼𝑥𝑦

𝑥 + 𝑦
:= 𝐹
1
(𝑥, 𝑦) ,

d𝑦
d𝑡

=
𝛼
1
𝑥𝑦

𝑥 + 𝑦
− 𝛽𝑦 := 𝐹

2
(𝑥, 𝑦) ,

(7)

where 𝑔 = 𝑏/𝑑, 𝛼 = 1/𝑑ℎ, 𝛼
1
= 𝑎𝑒/𝑑, 𝛽 = 𝑚/𝑑, and 𝛿 =

𝜃/𝐾 (relative strength of the mate-finding Allee effect). Now
we have rescaled the system from (6) to (7) by reducing the
number of parameters from seven to five. For the sake of con-
sistency, we make the same dimensionless transformation of
𝑔 = 𝑏/𝑑 as that in the system studied by Pavlová et al. [25].
Note that 𝑏 > 𝑑 > 0, so

(𝐴0) 𝑔 = 𝑏/𝑑 > 1.

We assume that (𝐴0) holds in our paper and all the other
parameters are positive; that is, 𝛿, 𝛼, 𝛼

1
, 𝛽 > 0.

We organize the paper as follows. In Section 2, we show
the system is dissipative and the stability and bifurcation anal-
ysis of complicated equilibrium 𝐸

0
, predator-free equilibria,

and positive equilibria are given.We discuss our findings and
summarize our conclusions in Section 3, and numerical
simulations are also carried out to support our findings.

2. Stability and Bifurcation Analysis

2.1. Dissipativetity. Note that𝑥𝑦/(𝑥+𝑦) is not defined at (0, 0),
and we can redefine the derivative as follows:

𝐹
1
(𝑥, 𝑦) = 𝐹

2
(𝑥, 𝑦) = 0, (𝑥, 𝑦) = (0, 0) . (8)

Finally we define𝐹 := (
𝐹
1

𝐹
2

). Clearly, with the extended defini-
tion, there globally exists a unique solution of system (7) for
any given nonnegative initial condition. Obviously, R2

+
=

{(𝑥, 𝑦) | 𝑥, 𝑦 ⩾ 0} is an invariant set. The following lemma
shows that system (7) is dissipative.

Lemma 1. Let (𝑥(𝑡), 𝑦(𝑡)) be a solution of system (7); then, one
has

lim sup
𝑡→+∞

(𝑥 (𝑡) +
𝛼

𝛼
1

𝑦 (𝑡)) ⩽
(𝑔 + 𝛽 − 1)

2

4𝛽
. (9)
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Figure 1: Phase portraits of system (7) if 𝛼
1
< 𝛽 and for 𝑔 = 1.44, 𝛿

1
= 0.04, 𝛼 = 0.4, 𝛼

1
= 0.1, and 𝛽 = 0.3.

Proof. Let𝑉(𝑡) = 𝑥(𝑡)+(𝛼/𝛼
1
)𝑦(𝑡). Differentiating𝑉, one has

𝑉
󸀠
(𝑡) =

𝑔𝑥
2

𝑥 + 𝛿
− 𝑥
2
+ (𝛽 − 1) 𝑥 − 𝛽𝑉 (𝑡)

< −𝑥
2
+ (𝑔 + 𝛽 − 1) 𝑥 − 𝛽𝑉 (𝑡)

⩽
(𝑔 + 𝛽 − 1)

2

4
− 𝛽𝑉 (𝑡) .

(10)

Thus, we have lim sup
𝑡→+∞

𝑉(𝑡) ⩽ (𝑔 + 𝛽 − 1)
2
/4𝛽 and

system (7) is dissipative. This completes the proof.

2.2. Complicated Equilibrium 𝐸
0
(0, 0) and Its Stability. Since

the Jacobian matrix cannot be evaluated at 𝐸
0
(0, 0) (noting

that 𝐹
1
and 𝐹
2
are not differentiable at (0, 0)), the classical sta-

bility anlysismethods are not applied.We apply the algorithm
presented in [6] to investigate the structure of a neighbor-
hood of𝐸

0
(0, 0) and show that system (7) has a stable 𝐸

0
(0, 0)

for all system parameters. Such result is obtained numerically
in Figures 1, 2, 4, and 6(a).

For the sake of simplicity in calculation, we focus on the
following system which is equivalent to system (7):

d𝑥
d𝑡

= − 𝑥
3
+ (𝑔 − 1 − 𝛿) 𝑥

2
− 𝛿𝑥 −

𝛼𝑥
2
𝑦 + 𝛼𝛿𝑥𝑦

𝑥 + 𝑦
,

d𝑦
d𝑡

=
𝛼
1
𝑥
2
𝑦 + 𝛼
1
𝛿𝑥𝑦

𝑥 + 𝑦
− 𝛽𝑦 (𝑥 + 𝛿) .

(11)

Definition 2. Avector field𝑊(𝑥, 𝑦) = 𝑃(𝑥, 𝑦)(𝜕/𝜕𝑥)+𝑄(𝑥, 𝑦)

(𝜕/𝜕𝑦) is nondegenerate if it satisfies the following.

(A1) Polynomials 𝑃
𝑛
(𝑥, 𝑦) and 𝑄

𝑛
(𝑥, 𝑦) have no common

factors of the form 𝜇𝑥+]𝑦, where𝑃(𝑥, 𝑦) = 𝑃
𝑛
(𝑥, 𝑦)+

𝑃̃(𝑥, 𝑦),𝑄(𝑥, 𝑦) = 𝑄
𝑛
(𝑥, 𝑦) +𝑄(𝑥, 𝑦), and at least one

of the constants 𝜇, ] is nonzero.

(A2) Polynomial 𝐿(𝑥, 𝑦) has no factors of the form (𝜇𝑥 +

]𝑦)𝑘, where 𝑘 > 1, and 𝐿(𝑥, 𝑦) = 𝑥𝑄
𝑛
(𝑥, 𝑦) −

𝑦𝑃
𝑛
(𝑥, 𝑦).
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Figure 2: Phase portraits of system (7) if 𝛼 > 𝛼
1
and for 𝑔 = 1.44, 𝛼 = 0.8, 𝛼

1
= 0.4, and 𝛽 = 0.3.

By the time scale change d𝑡 → d𝑡/(𝑥+𝑦), the system (11)
takes the form

d𝑥
d𝑡

= −𝑥
4
− 𝑥
3
𝑦 + (𝑔 − 1 − 𝛿) 𝑥

3
+ (𝑔 − 1 − 𝛿 − 𝛼) 𝑥

2
𝑦

− 𝛿𝑥
2
− (𝛼 + 1) 𝛿𝑥𝑦 := 𝑃,

d𝑦
d𝑡

= (𝛼
1
− 𝛽) 𝑥

2
𝑦 − 𝛽𝑥𝑦

2
+ (𝛼
1
− 𝛽) 𝛿𝑥𝑦 − 𝛽𝛿𝑦

2
:= 𝑄.

(12)

Let

𝑃
2
(𝑥, 𝑦) = −𝛿𝑥

2
− (𝛼 + 1) 𝛿𝑥𝑦,

𝑄
2
(𝑥, 𝑦) = (𝛼

1
− 𝛽) 𝛿𝑥𝑦 − 𝛽𝛿𝑦

2
,

𝑃̃ (𝑥, 𝑦) = −𝑥
4
+ 𝑥
3
𝑦 + (𝑔 − 1 − 𝛿) 𝑥

3
+ (𝑔 − 1 − 𝛿 − 𝛼) 𝑥

2
𝑦,

𝑄 (𝑥, 𝑦) = (𝛼
1
− 𝛽) 𝑥

2
𝑦 − 𝛽𝑥𝑦

2
,

(13)

and then one has

𝑃 (𝑥, 𝑦) = 𝑃
2
(𝑥, 𝑦) + 𝑃̃ (𝑥, 𝑦) , 𝑃̃ (𝑥, 𝑦) = 𝑜 (

󵄨󵄨󵄨󵄨𝑥, 𝑦
󵄨󵄨󵄨󵄨

3

) ,

𝑄 (𝑥, 𝑦) = 𝑄
2
(𝑥, 𝑦) + 𝑄 (𝑥, 𝑦) , 𝑄 (𝑥, 𝑦) = 𝑜 (

󵄨󵄨󵄨󵄨𝑥, 𝑦
󵄨󵄨󵄨󵄨

3

) ,

𝐿 (𝑥, 𝑦) = 𝑥𝑄
2
(𝑥, 𝑦) − 𝑦𝑃

2
(𝑥, 𝑦)

= 𝛿𝑥𝑦 [(𝛼
1
− 𝛽 + 1) 𝑥 + (𝛼 − 𝛽 + 1) 𝑦] .

(14)

It is easy to see that the vector field 𝑊(𝑥, 𝑦) of (12) is non-
degenerate. After applying the blow-up transformations
(𝑥, 𝑦) → (𝑥, 𝑢) with

𝑢 =
𝑦

𝑥
, 𝑥 ̸= 0, (15)

and the time change d𝑡 → 𝑥d𝑡, one has

d𝑥
d𝑡

= 𝑥𝑃
2
(1, 𝑢) + 𝐺

1
(𝑥, 𝑢) ,

d𝑢
d𝑡

= 𝐿
1
(𝑢) + 𝐺

2
(𝑥, 𝑢) ,

(16)
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1
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where

𝐿
1
(𝑢) = 𝐿 (1, 𝑢) = 𝛿𝑢 [(𝛼

1
− 𝛽 + 1) + (𝛼 − 𝛽 + 1) 𝑢] ,

𝐺
1
(𝑥, 𝑢) =

𝑃̃ (𝑥, 𝑢𝑥)

𝑥
,

𝐺
2
(𝑥, 𝑢) =

(𝑄 (𝑥, 𝑢𝑥) − 𝑃̃ (𝑥, 𝑢𝑥) 𝑢)

𝑥2
.

(17)

Thus, if (𝛼−𝛽+1)(𝛼
1
−𝛽+1) > 0, 𝐿

1
(𝑢) has only one nonneg-

ative root 𝑢
1
= 0, and consequently, system (16) has one equi-

librium 𝑂
1
(0, 𝑢
1
). 𝐿
1
(𝑢) has two nonnegative roots: 𝑢

1
= 0

and𝑢
2
= −(𝛼

1
−𝛽+1)/(𝛼−𝛽+1) if (𝛼−𝛽+1)(𝛼

1
−𝛽+1) < 0, and

thus system (16) has two equilibria𝑂
1
(0, 𝑢
1
) and𝑂

2
(0, 𝑢
2
) on

𝑢-axis. We state the following lemma.

Lemma 3. We have the following results.

(1) If 𝛼−𝛽+1 < 0 and 𝛼
1
−𝛽+1 < 0,𝑂

1
(0, 𝑢
1
) is a single

stable node.

(2) If 𝛼−𝛽+1 > 0 and 𝛼
1
−𝛽+1 > 0,𝑂

1
(0, 𝑢
1
) is a single

saddle.

(3) If 𝛼−𝛽+1 > 0 and 𝛼
1
−𝛽+1 < 0,𝑂

1
(0, 𝑢
1
) is a stable

node and 𝑂
2
(0, 𝑢
2
) is a saddle.

(4) If 𝛼−𝛽+1 < 0 and 𝛼
1
−𝛽+1 > 0,𝑂

1
(0, 𝑢
1
) is a saddle

and 𝑂
2
(0, 𝑢
2
) is a stable node.

Proof. We only verify (3) since the other three results can be
shown in a similar way. It is easy to see that

𝑃
2
(1, 𝑢
1
) = −𝛿 < 0, 𝐿

󸀠

1
(𝑢
1
) = 𝛿 (𝛼

1
− 𝛽 + 1) ,
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𝑃
2
(1, 𝑢
2
) =

𝛿 (𝛼𝛼
1
− 𝛼𝛽 + 𝛼

1
)

𝛼 − 𝛽 + 1
,

𝐿
󸀠

1
(𝑢
2
) = −𝛿 (𝛼

1
− 𝛽 + 1) .

(18)

If 𝛼 − 𝛽 + 1 > 0 and 𝛼
1
− 𝛽 + 1 < 0, that is, 𝛼

1
< 𝛽 − 1 < 𝛼,

then 𝐿
󸀠

1
(𝑢
1
) < 0, 𝐿󸀠

1
(𝑢
2
) > 0, and

𝑃
2
(1, 𝑢
2
) =

𝛿 (𝛼𝛼
1
− 𝛼𝛽 + 𝛼

1
)

𝛼 − 𝛽 + 1
<

𝛿 (−𝛼 + 𝛼
1
)

𝛼 − 𝛽 + 1
< 0. (19)

Based on [6, Proposition 3], we can conclude that that𝑂
1
is a

stable node and 𝑂
2
is a saddle, respectively.

We obtain the following system in a similar way by
making transformations (𝑥, 𝑦) → (V, 𝑦) with

V =
𝑥

𝑦
, 𝑦 ̸= 0, (20)

and d𝑡 → 𝑦d𝑡; then, we obtain

dV
d𝑡

= 𝐿
2
(V) + 𝐽

1
(V, 𝑦) ,

d𝑦
d𝑡

= 𝑦𝑄
2
(V, 1) + 𝐽

2
(V, 𝑦) ,

(21)

where

𝐿
2
(V) = − 𝐿 (V, 1) = −𝛿V [(𝛼

1
− 𝛽 + 1) V + (𝛼 − 𝛽 + 1)] ,

𝐽
1
(V, 𝑦) =

(𝑃̃ (V𝑦, 𝑦) − 𝑄 (V𝑦, 𝑦) V)
𝑦2

,

𝐽
2
(V, 𝑦) =

𝑄 (V𝑦, 𝑦)
𝑦

.

(22)

Thus, if (𝛼 − 𝛽 + 1)(𝛼
1
− 𝛽 + 1) > 0, system (21) has only one

nonnegative equilibrium 𝑂
∗

1
(0,0). The system (21) has two

equilibria𝑂∗
1
(0, 0) and𝑂

∗

2
(V
2
, 0) on the V-axis if (𝛼−𝛽+1)(𝛼

1
−

𝛽 + 1) < 0. However, 𝑂∗
2
corresponds to 𝑂

2
; thus, we do not

need to study it again.𝑂∗
1
is a new equilibrium and it does not

exist in the (𝑥, 𝑢)-plane. Note that 𝐿󸀠
2
(0) = −𝛿(𝛼 + 1 − 𝛽) and

𝑄
2
(0, 1) = −𝛽𝛿 < 0. Again, based on [6, Proposition 3], then

comes the following conclusion.

Lemma 4. We say that

(1) if 𝛼 − 𝛽 + 1 < 0, 𝑂∗
1
(0, 0) is a saddle;

(2) if 𝛼 − 𝛽 + 1 > 0, 𝑂∗
1
(0, 0) is a stable node.

According to Lemmas 3 and 4, it then follows from [6]
that the following result holds for the origin𝐸

0
(0, 0) of system

(7), which is equivalent to system (11).

Theorem 5. If (𝛼−𝛽+1)(𝛼
1
−𝛽+1) ̸= 0, then there is at least

one attracting parabolic sector in the neighborhood of (0, 0) in
the first quadrant, and no hyperbolic or elliptic sector can be
found; that is, the complicated equilibrium 𝐸

0
(0, 0) is stable.

Remark 6. If (𝛼 − 𝛽 + 1)(𝛼
1
− 𝛽 + 1) > 0, the neighborhood

of 𝐸
0
(0, 0) in the first quadrant has a parabolic (attracting)

sector, but if (𝛼−𝛽+1)(𝛼
1
−𝛽+1) < 0, there are two parabolic

(attracting) sectors; in fact, we can regard those two sectors
as a whole attracting one. If (𝛼 − 𝛽 + 1)(𝛼

1
− 𝛽 + 1) = 0, 𝑂

𝑖
,

𝑖 = 1, 2 are also complicated equilibria and needed to apply
the blow-up transformation again. Now we can see that the
relative strength ofmate-findingAllee effect 𝛿 greatly changes
the structure of the neighborhood of 𝐸

0
(0, 0) in our system

(7), because 𝑃
2
(1, 𝑢
1
) = −𝛿 and 𝑄

2
(0, 1) = −𝛽𝛿 always

stay negative and 𝑂
1
(0, 0) and 𝑂

∗

1
(0, 0) cannot be unstable;

thus, the diversity of phase portraits around 𝐸
0
(0, 0) of ratio-

dependent prey-predator systems decreases. More impor-
tantly, the system becomes fragile and even has a higher risk
of extinction due to mate-finding Allee effect.

2.3. Existence and Stability of Predator-Free Equilibria. In
order to analyze the predator-free equilibria of the system (7),
we set

Δ
1
= (𝑔 − 𝛿 − 1)

2

− 4𝛿. (23)

We can notice that, for 𝑦 = 0, there exist two boundary
equilibria 𝐸

10
= (𝑥
1
, 0) and 𝐸

20
= (𝑥
2
, 0) if 0 < 𝛿 < 𝑔 − 1

and Δ
1
> 0; that is,

(𝐵1) 0 < 𝛿 < 𝛿
1
,

where 𝛿
1

:= (√𝑔 − 1)
2. Let 𝑥

𝑖
, 𝑖 = 1, 2 be the roots of the

quadratic equation 𝑥
2
+ (1 + 𝛿 − 𝑔)𝑥 + 𝛿 = 0; that is,

𝑥
1
=

1

2
(𝑔 − 𝛿 − 1 − √(𝑔 − 𝛿 − 1)

2

− 4𝛿) ,

𝑥
2
=

1

2
(𝑔 − 𝛿 − 1 + √(𝑔 − 𝛿 − 1)

2

− 4𝛿) ,

(24)

and they appear in pairs. Besides, there is no equilibrium on
𝑦-axis.

The Jacobian matrix evaluated at 𝐸
𝑖0
, 𝑖 = 1, 2 is given by

𝐽
𝑖0
= (

𝑥
𝑖

(𝑥
𝑖
+ 𝛿)
2
(𝑔𝛿 − (𝑥

𝑖
+ 𝛿)
2

) −𝛼

0 𝛼
1
− 𝛽

) , (25)

and one eigenvalue is 𝜆
1
(𝐸
𝑖0
) = (𝑥

𝑖
/(𝑥
𝑖
+𝛿)
2
)(𝑔𝛿 − (𝑥

𝑖
+𝛿)
2
),

𝑖 = 1, 2, and the second eigenvalue is 𝜆
2
(𝐸
𝑖0
) = 𝛼
1
−𝛽, 𝑖 = 1, 2.

Note that the sign of𝜆
1
(𝐸
𝑖0
), 𝑖 = 1, 2, depends on𝜓

𝑖
:= √𝑔𝛿−

𝛿 − 𝑥
𝑖
, 𝑖 = 1, 2. Using the expression of 𝑥

𝑖
, 𝑖 = 1, 2, from (24),

we can have

𝜓
1
=

1

2
(2√𝑔𝛿 − 𝛿 − 𝑔 + 1 + √(𝑔 − 𝛿 − 1)

2

− 4𝛿) ,

𝜓
2
=

1

2
(2√𝑔𝛿 − 𝛿 − 𝑔 + 1 − √(𝑔 − 𝛿 − 1)

2

− 4𝛿) .

(26)

Under the restriction (𝐵1), it follows that

𝜓
1
> √𝛿 (√𝑔 − √𝛿 − 1) > 0,

𝜓
2
=

1

2
(−(√𝑔 − √𝛿)

2

+ 1 − √Δ
1
) < −

√Δ
1

2
< 0.

(27)
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Hence 𝜆
1
(𝐸
10
) is always positive, while 𝜆

1
(𝐸
20
) is negative. By

using the facts above, we have the following theorem.

Theorem 7. Assume (𝐵1) holds. Then

(1) if 𝛼
1

< 𝛽, 𝐸
10

is a saddle and 𝐸
20

is a stable node
(Figure 1(c)),

(2) if 𝛼
1
> 𝛽, 𝐸

10
is an unstable node and 𝐸

20
is a saddle

(Figure 2).

Remark 8. If 𝛿 = 𝛿
1
, system (7) has a unique predator-free

boundary equilibrium point 𝐸
∗0

= (𝑥
∗0
, 0) (also known as

the saddle-node equilibrium), where

𝑥
∗0

=
1

2
(𝑔 − 𝛿

1
− 1) = √𝛿

1
. (28)

Figure 1(b) shows the instantaneous equilibrium 𝐸
∗0

in the
case of 𝛼

1
< 𝛽 and the behaviors of trajectories are divided by

the stable manifold𝑊
𝑠
(𝐸
∗0
) of 𝐸
∗0

(the green curve).

2.4. Positive Equilibria and Their Stability
and Bifurcation Results

2.4.1. Existence and Stability of Positive Equilibria. The inte-
rior (positive) equilibria can be evaluated by the intersections
of the zero isoclines

𝑔𝑥

𝑥 + 𝛿
− (1 + 𝑥) =

𝛼𝑦

𝑥 + 𝑦
,

𝛼
1
𝑥

𝑥 + 𝑦
= 𝛽,

(29)

in the first quadrant.Thepredator zero isocline, with the slope
(𝛼
1
− 𝛽)/𝛽, is a straight line passing through the origin, and

it lies in the first quadrant if the following restriction holds

(𝐶1) 𝛼
1
> 𝛽.

Besides, we can define

𝜎 := 1 + 𝛼 −
𝛼𝛽

𝛼
1

. (30)

Note that 𝜎 > 1 under the restriction (𝐶1). And for 𝑥2 + (𝛿 +

𝜎 − 𝑔)𝑥 + 𝛿𝜎 = 0, we also set

Δ
2
= (𝑔 − 𝛿 − 𝜎)

2

− 4𝛿𝜎. (31)

If 0 < 𝛿 < 𝑔 − 𝜎 and Δ
2
> 0, that is,

(𝐵2) 0 < 𝛿 < 𝛿
2
,

where 𝛿
2

:= (√𝑔 − √𝜎)
2, there are two positive equilibria

𝐸
1∗

= (𝑥
1∗
, 𝑦
1∗
) and 𝐸

2∗
= (𝑥
2∗
, 𝑦
2∗
), which also appear

simultaneously, with the coordinates

𝑥
1∗

=
1

2
(𝑔 − 𝛿 − 𝜎 − √(𝑔 − 𝛿 − 𝜎)

2

− 4𝛿𝜎) ,

𝑥
2∗

=
1

2
(𝑔 − 𝛿 − 𝜎 + √(𝑔 − 𝛿 − 𝜎)

2

− 4𝛿𝜎) ,

(32)

𝑦
𝑖∗

=
𝛼
1
− 𝛽

𝛽
𝑥
𝑖∗
, 𝑖 = 1, 2. (33)

Note that 0 < 𝛿
2
< 𝛿
1
, it suggests that if (𝐵2) holds, then (𝐵1)

holds; that is, if there exists any interior equilibrium in the
first quadrant, then two predator-free equilibria will be
detected. The Jacobian matrix 𝐽

𝑖∗
, 𝑖 = 1, 2 evaluated at an

interior equilibrium is given by

𝐽
𝑖∗

= (

𝑔𝛿𝑥
𝑖∗

(𝑥
𝑖∗

+ 𝛿)
2
− 𝑥
𝑖∗

+
𝛼𝑥
𝑖∗
𝑦
𝑖∗

(𝑥
𝑖∗

+ 𝑦
𝑖∗
)
2

−
𝛼𝑥
2

𝑖∗

(𝑥
𝑖∗

+ 𝑦
𝑖∗
)
2

𝛼
1
𝑦
2

𝑖∗

(𝑥
𝑖∗

+ 𝑦
𝑖∗
)
2

−
𝛼
1
𝑥
𝑖∗
𝑦
𝑖∗

(𝑥
𝑖∗

+ 𝑦
𝑖∗
)
2

),

det (𝐽
𝑖∗
) =

𝛼
1
𝑥
2

𝑖∗
𝑦
𝑖∗
[(𝑥
𝑖∗

+ 𝛿)
2

− 𝑔𝛿]

(𝑥
𝑖∗

+ 𝑦
𝑖∗
)
2

(𝑥
𝑖∗

+ 𝛿)
2

.

(34)

Similarly, we have det(𝐽
1∗
) < 0 and det(𝐽

2∗
) > 0. Moreover,

tr (𝐽
2∗
) =

𝑔𝛿𝑥
2∗

(𝑥
2∗

+ 𝛿)
2
− 𝑥
2∗

+
𝛽 (𝛼 − 𝛼

1
) (𝛼
1
− 𝛽)

𝛼
2

1

, (35)

and it is interesting to find that tr(𝐽
2∗
) is an increasing func-

tion of 𝛿. In fact, we can have

d𝑥
2

d𝛿
= −

1

2
(1 +

𝑔 − 𝛿 + 𝜎

√(𝑔 − 𝛿 + 𝜎)
2

− 4𝛿𝜎

) < 0, (36)

and we can define 𝑥󸀠
2
:= d𝑥
2
/d𝛿. Then, it follows that

dtr (𝐽
2∗
)

d𝛿
= 𝑥
󸀠

2
[

𝑔𝛿

(𝑥
2
+ 𝛿)
2
− 1]

+
𝑥
2
𝑔

(𝑥
2
+ 𝛿)
3
[𝑥
2
− 𝛿 − 2𝛿𝑥

󸀠

2
] > 0,

(37)

since

−𝛿 − 2𝛿𝑥
󸀠

2
= −𝛿 + 𝛿(1 +

𝑔 − 𝛿 + 𝜎

√(𝑔 − 𝛿 + 𝜎)
2

− 4𝛿𝜎

)

=
𝛿 (𝑔 − 𝛿 + 𝜎)

√(𝑔 − 𝛿 + 𝜎)
2

− 4𝛿𝜎

> 0.

(38)

Moreover, we can have the following conclusion.

Theorem 9. Assume that (𝐵2) and (𝐶1) hold. Then one has
the following.

(1) 𝐸
1∗

is a saddle.

(2) If 𝛼 ⩽ 𝛼
1
, 𝐸
2∗

is stable.

(3) If 𝛼 > 𝛼
1
, 𝐸
2∗

can be stable or unstable depending on 𝛿

(Figure 2).
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2.4.2. Hopf Bifurcation. Here assume that (𝐵2) and (𝐶1) hold,
and we consider 𝛿 as the bifurcation parameter to discuss the
Hopf bifurcation. It is easy to know that the Hopf bifurcation
can occur only at 𝐸

2∗
as 𝐸
1∗

is always a saddle point.
Thenwe try to show the existence of 𝛿 = 𝛿

ℎ
such that tr(𝐽

2∗
) =

0 and det(𝐽
2∗
) > 0. From the expression of tr(𝐽

2∗
) and

some numerical attempts, we find that other parameters 𝑔, 𝛼,
𝛼
1
, and 𝛽 still have an important impact on the qualitative

properties of the Hopf bifurcation though only 𝛿 is consid-
ered as the bifurcation parameter. The following assumption
is used to guarantee the exsitence of theHopf bifurcationwith
bifurcation parameter 𝛿:

(𝐶2) 𝛼 > 𝛼
1
, (1 − (𝛽/𝛼

1
))(𝛼 − 𝛽 + (𝛼𝛽/𝛼

1
)) < 𝑔 − 1.

Assumption (𝐶2) implies that tr(𝐽
2∗
)|
𝛿=0

< 0 and
tr(𝐽
2∗
)|
𝛿=𝛿
2

> 0, and we have known that tr(𝐽
2∗
) is a contin-

uous increasing function of 𝛿 in [0, +∞); thus, there exists
𝛿 = 𝛿

ℎ
such that tr(𝐽

2∗
) = 0. Furthermore, the transversality

condition (d/d𝛿) tr(𝐽
2∗
)|
𝛿=𝛿
ℎ

> 0 is satisfied. Using the facts
above, system (7) can undergo a Hopf bifurcation at 𝐸

2∗
for

𝛿 = 𝛿
ℎ
if (𝐶2) holds.

Now we try to discuss the stability of the limit cycle of
system (7) as aHopf bifurcation occurs by computing the first
Lyapunov coefficient 𝑙 [26] at the 𝐸

2∗
. Transformations 𝑢

1
=

𝑥−𝑥
2∗

and 𝑢
2
= 𝑦−𝑦

2∗
are used to translate the equilibrium

𝐸
2∗
(𝑥
2∗
, 𝑦
2∗
) of the system (7) to the origin. Then we get

𝑢̇
1
= 𝑎
10
𝑢
1
+ 𝑎
01
𝑢
2
+ 𝑎
20
𝑢
2

1
+ 𝑎
11
𝑢
1
𝑢
2
+ 𝑎
02
𝑢
2

2
+ 𝑎
03
𝑢
3

1

+ 𝑎
21
𝑢
2

1
𝑢
2
+ 𝑎
12
𝑢
1
𝑢
2

2
+ 𝑎
03
𝑢
3

2
+ 𝑅
1
(𝑢
1
, 𝑢
2
) ,

𝑢̇
2
= 𝑏
10
𝑢
1
+ 𝑏
01
𝑢
2
+ 𝑏
20
𝑢
2

1
+ 𝑏
11
𝑢
1
𝑢
2
+ 𝑏
02
𝑢
2

2
+ 𝑏
03
𝑢
3

1

+ 𝑏
21
𝑢
2

1
𝑢
2
+ 𝑏
12
𝑢
1
𝑢
2

2
+ 𝑏
03
𝑢
3

2
+ 𝑅
2
(𝑢
1
, 𝑢
2
) ,

(39)

where

𝑎
10

=
𝑥
2∗
𝑔𝛿

(𝑥
2∗

+ 𝛿)
2
+

𝛼𝑥
2∗
𝑦
2∗

(𝑥
2∗

+ 𝑦
2∗
)
2
− 𝑥
2∗
,

𝑎
01

= −
𝛼𝑥
2

2∗

(𝑥
2∗

+ 𝑦
2∗
)
2
,

𝑎
20

=
𝑔𝛿
2

(𝑥
2∗

+ 𝛿)
3
+

𝛼𝑦
2

2∗

(𝑥
2∗

+ 𝑦
2∗
)
3
− 1,

𝑎
11

= −
2𝛼𝑥
2∗
𝑦
2∗

(𝑥
2∗

+ 𝑦
2∗
)
3
, 𝑎

02
= −

𝛼𝑥
2∗
𝑦
2∗

(𝑥
2∗

+ 𝑦
2∗
)
3
,

𝑎
30

= −
𝑔𝛿
2

(𝑥
2∗

+ 𝛿)
4
−

𝛼𝑦
2

2∗

(𝑥
2∗

+ 𝑦
2∗
)
4
,

𝑎
21

=
2𝛼𝑥
2∗
𝑦
2∗

− 𝛼𝑦
2

2∗

(𝑥
2∗

+ 𝑦
2∗
)
4

, 𝑎
12

=
2𝛼𝑥
2∗
𝑦
2∗

− 𝛼𝑥
2

2∗

(𝑥
2∗

+ 𝑦
2∗
)
4

,

𝑎
03

= −
𝛼𝑥
2

2∗

(𝑥
2∗

+ 𝑦
2∗
)
4
,

𝑏
10

=
𝛼
1
𝑦
2

2∗

(𝑥
2∗

+ 𝑦
2∗
)
2
, 𝑏

01
= −

𝛼
1
𝑥
2∗
𝑦
2∗

(𝑥
2∗

+ 𝑦
2∗
)
2
,

𝑏
20

= −
𝛼
1
𝑦
2

2∗

(𝑥
2∗

+ 𝑦
2∗
)
3
, 𝑏

11
=

2𝛼
1
𝑥
2∗
𝑦
2∗

(𝑥
2∗

+ 𝑦
2∗
)
3
,

𝑏
02

= −
𝛼
1
𝑥
2

2∗

(𝑥
2∗

+ 𝑦
2∗
)
3
, 𝑏

30
=

𝛼
1
𝑦
2

2∗

(𝑥
2∗

+ 𝑦
2∗
)
4
,

𝑏
21

=
−2𝛼
1
𝑥
2∗
𝑦
2∗

+ 𝛼
1
𝑦
2

2∗

(𝑥
2∗

+ 𝑦
2∗
)
4

,

𝑏
12

=
−2𝛼
1
𝑥
2∗
𝑦
2∗

+ 𝛼
1
𝑥
2

2∗

(𝑥
2∗

+ 𝑦
2∗
)
4

, 𝑏
03

=
𝛼
1
𝑥
2

2∗

(𝑥
2∗

+ 𝑦
2∗
)
4
,

(40)

and 𝑅
𝑖
(𝑥, 𝑦), 𝑖 = 1, 2 are power series in the powers of 𝑢𝑗

1
𝑢
𝑘

2

satisfying 𝑗 + 𝑘 ⩾ 4. The Lyapunov number 𝑙 (as defined in
[26]) is given by

𝑙 = −
3𝜋

2𝑎
01
Δ3/2

× ([𝑎
10
𝑏
10

(𝑎
2

11
+ 𝑎
11
𝑏
02

+ 𝑎
02
𝑏
11
)

+ 𝑎
10
𝑎
01

(𝑏
2

11
+ 𝑎
20
𝑏
11

+ 𝑎
11
𝑏
02
)

+ 𝑏
2

10
(𝑎
11
𝑎
02

+ 2𝑎
02
𝑏
02
) − 2𝑎

10
𝑏
10

(𝑏
2

02
− 𝑎
20
𝑎
02
)

− 2𝑎
10
𝑎
01

(𝑎
2

20
− 𝑏
20
𝑏
02
) − 𝑎
2

01
(2𝑎
20
𝑏
20

+ 𝑏
11
𝑏
20
)

+ (𝑎
01
𝑏
10

− 2𝑎
2

10
) (𝑏
11
𝑏
02

− 𝑎
11
𝑎
20
)]

− (𝑎
2

10
+ 𝑎
01
𝑏
10
) [3 (𝑏10𝑏03 − 𝑎

01
𝑎
30
)

+ 2𝑎
10

(𝑎
21

+ 𝑏
12
)

+ (𝑏
10
𝑎
12

− 𝑎
01
𝑏
21
)] ) ,

(41)

where Δ = 𝑎
10
𝑏
01

− 𝑎
01
𝑏
10
. Since the expression Lyapunov

number for 𝑙 is very complex, we fail to discuss the sign of
𝑙 precisely though a subcritical Hopf bifurcation has been
foundnumericallywith the Lyapunovnumber 𝑙 = 5.545875 >

0 (Figure 3). Obviously, the assumption (𝐶2) is satisfied in
Figure 3. We need to require 𝛿 < 𝛿

1
(green line) and 𝛿 < 𝛿

2

(blue line) to guarantee the existence of 𝐸
2∗
; that is, (𝐵1) and

(𝐵2) hold (Figure 3(a)). tr(𝐽
2∗
) is a continuous increasing

function of 𝛿. If 0 < 𝛿 < 𝛿
ℎ
, system (7) has a stable 𝐸

2∗

(Figure 2(a)). As 𝛿 increases, a homoclinic loop is created by
joining the stable and unstable manifolds of the saddle
𝐸
1∗

at some 𝛿 (𝛿 < 𝛿
ℎ
) with a stable 𝐸

2∗
inside (Figure 2(b)).

Then as 𝛿 gets larger, an unstable limit cycle appears and
coexists with a stable 𝐸

2∗
(Figure 4). However, the limit

cycle begins to shrink with the increasing 𝛿. The shrinking
unstable limit cycle (Figures 3(b) and 3(c)) disappears as 𝛿

passes through 𝛿
ℎ
(𝛿
ℎ
is also the root of equation tr(𝐽

2∗
) = 0,

𝛿
ℎ

= 0.009724). Then 𝛿
ℎ

< 𝛿 < 𝛿
2
, 𝐸
2∗

becomes unstable
(Figure 2(c)).
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2.4.3. Saddle-Node Bifurcation. We know that when 𝑔
∗
, 𝛿
∗
,

𝛼
∗
, 𝛼
1∗
, and 𝛽

∗
satisfy (𝐶1) and the following equation

𝛿 − (√𝑔 − √𝜎)
2

= 0, (42)

where 𝜎 = 1 + 𝛼 − 𝛼𝛽/𝛼
1
, then there is only one interior

equilibrium 𝐸
∗
of system (7), whose coordinates are given by

𝑥
∗
=

1

2
(𝑔
∗
− 𝛿
∗
− 𝜎
∗
) = √𝛿

∗
𝜎
∗
,

𝑦
∗
=

𝛼
1∗

− 𝛽
∗

2𝛽
∗

(𝑔
∗
− 𝛿
∗
− 𝜎
∗
) =

𝛼
1∗

− 𝛽
∗

𝛽
∗

√𝛿
∗
𝜎
∗
.

(43)

And the Jacobian matrix evaluated at 𝐸
∗
is

𝐽
∗
= (

𝛼
∗
𝑥
∗
𝑦
∗

(𝑥
∗
+ 𝑦
∗
)
2

−
𝛼
∗
𝑥
2

∗

(𝑥
∗
+ 𝑦
∗
)
2

𝛼
1∗
𝑦
2

∗

(𝑥
∗
+ 𝑦
∗
)
2

−
𝛼
1∗
𝑥
∗
𝑦
∗

(𝑥
∗
+ 𝑦
∗
)
2

). (44)

Next we choose the relative strength of mate-finding Allee
effect 𝛿 as the bifurcation parameter; then, we have the
following theorem.

Theorem 10. Assume (𝐶1) holds. For 𝛿 = 𝛿
∗
and 𝛼

1∗
̸=

𝛼
∗
, a saddle-node bifurcation occurs at the unique positive

equilibrium 𝐸
∗
of system (7).

Proof. First, we have det(𝐽
∗
) = 0; therefore, 𝐽

∗
has an eigen-

value 𝜆
∗
= 0, and if 𝛼

1∗
̸= 𝛼
∗
, then 𝜆

∗
= 0 is simple. Let 𝑊

1

and 𝑊
2
be the eigenvectors corresponding to the 𝜆

∗
= 0 for

𝐽
∗
and 𝐽
𝑇

∗
, respectively. Then we obtain

𝑊
1
= (

1

𝛼
1∗

− 𝛽
∗

𝛽
∗

) := (
𝑤
11

𝑤
12

) ,

𝑊
2
= (

1

−
𝛼
∗
𝛽
∗

𝛼
1∗

(𝛼
1∗

− 𝛽
∗
)

) .

(45)

From the expressions for𝑊
1
and𝑊

2
, we get

𝑊
𝑇

2
𝐹
𝛿
((𝑥
∗
, 𝑦
∗
) ; 𝛿
∗
) = −

𝑔
∗
𝑥
2

∗

(𝑥
∗
+ 𝛿
∗
)
2
< 0 ( ̸= 0) ,

𝑊
𝑇

2
𝐷
2
𝐹 (𝑊
1
,𝑊
1
) = −

2𝑥
∗

𝑥
∗
+ 𝛿
∗

< 0 ( ̸= 0) ,

(46)

where

𝐹
𝛿
=

𝜕𝐹

𝜕𝛿
,

𝐷
2
𝐹 (𝑊
1
,𝑊
1
) =

𝜕
2
𝐹

𝜕𝑥2
𝑤
11
𝑤
11

+
𝜕
2
𝐹

𝜕𝑥𝜕𝑦
𝑤
11
𝑤
12

+
𝜕
2
𝐹

𝜕𝑦𝜕𝑥
𝑤
12
𝑤
11

+
𝜕
2
𝐹

𝜕𝑦2
𝑤
12
𝑤
12
.

(47)

Thus by Sotomayor’s theorem [26], system (7) undergoes a
saddle-node bifurcation at 𝐸

∗
as 𝛿 passes 𝛿 = 𝛿

∗
if 𝛼
1∗

̸=

𝛼
∗
.

A numerical example has been carried out to demonstrate
a saddle-node bifurcation of system (7) (Figure 5). The green
curves represent the smaller unstable equilibria. The stability
of the larger equilibria changes from stable (blue curves)
to unstable (black curves) as 𝛿 passes through 𝛿

ℎ
(𝛿
ℎ

=

0.009724).

2.4.4. Bogdanov-Takens Bifurcation. Let us focus on𝐸
∗
again.

After knowing that a saddle-node bifurcation can occur at 𝐸
∗

if 𝛿 = 𝛿
∗
and 𝛼

1∗
̸= 𝛼
∗
, we go on to consider the case of 𝛿 =

𝛿
2
, det(𝐽

∗
) = 0, and tr(𝐽

∗
) = 0. If det(𝐽

∗
) = 0 and tr(𝐽

∗
) = 0,

then the Jacobian matrix of 𝐸
∗
has 𝜆

∗1
= 𝜆
∗2

= 0. When
det(𝐽
∗
) = 0, it is easily shown that if 𝛼

1∗
= 𝛼
∗
then tr(𝐽

∗
) = 0,

and hence we choose the relative mate-finding strength 𝛿 and
the predator growing ability𝛼

1
as two bifurcation parameters.

Then the following statement holds.

Theorem 11. Let (𝐶1) hold. The system (7) undergoes a
Bogdanov-Takens bifurcation around the equilibrium point 𝐸

∗

when 𝛿 = 𝛿
∗
and 𝛼

1∗
= 𝛼
∗
.

Proof. Following the ideas in [27, 28], we consider the
neighborhood of (𝛿

∗
, 𝛼
1∗
); that is, 𝛿 = 𝛿

∗
+ 𝑟
1
and 𝛼

1
= 𝛼
1∗

+

𝑟
2
, where 𝑟

𝑖
, 𝑖 = 1, 2, are sufficient small, and system (7)

becomes

d𝑥
d𝑡

=
𝑔
∗
𝑥
2

𝛿
∗
+ 𝑟
1
+ 𝑥

− 𝑑
∗
𝑥 (1 + 𝑥) −

𝛼
1∗
𝑥𝑦

𝑥 + 𝑦
,

d𝑦
d𝑡

=
(𝛼
1∗

+ 𝑟
2
) 𝑥𝑦

𝑥 + 𝑦
− 𝛽
∗
𝑦.

(48)

Wemake 𝑧
1
= 𝑥−𝑥

∗
, 𝑧
2
= 𝑦−𝑦

∗
for translating𝐸

∗
= (𝑥
∗
, 𝑦
∗
)

to the origin (0, 0), and we obtain

𝑧̇
1
= [−

𝑔
∗
𝑥
2

∗

(𝑥
∗
+ 𝛿
∗
)
2
𝑟
1
+ 𝜉
1
(𝑟
1
)]

+ [−
2𝑔
∗
𝛿
∗
𝑥
∗

(𝑥
∗
+ 𝛿
∗
)
3
𝑟
1
+ 𝜉
2
(𝑟
1
) +

𝛼
1∗
𝑥
∗
𝑦
∗

(𝑥
∗
+ 𝑦
∗
)
2
] 𝑧
1

−
𝛼
1∗
𝑥
2

∗

(𝑥
∗
+ 𝑦
∗
)
2
𝑧
2
+ [

𝑔
∗
𝛿
∗
(2𝑥
∗
− 𝛿
∗
)

(𝑥
∗
+ 𝛿
∗
)
4

𝑟
1
+ 𝜉
3
(𝑟
1
)

+
𝛼
1∗
𝑦
2

∗

(𝑥
∗
+ 𝑦
∗
)
3
−

𝑥
∗

𝑥
∗
+ 𝛿
∗

]𝑧
2

1

−
2𝛼
1∗
𝑥
∗
𝑦
∗

(𝑥
∗
+ 𝑦
∗
)
3
𝑧
1
𝑧
2
+

𝛼
1∗
𝑥
2

∗

(𝑥
∗
+ 𝑦
∗
)
3
𝑧
2

2

+ 𝑇
1
(𝑧
1
, 𝑧
2
) := 𝑄

1
(𝑧
1
, 𝑧
2
, 𝑟
1
, 𝑟
2
) ,
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𝑧̇
2
=

𝑥
∗
𝑦
∗

𝑥
∗
+ 𝑦
∗

𝑟
2
+ [

𝛼
1∗
𝑦
2

∗

(𝑥
∗
+ 𝑦
∗
)
2
+

𝑦
2

∗
𝑟
2

(𝑥
∗
+ 𝑦
∗
)
2
] 𝑧
1

+ [−
𝛼
1∗
𝑥
∗
𝑦
∗

(𝑥
∗
+ 𝑦
∗
)
2
+

𝑥
2

∗
𝑟
2

(𝑥
∗
+ 𝑦
∗
)
2
] 𝑧
2

− [
𝛼
1∗
𝑦
2

∗

(𝑥
∗
+ 𝑦
∗
)
3
+

𝑦
2

∗

(𝑥
∗
+ 𝑦
∗
)
3
𝑟
2
] 𝑧
2

1

+ [
2𝛼
1∗
𝑥
∗
𝑦
∗

(𝑥
∗
+ 𝑦
∗
)
3
+

2𝑥
∗
𝑦
∗

(𝑥
∗
+ 𝑦
∗
)
3
𝑟
2
] 𝑧
1
𝑧
2

− [
𝛼
1∗
𝑥
2

∗

(𝑥
∗
+ 𝑦
∗
)
3
+

𝑥
2

∗

(𝑥
∗
+ 𝑦
∗
)
3
𝑟
2
] 𝑧
2

2

+ 𝑇
2
(𝑧
1
, 𝑧
2
) := 𝑄

2
(𝑧
1
, 𝑧
2
, 𝑟
1
, 𝑟
2
) ,

(49)

where 𝜉
𝑖
, 𝑖 = 1, 2, 3 are polynomial functions of 𝑟

1
with 𝑟

𝑝

1

satisfying 𝑝 ⩾ 2, and 𝑇
1
(𝑧
1
, 𝑧
2
) and 𝑇

2
(𝑧
1
, 𝑧
2
) are 𝐶

∞

functions 𝑧𝑗
1
𝑧
𝑘

2
satisfying 𝑗 + 𝑘 ⩾ 3.

Then we apply the affine transformation

V
1
= 𝑧
1
,

V
2
= [−

2𝑔
∗
𝛿
∗
𝑥
∗

(𝑥
∗
+ 𝛿
∗
)
3
𝑟
1
+ 𝜉
2
(𝑟
1
) +

𝛼
1∗
𝑥
∗
𝑦
∗

(𝑥
∗
+ 𝑦
∗
)
2
] 𝑧
1

−
𝛼
1∗
𝑥
2

∗

(𝑥
∗
+ 𝑦
∗
)
2
𝑧
2
,

(50)

to obtain

V̇
1
= V
2
+ [−

𝑥
∗

𝑥
∗
+ 𝛿
∗

+ 𝜉
1
(𝑟
1
)] V2
1
+ 𝜉
2
(𝑟
1
) V
1
V
2

+
𝑥
∗
+ 𝑦
∗

𝛼
1∗
𝑥2
∗

V2
2
+ 𝑇̃
1
(V
1
, V
2
, 𝑟
1
, 𝑟
2
) ,

V̇
2
= 𝜂
1
(𝑟
1
, 𝑟
2
) V
1
+ 𝜂
2
(𝑟
1
, 𝑟
2
) V
2

+ [−
𝛼
1∗
𝑥
2

∗
𝑦
∗

(𝑥
∗
+ 𝛿
∗
) (𝑥
∗
+ 𝑦
∗
)
2
+ 𝜂
3
(𝑟
1
, 𝑟
2
)] V2
1

+ 𝜂
4
(𝑟
1
, 𝑟
2
) V
1
V
2
+ [

1

𝑥
∗

+ 𝜂
5
(𝑟
1
, 𝑟
2
)] V2
2

+ 𝑇̃
2
(V
1
, V
2
, 𝑟
1
, 𝑟
2
) ,

(51)

where 𝜉
𝑖
(𝑟
1
), 𝑖 = 1, 2, 3 and 𝜂

𝑖
(𝑟
1
, 𝑟
2
), 𝑖 = 1, 2, 3, 4, 5 are poly-

nomial functions with 𝑟
𝑝

1
satisfying 𝑝 ⩾ 1 and 𝑟

𝑝

1
𝑟
𝑞

2
satisfying

𝑝 + 𝑞 ⩾ 1, respectively. 𝑇̃
𝑖
, 𝑖 = 1, 2, are 𝐶

∞ functions in
their variables with V𝑗

1
V𝑘
2
satisfying 𝑗 + 𝑘 ⩾ 3.

Furthermore, if 𝑟
1
= 𝑟
2
= 0, we can see that

(BT0)

𝐽
(∗,0,0)

= (

𝛼
1∗
𝑥
∗
𝑦
∗

(𝑥
∗
+ 𝑦
∗
)
2

−
𝛼
1∗
𝑥
2

∗

(𝑥
∗
+ 𝑦
∗
)
2

𝛼
1∗
𝑦
2

∗

(𝑥
∗
+ 𝑦
∗
)
2

−
𝛼
1∗
𝑥
∗
𝑦
∗

(𝑥
∗
+ 𝑦
∗
)
2

) ̸= 𝜃
2×2

, (52)

(BT1) [−(𝑥
∗
/(𝑥
∗
+ 𝛿
∗
)) + 𝜉
1
(𝑟
1
) + 𝜂
4
(𝑟
1
, 𝑟
2
)]|
𝑟
1
=0,𝑟
2
=0

= −𝑥
∗
/

(𝑥
∗
+ 𝛿
∗
) < 0,

(BT2) [−(𝛼
1∗
𝑥
2

∗
𝑦
∗
/((𝑥
∗
+𝛿
∗
)(𝑥
∗
+𝑦
∗
)
2
))+𝜂
3
(𝑟
1
, 𝑟
2
)]|
𝑟
1
=0,𝑟
2
=0

=

−𝛼
1∗
𝑥
2

∗
𝑦
∗
/((𝑥
∗
+ 𝛿
∗
)(𝑥
∗
+ 𝑦
∗
)
2
) < 0,

(BT3) the map

((
𝑧
1

𝑧
2

) , (
𝑟
1

𝑟
2

)) 󳨀→ ((
𝑄
1

𝑄
2

) , tr(
𝜕𝑄
𝑖

𝜕𝑧
𝑖

) , det(
𝜕𝑄
𝑖

𝜕𝑧
𝑖

)) ,

𝑖 = 1, 2

(53)

is regular at

(
𝑧
1

𝑧
2

) = (
0

0
) , (

𝑟
1

𝑟
2

) = (
0

0
) . (54)

According to [27, 28], the system (7) undergoes a Bogdanov-
Takens bifurcation around the equilibriumpoint𝐸

∗
when 𝛿 =

𝛿
∗
and 𝛼

1∗
= 𝛼
∗
. This completes the proof.

Remark 12. Furthermore, the quantity𝜔 [27, 28] which deter-
mines the structure of the bifurcation is given by

𝜔 = sign[
𝛼
1∗
𝑥
3

∗
𝑦
∗

(𝑥
∗
+ 𝛿
∗
)
2

(𝑥
∗
+ 𝑦
∗
)
2
] = 1. (55)

The bifurcation diagram of system (7) in (𝛿, 𝛼
1
) is pre-

sented in Figure 6(a). There are no positive equilibria of sys-
tem (7) in Domain 1. In the domain bounded by Limit point
cycle (green) and Hopf curve (blue), there exist a saddle 𝐸

1∗

and an unstable 𝐸
2∗
. In the domain bounded by Hopf curve

(blue) and Homoclinic curve (dot and magenta), there is a
saddle 𝐸

1∗
and a stable 𝐸

2∗
surrounded by an unstable limit

cycle. In Domain 2, system (7) has a saddle 𝐸
1∗

and a stable
𝐸
2∗
. At BT point,𝐸

∗
is the unique positive equilibrium of sys-

tem (7) in the first quadrant, and the local dynamics near𝐸
∗
is

characterized by two trajectories (green curves, Figure 6(b)),
whichmeet at𝐸

∗
, butwith opposite time orientation, and also

behave like a cusp-like configuration.

3. Discussion

In this paper, we have discussed a ratio-dependent predator-
prey model with a (component) mate-finding Allee effect on
prey. Allee effects and ratio-dependent functional response
are very popular among theoretical ecologists as they can
display realistic and complicated dynamical behaviors, which
provide better explanations for the ecological observations.
And the hyperbolic function that we concerned for mate-
finding Allee effects is considered as the most appropriate
analytical form from ecological point of view.
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Figure 7: The same ratio-dependent predator-prey system with and without a mate-finding Allee effect for 𝑔 = 1.3, 𝛼 = 0.2, 𝛼
1
= 0.8, and

𝛽 = 0.3.

3.1.The Less Complicated Equilibrium 𝐸
0
(0, 0). We know that

ratio-dependent predator-prey systems with the logistic
growth of prey exhibit very complicated dynamic behaviors
around the origin [5, 6, 8, 9]; for instance, the origin behaves
like a stable node and an unstable saddle at the same time [5].
However, such dynamic properties can not be observed in
our system, because 𝐸

0
(0, 0) is always asymptotically stable,

which implies that any trajectory, starting from a certain
neighborhood of 𝐸

0
(0, 0), goes towards the origin for all

system parameters. In other words, the complicated equilib-
rium 𝐸

0
(0, 0) becomes less complicated because of the mate-

finding Allee effect on prey, which provides insights into pest
control by introducing a mate-finding Allee effect to reduce
the complexity around the origin.

We have constructed diagrams with and without a mate-
finding Allee effect in the same ratio-dependent predator-
prey system for better understanding and comparison. It is
easy to see that the origin can be a unstable node and a saddle
at the same time in a ratio-dependent predator-prey system
where the mate-finding Allee effect is absent in Figure 7(b).
It is interesting to note that, in both cases, we set 𝛼 < 𝛼

1
.

Generally, the predator growing ability 𝛼
1
is assumed to be

less than the consumption ability 𝛼 in predator-prey systems.
Hence 𝛼 < 𝛼

1
describes the case that predators can reply on

other resources, but the prey is still the limiting factor [5, 8].
So we can see obviously how the mate-finding Allee effect in
the prey population influences the dynamics of the ratio-
dependent predator-prey systems: it increases the extinction
risk of both prey and predators, even in the case that prey
population is not the only resources of the predator popula-
tion.

3.2. The Impacts of 𝛿. In order to understand the influence of
the relative strength of the mate-finding Allee effect 𝛿 on the
ratio-dependent prey-predator system, we consider 𝛿 as the
bifurcation parameter and find that system (7) can exhibit a
saddle-node, a subcritical Hopf, and a co-2 Bogdanov-Takens
bifurcations with the other bifurcation parameter 𝛼

1
.

It is easy to see that if 𝛿 > 𝛿
1
, system (7) has no interior

equilibria or other boundary equilibria except 𝐸
0
(0, 0); then,

𝐸
0
(0, 0) is globally asymptotically stable. In other words, if the

mate-finding Allee effect on the prey population is very
strong, any trajectory converges to 𝐸

0
as 𝑡 tends to infinity;

that is, both the prey and predators become extinct regardless
of their initial density, because the prey population has great
difficulty in finding mates at low density and suffers a heavy
loss from predation at the same time; thus, such situation
leads to a continued decline in predator population which is
illustrated in Figure 1(a). Furthermore, different from general
predator-prey systems with logistic growth on prey popula-
tion [5, 6] or those subject to the demographicAllee effects on
prey [29], the existence of predator-free boundary equilibria
becomes conditional in prey-predator systemswhere the prey
population suffers from a mate-finding Allee effect, and if
such equilibria exist, they appear simultaneously with an
unstable smaller equilibrium 𝐸

10
.

If 0 < 𝛿 < 𝛿
2
, 𝛼
1

> 𝛽, there are two predator-free
equilibria (an unstable node 𝐸

10
and a saddle 𝐸

20
whose

stable manifolds lie on 𝑥-axis) and two positive equilibria:
𝐸
1∗
(always a saddle) and𝐸

2∗
of system (7) simultaneously. In

some cases, 𝐸
2∗

changes from stable to unstable as the mate-
finding Allee effect strength gets stronger. It is interesting
that, following fromTheorem 5, there do not exist any global
asymptotically stable positive equilibria for any 𝑔, 𝛿, 𝛼, 𝛼

1
,

and 𝛽, which means that a mate-finding Allee effect on prey
increases the risk of extinction for system (7). In particular,
there can exist a stable 𝐸

2∗
surrounded by an unstable limit

cycle for some 𝛿; then, the other trajectories outside the
unstable limit cycle are attracted to 𝐸

0
(0, 0) except the stable

manifolds of 𝐸
1∗
, which indicates that the mate-finding Allee

effect on prey population may destabilize the system.
Though system (7) may experience unstable oscillation

for some certain 𝛿, it still needs extra assumption (𝐶2) for
other system parameters apart from those basic assumptions
(𝐴0) and (𝐶1), which indicates actually that the impacts 𝛿

are limit and system (7) itself is highly sensitive to its initial
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condition and present states. Harder to encounter a receptive
mate at low density leads to fewer reproductive output
directly, however, we take measures to mitigate the negative
effects of mate-finding Allee effects by changing other system
parameters.

We also leave the co-3 bifurcation problem for future
discussion. Another important and interesting issue that
requires further exploration is a more sophisticated proof of
the existence and stability of the limit cycles. It has been show
n that, with different mathematical forms of the Allee effect
in a predator-prey system, the number of limit cycles changes
[20]. Recently, uniqueness of limit cycle in a Gause-type
predator-prey system with an Allee effect has been proved
by Olivares et al. [21]. We believe their work on the form of
demographic Allee effects will be helpful for future studies on
those with component Allee effects.
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