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The key problem for attribute reduction to information systems is how to evaluate the importance of an attribute.The algorithms are
challenged by the variety of data forms in information system. Based on rough sets theory we present a new approach to attribute
reduction for incomplete information systems and fuzzy valued information systems. In order to evaluate the importance of an
attribute effectively, a novel algorithm with rigorous theorem is proposed. Experiments show the effect of proposed algorithm.

1. Introduction

There are various kinds of data in information systems,
such as real value attribute, symbol attribute, and fuzzy sets
attribute. The variety of data forms in information system
gives a challenge to attribute algorithms. How to evaluate
the importance of an attribute is a key problem for attribute
reduction, and this also is hot point of study for researchers
[1–6]. In [7] fuzzy discernibility matrix was studied for
depicting the relationship for attributes in information sys-
tem. Chen et al. [2] argued that the heuristic algorithm
in [7] usually cannot find a proper reduct but an overcut-
reduct or subreduct due to their stop criteria; based on the
minimal elements in discernibility matrix, they proposed an
attribute reduction algorithm with fuzzy rough sets. In [8],
fuzzy rough sets attribute reduction was approached by a
new construction of discernibilitymatrix. Rough set provides
an important tool for data mining and knowledge discovery,
and its application results attract more and more attention
[1, 9–15]. Attribute reduction for information system by using
discernibility matrix is an important application of rough set
theorem. The concept and structure of the traditional dis-
cernibility matrix are based on attribute and whose attribute
values are symbol [3, 10], which are also research hotspots
in rough set’s theorem and application field. However, it
is difficult to apply the traditional discernibility matrix in

incomplete information system, the real value attribute infor-
mation system, and fuzzy information systems. Although
extended rough set model and continuous attributes real
value segmentation method are proposed [2, 13, 16, 17], there
are also many problems related to traditional discernibility
matrix. In particular, the capacity of reduction is greatly
reduced because the threshold which decides equivalence of
discernibility matrix is artificial. In this paper, a new concept
of soft discernibilitymatrix is proposed, and related theorems
as well as examples are given. We could make attributes
reduction for incomplete information system, fuzzy informa-
tion systems by soft discernibility matrix. Experiments show
the effect of proposed algorithm.

2. Basic Concepts

Let 𝑆 = (𝑈,𝑄, 𝑉, 𝐹) be an information system, where 𝑈 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} a universe, 𝑄 is attribute set, 𝑉 is attribute

value set, and 𝐹 is the mapping of 𝑈 × 𝑄 → 𝑉. For
convenient explanation, we assume that attribute sets include
𝑚 condition attributes𝐶 = {𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑚
} and one decision

attribute 𝐷 (with values 𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑠
). Let {𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑠
}

be a partition equivalence class derived by decision attribute
𝐷 in which

𝑌
𝑖
= {𝑥 ∈ 𝑈 | 𝐹 (𝑥,𝐷) = 𝐷

𝑖
} , 𝑖 = 1, 2, . . . , 𝑠. (1)
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Each 𝑥
𝑖
and its attribute value are called information rule

in information system; in this paper, we call it𝑥
𝑖
rule for short.

The attribute value of an attribute 𝑎 (𝑎 ∈ 𝐶 or 𝑎 ∈ 𝐷) under
rule of 𝑥

𝑖
is denoted by 𝐹(𝑥

𝑖
, 𝑎).

If each attribute value in information systems is known,
the system is called complete information system. In some
cases, the information system is called incomplete informa-
tion system in which some attribute values are unknown.
Generally, attribute value set 𝑉is a symbol set in information
system 𝑆 = (𝑈,𝑄, 𝑉, 𝐹). The system is called fuzzy attribute
information system when attribute set𝑉 is fuzzy set.The sys-
tem is real value information system or continuous attribute
information systems when attribute value set 𝑉 is real value.

Based on rough sets [9], we give the following Definitions
1–4.

Definition 1. Let 𝑋 ⊆ 𝑈 be subset of universe and 𝑃 ⊆ 𝐶, the
lower approximation value of𝑋 about 𝑃 is

𝑃
−
𝑋 = {𝑥 ∈ 𝑈 | [𝑥]𝑃 ⊆ 𝑋} , (2)

and [𝑥]
𝑃
is the set which is made up of equivalence class

elements in 𝑈 and equivalence relation 𝑃.

Definition 2. Let 𝑈 be a universe, 𝑃 and 𝑄 are equivalence
relation clusters in 𝑈, and the 𝑃 positive universe of 𝑄 is
defined as POS

𝑃
(𝑄) = ∪

𝑋∈𝑈/𝑄
𝑃
−
(𝑋).

Definition 3. For 𝑃 ⊆ 𝐶, approximation accuracy of partition
{𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑘
} is

𝛾
𝑃
=

𝑘

∑

𝑖=1

card (𝑃
−
𝑌
𝑖
)

card (𝑈)
, (3)

where card( ) is cardinal number of set.

Definition 4. For 𝑃 ⊆ 𝐶, if 𝛾
𝑃
= 𝛾
𝐶
and there does not exist a

𝑅 being 𝑅 ⊂ 𝑃 and 𝛾
𝑅

̸= 𝛾
𝑃
, 𝑃 is called one attribute reduction

of 𝐶.
The whole intersection set of attribute reduction of 𝐶 is

called core of 𝐶, which is denoted as Core(𝐶).

Definition 5 (see [10]). Given an information system 𝑆, the
elements of discernibility matrix𝑀 = (𝑚

𝑖𝑗
) are

𝑚
𝑖𝑗
= {𝑎 ∈ 𝐶 | 𝐹 (𝑥

𝑖
, 𝑎) ̸= 𝐹 (𝑥

𝑗
, 𝑎)} ,

if 𝐹 (𝑥
𝑖
, 𝐷) ̸= 𝐹 (𝑥

𝑗
, 𝐷) ,

𝑚
𝑖𝑗
= Φ, if 𝐹 (𝑥

𝑖
, 𝐷) = 𝐹 (𝑥

𝑗
, 𝐷) ,

(4)

where Φ is empty set.
Paper [10] pointed out that if an element in discernibility

matrix includes only one attribute, this attribute is core.

3. Soft Discernibility Matrix

3.1. Probability Discernibility Matrix. Suppose that 𝑆 =

(𝑈,𝑄, 𝑉, 𝐹) is incomplete information system, 𝑉 is attribute

value set, ∗ represents uncertain attribute value in infor-
mation system, and V is the total number of types of
attribute value in the system.Thematrix which is constructed
by incomplete information system is called the probability
discernibility matrix.

Definition 6. Given incomplete information system 𝑆, we
denote

𝑚
1
= {𝑎 ∈ 𝐶 | 𝐹 (𝑥

𝑖
, 𝑎) ̸= 𝐹 (𝑥

𝑗
, 𝑎)} . (5)

If one of 𝐹(𝑥
𝑖
, 𝑎) and 𝐹(𝑥

𝑗
, 𝑎) is ∗,

𝑚
2
= {(1 −

1

V
) 𝑎 ∈ 𝐶} . (6)

If both 𝐹(𝑥
𝑖
, 𝑎) and 𝐹(𝑥

𝑗
, 𝑎) are ∗,

𝑚
3
= {(1 −

1

V2
) 𝑎 ∈ 𝐶} . (7)

The elements in 𝑀 = (𝑚
𝑖𝑗
) probability discernibility matrix

are

𝑚
𝑖𝑗
= 𝑚
1
∪ 𝑚
2
∪ 𝑚
3
,

𝑚
𝑖𝑗
= Φ, if 𝐹 (𝑥

𝑖
, 𝐷) = 𝐹 (𝑥

𝑗
, 𝐷) ,

(8)

where Φ is empty set.
In probability differential matrix, 𝑚

𝑖𝑗
is an element set

which is composed of the attribute symbols being with
coefficient or weight.

Given an attribute 𝑎 ∈ 𝑃 ⊆ 𝐶, for any two rules 𝑥
𝑖
and 𝑥

𝑗
,

if 𝐹(𝑥
𝑖
, 𝑎) and 𝐹(𝑥

𝑗
, 𝑎) are known (namely, being

certain value or symbol), we denote 𝑎 ∈ 𝑃
1
;

if one of 𝐹(𝑥
𝑖
, 𝑎) and 𝐹(𝑥

𝑗
, 𝑎) is ∗, we denote 𝑎 ∈ 𝑃

2
;

if both 𝐹(𝑥
𝑖
, 𝑎) and 𝐹(𝑥

𝑗
, 𝑎) are ∗, we denote 𝑎 ∈ 𝑃

3
.

Definition 7. Given incomplete information system 𝑆, the
similarity of rule 𝑥

𝑖
and rule 𝑥

𝑗
in the set of 𝑃 ⊆ 𝐶 is defined

as follows.
For every attribute, 𝑎 ⊆ 𝑃

1
satisfy 𝐹(𝑥

𝑖
, 𝑎) = 𝐹(𝑥

𝑗
, 𝑎) or 𝑃

1

is empty set; let 𝑠
0
= 1; otherwise let

𝑠
0
= 0, 𝑠

𝑖𝑗
=

𝑠
0

V𝑘+2𝑚
, (9)

where 𝑘 = card(𝑃
2
),𝑚 = card(𝑃

3
).

Suppose the subscript set of 𝑌
𝑖
which belongs to one

partition of 𝑈 derived from equivalence class of 𝐷 is 𝛿
𝑖
; if

𝑡 ∈ 𝛿
𝑖
, we denote 𝑠

𝑡
= ∑
𝑗∉𝛿𝑖

𝑠
𝑡𝑗
. If 𝑠
𝑡
> 1, we let 𝑠

𝑡
= 1.

Definition 8. For 𝑃 ⊆ 𝐶 and a partition {𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑠
}, the

approximate accuracy of 𝑃 can be defined as follows:

𝜆
𝑃
=

𝑠

∑

𝑖=1

card (𝑃
−
𝑌
𝑖
)

card (𝑈)
, (10)

where card(𝑃
−
𝑌
𝑖
) = card(𝛿

𝑖
) − ∑
𝑡∈𝛿𝑖

𝑠
𝑡
.
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Definition 9. For 𝑃 ⊆ 𝐶, if 𝜆
𝑃
= 𝜆
𝐶
and there does not exist

𝑅 ⊂ 𝑃 satisfying 𝜆
𝑅

= 𝜆
𝐶
, then 𝑃 is called one attribute

reduction of 𝐶. All the intersection of attribute reduction of
𝐶 is called core of 𝐶 and is denoted as Core(𝐶).

In probability discernibility matrix, if there is only one
attribute in an element, the included attribute is called single
attribute. If there are two or more attributes, the included
attributes are called multiattribute items.

Theorem 10. The single attribute whose coefficient in proba-
bility discernibility matrix is 1 is core attribute of corresponding
incomplete information system.

Proof. In probability discernibility matrix, single attribute
is the attribute that under which two different rules (with
different decision attribute value) have different attribute
value but have the same attribute value under the other
condition attributes.We can conclude fromDefinitions 6 and
8 that if single attributes are deleted, 𝜆

𝑃
must be reduced.

And then according to Definition 9, we can conclude that
the attribute must be core attribute. So the theorem is
correct.

In information system, the importance of one attribute
could be determined by its impact to approximate accuracy
of corresponding information systems. The attribute which
has larger impact on approximate accuracy ismore important
than that one which has smaller impact.The attributes which
could be reduced are called unimportant attribute.

Theorem 11. In probability discernibility matrix,

(1) if two attributes are single attribute, the attribute whose
sum of the coefficients is larger is more important;

(2) if an attribute is always being with another attribute
whose coefficient is 1 in same element set then the
attribute must be unimportant.

Proof. (1) If two attributes are single attribute, from Defini-
tions 7 and 8, we can see that their impact on𝜆

𝑃
is determined

by 6 the sum of coefficient in the single attribute.
The larger the sum of coefficient is, the more impact on

𝜆
𝑃
is, so it is more important.
(2) If an attribute is always being with another attribute

whose coefficient is 1 in same element set then the attribute
is certainly or possibly with different values under different
rules. We can conclude form Definition 7 that 𝑠

0
= 0, so 𝑠

𝑖𝑗
=

0. We know that the attribute has no impact on 𝜆
𝑃
according

to Definitions 7 and 8, so this attribute is unimportant.

3.2. Fuzzy DiscernibilityMatrix. For convenience of explana-
tion, we suppose that each attribute has single value for each
rule in the fuzzy information system.

For fuzzy attribute information systems, the concept
of equivalence class is no longer applicable, so traditional
method could not be used to construct discernibility matrix.
In fact, equivalence class represents a correlationship. If the
correlation is seen as similarity, then the equivalence can
be seen as the association with the value of 1; therefore,

the equivalence is a special case of similarity. Each rule
is viewed as one fuzzy set constructed by each condition
attribute value when we are constructing fuzzy discernibility
matrix and investigate similarities between fuzzy set.

Definition 12. Given fuzzy information system 𝑆, the element
in fuzzy discernibility matrix𝑀 = (𝑚

𝑖𝑗
) is defined as follows:

𝑚
𝑖𝑗
= {𝑓
𝑖,𝑗,1

𝐶
1
, 𝑓
𝑖,𝑗,2

𝐶
2
, . . . , 𝑓

𝑖,𝑗,𝑚
𝐶
𝑚
} , (11)

where𝑓
𝑖,𝑗,𝑘

= 𝑆
𝑘

𝑖,𝑗
−𝑆
𝑖,𝑗

(𝑘 = 1, 2, . . . , 𝑚). 𝑆
𝑖,𝑗
is fuzzy similarity

of 𝑥
𝑖
and 𝑥

𝑗
in the case that 𝐹(𝑥

𝑖
, 𝐷) ̸= 𝐹(𝑥

𝑗
, 𝐷). 𝑆𝑘

𝑖,𝑗
is fuzzy

similarity in the case that 𝐶
𝑘
attribute is deleted.

From Definition 12 we can conclude that each element
in fuzzy discernibility matrix is condition attribute set, and
it corresponds to a fuzzy set 𝐹 = {𝑓

𝑖,𝑗,1
, 𝑓
𝑖,𝑗,2

, . . . , 𝑓
𝑖,𝑗,𝑚

}.
Here we denote 𝑓

𝑘
= ∑
𝑖,𝑗
𝑓
𝑖,𝑗,𝑘

as the sum of coefficients
of 𝐶
𝑘
.

In paper [16], the authors give a similarity measure
formula. Suppose that 𝐴, 𝐵 are two fuzzy set; then similarity
measure base on inclusion degree is

𝐻(𝐴, 𝐵) =
1

𝑛
∑Count(𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
) , (12)

and similarity measure base on close degree is

𝐷 (𝐴, 𝐵) =
∑Count (𝐴 ∩ 𝐵)

∑Count (𝐴 ∪ 𝐵)
. (13)

Given a fuzzy attribute information system 𝑆, the similar-
ity of rule 𝑥

𝑖
and 𝑥

𝑗
is denoted as 𝑆

𝑖𝑗
. For each 𝑌

𝑖
⊂ 𝑈 derived

from equivalence class of𝐷, let the subscript set of 𝑌
𝑖
be 𝛿
𝑖
; if

𝑡 ∈ 𝛿
𝑖
, we denote

𝑠
𝑡
= ∑

𝑗∉𝛿𝑖

𝑠
𝑡𝑗
. (14)

Definition 13. For 𝑃 ⊆ 𝐶, approximation accuracy of
partition {𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑘
} is

𝜆
𝑃
=

𝑘

∑

𝑖=1

card (𝑃
−
𝑌
𝑖
)

card (𝑈)
, (15)

where card(𝑃
−
𝑌
𝑖
) = card(𝛿

𝑖
) − ∑
𝑡∈𝛿𝑖

𝑠
𝑡
. 𝜆
𝐶
is called approxi-

mate accuracy of fuzzy information system.

Definition 14. An attribute 𝑎 ∈ 𝐶 satisfying 𝜆
𝐶−{𝑎}

< 𝜆
𝐶

is called core attribute. The core attribute of system denotes
Core(𝐶).

As to attribute reduction, the importance of an attribute
depends on its impact on approximate accuracy 𝜆

𝐶
.

Theorem 15. An attribute with larger sum of coefficient in all
the elements of fuzzy discernibility matrix is more important.

Proof. We can conclude form Definition 12 that the sum of
coefficients in all elements can be described as

𝑓
𝑘
= ∑

𝑡⊆𝑈

𝑠
𝑘

𝑡
− 𝑠
𝑡
, (16)
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where

𝑠
𝑡
= ∑

𝑗∉𝛿𝑖

𝑆
𝑡,𝑗
, 𝑠

𝑘

𝑡
= ∑

𝑗∉𝛿𝑖

𝑆
𝑘

𝑡,𝑗
. (17)

From Definitions 13 and 14, we can conclude that the size of
approximate accuracy depends on the size of𝑓

𝑘
.The attribute

with larger coefficient has more impact on 𝜆
𝐶−{𝐶𝑘}

, so it is
more important.

Theorem 16. In fuzzy discernibility matrix, for an attribute,
if sum of coefficient in all elements is larger than 0, then the
attribute is core attribute.

Proof. We can conclude the proof of Theorem 10 that 𝜆
𝐶

could turns larger if 𝐶
𝑘
is reduced in the case of 𝑓

𝑘
> 0, and

then 𝐶
𝑘
is core attribute.

We can make attribute reduction in fuzzy information
system by use of Definitions 12–14 andTheorems 15–16.

4. Attribute Reduction

To illustrate the application of soft discernibility matrix,
we give two application examples of attribute reduction in
incomplete information and fuzzy information system.

4.1. Reduction for Incomplete Information System. The
method utilizing probability discernibility matrix for
attribute reduction in incomplete information is as follows.

The first step of attribute reduction on incomplete infor-
mation system is constructing corresponding discernibility
matrix according to Definition 6 and then finding out core
attribute and unimportant attribute according to Theorems
10 and 11. The core attributes are retained and the unimpor-
tant attributes are deleted. As to other attributes, the most
important attributes are joined into reduction set based on
their impact on approximate accuracy continuously.

Table 1 is incomplete information system, in which 𝑎, 𝑏, 𝑐,
and 𝑑 are condition attribute and 𝑒 is decision attribute.

In Table 1, the values of attribute are 0 or 1, V = 2. We
can obtain the elements of probability discernibility matrix
𝑀 based on Definition 6:

𝑚
𝑖,𝑖

= Θ (𝑖 = 1, 2, . . . , 8) ,

𝑚
2,1

= 𝑚
5,4

= 𝑚
8,7

= Θ,

𝑚
3,1

= 𝑚
3,2

= Θ,

𝑚
6,4

= 𝑚
6,5

= Θ,

𝑚
4,1

= {𝑏} ,

𝑚
4,2

= {𝑏, 𝑘𝑑} ,

𝑚
4,3

= {𝑏, 𝑘𝑐} ,

𝑚
5,1

= {𝑐, 𝑑} ,

𝑚
5,2

= {𝑘𝑐, 𝑘𝑑} ,

Table 1: Incomplete information system.

𝑈 𝑎 𝑏 𝑐 𝑑 𝑒

𝑋
1

1 1 1 0 1
𝑋
2

1 1 1 ∗ 1
𝑋
3

1 1 ∗ 0 1
𝑋
4

1 0 1 0 0
𝑋
5

1 1 0 1 0
𝑋
6

∗ 0 ∗ 1 0
𝑋
7

1 0 ∗ 1 2
𝑋
8

0 1 0 1 2

𝑚
5,3

= {𝑘𝑐} ,

𝑚
6,1

= {𝑘𝑎, 𝑏, 𝑘𝑐, 𝑑} ,

𝑚
6,2

= {𝑘𝑎, 𝑏, 𝑘𝑐, 𝑘𝑑} ,

𝑚
6,3

= {𝑘𝑎, 𝑏, 𝑘
2
𝑐, 𝑑} ,

𝑚
7,1

= {𝑏, 𝑘𝑐, 𝑑} ,

𝑚
7,2

= {𝑏, 𝑘𝑐, 𝑘𝑑} ,

𝑚
7,3

= {𝑏, 𝑘
2
𝑐, 𝑑} ,

𝑚
7,4

= {𝑘𝑐, 𝑑} ,

𝑚
7,5

= {𝑏, 𝑘𝑐} ,

𝑚
7,6

= {𝑘𝑎, 𝑘
2
𝑐} ,

𝑚
8,1

= {𝑎, 𝑐, 𝑑} ,

𝑚
8,2

= {𝑎, 𝑐, 𝑘𝑑} ,

𝑚
8,3

= {𝑎, 𝑘𝑐, 𝑑} ,

𝑚
8,4

= {𝑎, 𝑏, 𝑐, 𝑑} ,

𝑚
8,5

= {𝑎} ,

𝑚
8,6

= {𝑘𝑎, 𝑘𝑐} ,

(18)

where Θ is empty set, 𝑘 = 1/V.
Because the discernibility matrix is symmetrical, so we

only give out lower triangular elements of discernibility
matrix 𝑀. We can see that 𝑎, 𝑏, and 𝑐 are all single
attribute according to probability discernibility matrix 𝑀,
so they are core attributes. The approximate accuracy of
incomplete information system condition attribute in table is
𝜆
𝐶

= (1/8)(5 + 𝑘
3
). The approximate accuracy 𝜆

𝐶
remains

unchanged, even though attribute 𝑑 is deleted. So the incom-
plete information system in Table 1 can be reduced as 𝑎, 𝑏, and
𝑐.

We can realize attribute reduction for fuzzy information
system based on fuzzy discernibility matrix according to
definitions and theorems in Section 3.2. Table 2 is a fuzzy
attribute information system, in which 𝑎, 𝑏, and 𝑐 are
condition attributes and 𝑑 is decided attribute.
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Table 2: Fuzzy attribute information system.

𝑈 𝑎 𝑏 𝑐 𝑑

𝑋
1

0.1 0.5 0.8 0
𝑋
2

0.2 0.3 0.9 0
𝑋
3

0.8 0.6 0.7 1
𝑋
4

0.6 0.5 0.3 1
𝑋
5

0.4 0.4 0.6 2

4.2. Reduction for Fuzzy Information System. Given a fuzzy
information system, at first similarity, 𝑆

𝑖𝑗
between rules𝑥

𝑖
and

𝑥
𝑗
is computed, and then fuzzy discernibility matrix 𝑀 =

(𝑚
𝑖𝑗
) could be determined based on Definition 12. Based on

𝑀, we construct a new discernibility matrix𝑀∗ according to
following step.

Initiate𝑚∗
𝑖𝑗
the elements of𝑀∗ to be null sets.

For each element,

𝑚
𝑖𝑗
= {𝑓
𝑖,𝑗,1

𝐶
1
, 𝑓
𝑖,𝑗,2

𝐶
2
, . . . , 𝑓

𝑖,𝑗,𝑚
𝐶
𝑚
} . (19)

Compute

𝜀 = 𝑓
𝑖,𝑗,𝑘

− 𝑆
𝑖,𝑗
, (𝑘 = 1, 2, . . . , 𝑚) . (20)

If 𝜀 > 0, the corresponding attribute𝐶
𝑘
is joined into element

𝑚
∗

𝑖𝑗
.
The new matrix 𝑀

∗ has the traditional form of discerni-
bility matrix. At last, attribute reduction of fuzzy information
system could be obtained by discernibility function which is
composed of logical computation among elements.

The discernibility matrix (lower triangle) could be com-
puted based on similarity measure of closeness degree. The
following elements of discernibility matrix 𝑀

∗ is obtained
from the fuzzy attribute system Table 2 (Θ is empty set):

𝑚
∗

𝑖,𝑖
= Θ, (𝑖 = 1, 2, . . . , 5) ,

𝑚
∗

2,1
= 𝑚
∗

4,3
= Θ,

𝑚
∗

3,1
= 𝑚
∗

3,2
= 𝑚
∗

5,1
= 𝑚
∗

5,2
= {𝑎} ,

𝑚
∗

4,1
= 𝑚
∗

4,2
= {𝑎, 𝑐} ,

𝑚
∗

5,3
= {𝑎, 𝑏} ,

𝑚
∗

5,4
= {𝑐} .

(21)

We can conclude that attributes 𝑎, 𝑐 are single attributes, so 𝑎,
𝑐 are core attributes.

The discernibility matrix 𝑀
∗ could be reduced as (𝑎, 𝑐)

based on difference function𝑓(𝑆) = (𝑎)∧(𝑐)∧(𝑎∨𝑐)∧(𝑎∨𝑏).

5. Conclusion

In this paper, a new concept of soft discernibility matrix
is proposed; related theorems as well as corresponding
application are given. Because soft discernibilitymatrix could
be used in the attribute reduction of incomplete information
system, fuzzy information system, it could provide impor-
tant research basis for attribute reduction of real attribute

information system; the method proposed in this paper is
of wide application significance in practice. The new concept
and relatedmethod for attribute reduction are a development
to the study for information system and data mining.
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