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This paper deals with the problem of pseudo-state sliding mode control of fractional SISO nonlinear systems with model
inaccuracies. Firstly, a stable fractional sliding mode surface is constructed based on the Routh-Hurwitz conditions for fractional
differential equations. Secondly, a sliding mode control law is designed using the theory of Mittag-Leffler stability. Further, we
utilize the control methodology to synchronize two fractional chaotic systems, which serves as an example of verifying the viability
and effectiveness of the proposed technique.

1. Introduction

Fractional calculus has a long history of three hundred years,
over which a firm theoretical foundation has been estab-
lished. In the past few decades, with deep understanding of
the power of fractional calculus and rapid development of
computer technology, an enormous number of interesting
and novel applications have emerged in physics, chemistry,
engineering, finance, and other sciences [1–3]. In particular,
engineers and scientists from various fields have developed
plenty of fractional dynamical systems, that is, systems which
are better characterized by noninteger order mathematics
models. As has been stated in [3], a suitable way to more
efficient control of fractional dynamical systems is to design
fractional controllers.

Several pioneering attempts to develop fractional control
methodologies have been made, such as TID controller [4],
CRONE controller [5], fractional PID controller [6], and
fractional lead-lag compensator [7]. Basic ideas and technical
formulations of the above four fractional control schemes
with comparative comments have been presented in [8].

Very recently, by applying fractional calculus to advanced
nonlinear control theory, several fractional nonlinear control
schemes have been proposed, such as fractional sliding mode
control, fractional adaptive control, and fractional optimal
control. Exactly, to design fractional sliding mode controls,
various fractional sliding surfaces have been constructed in

[9–21]. In particular, adaptive sliding mode controls have
been proposed in [12, 19–21], fractional terminal slidingmode
controls in [15, 16], and sliding mode controls for linear frac-
tional systems with input and state delays in [17]. In [22], the
authors have presented two ideas to extend the conventional
model reference adaptive control (MRAC) by using fractional
parameter adjustment rule and fractional referencemodel. In
[23], a fractional model reference adaptive control algorithm
for SISO plants has been proposed, which can guarantee the
stability and ability to reject disturbances. In [24–26], adap-
tive controllers have been designed to control and synchro-
nize fractional chaotic systems. In [27], Agrawal has pro-
posed a general formulation for a class of fractional optimal
control problems, which is specialized for a system with
quadratic performance index subject to a fractional system
dynamic constraint. In [28], the authors have generalized the
optimality conditions of [27]. Besides the above fractional
control methodologies, fractional optimal synergetic control
has been presented in [29] and active disturbance rejection
control in [30].

Motivated by the above contributions, this paper pro-
poses a sliding mode control design for fractional SISO non-
linear systems in the presence of model inaccuracies. By con-
structing a stable fractional sliding mode surface on the basis
of Routh-Hurwitz conditions, a sliding mode control law
is designed. Further, stability analysis is performed using
Mittag-Leffler stability theory. Comparing this with methods
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in the previous papers, we utilize the fractional derivative
of the sliding mode surface instead of first-order derivative,
to obtain the equivalent control law. Moreover, to carry out
the stability analysis of the closed-loop fractional nonlinear
system, we use the fractional derivative of the Lyapunov
function candidate in terms of Theorem 2 in [18].

The rest of the paper is organized as follows. Section 2
reviews some basic definitions for fractional calculus.
Section 3 proposes the sliding control design for fractional
SISO nonlinear systems. Numerical simulations of syn-
chronization of the fractional Genesio-Tesi system and the
fractional Arneodo system are presented in Section 4. Finally,
Section 5 concludes this paper with some remarks on future
study.

2. Basic Definitions for Fractional Calculus

Fractional calculus is a generalization of integration and dif-
ferentiation to noninteger order fundamental operator

𝑎
𝐷
𝛼

𝑡
,

where 𝑎 and 𝑡 are the bounds of the operation and 𝑎 ∈ 𝑅. The
continuous integrodifferential operator is defined as [1]
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(1)

The three most frequently used definitions for fractional
calculus are theGrünwald-Letnikov definition, the Riemann-
Liouville definition, and the Caputo definition [1–3].

Definition 1. TheGrünwald-Letnikov derivative definition of
order 𝛼 is described as

𝑎
𝐷
𝛼
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Definition 2. The Riemann-Liouville derivative definition of
order 𝛼 is described as
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1
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, 𝑛 − 1 < 𝛼 < 𝑛.

(3)

However, applied problems require definitions of frac-
tional derivatives allowing the utilization of physically inter-
pretable initial conditions, which contains 𝑓(𝑎), 𝑓



(𝑎), and
so forth. Unfortunately, the Riemann-Liouville approach fails
to meet this practical need. It is M. Caputo who solved this
conflict.

Definition 3. The Caputo definition of fractional derivative
can be written as

𝑎
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𝛼

𝑡
𝑓 (𝑡) =

1
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(4)

In the rest of the paper, we use the Caputo approach to
describe the fractional systems and the Grünwald-Letnikov

approach to propose numerical simulations. To simplify the
notation, we denote the fractional-order derivative of order 𝛼

as 𝐷
𝛼 instead of

0
𝐷
𝛼

𝑡
in this paper.

3. Sliding Control of Fractional SISO
Nonlinear Systems

Consider fractional SISO nonlinear systems

𝐷
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𝑥
𝑖
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(5)

where 𝛼 ∈ (0, 1] is the order of the dynamic system, x =

(𝑥
1
, 𝑥
2

. . . , 𝑥
𝑛
)
𝑇

∈ R𝑛 is denoted as state vector, and the
scalar 𝑢, 𝑦 ∈ 𝑅 are system’s input and output, respectively.
The dynamic 𝑓(x) (possibly nonlinear or time varying) is not
exactly known, but estimated as 𝑓(x). The control gain 𝑔(x)

(possibly time varying or state dependent) is an unknown
function.

Assumption 4. The estimation error on 𝑓(x) is assumed to be
bounded by some known function 𝐹(x):


𝑓 (x) − 𝑓 (x)


≤ 𝐹 (x) . (6)

Assumption 5. 𝑔(x) is assumed to be bounded by

0 < 𝑔min (x) ≤ 𝑔 (x) ≤ 𝑔max (x) , (7)

where both 𝑔min(x) and 𝑔max(x) are known functions.

Assumption 6. The desired tracking signal is denoted as
𝑦
𝑑
(𝑡), and it is assumed that 𝑦
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In this paper, our goal is to design a suitable fractional
slidingmode controller tomake the output𝑦 of the system (5)
track the desired signal 𝑦

𝑑
; that is,

lim
𝑡→∞

(𝑦 − 𝑦
𝑑
) = 0. (8)

Now we are ready to give the design steps.
Firstly, the tracking error is defined as

𝑥 = 𝑦 − 𝑦
𝑑
. (9)

Then, the tracking error vector is defined as
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(10)

A fractional sliding surface is proposed as

𝑠 (𝑡) = 𝑐
1
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where the polynomial 𝑃(𝑝) = 𝑐
1

+ 𝑐
2
𝑝 + ⋅ ⋅ ⋅ + 𝑐

𝑛−1
𝑝
𝑛−2

+ 𝑝
𝑛−1

satisfies Routh-Hurwitz conditions for fractional differential
equations [31].
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The fractional sliding surface (11) can be rewritten as
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Taking its 𝛼th order derivative with respect to time yields

𝐷
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Substituting the second equation of system (5) into (13),
one has
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In terms of Assumption 5, one of the estimated values of
𝑔(x) can be chosen as

𝑔 (x) = √𝑔min (x) 𝑔max (x). (15)

Bounds of 𝑔(𝑥) are written as

𝛽
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≤
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≤ 𝛽, (16)

where 𝛽 = √𝑔max/𝑔min.
Design the control law as
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and 𝜂 is a positive constant.

To ensure the stability of the fractional system (5), we have
the following theorem.

Theorem 7. Under Assumptions 4–6, the fractional SISO
nonlinear system (5) can be controlled using the sliding mode
control law (17) with the fractional sliding surface (11).

Proof. Consider the following candidate Lyapunov function:

𝑉 (𝑡) = [𝑠 (𝑡)]
2

, (18)

where 𝑠(𝑡) is the fractional sliding surface (11) constructed
previously.

Taking its 𝛼th order derivative with respect to time along
with the fractional sliding surface (11), one has
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where 𝜌 is assumed to be an arbitrarily large positive constant
which is a bound on the series of (19).

Substituting (14) into (19) yields
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Substituting the control law (17) into (20) gives
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Substituting the estimation error (6), the equivalent con-
trol law �̂�

𝑒𝑞
, and control gain 𝑘 of (17) into (21), one derives

𝐷
𝛼

𝑉 ≤ −𝜂 |𝑠| − 𝜎𝑠
2

+ 𝜌 < −𝜎𝑉 + 𝜌, (22)

which implies that the slidingmode dynamic is globally stable
and the tracking error vector (10) converges to zero according
to Theorem 2 in [18]. This proves that the fractional SISO
nonlinear system (5) can be controlled using the slidingmode
control law (17) with the fractional sliding surface (11).

4. Numerical Simulations

In this section, we apply the fractional sliding mode control
method proposed in Section 3 to deal with the problem of
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Figure 1: Synchronization of the fractional Arneodo system and the fractional Genesio-Tesi system with the control input (27) (red line
represents the trajectories of the drive system, while blue line represents the trajectories of the response system).
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synchronization between the fractional Arneodo system and
the fractional Genesio-Tesi system. To carry out numerical
simulations, we utilize the algorithm for numerical calcula-
tion of fractional derivatives introduced in [1]. This method
is derived from the Grnwald-Letnikov Definition 1 based on
the fact that the three Definitions 1, 2, and 3 are equivalent for
a wide class of functions.

The fractional Arneodo system is represented as

𝐷
𝛼

𝑦
1

= 𝑦
2
,

𝐷
𝛼

𝑦
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= 𝑦
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𝑦
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− 3.5𝑦
2

− 𝑦
3
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3

1

(23)

with the desired tracking signal 𝑦
𝑑

= 𝑦
1
.

The fractional Genesio-Tesi system is described as

𝐷
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𝑥
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+ 𝑏 (𝑡) 𝑥
2

+ 𝑐 (𝑡) 𝑥
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2

1
+ 𝑢 (𝑡) ,

𝑦 = 𝑥
1
,

(24)
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Figure 5: Synchronization of the fractional Arneodo system and the fractional Genesio-Tesi system with the control input (28) (red line
represents the trajectories of the drive system, while blue line represents the trajectories of the response system).

where 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), and 𝑑(𝑡) are assumed to be unknown
parameters and satisfy |𝑎(𝑡) + 6| ≤ 0.1, |𝑏(𝑡) + 2.92| ≤ 0.1,
|𝑐(𝑡) + 1.2| ≤ 0.1, and |𝑑(𝑡) − 1| ≤ 0.1, from which one has

𝑓 (x) = 𝑎 (𝑡) 𝑥
1

+ 𝑏 (𝑡) 𝑥
2

+ 𝑐 (𝑡) 𝑥
3

+ 𝑑 (𝑡) 𝑥
2

1
,

𝑓 (x) = −6𝑥
1

− 2.92𝑥
2

− 1.2𝑥
3

+ 𝑥
2

1
,

𝐹 (x) = 0.1 (
𝑥1

 +
𝑥2

 +
𝑥3

 + 𝑥
2

1
) .

(25)

Both of the fractional Arneodo system (23) and the frac-
tional Genesio-Tesi system (24) exhibit chaos with certain
values of fractional order 𝛼. In the sequel we investigate
synchronization between the two fractional chaotic systems
using the technique proposed previously. The former system
is taken as drive system, while the latter one is considered as
response system.

In terms of (11), the sliding surface is constructed as

𝑠 = 𝑐
1

(𝑥
1

− 𝑦
1
) + 𝑐
2

(𝑥
2

− 𝑦
2
) + (𝑥

3
− 𝑦
3
) , (26)

where 𝑐
1

= 25 and 𝑐
2

= 10 satisfy the Routh-Hurwitz condi-
tions [31].

The control law is designed as

𝑢 = 6𝑥
1

+ 2.92𝑥
2

+ 1.2𝑥
3

− 𝑥
2

1

+ 5.5𝑦
1

− 3.5𝑦
2

− 𝑦
3

− 𝑦
3

1

− 25 (𝑥
2

− 𝑦
2
) − 10 (𝑥

3
− 𝑦
3
) − 𝜎𝑠

− 𝜎𝑠 − 𝑘 ⋅ sign (𝑠) .

(27)

Initial conditions for the above two systems are, respec-
tively, chosen as 𝑥

0
= (−0.1, 0.5, 0.2) and 𝑦

0
= (−0.2, 0.5, 0.2),

while parameters in the control law (27) are selected as 𝜂 =

0.1 and 𝜎 = 0.5. Numerical simulations of synchronization
between the fractional chaotic systems (23) and (24) are
presented in Figures 1, 2, 3, and 4, with the simulation time
𝑇sim = 10 and time step ℎ = 0.0005. For interpretations of
the references to color in these figure legends, the reader is
referred to the online version of this paper.

From the simulation results, we see that synchronization
performance is excellent but is obtained at the price of high
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Figure 6: Synchronization errors with the control input (28) (red
line represents the first error state 𝑒

1
, blue line represents the second

error state 𝑒
2
, and black line represents the third error state 𝑒

3
).

control chattering. It can be eliminated by replacing the
discontinuous switching control law sign (⋅) by the smooth
function tanh (⋅) in (27); that is,

𝑢 = 6𝑥
1

+ 2.92𝑥
2

+ 1.2𝑥
3

− 𝑥
2

1

+ 5.5𝑦
1

− 3.5𝑦
2

− 𝑦
3

− 𝑦
3

1

− 25 (𝑥
2

− 𝑦
2
) − 10 (𝑥

3
− 𝑦
3
)

− 𝜎𝑠 − 𝑘 ⋅ tanh (𝑠) .

(28)

Numerical simulationswith themodified control law (28)
are presented in Figures 5, 6, 7, and 8. For interpretations of
the references to color in these figure legends, the reader is
referred to the online version of this paper.

From the above simulation results, one can easily see that
the fractional Arneodo system and the fractional Genesio-
Tesi system can be effectively synchronized via the proposed
sliding mode control technique. Furthermore, the control
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Figure 7: Time history of fractional sliding mode with the control
input (28).
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Figure 8: Time history of the control input (28).

chattering caused by the discontinuous control law (17) is
successfully eliminated by the modification of (28).

5. Concluding Remarks

In this paper, we have investigated the pseudo-state sliding
control design for fractional SISO nonlinear systems with
model inaccuracies. A stable fractional sliding mode surface
has been constructed based on theRouth-Hurwitz conditions
for fractional differential equations. Then, a sliding mode
control law is designed using theMittag-Leffler stability theo-
rem. Finally, numerical simulations of synchronization of the
fractional Arneodo system and the fractional Genesio-Tesi
system have been performed to demonstrate the effectiveness
of the proposed control technique.

As for the future perspectives, our research activities will
be on,

(i) designing adaptive sliding control to deal with para-
metric uncertainties in 𝑓(⋅),

(ii) generalizing themethod to fractionalMIMOnonlin-
ear systems,

(iii) generalizing the method to incommensurate nonlin-
ear systems.
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