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This paper investigates the optimal decisions in a decentralized supply chain consisting of one manufacturer and two competing
retailers who face price-sensitive and stochastic demand. The retailers are risk averse with conditional value at risk (CVaR) as
their risk measure, and the manufacturer is a risk-neutral agent. We construct manufacturer-Stackelberg games with retailers, who
engage in horizontal price competition. For the multiplicative demand model and expected demand as an exponential function
of both prices, we show that there exists the optimal pricing-ordering joint decision uniquely. We then explore the influence of
the price sensitivity, risk aversion, and retail competition on optimal decisions and channel efficiency. The results show that retail
competition contributes to manufacturer and improves channel efficiency of the decentralized supply chain. When the retailers are
more risk averse, the channel efficiency becomes much lower. However, the level of retailers’ risk aversion has no significant impact
on the manufacturer’s optimal wholesale price and retailer’s optimal selling price.

1. Introduction

This paper characterizes a two-stage supply chain consist-
ing of one manufacturer and two competing retailers in a
single-period setting with price-sensitive random demand.
Differing from the previous studies that mainly focus on risk-
neutral retailers, we examine risk-averse retailers engaged
in horizontal price competition. Our objective is to obtain
retailer’s optimal pricing-ordering joint decision under the
revenue-sharing (RS) contract offered by the manufacturer.
Then, another objective is to investigate how the price sensi-
tivity, the level of retail competition, and risk aversion affect
the decentralized supply chain equilibrium and its efficiency,
defined as the ratio of the aggregate profit of manufacturer
and retailers in the decentralized and centralized chains.

In the classical newsvendor pricing model, the challenge
is to determine jointly the price and the ordering quantity of
a product when demand for the product is a function of the
price.Therefore, the literature about price-sensitive newsven-
dor model try to answer two questions: (1) how to properly
model the stochastic, price-dependent demand and (2) how
to derive the optimal solutions for the newsvendor problem

with price and ordering quantity as joint decisions. For the
first question, the stochastic, price-dependent demand can
be decomposed into two parts: the mean demand that is
dependent on the price, and the stochastic factor is price inde-
pendent. Both the additive and the multiplicative demand
models serve as the two basic functional forms to incorporate
price into the demand uncertainty [1]. Specifically, demand is
defined as the sum of the expected demand and a random
variable in the additive case; however, demand is the product
of the expected demand and a positive random variable
in the multiplicative case. Subsequent studies on the more
general demand forms include Yao et al. [2], Kocabıyıkoğlu
and Popescu [3], and Xu et al. [4]. For the second question,
most literature tries to prove the objective function to be
unimodal or quasiconcave, which guarantees the existence
and uniqueness of the optimal solutions.

In a decentralized chain with two downstream members,
Pan et al. [5] compare the channel performance of the RS
contract with the price-only contract for two competing
retailers. In theirmodel, retail demand is linear in price under
deterministic demand. In a stochastic demand environment,
Yao et al. [6] examine the RS contract for coordinating
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a supply chain with one manufacturer and two competing
retailers. The random demand model in [6] takes on an
additive form, and the expected demand is a linear function of
both retail prices. Adida andRatisoontorn [7] investigate how
competition among retailers influences the supply chain deci-
sions and profits under different consignment arrangements,
namely, a consignment price contract and a consignment
contract with revenue sharing. However, in their model, the
random demand takes on a multiplicative form, and the
expected demand is an exponential function of both retail
prices. In addition, Bernstein and Federgruen [8] consider
one manufacturer and multiple retailers who compete by
choosing their retail prices. They assume that the demand
faced by each retailer is stochastic with a distribution that
depends on the retail prices of all retailers.

The aforementioned studies focus on a risk-neutral set-
ting in which the chain members’ objectives are to maximize
expected profit. When facing random demand, however, the
downstream members will be more concerned with the risk
associated with demand uncertainties. This inclusion of risk
into decision making has drawn a lot of attention and is
gaining increasing interest in supply chain studies. Eeckhoudt
et al. [9] study the risk-averse newsboy problem. Agrawal and
Seshadri [10] extend their framework to include, in addition,
pricing decision and model risk aversion with the general
utility function. Choi et al. [11] investigate the issues of chan-
nel coordination in a supply chain with agents having mean-
variance objectives. Gan et al. [12] consider how a supply
chain involving a risk-neutral supplier and a downside-risk-
averse retailer can be coordinated with a supply contract.
Originally introduced in financial risk management, condi-
tional value at risk (CVaR) has emerged in recent years as one
of the major risk criteria. By adopting CVaR as the decision
criterion, Wu et al. [13] obtain closed-form solutions for the
manufacturer’s optimal ordering strategies, which character-
ize the explicit relationship between the manufacturer’s risk
attitude and his optimal decisions. Chen et al. [14] investigate
the optimal policy of a risk-averse newsvendor who faces
stochastic price-dependent demand and establish sufficient
conditions for the uniqueness and existence of the optimal
policy under CVaR.

The problem considered in this paper draws ideas from
three research areas: (1) pricing-setting newsvendor problem,
(2) retail competition, and (3) risk aversion. In this paper,
we address these questions in the context of two-echelon
supply chainwith a singlemanufacturer selling homogeneous
products through two competing retailers.Themanufacturer
and two retailers play, vertically, a Stackelberg game, with the
manufacturer as the leader and the two retailers as followers.
Horizontally, the two retailers play a Nash game; that is, they
simultaneously decide their prices and stocking quantities.
This paper, thus, introduces horizontal competition at the
retailer level in addition to vertical competition between the
manufacturer and the retailers. Two retailers take CVaR as
their performance measure and obtain their optimal pricing
and ordering decisions under the RS contract offered by the
manufacturer. It can be shown that the RS contract cannot
attain coordination in our setting. Hence, this paper does
not address coordination issues. Instead, we concentrate on

identifying some structural properties of optimal decisions
when the competitive retail demand can be expressed in a
specific multiplicative form. In particular,

(1) we provide a method of establishing the quasi-con-
cavity of the pricing-ordering joint decision for risk-
averse retailers under retail competition. Then we
show that the existence and uniqueness of opti-
mal decisions under reasonable regularity condition
known as increasing failure rate (IFR);

(2) we prove that the equilibrium retail price and safety
stock decrease with the price sensitivity and retail
competition, whereas safety stock increases with the
degree of risk aversion;

(3) we compare, through numerical studies, the influence
of retail competition and risk aversion on the optimal
decisions and channel efficiency.

Although there is limited research on risk-averse retail-
ers under retail competition, the work of Hsieh and Lu
[15] deserves special mention. They consider manufacturer’s
return policy in a two-stage supply chain with two risk-
averse retailers and random demand. Each retailer’s expected
demand depends on three basic elements—the primary
demand, store level factor, and competitive factor, as in Yao
et al. [6]. Hsieh and Lu’s model differs from ours in its
assumption of demand in which the expected demand is a
linear function and takes on an additive form. However, we
adopt a multiplicative demand form and explicitly character-
ize the effect of price sensitivity and retail competition on the
retailers’ demand.

The rest of this paper is organized as follows. Section 2
describes the model. Section 3 gives the closed-form expres-
sions for the equilibrium results and analyzes some properties
of them.The computational experiments and the comparative
results are presented in Section 4. Section 5 concludes the
paper. In addition, the detailed proofs for all the lemmas and
propositions are provided in the appendix.

2. Preliminaries

2.1. The Demand Model. Consider a two-stage distribution
channel where one manufacturer sells homogeneous prod-
ucts to two risk-averse retailers, who compete in the final
market by selling products to end customers.The retailers are
indexed by 𝑖 ∈ {1, 2} and 𝑗 = 3−𝑖.Themanufacturer produces
at a unit cost 𝑐

𝑚
, and retailer 𝑖 incurs a unit processing cost 𝑐

𝑖

for handling and selling products to consumers.The demand
for the product at each retailer during a single selling season
is price dependent and stochastic. To capture the randomness
in the demand, a multiplicative demand scenario is widely
used for studying price-setting newsvendor paradigms (see
e.g., Petruzzi and Dada [1], Wang et al. [16], and Song et al.
[17]). We thus assume the demand for the product at retailer
𝑖, denoted by𝐷

𝑖
(𝑝), where 𝑝 = (𝑝

1
, 𝑝
2
), as

𝐷
𝑖
(𝑝) = 𝑦

𝑖
(𝑝) 𝜀. (1)

The first part represents the deterministic component of
demand at retailer 𝑖, capturing the economics of price
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competition between retailers. The second part denotes the
randomness of demand, with a mean value of 1, cumulative
distribution function 𝐹(⋅) and probability density function
𝑓(⋅), that have support [𝐴, 𝐵] with 𝐵 > 𝐴 ≥ 0. Similar to
[1], we impose a mild restriction on 𝜀 known as IFR. The IFR
property is indeed satisfied by most of the distributions used
in the previous literature.

Assumption 1 (see [18]). Thedemanddistribution of 𝜀 satisfies
the IFR property: ℎ(𝑥) = 𝑓(𝑥)/[1 − 𝐹(𝑥)] is increasing in 𝑥.

In the absence of competition, an exponential expected
demand function (also called log-linear) 𝑦(𝑝) = 𝑎𝑒

−𝑏𝑝, where
𝑏 is a price-sensitive parameter and 𝑝 is the retail price, has
been adopted in Ru and Wang [19]. In order to capture retail
competition, retailer 𝑖’s expected demand decreases with its
own price 𝑝

𝑖
and increases with the opponent’s price 𝑝

𝑗
. As

retailers are more competitive, one retailer’s sales are affected
by the other retailer’s price level. Here, we extend the expected
demand function used in [19] as follows:

𝑦
𝑖
(𝑝) = 𝑎𝑒

−𝑏𝑝𝑖+𝛾(𝑝𝑗−𝑝𝑖), (2)

where 𝑎 > 0 is the primary demand for each retailer when
both prices are set at zero, 𝑏 > 0 is each retailer’s price
sensitivity of demand, and 𝛾 > 0 reflects their competition
intensity. As 𝛾 increases, the retailers are more substitutable
in the sense that the demand of product would become more
sensitive toward the relative price (𝑝

𝑗
−𝑝
𝑖
), and therefore, the

degree of retail competition is intensifying. In other words,
there is no competition when 𝛾 = 0. This function is the
logarithm of a class of more general linear demand functions
used in many previous studies (refer to Pan et al. [5], Tang
and Yin [20], Chen and Roma [21], Choi [22], and Zhao and
Atkins [23] for details). This type of retail competition model
via demand dependency on the competitor’s price is common
to many studies in the operation management literature.

2.2. Performance Measure: CVaR. Rockafellar and Uryasev
[24, 25] give the following equivalent definition, which is
convenient for optimization,

CVaR
𝜂
(𝜋 (𝑥, 𝑦)) = max

V∈𝑅
{V +

1

𝜂
E [min (𝜋 (𝑥, 𝑦) − V, 0)]} ,

(3)

where E is the expectation operator and 𝜂 ∈ (0, 1] reflects
the degree of risk aversion for the retailer (the smaller 𝜂 is,
the more risk averse the retailer is). We hereafter adopt the
notations CVaR

𝜂
to underscore the dependence of CVaR on

the confidence level 𝜂.

3. Optimal Decisions of Retailers under
the RS Contract

Suppose that the manufacturer offers the same RS contract
to retailers. Let 𝑤 be the per unit wholesale price and, in
addition, 𝜙 the fraction of revenue the retailer keeps; so
1 − 𝜙 is the fraction the manufacturer earns. In this game,

the manufacturer acts as a Stackelberg leader, and the two
retailers act as followers. Horizontally, two retailers play a
Nash game; that is, they simultaneously decide selling price
𝑝
𝑖
to the customer and order quantity 𝑞

𝑖
to be placed on the

manufacturer.

3.1. Retailer’s Optimal Pricing-Ordering Joint Decision under
the CVaR Criterion. The stocking factor or safety stock is
defined as 𝑧

𝑖
= 𝑞
𝑖
/𝑦
𝑖
(𝑝), which is a measure of the deviation

of the order quantity from the expected demand. Using 𝑧
𝑖
as a

decision variable instead of 𝑞
𝑖
, retailer 𝑖’s profit function under

a RS contract is

𝜋
𝑖
(𝑝
𝑖
, 𝑧
𝑖
) = 𝑦
𝑖
(𝑝) {(𝜙𝑝

𝑖
− 𝑤 − 𝑐

𝑖
) 𝑧
𝑖
− 𝜙𝑝
𝑖
(𝑧
𝑖
− 𝑥)
+

} . (4)

Substituting (4) into (3), the risk-averse retailer 𝑖 jointly
determines retail price 𝑝

𝑖
and stocking factor 𝑧

𝑖
to maximize

𝜋
𝑖
(𝑝
𝑖
, 𝑧
𝑖
, V
𝑖
) = V
𝑖
−

1

𝜂
𝑖

∫
𝐵

𝐴

[V
𝑖
− 𝑦
𝑖
(𝑝) (𝜙𝑝

𝑖
− 𝑤 − 𝑐

𝑖
) 𝑧
𝑖

+ 𝑦
𝑖
(𝑝)𝜙𝑝

𝑖
(𝑧
𝑖
− 𝑥)
+

]
+

𝑑𝐹 (𝑥) .

(5)

Firstly, the following two lemmas will be useful through-
out this paper.

Lemma 2. Given 𝜂
𝑖
, the stocking factor 𝑧

𝑖
of retailer 𝑖 must

satisfy 𝐹(𝑧
𝑖
) ≤ 𝜂
𝑖
≤ 1.

The proof of Lemma 2, as well as the other main results,
appears in the appendix. Lemma 2 implies that the more risk
averse the retailer is, the smaller the range of 𝑧

𝑖
is. Similar to

[14], the 𝜂-failure rate (𝜂-FR) is ℎ
𝜂
(𝑥) = 𝑓(𝑥)/[𝜂 − 𝐹(𝑥)] for

all 𝑥, with 𝐹(𝑥) < 𝜂 and 0 < 𝜂 < 1. If 𝐹(𝑥) < 𝜂 and ℎ󸀠(𝑥) ≥ 0,
then ℎ

𝜂
(𝑥) is also increasing in 𝑥. The following result is easy

to verify and is thus given without a proof.

Lemma 3. For any 𝑥 > 0 and 𝐹(𝑥) < 𝜂, if ℎ󸀠(𝑥) ≥ 0, then
ℎ󸀠
𝜂
(𝑥) > 0.

From proof of Lemma 2 (see the appendix), it is shown
that for any fixed 𝑝

𝑖
and 𝑧

𝑖
, the optimal value of V

𝑖
in the

definition of CVaR satisfies

V∗
𝑖
(𝑝
𝑖
, 𝑧
𝑖
) = 𝑦
𝑖
(𝑝) (𝜙𝑝

𝑖
− 𝑤 − 𝑐

𝑖
) 𝑧
𝑖
. (6)

Accordingly, replacing V∗
𝑖

of (6) into (5), the objective
function then becomes a function with two variables:

𝜋
𝑖
(𝑝
𝑖
, 𝑧
𝑖
, V∗
𝑖
) = 𝑦
𝑖
(𝑝) (𝜙𝑝

𝑖
− 𝑤 − 𝑐

𝑖
) 𝑧
𝑖

−
1

𝜂
𝑖

∫
𝑧𝑖

𝐴

𝑦
𝑖
(𝑝) 𝜙𝑝

𝑖
(𝑧
𝑖
− 𝑥)
+

𝑑𝐹 (𝑥) .
(7)

Further, the objective function of the risk-averse retailer 𝑖 can
be rewritten as

𝜋
𝜂𝑖
(𝑝
𝑖
, 𝑧
𝑖
) = 𝑦
𝑖
(𝑝) [(𝜙𝑝

𝑖
− 𝑤 − 𝑐

𝑖
) 𝑧
𝑖
−

1

𝜂
𝑖

𝜙𝑝
𝑖
Λ (𝑧
𝑖
)] , (8)

where Λ(𝑧
𝑖
) = ∫
𝑧𝑖

𝐴

(𝑧
𝑖
− 𝑦)𝑓(𝑦)𝑑𝑦.
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To find risk-averse retailer 𝑖’s best decisions, denoted by
(𝑝∗
𝑖
, 𝑧∗
𝑖
), which maximize 𝜋

𝜂𝑖
(𝑝
𝑖
, 𝑧
𝑖
) of (8) for a given (𝑤, 𝜙),

we first find the optimal selling price 𝑝∗
𝑖
(𝑧
𝑖
) for any given 𝑧

𝑖

and then maximize 𝜋
𝜂𝑖
(𝑝∗
𝑖
(𝑧
𝑖
), 𝑧
𝑖
) with respect to 𝑧

𝑖
to find

the optimal stocking factor 𝑧∗
𝑖
. Proposition 4 is the key result

of this section, as it provides sufficient conditions for the
existence and uniqueness of the retailer 𝑖’s optimal decisions
and gives closed-form expressions of the optimal decisions at
the same time.

Proposition 4. For a given RS contract (𝑤, 𝜙) and any given
stocking factor 𝑧

𝑖
(𝐴 ≤ 𝑧

𝑖
< 𝐹−1(𝜂

𝑖
)), the risk-averse retailer 𝑖’s

unique best response price 𝑝∗
𝑖
(𝑧
𝑖
) is given by

𝑝
∗

𝑖
(𝑧
𝑖
) =

1

𝑏 + 𝛾
+
𝑤 + 𝑐
𝑖

𝜙

𝜂
𝑖
𝑧
𝑖

𝜂
𝑖
𝑧
𝑖
− Λ (𝑧

𝑖
)
. (9)

If ℎ󸀠(⋅) ≥ 0, then the retailer 𝑖’s best response stocking factor
𝑧∗
𝑖
that maximizes the retailer 𝑖’s objective function of (8) is

uniquely determined as the solution of

𝜂
𝑖

𝜂
𝑖
− 𝐹 (𝑧∗

𝑖
)
=

𝜙

(𝑏 + 𝛾) (𝑤 + 𝑐
𝑖
)
+

𝜂
𝑖
𝑧∗
𝑖

𝜂
𝑖
𝑧∗
𝑖
− Λ (𝑧∗

𝑖
)
. (10)

After we replace 𝑧
𝑖
with 𝑧∗

𝑖
in (9), the best response price

of risk-averse retailer 𝑖 is

𝑝
∗

𝑖
=

1

𝑏 + 𝛾
+
𝑤 + 𝑐
𝑖

𝜙

𝜂
𝑖
𝑧∗
𝑖

𝜂
𝑖
𝑧∗
𝑖
− Λ (𝑧∗

𝑖
)
. (11)

In summary, for the decentralized channel under the
RS contract, at equilibrium, the retailer 𝑖 chooses the corre-
sponding stocking factor and retail price given by (10) and
(11), respectively.

3.2. Analysis of Equilibrium Decisions

Lemma 5. For any given 𝑧 > 0 and 𝐹(𝑧) < 𝜂, if ℎ󸀠(𝑧) ≥ 0, let

𝐺 (𝑧) =
𝜂

𝜂 − 𝐹 (𝑧)
−

𝜂𝑧

𝜂𝑧 − Λ (𝑧)
(12)

with Λ(𝑧) = ∫
𝑧

𝐴

(𝑧 − 𝑥)𝑓(𝑥)𝑑𝑥; then, 𝐺(𝑧) is increasing in 𝑧.

With the help of Lemma 5, the following set of properties
focus on how retail prices and safety stocks change with 𝑏, 𝛾,
and 𝜂
𝑖
.

Proposition 6. For any given stocking factor 𝑧
𝑖
∈ [𝐴, 𝐹−1(𝜂

𝑖
))

and ℎ󸀠(⋅) ≥ 0, then

(1) the equilibrium stocking factor 𝑧∗
𝑖
decreases in 𝑏 and 𝛾,

(2) the equilibrium retail price 𝑝∗
𝑖
decreases in 𝑏 and 𝛾,

(3) the equilibrium stocking factor 𝑧∗
𝑖
increases in 𝜂

𝑖
.

Since the expected demand decreases when consumers
become more sensitive to the retail price, retailer 𝑖 reduces
stock and retail price to reduce the risk of excess inventory.
The impact of 𝛾 on the optimal decisions can be similarly

explained. Therefore, 𝑝∗
𝑖
and 𝑧∗

𝑖
change with 𝑏 and 𝛾 in the

same way. Note that the smaller 𝜂
𝑖
is, the more risk averse

retailer 𝑖 is. The higher the degree of risk aversion, the fewer
retailer 𝑖 orders. In the case of 𝑝∗

𝑖
, it is not immediately

obvious how 𝑝∗
𝑖
changes with 𝜂

𝑖
.

From (3) of Proposition 6, 𝑧∗
𝑖
is increasing in 𝜂

𝑖
, which

means that the risk-averse retailer’s best response stocking
factor is usually smaller than that of the risk-neutral coun-
terpart under RS contract. Therefore, RS contract cannot
coordinate the supply chain with risk-averse retailers. So, we
use the whole-sale price contract to explore how the price
sensitivity of demand, the level of retail competition, and
risk aversion influence the decision making of supply chain
members and channel efficiency.

4. Analysis of Supply Chain Performance

4.1. Centralized and Decentralized Models. For a centralized
channel, the decision is to simultaneously choose the selling
price and safety stock with the objective to maximize channel
𝑖’s expected profit. The channel 𝑖 (𝑖 = 1, 2) is composed by
manufacturer and retailer 𝑖, whose expected profit can be
written as

𝜋
𝑖
(𝑝
𝑖
, 𝑧
𝑖
) = 𝑦
𝑖
(𝑝) {𝑝

𝑖
[𝑧
𝑖
− Λ (𝑧

𝑖
)] − (𝑐

𝑚
+ 𝑐
𝑖
) 𝑧
𝑖
} . (13)

Let𝑤 = 𝑐
𝑚
and 𝜙 = 𝜂

𝑖
= 1 in Proposition 4, we obtain (𝑝

𝑖
, 𝑧
𝑖
)

that maximize (13).

Proposition 7. For a given stocking factor 𝑧
𝑖
(𝐴 ≤ 𝑧

𝑖
≤ 𝐵),

channel 𝑖’s unique best response price 𝑝
𝑖
(𝑧
𝑖
) is given by

𝑝
𝑖
(𝑧
𝑖
) =

1

𝑏 + 𝛾
+
(𝑐
𝑚
+ 𝑐
𝑖
) 𝑧
𝑖

𝑧
𝑖
− Λ (𝑧

𝑖
)
. (14)

If ℎ󸀠(⋅) ≥ 0, then channel 𝑖’s best response stocking factor 𝑧
𝑖

that maximizes channel 𝑖’s profit is uniquely determined as the
solution of

1

1 − 𝐹 (𝑧
𝑖
)
=

1

(𝑏 + 𝛾) (𝑐
𝑚
+ 𝑐
𝑖
)
+

𝑧
𝑖

𝑧
𝑖
− Λ (𝑧

𝑖
)
. (15)

In the same way, let 𝜙 = 1 in Proposition 4, we thus
give risk-averse retailer 𝑖’s optimal decisions (𝑝

𝑖
, 𝑧̃
𝑖
) under the

price-only contract.

Proposition 8. For a given wholesale price 𝑤 and any given
stocking factor 𝑧

𝑖
(𝐴 ≤ 𝑧

𝑖
< 𝐹−1(𝜂

𝑖
)), the risk-averse retailer 𝑖’s

unique best response price 𝑝
𝑖
(𝑧
𝑖
) is given by

𝑝
𝑖
(𝑧
𝑖
) =

1

𝑏 + 𝛾
+

(𝑤 + 𝑐
𝑖
) 𝜂
𝑖
𝑧
𝑖

𝜂
𝑖
𝑧
𝑖
− Λ (𝑧

𝑖
)
. (16)

If ℎ󸀠(⋅) ≥ 0, then risk-averse retailer 𝑖’s best response stocking
factor 𝑧̃

𝑖
is uniquely determined as the solution of

𝜂
𝑖

𝜂
𝑖
− 𝐹 (𝑧̃

𝑖
)
=

1

(𝑏 + 𝛾) (𝑤 + 𝑐
𝑖
)
+

𝜂
𝑖
𝑧̃
𝑖

𝜂
𝑖
𝑧̃
𝑖
− Λ (𝑧̃

𝑖
)
. (17)
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4.2. Manufacturer’s Wholesale Price Decision. Anticipating
the retailers’ reaction, the risk-natural manufacturer sets𝑤 to
maximize his expected profit under the price-only contract.
Plugging the equilibrium selling price of (16) and stocking
factor of (17) into the manufacturer’s profit function, we have

𝜋
𝑀
(𝑤) =

2

∑
𝑖=1

𝑦
𝑖
(𝑝) (𝑤 − 𝑐

𝑚
) 𝑧̃
𝑖
, (18)

where 𝑦
𝑖
(𝑝) = 𝑎𝑒−𝑏𝑝𝑖+𝛾(𝑝𝑗−𝑝𝑖).

To find the optimal decision, we seek to maximize 𝜋
𝑀
(𝑤)

of (18) over 𝑤. However, the manufacturer’s expected profit
after incorporating the retailers’ best response functions
would become too complex to be tractable. We therefore
employ a numerical approach to find the manufacturer’s and
retailers’ decisions at equilibrium.

4.3. Numerical Analysis. In this section, we explore optimal
solutions of the price-only contract with two competing
retailers in risk-averse setting, where 𝑝

𝑖
and 𝑧

𝑖
are the

decision variables of retailers and𝑤 is the decision variable of
manufacturer. In Section 3.2, the effects of the risk aversion,
price sensitivity, and retail competition on the retailers’ selling
and stocking decisions have been proved partly. We thus give
numerical solutions that could not be obtained in previous
sections. Specifically, we are interested in the issues that how
the manufacturer’s wholesale price decision, the retailer’s
pricing decision, and channel efficiency vary with respect to
the risk-averse indicator 𝜂, the price sensitive factor 𝑏, and
retail competition 𝛾.

In order to properly evaluate the effect of 𝑏 on the
equilibrium results, it is necessary to isolate it from other
parameters (the risk aversion and retail competition) by
keeping all these parameters constant. Moreover, we assume
that the two retailers are symmetric in all parameters such as
𝑐
1
= 𝑐
2
and 𝜂

1
= 𝜂
2
. The values of 𝑐

1
(𝜂
1
) and 𝑐

2
(𝜂
2
) that are

equal to avoid introducing a cost (risk aversion) difference
that could bias the effect of the parameter of interest. So,
the two retailers’ stocking factor (order quantities) and retail
price decisions would be the same. Likewise, when we next
explore the effect of risk aversion and retail competition
on the equilibrium results only through parameter 𝜂 and 𝛾,
respectively.

The random perturbation on the demand, 𝜀, is assumed
to follow the uniform distribution on [0, 2] in order to ensure
that the perturbation on the demand has a mean value of 1.
The related parameters are assumed as follows. 𝑐

𝑚
= 6, 𝑐

1
=

𝑐
2
= 2, and 𝑎 = 1000 in 𝑦

𝑖
(𝑝) of (2). The parameters of 𝑐

𝑚
,

𝑐
𝑖
, and 𝑎 are fixed in our numerical study because we are not

interested in the effect of these parameters.
For notational convenience, let 𝑤 denote the manufac-

turer’s optimal wholesale price, 𝑧̃ = 𝑧̃
1

= 𝑧̃
2
, and 𝑝 =

𝑝
1
= 𝑝
2
are the retailer’s stocking factor and selling price

at equilibrium under the wholesale price contract. 𝜋̃
𝑀

and
𝜋̃
𝑅
are the respective profits of the manufacturer and retailer

given that the manufacturer charges 𝑤 and the retailers set 𝑧̃
and 𝑝(𝑧̃). 𝜋̃

𝐷
denotes the aggregate profit of the decentralized

system; that is, 𝜋̃
𝐷
= 𝜋̃
𝑀

+ 2𝜋̃
𝑅
. 𝑧
1
= 𝑧
2
and 𝑝

1
= 𝑝
2
denote

stocking factor and selling price at equilibrium under the
centralized channel, respectively. Let 𝜋

𝐼
denote the integrated

channel profit at the optimal stocking level 𝑧 and selling
price 𝑝(𝑧). The channel performance is represented by two
aspects. The first is the division of realized profit between
the retailers and the manufacturer, measured by the ratio of
realized profits 2𝜋̃

𝑅
/𝜋̃
𝑀
. The second is the channel efficiency

of the decentralized system, defined as the fraction 𝐸
𝑓

=

𝜋̃
𝐷
/𝜋
𝐼
.

4.3.1. The Effect of the Price Sensitivity Factor 𝑏. In Table 1,
the values of 𝛾 and 𝜂 are fixed at 𝛾 = 1 and 𝜂 = 0.7, 0.3,
respectively. Then, Table 1 summarizes, at equilibrium, the
manufacturer’s unit wholesale price, the retailers’ stocking
factor and selling price under decentralized and centralized
decision models, the ratio of realized profits of supply chain
members, and the channel efficiency, by varying the price
sensitivity factor 𝑏.

The retailers’ optimal stocking factor in the decentralized
decision model is less than that in the centralized decision
model, but the optimal selling price changes in an opposite
way. These results are intuitive. The best response stocking
factor and retail price decrease in 𝑏 regardless of the central-
ized and decentralized decision models, which is consistent
with Proposition 6.

Considering the effect of 𝑏 on themanufacturer’s decision
variable, 𝑤 decreases in 𝑏. Indeed, the manufacturer must
decrease the wholesale price charged to the retailers when
consumers are more sensitive to price changes. As a result,
the retail price decreases in 𝑏, as seen in Table 1. On the other
hand, the trend of 2𝜋̃

𝑅
/𝜋̃
𝑀
increases in 𝑏, which indicates that

the manufacturer’s profit decreases in 𝑏 at a higher rate than
the retailers’ profits. Table 1 also shows that the higher 𝑏, the
lower the channel efficiency.

4.3.2. The Effect of the Risk Aversion and Retail Competition.
Table 2 summarizes the results by varying the level of risk
aversion 𝜂 and retail competition 𝛾 but keeping 𝑏 = 2. As
we can see, the safety stock increases in 𝜂with given 𝛾, which
is consistent with Proposition 6. At the same level of 𝑏 and
𝛾, however, numerical results show that the manufacturer’s
unit wholesale price and the retailers’ unit selling price are
independent of 𝜂. The result is interesting. Further, when the
price sensitivity factor 𝑏 keeps constant, the manufacturer’s
optimal wholesale price also keeps constant for any level of
risk aversion and retail competition. Such a result implies that
the wholesale price is mainly affected by the price sensitivity
factor 𝑏. Likewise, no matter what the retailer’s risk-averse
attitude 𝜂 is, the ratio of 2𝜋̃

𝑅
/𝜋̃
𝑀
mainly keeps constant under

the same level of 𝛾. These peculiar conclusions should be
noted under our specific demand model.

When we keep 𝑏 and 𝜂 constant, the best response
stocking factor and retail price decrease in 𝛾 regardless of the
centralized and decentralized decision models, which is also
consistent with Proposition 6. Under the same conditions,
the higher the degree of retail competition is, the fewer the
ratio of 2𝜋̃

𝑅
/𝜋̃
𝑀

is. In fact, as retail competition becomes
intensified, both the retailers’ and the manufacturer’s profits
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Table 1: The effect of increasing 𝑏 values on the optimal decisions and channel efficiency.

𝑏 𝜂 𝑤 𝑧̃
1
= 𝑧̃
2

𝑝
1
= 𝑝
2

2𝜋̃
𝑅
/𝜋̃
𝑀

𝑧
1
= 𝑧
2

𝑝
1
= 𝑝
2

𝐸
𝑓

0.5 0.7 7.6950 0.1607 10.9519 0.3707 0.2691 9.2436 0.9498
0.3 7.6950 0.0689 10.9519 0.3705 0.2691 9.2436 0.4072

1 0.7 6.9077 0.1351 9.8595 0.5245 0.2117 8.9471 0.7488
0.3 6.9077 0.0579 9.8595 0.5245 0.2117 8.9471 0.3209

2 0.7 6.4737 0.0988 9.1168 0.6785 0.1486 8.6419 0.6373
0.3 6.4737 0.0423 9.1168 0.6792 0.1486 8.6419 0.2730

3 0.7 6.3210 0.0773 8.8072 0.7572 0.1145 8.4857 0.5978
0.3 6.3210 0.0331 8.8072 0.7578 0.1145 8.4857 0.2561

4 0.7 6.2429 0.0634 8.6338 0.8045 0.0931 8.3907 0.5777
0.3 6.2429 0.0272 8.6338 0.8036 0.0931 8.3907 0.2477

Table 2: Optimal solutions of price-only contract by varying the level of risk aversion and retail competition.

𝜂 𝛾 𝑤 𝑧̃
1
= 𝑧̃
2

𝑝
1
= 𝑝
2

2𝜋̃
𝑅
/𝜋̃
𝑀

𝑧
1
= 𝑧
2

𝑝
1
= 𝑝
2

𝐸
𝑓

0.3

0 6.4736 0.0605 9.4232 1.0019 0.2117 8.9471 0.2208
0.3 6.4737 0.0536 9.3044 0.8763 0.1877 8.8288 0.2365
0.5 6.4737 0.0498 9.2405 0.8092 0.1746 8.7651 0.2470
0.7 6.4737 0.0465 9.1857 0.7516 0.1631 8.7105 0.2574
1 6.4737 0.0423 9.1168 0.6792 0.1486 8.6419 0.2730

0.5

0 6.4736 0.1008 9.4232 1.0023 0.2117 8.9471 0.3679
0.3 6.4737 0.0893 9.3044 0.8770 0.1877 8.8288 0.3941
0.5 6.4737 0.0830 9.2405 0.8092 0.1746 8.7651 0.4116
0.7 6.4737 0.0775 9.1857 0.7516 0.1631 8.7105 0.4289
1 6.4737 0.0705 9.1168 0.6792 0.1486 8.6419 0.4550

0.7

0 6.4736 0.1411 9.4232 1.0024 0.2117 8.9471 0.5150
0.3 6.4737 0.1250 9.3044 0.8768 0.1877 8.8288 0.5517
0.5 6.4737 0.1162 9.2405 0.8092 0.1746 8.7651 0.5762
0.7 6.4737 0.1085 9.1857 0.7516 0.1631 8.7105 0.6005
1 6.4737 0.0988 9.1168 0.6785 0.1486 8.6419 0.6373

0.9

0 6.4736 0.1814 9.4232 1.0025 0.2117 8.9471 0.6622
0.3 6.4737 0.1607 9.3044 0.8768 0.1877 8.8288 0.7093
0.5 6.4737 0.1494 9.2405 0.8092 0.1746 8.7651 0.7409
0.7 6.4737 0.1395 9.1857 0.7516 0.1631 8.7105 0.7721
1 6.4737 0.1270 9.1168 0.6787 0.1486 8.6419 0.8193

increase, while the manufacturer’s profit increases in 𝛾 at a
higher rate than the retailers’ profits. In other words, retail
competition can benefit the manufacturer more than the
retailers.

Greater 𝜂 means less risk averse according to CVaR
definition. By comparing risk aversion and retail competition,
when the retailers are less averse to risk, they will set
higher selling prices and have larger safety stocks; conversely,
increased competition results in lower prices and smaller
safety stocks. Such differences lead to opposite trend of the
retailers’ decisions. As shown inTable 2, when the retailers are
more risk averse, the channel efficiency becomes much lower
with the fixed 𝛾. On the other hand, when the competition
is more intensified, the channel efficiency becomes much
larger with the fixed 𝜂. But how do 𝜂 and 𝛾 affect channel
efficiency? Figure 1 describes the effect of risk aversion 𝜂

on channel efficiency with fixed 𝑏 = 2 and 𝛾 = 0, 0.5, 1,

respectively. Figure 2 describes the effect of retail competition
𝛾 on channel efficiency with fixed 𝑏 = 2 and 𝜂 = 0.3, 0.5, 0.7,
respectively.We observe by comparison that the risk aversion
level 𝜂 has a more significant influence on the decentralized
channel efficiency than retail competition dose. Therefore, in
practice, we should not overlook the retailer’s attitude to risk.

5. Conclusions

This paper investigates the equilibrium decisions of a decen-
tralized supply chain with two risk-averse retailers facing
price-sensitive random demand. With the retailers’ decisions
based on CVaR minimization, we provide a method to prove
quasiconcavity, and then, the existence and uniqueness of the
optimal pricing-ordering joint decision are proved under the
condition of IFR. Further, it is proved that the equilibrium
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Figure 1: The effect of 𝜂 on the channel efficiency.
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Figure 2: The effect of 𝛾 on the channel efficiency.

stocking factor and retail price decrease in price sensitivity
and retail competition, whereas the equilibrium stocking
factor increases in the level of risk aversion.

Our numerical results show that the manufacturer’s
optimal wholesale price decreases in the price sensitivity
factor but keeps constant for any level of risk aversion and
retail competition. On the other hand, the retailers’ risk-
averse attitude has no impact on the optimal retail prices.
The more risk-averse retailers will set smaller safety stocks,
thereby decreasing the channel efficiency. In contrast, the
channel efficiency could be improved when the competition
is more intensified. If the retailers are highly averse to risk

and not engaged in horizontal price competition, the channel
efficiency will approach the minimum value.

Clearly, the results and insights obtained in our paper
depend on a specific demand function. The linear and
additive demand model is intractable to obtain closed-form
solutions. For future work, it would be interesting to examine
a more general demand function to obtain the optimal
pricing-ordering joint decision under retail competition and
risk aversion. RS contract couldnot coordinate a supply chain
with two competing retailers in risk-averse environment.
Thus, the efforts to explore channel coordination mechanism
that leads to near centralized decision could be significative
in practice.

Game theory has become an essential tool in the analysis
of supply chains with multiple agents. But most of those
papers utilize only a few concepts, in particular, the concepts
related to Stackelberg andNash equilibrium. For example, the
upstream firm possesses certain power over the downstream
firm, and the Stackelberg equilibrium concept has found
many applications in many supply chain models. Certain
types of games have not yet found application in supply
chain. Supply chains today are not limited to one or two
tiers and neither are supply and demand simply but are in
fact large interconnected and decentralized networks. Thus,
it is necessary to study the dynamics of the supply chain as
a decentralized interaction between firms. As future work,
using evolutionary games [26, 27] to analyze supply chain
networks is an important research area.

Appendix

Proofs

Proof of Lemma 2. First, after some arrangement, we have (5)
as follows:

𝜋
𝑖
(𝑝
𝑖
, 𝑧
𝑖
, V
𝑖
)

= V
𝑖
−

1

𝜂
𝑖

∫
𝑧𝑖

𝐴

[V
𝑖
− 𝑦
𝑖
(𝑝) (𝜙𝑝

𝑖
𝑥 − (𝑤 + 𝑐

𝑖
) 𝑧
𝑖
)]
+

𝑑𝐹 (𝑥)

−
1

𝜂
𝑖

∫
𝐵

𝑧𝑖

[V
𝑖
− 𝑦
𝑖
(𝑝) (𝜙𝑝

𝑖
− 𝑤 − 𝑐

𝑖
) 𝑧
𝑖
]
+

𝑑𝐹 (𝑥) .

(A.1)

Case 1. V
𝑖
≤ 𝑦
𝑖
(𝑝)(𝜙𝑝

𝑖
𝐴−(𝑤+𝑐

𝑖
)𝑧
𝑖
). In this case, 𝜋

𝑖
(𝑝
𝑖
, 𝑧
𝑖
, V
𝑖
) =

V
𝑖
, and thus,

𝜕𝜋
𝑖
(𝑝
𝑖
, 𝑧
𝑖
, V
𝑖
)

𝜕V
𝑖

= 1 > 0. (A.2)

Case 2. 𝑦
𝑖
(𝑝)(𝜙𝑝

𝑖
𝐴 − (𝑤 + 𝑐

𝑖
)𝑧
𝑖
) < V
𝑖
≤ 𝑦
𝑖
(𝑝)(𝜙𝑝

𝑖
− 𝑤 − 𝑐

𝑖
)𝑧
𝑖
.

We can derive that

𝜋
𝑖
(𝑝
𝑖
, 𝑧
𝑖
, V
𝑖
)

=V
𝑖
−
1

𝜂
𝑖

∫
(V𝑖+𝑦𝑖(𝑝)(𝑤+𝑐𝑖)𝑧𝑖)/𝑦𝑖(𝑝)𝜙𝑝𝑖

𝐴

[V
𝑖
−𝑦
𝑖
(𝑝)(𝜙𝑝

𝑖
𝑥−(𝑤+𝑐

𝑖
) 𝑧
𝑖
)]
+

× 𝑑𝐹 (𝑥) ,

(A.3)
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and then,

𝜕𝜋
𝑖
(𝑝
𝑖
, 𝑧
𝑖
, V
𝑖
)

𝜕V
𝑖

= 1 −
1

𝜂
𝑖

𝐹(
V
𝑖
+ 𝑦
𝑖
(𝑝) (𝑤 + 𝑐

𝑖
) 𝑧
𝑖

𝑦
𝑖
(𝑝) 𝜙𝑝

𝑖

) . (A.4)

Thus,

𝜕𝜋
𝑖
(𝑝
𝑖
, 𝑧
𝑖
, V
𝑖
)

𝜕V
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨V𝑖=𝑦𝑖(𝑝)(𝜙𝑝𝑖𝐴−(𝑤+𝑐𝑖)𝑧𝑖)
= 1,

𝜕𝜋
𝑖
(𝑝
𝑖
, 𝑧
𝑖
, V
𝑖
)

𝜕V
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦𝑖(𝑝)(𝜙𝑝𝑖−𝑤−𝑐𝑖)𝑧𝑖

= 1 −
𝐹 (𝑧
𝑖
)

𝜂
𝑖

.

(A.5)

Case 3. V
𝑖
> 𝑦
𝑖
(𝑝)(𝜙𝑝

𝑖
− 𝑤 − 𝑐

𝑖
)𝑧
𝑖
. We have

𝜕𝜋
𝑖
(𝑝
𝑖
, 𝑧
𝑖
, V
𝑖
)

𝜕V
𝑖

= 1 −
1

𝜂
𝑖

< 0. (A.6)

Let V∗
𝑖
(𝑝
𝑖
, 𝑧
𝑖
) = argmax𝜋

𝑖
(𝑝
𝑖
, 𝑧
𝑖
, V
𝑖
) be the optimal

solution for fixed 𝑝
𝑖
and 𝑧
𝑖
. Combining Cases 1–3, we obtain

V∗
𝑖
(𝑝
𝑖
, 𝑧
𝑖
) ∈ [𝑦

𝑖
(𝑝) (𝜙𝑝

𝑖
𝐴 − (𝑤 + 𝑐

𝑖
) 𝑧
𝑖
) ,

𝑦
𝑖
(𝑝) (𝜙𝑝

𝑖
− 𝑤 − 𝑐

𝑖
) 𝑧
𝑖
] .

(A.7)

If 𝑧
𝑖
< 𝐹−1(𝜂

𝑖
), then

V∗
𝑖
(𝑝
𝑖
, 𝑧
𝑖
) = 𝑦
𝑖
(𝑝) (𝜙𝑝

𝑖
− 𝑤 − 𝑐

𝑖
) 𝑧
𝑖
. (A.8)

If 𝑧
𝑖
≥ 𝐹−1(𝜂

𝑖
), then

V∗
𝑖
(𝑝
𝑖
, 𝑧
𝑖
) = 𝑦
𝑖
(𝑝) [𝐹

−1

(𝜂
𝑖
) 𝜙𝑝
𝑖
− (𝑤 + 𝑐

𝑖
) 𝑧
𝑖
] . (A.9)

We thus have

𝜋
𝑖
(𝑝
𝑖
, 𝑧
𝑖
, V∗
𝑖
) = 𝑦
𝑖
(𝑝) [𝐹

−1

(𝜂
𝑖
) 𝜙𝑝
𝑖
− (𝑤 + 𝑐

𝑖
) 𝑧
𝑖
]

−
𝑦
𝑖
(𝑝)

𝜂
𝑖

∫
𝐹
−1
(𝜂𝑖)

𝐴

𝜙𝑝
𝑖
(𝐹
−1

(𝜂
𝑖
) − 𝑥) 𝑑𝐹 (𝑥) .

(A.10)

Notice that 𝜕𝜋
𝑖
(𝑝
𝑖
, 𝑧
𝑖
, V∗
𝑖
)/𝜕𝑧
𝑖
= −𝑦
𝑖
(𝑝)(𝑤+𝑐

𝑖
) < 0.Therefore,

when 𝑧
𝑖
= 𝐹−1(𝜂

𝑖
), 𝜋
𝑖
(𝑝
𝑖
, 𝑧
𝑖
, V∗
𝑖
)maximize.

Proof of Proposition 4. First, for any given 𝑧
𝑖
(𝐴 ≤ 𝑧

𝑖
<

𝐹−1(𝜂
𝑖
)), we take the partial derivative of (8) with respect to

𝑝
𝑖
and get

𝜕𝜋
𝜂𝑖
(𝑝
𝑖
, 𝑧
𝑖
)

𝜕𝑝
𝑖

= 𝑦
𝑖
(𝑝)

× [(𝑏 + 𝛾) (𝑤 + 𝑐
𝑖
) 𝑧
𝑖
+ 𝜙(𝑧

𝑖
−

1

𝜂
𝑖

Λ (𝑧
𝑖
))

− (𝑏 + 𝛾) 𝜙𝑝
𝑖
(𝑧
𝑖
−

1

𝜂
𝑖

Λ (𝑧
𝑖
))] .

(A.11)

Since 𝑦
𝑖
(𝑝) > 0, 𝜕𝜋

𝜂𝑖
(𝑝
𝑖
, 𝑧
𝑖
)/𝜕𝑝
𝑖
= 0 implies that

𝑝
∗

𝑖
(𝑧
𝑖
) =

1

𝑏 + 𝛾
+
𝑤 + 𝑐
𝑖

𝜙

𝜂
𝑖
𝑧
𝑖

𝜂
𝑖
𝑧
𝑖
− Λ (𝑧

𝑖
)
, (A.12)

which is (9). Meanwhile, for any given 𝑧
𝑖
, 𝜕𝜋
𝜂𝑖
(𝑝
𝑖
, 𝑧
𝑖
)/𝜕𝑝
𝑖
> 0

for all 𝑝
𝑖
< 𝑝∗
𝑖
(𝑧
𝑖
) and 𝜕𝜋

𝜂𝑖
(𝑝
𝑖
, 𝑧
𝑖
)/𝜕𝑝
𝑖
< 0 for all 𝑝

𝑖
> 𝑝∗
𝑖
(𝑧
𝑖
).

So, 𝑝∗
𝑖
(𝑧
𝑖
) is the unique maximizer of 𝜋

𝜂𝑖
(𝑝
𝑖
, 𝑧
𝑖
).

Next, we want to derive 𝑧∗
𝑖
, which maximizes

𝜋
𝜂𝑖
(𝑝∗
𝑖
(𝑧
𝑖
), 𝑧
𝑖
). By the chain rule, we have

𝑑𝜋
𝜂𝑖
(𝑝∗
𝑖
(𝑧
𝑖
) , 𝑧
𝑖
)

𝑑𝑧
𝑖

=
𝜕𝜋
𝜂𝑖
(𝑝∗
𝑖
(𝑧
𝑖
) , 𝑧
𝑖
)

𝜕𝑝
𝑖

𝑑𝑝∗
𝑖
(𝑧
𝑖
)

𝑑𝑧
𝑖

+
𝜕𝜋
𝜂𝑖
(𝑝∗
𝑖
(𝑧
𝑖
) , 𝑧
𝑖
)

𝜕𝑧
𝑖

.

(A.13)

Since 𝑝∗
𝑖
(𝑧
𝑖
) is the unique maximizer of 𝜋

𝜂𝑖
(𝑝
𝑖
, 𝑧
𝑖
),

𝜕𝜋
𝜂𝑖
(𝑝∗
𝑖
(𝑧
𝑖
), 𝑧
𝑖
)/𝜕𝑝
𝑖
= 0, thus

𝑑𝜋
𝜂𝑖
(𝑝∗
𝑖
(𝑧
𝑖
) , 𝑧
𝑖
)

𝑑𝑧
𝑖

=
𝑦
𝑖
(𝑝∗)

(𝑏 + 𝛾) (𝜂
𝑖
𝑧
𝑖
− Λ (𝑧

𝑖
))
𝑔 (𝑧
𝑖
) , (A.14)

where

𝑔 (𝑧
𝑖
) = (𝜂

𝑖
− 𝐹 (𝑧

𝑖
))

× [𝜙(𝑧
𝑖
−

1

𝜂
𝑖

Λ (𝑧
𝑖
)) + (𝑏 + 𝛾) (𝑤 + 𝑐

𝑖
) 𝑧
𝑖
]

− (𝑏 + 𝛾) 𝜂
𝑖
(𝑤 + 𝑐

𝑖
) (𝑧
𝑖
−

1

𝜂
𝑖

Λ (𝑧
𝑖
)) .

(A.15)

Because the first factor in the above expression is always
positive, first-order condition requires that the optimal 𝑧∗

𝑖

satisfies 𝑔(𝑧∗
𝑖
) = 0, which gives us (10).

Such a 𝑧∗
𝑖
always exists in the support interval [𝐴, 𝐹−1(𝜂

𝑖
))

of 𝜀, since 𝑔(𝑧
𝑖
) is continuous in [𝐴, 𝐹−1(𝜂

𝑖
)), 𝑔(𝐴) = 𝜂

𝑖
𝜙𝐴 >

0, and 𝑔(𝐹−1(𝜂
𝑖
)) < 0. To verify the uniqueness of 𝑧∗

𝑖
, we have

𝑔
󸀠

(𝑧
𝑖
) = (𝜂

𝑖
− 𝐹 (𝑧

𝑖
))

× {
𝜙

𝜂
𝑖

(𝜂
𝑖
− 𝐹 (𝑧

𝑖
)) − ℎ

𝜂𝑖
(𝑧
𝑖
)

× [𝜙(𝑧
𝑖
−

1

𝜂
𝑖

Λ (𝑧
𝑖
)) + (𝑏 + 𝛾) (𝑤 + 𝑐

𝑖
) 𝑧
𝑖
]} ,

𝑔
󸀠󸀠

(𝑧
𝑖
) = −ℎ

𝜂𝑖
(𝑧
𝑖
) 𝑔
󸀠

(𝑧
𝑖
) + (𝜂

𝑖
− 𝐹 (𝑧

𝑖
))

× { −
𝜙

𝜂
𝑖

𝑓 (𝑧
𝑖
) − ℎ
󸀠

𝜂𝑖

(𝑧
𝑖
)

× [𝜙(𝑧
𝑖
−

1

𝜂
𝑖

Λ (𝑧
𝑖
)) + (𝑏 + 𝛾) (𝑤 + 𝑐

𝑖
) 𝑧
𝑖
]

− ℎ
𝜂𝑖
(𝑧
𝑖
) [𝜙(1 −

1

𝜂
𝑖

𝐹 (𝑧
𝑖
))

+ (𝑏 + 𝛾) (𝑤 + 𝑐
𝑖
) ]} .

(A.16)

According to Assumption 1 and Lemma 3, we have
ℎ
󸀠

𝜂𝑖

(𝑧
𝑖
) > 0. Thus, 𝑔󸀠󸀠(𝑧

𝑖
) < 0 at 𝑔󸀠(𝑧

𝑖
) = 0, which implies that
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𝑔(𝑧
𝑖
) is a unimodal function in [𝐴, 𝐹−1(𝜂

𝑖
)), which guarantees

the uniqueness of 𝑧∗
𝑖
.

Proof of Lemma 5. First, after some arrangement, we have

𝐺 (𝑧) =
𝜂 (𝑧𝐹 (𝑧) − Λ (𝑧))

(𝜂 − 𝐹 (𝑧)) (𝜂𝑧 − Λ (𝑧))
. (A.17)

Next, we take the derivative of𝐺(𝑧)with respect to 𝑧 and thus
get

𝑑𝐺 (𝑧)

𝑑𝑧

=
𝜂

[(𝜂 − 𝐹 (𝑧)) (𝜂𝑧 − Λ (𝑧))]
2

× {𝑓 (𝑧) [𝜂𝑧 − Λ (𝑧)]
2

− [𝜂 − 𝐹 (𝑧)]
2

[𝑧𝐹 (𝑧) − Λ (𝑧)]} .

(A.18)

Since the 𝜂-failure rate of probability distribution is defined
as ℎ
𝜂
(𝑧) = 𝑓(𝑧)/[𝜂 − 𝐹(𝑧)], equivalently, we have 𝑓(𝑧) =

ℎ
𝜂
(𝑧)[𝜂 − 𝐹(𝑧)]. Then, substitute ℎ

𝜂
(𝑧)[𝜂 − 𝐹(𝑧)] for 𝑓(𝑧) in

the above expression and put forward [𝜂 − 𝐹(𝑧)], and now, it
can be rewritten as

𝑑𝐺 (𝑧)

𝑑𝑧
=

𝜂

(𝜂 − 𝐹 (𝑧)) [𝜂𝑧 − Λ (𝑧)]
2
𝑇 (𝑧) , (A.19)

where 𝑇(𝑧) = ℎ
𝜂
(𝑧)[𝜂𝑧 − Λ(𝑧)]

2

− (𝜂 − 𝐹(𝑧))[𝑧𝐹(𝑧) − Λ(𝑧)].
The first factor in the above expression is always positive.

So, if 𝑇(𝑧) ≥ 0 for any 𝑧 ∈ [𝐴, 𝐹−1(𝜂
𝑖
)), 𝐺(𝑧) is increasing in

𝑧. To show that 𝑇(𝑧) ≥ 0 for any 𝑧 ∈ [𝐴, 𝐹−1(𝜂
𝑖
)), we take the

derivative of 𝑇(𝑧) with respect to 𝑧 and get

𝑑𝑇 (𝑧)

𝑑𝑧
= ℎ
󸀠

𝜂
(𝑧) [𝜂𝑧 − Λ (𝑧)]

2

+2𝑓 (𝑧) [𝑧𝐹 (𝑧) − Λ (𝑧)] + 𝑓 (𝑧) [𝜂𝑧 − Λ (𝑧)] .

(A.20)

Since ℎ󸀠
𝜂
(𝑧), 𝑓(𝑧), 𝜂𝑧 − Λ(𝑧), and 𝑧𝐹(𝑧) − Λ(𝑧) in the above

expression are all positive for any 𝑧 ∈ [𝐴, 𝐹−1(𝜂
𝑖
)), we have

𝑑𝑇(𝑧)/𝑑𝑧 > 0, which indicates that 𝑇(𝑧) is increasing in
𝑧. Hence, 𝑇(𝑧) ≥ 𝑇(𝐴) = ℎ

𝜂
(𝐴)(𝜂𝐴)

2

≥ 0. Therefore,
𝑑𝐺(𝑧)/𝑑𝑧 ≥ 0, meaning that 𝐺(𝑧) is increasing in 𝑧.

Proof of Proposition 6. (1) 𝜙/(𝑏+𝛾)(𝑤+𝑐
𝑖
) is decreasing in 𝑏;

so, 𝐺(𝑧∗
𝑖
) of (12) is decreasing in 𝑏. By Lemma 5, we have 𝑧∗

𝑖

decreases in 𝑏.
(2)We take the derivative of 𝑝∗

𝑖
(𝑧
𝑖
) with respect to 𝑏 and

thus get

𝑑𝑝∗
𝑖

𝑑𝑏
= −

1

(𝑏 + 𝛾)
2
+
(𝑤 + 𝑐

𝑖
) 𝜂
𝑖

𝜙

𝑧∗
𝑖
𝐹 (𝑧∗
𝑖
) − Λ (𝑧∗

𝑖
)

[𝜂
𝑖
𝑧∗
𝑖
− Λ (𝑧∗

𝑖
)]
2

𝑑𝑧∗
𝑖

𝑑𝑏
.

(A.21)

Since 𝑧∗
𝑖
𝐹(𝑧∗
𝑖
)−Λ(𝑧∗

𝑖
) > 0 and𝑑𝑧∗

𝑖
/𝑑𝑏 < 0, we have𝑑𝑝∗

𝑖
/𝑑𝑏 <

0.

Remark. Substituting 𝑏 with 𝛾, we have 𝑧∗
𝑖
and 𝑝∗

𝑖
decrease in

𝛾.

(3) First, after some arrangement, (10) becomes

𝑅 (𝑧
∗

𝑖
) = (𝜂

𝑖
− 𝐹 (𝑧

∗

𝑖
))

× [𝜙(𝑧
∗

𝑖
−

1

𝜂
𝑖

Λ (𝑧
∗

𝑖
)) + (𝑏 + 𝛾) 𝑧

∗

𝑖
(𝑤 + 𝑐

𝑖
)]

− (𝑏 + 𝛾) 𝜂
𝑖
(𝑤 + 𝑐

𝑖
) (𝑧
∗

𝑖
−

1

𝜂
𝑖

Λ (𝑧
∗

𝑖
))

= 0.

(A.22)

By the derivative rule of implicit function, we get

𝑑𝑧∗
𝑖

𝑑𝜂
𝑖

= −
(𝜕𝑅/𝜕𝜂

𝑖
)

(𝜕𝑅/𝜕𝑧∗
𝑖
)
, (A.23)

where 𝜕𝑅/𝜕𝜂
𝑖
= 𝜙(𝑧∗

𝑖
− (1/𝜂

𝑖
)Λ(𝑧∗
𝑖
)) + (𝜂

𝑖
− 𝐹(𝑧∗

𝑖
))𝜙(1/

𝜂2
𝑖
)Λ(𝑧∗
𝑖
) > 0.

𝑅(𝐴) = 𝜂
𝑖
𝜙𝐴 > 0, and 𝑅(𝐹−1(𝜂

𝑖
)) < 0, 𝑧∗

𝑖
is unique

solution of𝑅(𝑧∗
𝑖
) = 0; thus, 𝜕𝑅/𝜕𝑧∗

𝑖
< 0.Therefore,𝑑𝑧∗

𝑖
/𝑑𝜂
𝑖
>

0.

Acknowledgment

This work is partially supported by the Natural Science Foun-
dation of Shandong Province, China (no. ZR2010GM006).

References

[1] N. C. Petruzzi and M. Dada, “Pricing and the newsvendor
problem: a reviewwith extensions,”Operations Research, vol. 47,
no. 2, pp. 183–194, 1999.

[2] L. Yao, Y. H. Chen, and H. M. Yan, “The newsvendor problem
with pricing: extensions,” International Journal of Management
Science and Engineering Management, vol. 1, no. 1, pp. 3–16,
2006.
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