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This paper is concerned with the passivity analysis of Markovian jumping neural networks with leakage time-varying delays. Based
on a Lyapunov functional that accounts for the mixed time delays, a leakage delay-dependent passivity conditions are derived in
terms of linear matrix inequalities (LMIs). The mixed delays includes leakage time-varying delays, discrete time-varying delays, and
distributed time-varying delays. By employing a novel Lyapunov-Krasovskii functional having triple-integral terms, new passivity
leakage delay-dependent criteria are established to guarantee the passivity performance. This performance not only depends on
the upper bound of the time-varying leakage delay o(¢) but also depends on the upper bound of the derivative of the time-varying
leakage delay o,. While estimating the upper bound of derivative of the Lyapunov-Krasovskii functional, the discrete and distributed

u
delays should be treated so as to appropriately develop less conservative results. Two numerical examples are given to show the

validity and potential of the developed criteria.

1. Introduction

In the past few decades, neural networks (NNs) have been
a hot research topic because of their emerged application
in static image processing, pattern recognition, fixed-point
computation, associative memory, combinatorial optimiza-
tion [1-5]. Because the interactions between neurons are
generally asynchronous in biological and artificial neural
networks, time delays are usually encountered. Since the
existence of time delays is frequently one of the main sources
of instability for neural networks, the stability analysis for
delayed neural networks had been extensively studied and
many papers have been published on various types of neural
networks with time delays based on the LMI approach [6-14].

On the other hand, the main idea of passivity theory is
that the passive properties of a system can keep the system
internally stable. In addition, passivity theory is frequently
used in control systems to prove the stability of systems.
The problem of passivity performance analysis has also been
extensively applied in many areas such as signal processing,

fuzzy control, sliding mode control [15], and networked
control [16]. The passivity idea is a promising approach to
the analysis of the stability of NNs, because it can lead to
more general stability results. It is important to investigate the
passivity analysis for neural networks with time delays. More
recently, dissipativity or passivity performances of NNs have
received increasing attention and many research results have
been reported in the literature, for example, [17-21].

In practice, the RNNs often exhibit the behavior of
finite state representations (also called clusters, patterns, or
modes) which are referred to as the information latching
problems [22]. In this case, the network states may switch
(or jump) between different RNN modes according to a
Markovian chain, and this gives rise to the so-called Marko-
vian jumping recurrent neural networks. It has been shown
that the information latching phenomenon is recognized
to exist universally in neural networks [23, 24], which can
be dealt with extracting finite state representation from a
trained network, that is, a neural network sometimes has
finite modes that switch from one to another at different
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times. The results related to all kinds of Markovian jump
neural networks with time delay can also be found in [25-27]
and the references therein. It should be pointed out that all
the above mentioned references assume that the considered
transition probabilities in the Markov process or Markov
chain are time invariant, that is, the considered Markov
process or Markov chain is assumed to be homogeneous.
It is noted that such kind of assumption is required in
most existing results on Markovian jump systems [28, 29].
The detailed discussion about piecewise homogeneous and
nonhomogeneous Markovian jumping parameters has been
given in [30] and references therein.

On the other hand, a typical time delay called as leakage
(or “forgetting”) delay may exist in the negative feedback
terms of the neural network and it has a great impact on
the dynamic behaviors of delayed neural networks and more
details are given in [31-36]. In [34] the authors introduced
leakage time-varying delay for dynamical systems with non-
linear perturbations and derived leakage delay-dependent
stability conditions via constructing a new type of Lyapunov-
Krasovskii functional and LMI approach. Recently, the pas-
sivity analysis for neural networks of neutral type with
Markovian jumping parameters and time delay in the leakage
term have been addressed in [37]. With reference to the
results above, it has been studied that many results get to be
found out for passivity analysis of Markovian jumping neural
networks with leakage time-varying delays. Thus, the main
purpose of this paper is to shorten such a gap by making the
first attempt to deal with the passivity analysis problem for a
type of continuous-time neural networks with time-varying
transition probabilities and mixed time delays.

In this paper, the problem of passivity analysis of Marko-
vian jump neural networks with leakage time-varying delay
and discrete and distributed time-varying delays is consid-
ered. The Markov process in the under lying neural networks
is assumed to be finite piecewise homogeneous, which is
a special nonhomogeneous (time-varying) Markov chain.
Motivated by [30] a novel Lyapunov-Krasovskii functional
is constructed in which the positive definite matrices are
dependent on the system mode and a triple-integral term is
introduced for deriving the delay-dependent stability condi-
tions. By employing a novel Lyapunov-Krasovskii functional
having triple integral terms, new passivity leakage delay-
dependent criteria are established to guarantee the passivity
performance of the given systems. This performance not
only depends on the upper bound of the time-varying
leakage delay o(t) but also depends on the upper bound of
the derivative of the time-varying leakage delay o,. When
estimating an upper bound of the derivative of the Lyapunov-
Krasovskii functional, we handle the terms related to the
discrete and distributed delays appropriately so as to develop
less conservative results. Two numerical examples are given
to show the validity and potential of the development of the
proposed passivity criteria.

Notations. Let R" denote the n-dimensional Euclidean space
and the superscript “I” denotes the transpose of a matrix or
vector. I denote the identity matrix with compatible dimen-
sions. For square matrices M, and M,, the notation M, >
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(=, <, <) M, denotes positive-definite (positive-semidefinite,
negative, negative semidefinite) matrix. Let (Q, &, P) be a
complete probability space with a natural filtration {,},5o
and E[] stand for the correspondent expectation operator
with respect to the given probability measure P. Also, let
7 > 0 and C([-7,0]; R") denote the family of continuously
differentiable function ¢ from [-7, 0] to R” with the uniform
norm [, = max{max_, oo |$(6)], max_, oo’ O}

2. Problem Description and Preliminaries

Fix a probability space (Q, F, %), Q is the sample space, F
is the o-algebra of subsets of the sample space, and & is
the probability measure on %, and consider the following
Markov jump neural networks with mixed time-delays:

x(t)= -Cr@®)x(t-0o()+Ar()gx(t)
+B(r (1) g (x(t -7 (1))

t (1)
Do) g ruw,

y @) =g(x®),

where x(t—o(t)) = [x,(t-0(t)) x,(t-0(t)) --- xn(t—a(t))]T
and g(x(t)) = [9,(x,(1) Go(6,(1) -+ Guloc, (N, x;(t —
o(t)) are the state of the ith neuron at time ¢ with leakage time
varying delay and g;(x;(t)) denotes the neuron activation
function; C(r(t)) = diag{C, (r,(t)) C,(r,(t)) --- C,(r, (D))}
is a diagonal matrix with positive entries; A(r(t)) =
(a;(r®))_, B(r(t) = (b(r1) ~and D(r(t) =
(d; j(r(t)))nxn, are, respectively, the connection weight matrix,
the discretely delayed connection weight matrix, and the
distributively delayed connection weight matrix; y(t) is the
output of the neural network, and u(t) € [,[0,00) is the
output; 7(¢) and d(t) denote the discrete delay and distributed
delay, respectively, and the time varying delay 7(¢) satisfies
0<t(t)<Tt, 0<T <T(t)<T)H

T(t) <71,

" 0<o(t)<o, c¢(t)<oy, 2)

u
0<d(t) <d,

where 7, T,, 7, 0,,, 0, and d are some real constants. By the
simple transformation, model (1) has an equivalent form as
follows:

% [x t)-C(r(t) Ltg(t) x (s) ds]

=-Cr@)xt)-Cr®)x({t-o(t)a(t)
+A(r(t) g(x () +B(r(t) g(x(t-1(t)

Do) g ru,

y()=g(x().
©)



Journal of Computational Methods in Physics

Here, {r,,t > 0} is a right continuous markov chain on the
probability space taking values in a finite state space & =

a

{1,2,..., N} with transition rate matrix [1") £ {71517’*")}
given by

(M) I
.}:{rrij “h+o(h), j#i, @

J
Ty = = =1
pr{ t+h r 1+n.(’7t+h)h+o(h)) j: i

t ii

in which i > 0, limy, _,go(h)/h = 0, and 7" > 0 for j#i
is the transition rate from mode i at time f to mode j at time

t +hand 7 = - DI 7157’*’1).

Similarly, the parameter {y,,t > 0} is also a right
continuous markov chain on the probability space taking
values in a finite state space # = {1, 2, ..., T} with transition

rate matrix A £ {p,,.} given by

n _ | pmh+o(h), n+m,
_m}_{1+pmnh+o(h), n=m, ®)

inwhich h > 0,lim, _, jo(h)/h = 0, and p,,,,, > 0 for n+ m, are
the transition rate fr(%m mode m at time ¢t to mode 7 at time
t +hand pmm == Zn:m,nim pmn'

In this paper, we make the following assumption, defini-

tion, and lemmas for deriving the main result.

Assumption 1. Each activation function f;(:) in (1) is contin-
uous and bounded and satisfies

< g; () — g; () <

; EF', i=12,...,n  (6)
xp — &

1

where g;(0) = 0,a,0,0 € R, & #a,, and F; and F;
are known real scalars. It follows from (6) that the neural
activation function satisfies

Fr<? @ F/,
[

i=1,2,...,n ?)

Lemma 2 (Jensen Inequality). For any matrix M > 0, any
scalars a and b with a < b and a vector function x(t) :
[a,b] — R" such that the integrals concerned are well defined,
the following inequality holds:

b
(b-a) “ x(s)T Mx (s) ds]

>[a

: ®)
b b
I x(s)ds] M[J x(s)ds].

Lemma 3. For any constant matrix Z = Z' > 0 and scalars
o >0, 7, >0, 7, > 0 such that the following inequalities hold

- JO Lig x(s)TZx (s)dsdf

-1,

T

S—%(JO rgx(s)dsd9> Z<JO thx(s)dsd9>
2\ Jet -7, Jes

- J_TI .[;9 x(s)TZx (s)dsdf

2 -1, t T
SY@—ﬁKLTLw“”“”>

x Z (J:l «[;9 x(s) dsd@)

—JO r x(5) Zx (s) dsdf

-0 Jt+0

T

([ o) o[ [ ).

)

The main purpose of this paper is to establish a delay-
dependent sufficient condition to ensure that neural networks
(1) are passive.

Definition 4. The system (1) is said to be passive, if there exists
a scalar v > 0 such that for all t, 20 and for all the solutions
of (1), the following inequality

t

2 J'Otp E {y(s)Tu (s)} ds > -y J E {u(s)Tu (s)} ds  (10)

i4
0
holds under zero initial conditions.

3. Main Results

In this section, we derive a new delay-dependent criterion for
passivity of the delayed Markovian jumping neural networks
(1) using the Lyapunov-Krasovskii functional method com-
bining with LMI approach. For presentation convenience, in
the following, we denote

F, = diag{F, F|,F, F,,...,F,F'},
F{ +F F, +F

F- Er (11)
FZ:diag{ , e n "}.

2 2 2

Now, we establish the following passivity condition for the
system (1).
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Theorem 5. The given Markovian jumping neural networks (1) B2 = S3 15 = 4075, Ei14 = B Dss
is passive if there exist H _ _
115 = 41,1}, Es=4(n-1)T, E117 = P
L
L, <1 = 3 3 3,3 3
i n By = + +7,U” + +,U
Pi,m > 0; Qli,m = 5T 5 > 0, 2,2 Qli,m in,m 1 Q3i,m 2
QL 2
lim lim +ATRA; +d°W, + ATGA, - A},
1 2 1 2
2, 2, 3 B, 8,,=0, B,,=A"RB +A’GB,
Q, = >0, Q, = >0,
2im T 3im T
’ 2 3 ’ 2 3 B .=8_=8_.=58,.=0
2im in,m 3im Q3i,m 25 7T T26 T T2 T 28 TS
Loy 8,9 = —A|RC; - A]GC
u U 2,9 T A RY, i 9
Q, >0, U= UZT U >0,
g5 .= 5 . =—AT B .= g .. =
(12) E10= 0, By =43P0 By =0, E;3=0,

positive symmetric matrices S, = SIT >0,8, = SZT >0,8; = ’

T _ T _ T _7T 5 ). " = - =
S >0,T) =T, >0, T,=T, >0, T, =T; >0; thepo?tzve Ey15 =0, )16 =0, By = A;FR + A;FG I,
definite matrices W, > 0, W, > 0 the diagonal matrices A, >
’ - 1 2
0, A2 > 0, A3 > 0, A4 > 0, A5, > 0, and a scalar 23,3 :_(I_T”)Qlim_FlAi,m’
y > 0 such thatfor any (i, m) € (S, .%) the following LMI , )
holds: Esq=- (1 - Ty) Ql,.ym +BAG,
52(5,”) <0, 5 -8 =R =R . =R _ =8
2] /17x17 =35 T <36 T 3,7 T 3,8 T <39 T =310
m - " = -5 - - =0
PmnQy,, + 2.7 le + ) PinQs,, =H3 T B30 = 8353 = 834 = 2315 =0,
neMl jES neMl
E316 = 5317 =0,
* Zﬂi’;‘lQ? < 3 T
Jm —
jes (13) Esa=-(1-7,)Q] +B/RB +B/GB-A],,
m - - [ f
Z panzi,n + Zﬂ,’ij sz,m <U, 45 = 0, By =47 =Hyg = 0,
neMl jES
E,0 = ~B} RC, - B{GC 0
. S49 = —b; RG; = B; GL;, 410 = U5
Z Pan3i’y, + zﬂij Q3j,m < U’ T
nel jes Eyn =B PG By =EBq13 =0,
where = T T - -
Ey14 = B; RD; + B; GD;, By1s = E416 =0,
o T 1 1 1 1
= = — P C—Cp +Q +Q +7,.U +Q
“1,1 imi i,m 1. 2. 1 3
1 im i,m Z417 = B;TR + B G
+ U+ Q— (1, - 1) S, _ 1 3
5 . X . =55 = _Qz,.y =S - FA,,
-8 -4, T, - 4(1, - 1))’ T, 40" Ty - F A, ~ , , ~
Bsg = —in)m +BAG,, Es; =S,
2 = 3 3
Z PrnPin + Zﬂu im | T 0°Wo, 6,6 ‘Qz,.m =N
nel jes ’
= -p A 2 2 2, 2 By = -Q;, —(1,-1)8, -5, - F1A1m>
Ei,=P,A+ le + sz +7,U” + Qs,-,m im
o 2 4 o 3 4
+ T2U2 + FzAlimr =78 _Q3i,m + FZAi,m’ =88 _Q-”i,m B Ai’m’
Ei3=0, B4 = PimBss E15=0 S99 = _( )Q4 +CIRC; +C{GC, ~ FAY,,
g5, = g5 .= (1, — 2 .= = 5 =
Ei6=0, By =(n-1)S:, Eig=0, Eo10 = BAT, Eo1 = C 0,P;,,C;>
Big=-P,Co Ei10=0
1,9 im~i 1,10 > = _ T T
Eg14 = —C; RD; - C; GD,,
= T 2 = _cTr_(T = = _A°
Ein=GPF,C - Z PrnPin + Zﬂz] jom Ci Eo17 = -CiR-C; G, 10,10 — Ai)m’

neMl jES



Journal of Computational Methods in Physics

nt ZT[U ]m] Ci_WZ’

neM jE€S

213,13 = —4T;,
Z..14=DIRD, + D'GD, - W,
—14,14 — i i i i 1>
— T T —_
i1y = DR+ DG, Eys15 = —4T),

Bi717 =R+ G-I,

-1,)%S, + 678,

RZTZZ (r,—1) S + (1

G=1T, + (2 -72)'T, + o'T,,
(14)

and the remaining coefficients are all zero.

Proof. Denote { = [x(t)T g(x(t))T]T and consider the fol-
lowing Lyapunov-Krasovskii functional for neural network

1):

14 (xt’ Tt ’7t) =V (xt’ "t>’7t) +V; (xt’ T ’7t) +V; (xt’ Tt Tlt)

+V, (xt’ T 77t) +Vs (xt’ T ’7t) >
(15)

where
¢ T
Vi (X, 1o 1) = [x(t) -C; J;_ o x(s) ds]
t
X Pyt [x () - J;_g(t) x(s) ds] ,

t
Vy (xp1ome) = Jir ()" Q. mC(S) ds

t

+ j 97, L0 ds
t

+ L 970y, 8 s

t
+J x(s) Qux (s)ds
t—-o(t

+J0 L C(s)TUC (s) dsd6

-7

N JO LG ¢(s)TUC (s) dsd,

Vs (xp10m,) = 7, (1, - 1)

+JO f (5)7S, % (s) dsd

-7, Jt+0

-7,

+(,- 1) J Lie %(s)"'S,% (s) dsd6

-1,

+0 jo Jt X(S)TS35C (s) dsdo,

—o Jt+60

t
V4(xt,rpm)—j j g(x ()W, g (x (5)) dsd6

t
+0 j J x(s) W,x (s) dsd0,
t—o

0
Vs (X, 15 1;) —ZTZZJ J J %(s) T, % (s) dsdAd6

-1,

+2 (Tzz - 112) J:TZ J;; f fC(S)T

T +A

x T,x (s) dsdAdO

0 0 ot
+202j J J (5)'T, % (5) dsdAdo.
t

(16)

Define infinitesimal generator (denoted by L) of the markov
process acting on V' (x,, 1;,#7,) as follows:

= lim l E V(XHh, Tt Wt+h) =i -m
X, >t > Ny (17)

-V (xp, 1, =i,n, =m) }

It can be calculated that

Lv (xt’ T ’7t)

= lim% Z Dbt Z rr;lth (Xpup o 1)
h—0 neMn+m JES,j#i

+(1+7mh) V (xp s n)}

m .
Z iV (X430 jo1m)
jeSj#i

+(1+ pmh) |:

+(L+ 7 h) V (x40, m):|



-V (x,,i,m) }

= lim <| Z pmnV (xt+h’ i n) + pmmV (xt+h’ i m)
h—0 | ned,ntm

1 m .
7 l ' Z Thij hV (%o Jom)
JES,j#i
+(L+ 7 h) V (x40 1,m) ]
1 .
- EV (x;,i,m)
= }}imo ‘| z pmnV (xt+h’ i’ n) + Zﬂi’;‘lv (xt+h’ j’ m)
Y | ne jes

1 . ;
+E [V (¥ ism) =V (xpim)] }

=Y PV (xpisn) + ZnZ‘V (xp jom) + V (x,0,m).
nell jeS

(18)
From (15), it can be seen that

LV (x40 1 11) = LV (X 15 1) + LV, (574017,
+LV; (X1 my) + LV, (X 751,)  (19)

+1LV; (xt’ T ’7t) .

Based on the above equation, along the solution of the neural
network (3), we obtain that for each (i,m) € & x A

LV, (xt’ Tt ’lt)

t T
= [x t) -C; J; o x (s) ds]

t

X Pi,m% [x t) - C; J; x(s) ds]

—o(t)

d t 3
+ 'R [x -G Jt—o(t) x (s) ds]

t

XP,, [x t) - C; J x (s) ds]

—o(t)

t

T
+ [x () -C; Jt, o x (s) ds]
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x Z pmnPi,n + Zﬂglpj,m
neMl JjE€S

t

X [x () -C; L_ o x(s) ds] ,

LV, (%5745 1;)

<'0Q,t0-{"t-r1)Q, -t (1-7,)

RAC [ S Qi + Zn:;Qljn] {(s)ds
t=(t) nel T jes '

+T (1) Qy, (- (t-1)Qy, {(t—T7)

+ J T (s) |: Z P, + Zﬂngzj’"jl ((s)ds
t-7, neMl jE€S

+TOQ, (- (t-1,)Q;, {(t-T,)
t—(t) T "

+ L ¢ () Z PnQs,, + Z”ij Qaj,,,

T nel jes

L (s)ds

t
+ J ¢ (s) [ Z PonQs,, + Z”Z’lQ%n] ((s)ds
t-(t) nedl T jes '

txT ()Qux () ~x" (t-0 (1)) Qux(t -0 (1) (1-0,)

t

" (UL () - j (UL (s)ds + 1" (UL (1)

t-1,

t—(t) t
- j {7 () UL (s) ds - j {7 () UL (s) ds,
t t—1(t)

-7,

Lv; (xt’ T ’7t)
=72 (1, - 1) %(6)8, % (t)

0

1, (1) J Kt +60)7S,% (¢ + ) dO

-,

+ (1 - 1) %) S,% ()

~(5,-1) I i x(t +0)7S,% (t +0)do

-7,

0
+ (0TS, () - 0 J £t +0)TS,% (t +6)dO

= x(t)" [T; (r,-1,) S, + (5, - 1,)°S, + 0283] x (t)

t

%(s)7S, % (s) ds

_Tz(Tz_Tl)J

-1,

-(n,-7) Jt_rl 5%(5)78,% (s) ds

t-1,
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t
t—o
Lv, (xt’ Tt Wt)

= dg(x (1)) W, g (x (1))

%(s)7S;% () ds,

t

- d(t)j 9(x () W, g (x (5)) ds

t—d(t)

+ 0 x(t) Wyx (t) — o (t) Jt

t—o(t

x(s)TWIx (s)ds,
)

LV (%, 75 1;)

= x(t)T [T;Tl + (722 - T12)2T2 + 04T3] x (1)

0 t
—zrjj J ()T, % (s) dsd6
t

-7, Jt+0

-1

-(@-m)

0 t
—ZGZJ J () Ty (5) dsdf.
0

-0 Ji+

t
J () T, (s) dsdf
t+0

T

(20)

Moreover, based on Lemma 2, we can get the following
inequalities:

_(TZ_TI)J

t—1,

< —H::l x(s) ds]TS2 [J;:Tl X (s) ds] ,

~d L_d g(x ()W, g (x (s)) ds

t—1,

' %(5)7S, % (s) ds
21

(22)
[ ] ][ ],

By using Lemma 3, we can also get that
0t
ape J j #(5)7Z3 (s) dsd6

-7, Jt+0

0t T 0t
< —4<J J- X(s)dsd9> Z (J. J x (s) dsdG) .
-1, Jt+0 -1, Jt+0
(23)

Similarly, we can use Lemmas 2 and 3 for other integrals. On
the other hand, we have from (6) that forany A = 1,2,...,n,

(g1 (32 (0) = Fyx, (1) (92 (32 (1) = Fyx, (1) <0, (24)
which is equivalent to

" _
Fy +F, _ _r
€ré

FiFee -
Fy + F;
- A A eAe}‘ eAe}[

4N0) ((t)<o, (25

where &) denotes the unit column vector having 1 element on

its Ath row and zeros elsewhere. Thus, for any appropriately

dimensioned diagonal matrix Ali’m > 0, the following

inequality holds:

_FlAli,m FZAli,m
N 1

osc%)[ L

| ] 2. (26)
Similarly, for any appropriately dimensioned diagonal matri-

2 3 4 5 .
ces Ai,m > O,Ai’m > O,Ai’m > 0, and Ai’m > 0, the following
inequalities also hold:

[—F, A% E,A% ]
o<l t-T@y| L P Le-T)),
L im J
T [-F,A3, EAS]
0<{ (t-1) L ((t-1),
L im
27
T —_FlAém FZA%m- ( )
0<{ (t-1,) RN {(t-1),
L ,m J
T [-F,A%,, BA7,,]
0<(¢ (t-o(t) LA ((t-o(t).
L i,m 4

Using inequalities (20)-(23) in (19) and adding (26)-(27) in
(19), we get

LV (xprpne) - 29" Out) —yu" 0 u) <p" () Ep(t),
(28)

where p(t) = [pl (t) pl(t) pl(t)] with
pr )= [x(®) gx@®) xt-7@) glx(t-7())
x(t-7) gx(t-7))l

P = [x(t-1) g(x(t-n) x(t-0)
t
gxe-o) | L x0ds x(t—a)],
ps(t) = [L_ x(s)ds Jt_d(t)g(x (s))ds L_ x(s)ds

Jt_rl x(s)ds u (t)] .
t

-7,

(29)
Hence we can obtain from (10) that,
LV (xp 7o) = 29(8) u (8) = yu(®) u () <0. (30)

Now, to show the passivity of the delayed neural networks in
(1), we set

J(t,)=E {L” [—yu®) u ) - 290 u ) dt]» , (3D

where t, > 0.



Using Dynkin’s formula, we have

- |:Jot}7 LV (xp T ’7t) dt:| =F [V (xtp’ Tt th)]

~E [V (x0, 70, 1)] -

(32)

Now, we can deduce that

I(t)

g

tP
-E H LV (x,, 1y, 1,) dt
0

tP
j [—yu®u(t) - 2y u () + LV (x,, 701, ] dt}

(=}

=E {LP [—yu(t)Tu ) -2y u (t) + LV (x4, nt)] dt}

—E[V (xprom)] + E[V (x0,70,10)] -
(33)

Thus, if (33) holds, then since [E[V(xtp, i, 11tp)] > 0 and
V (x4, 79> 1p) = 0 holds under zero initial condition, from (31)
it follows that J(¢t,) < 0 for any t, > 0, which implies that
(13) is satisfied and therefore the delayed neural networks (1)
are locally passive. Next we shall prove that E[llx@®)|*] — 0
ast — o00. Taking expectation on both sides of (28) and
integrating from 0 to t we have

Jt E[LV (x,70n)]ds—2 Jt E [yT (s)u (s)] ds
0 0
4 Lt E[u' (s)u(s)]ds (34)

t
< Jo E [pT (s)Ep (s)] ds.
By using Dynkin’s formula, we have

E[LV (x5 7 m1:)] = E [LV (x5 705 0)]

-2 JO E [yT (Su (s)] ds—vy J-O E [uT (Su (s)] ds (35)

< Jo E [pT (s)Ep (s)] ds.

Hence
E[LV (xrom)] - | E[p (950 ()] ds
< E[LV (x4, 79, 10)] +2-[0 E [yT (s)u(s)]ds (36)

+yj;[E[uT<s>u(s)]ds<oo, £>0.
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Using Jenson’s inequality and (36), we have

2

t
EllCi J x(s)ds
t—o(t)

t T t
= E[Ci J x(s)ds] [Ci J x (8) ds]
t—o(t) t-o(t)

< Aax (Clz) E“t x(s)ds]T “:

—o(t)

x (s) ds]

A max (Cf) ¢ T ,
< 2N 4 )
- Amin (Q4) [-[t—g(t) EX(S) S] Q4 [jt—a(t) Ex (S) 5]

M nax (C?) t .
o m {Jta(t) Ex (s) Q4x (s) ds}
A max (Clz) t .
<ora) L B O
e ()
= GmEVI (xp1o1y)
e ()
<o gy Y Kere)
e ()

(37)

Similarly, it follows from the definition of V; (x,, r;, #,) that

t 2

E

x@—QJ

t—o(t)

x(s)ds

t T t
- E[CI J;—a(t) x (S) ds] |:Cl J;—a(t) * (S) ds]

< EV (x, 7 1,) (38)
= 38
/\min (Pi,n(t))

< EV (xt’ Tes )
Amin (Pi,q(t))
< EV (xo> 70> ’70)

< , t=>0.
/\min (Pixn(t))

Hence, it can be obtained that

2

t t

Elx ()’ = E x (s)ds

x(t)—CiJ

t—o(t)

x(s)ds+Cl-j

t—o(t)

t 2

< ZEHC,- J x(s)ds
t—o(t)
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2
+2E

x(t)-C; Li o x(s)ds

Amax (sz)
7 Amin (Q4)
2EV (xo’ 70> 1)
Amnin (Piﬂv(t))

EV (xo» o> ’70)

<00, t=0,

where

EV (x5 795 7o)
T

- E[x(O) — C(r(0)) joo(o) x(s)ds]

0
<Py [0 -Cr0) |

-0(0)

C(s)ds

7(0),1(0)

0 T
+j (s’ Q
—7(0)

0
+

ROLCSWRICEE

0
+

() Qs 8 () ds

+ x(s) Qux (s)ds

+

I
I
JO
j J C()TUL (s) dsdo

+ LT J {(5)TUC (s) dsdf

0 o
+7, (1, - 1)) J L %(s)"'S, % (s) dsd6

-1,

-7

0
i (n-17) j L £(s)T'S, % (s) dsd6

-1,

‘o JO LO (5)7S,% (s) dsdo

0 0 ,
+J J g(x (s)) W g (x(s)) dsdo
-d Jo

0 t
+0 LG L x(s)TW2x (s)dsd6

0 0 (0
+zT§j J J ()T % (s) dsdAdo
Y

-

-7, 0 (0
+2 (122 - le) J L L X(S)TTZX (s) dsdAdO

-1,

x (s) ds]

(39)

0 0 0
+202J j L (5)TTy% (5) dsdAd6

-0 JO
2
< {ZM:;" (Purco) (1 T C")

T max (er(tmm)
T max (szmm) * T max (Q3r(t)m(t)>
O'/lmax (Q4)

+ T A (U) To A (U)

+T2 ( —Tl)/\max( )

+(1y - 11)3/\max (Sy) + Ao (S5)
+d* A, (W)

+ JSAmax (W) + ZT;L/lmax (T,)
+2(3 - 17) (1 = 1) A (T2)

+20" A (T5) } <00
(40)

From (39) and (40), it can be deduced that the trivial solution
of system (1) is locally passive. Then the solutions x(¢) =
x(t,0, ¢) of system (1) is bounded on [0, 00). considering (1),
we know that x(¢) is bounded on [0, 00), which leads to the
uniform continuity of the solution x(¢) on [0, c0). From (36),
we note that the following inequality holds:

A (B) L E[x" (s)x(s)] ds
E [I]—V (xt’ T ’7t)]
t
_ Tiam
| Ele" 93] as o

E[LV (s o) +2 [ E [y @ u(o)]ds

+)/J(:[E[uT(s)u(s)]ds<oo, t>0.

By Barbalats’ lemma [38], it holds that E[llx®)|*] — 0 as
t — oo and this completes the proof of the global passivity
of the system (1).

Remark 6. When o(t) = o, the system (1) becomes
x(t)= -Cr@)x({t-o()+Ar@)g(x(t)

+B(r(t) g(x(t-1(t))
(42)

+D(r(t))J. g(x(s)ds+u(t),

t-d(t)

y () =gx(®).
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The system (42) can be written in its equivalent form as

follows:

Slro-ceo | s

t—o

=-Cr@®)x®)+A(r®)gx(®)

+B(r(t)g(x(t-7()+D(r) (43)

xr gx(s)ds+ul(t),
t—d(t)

y () =g(x ().

The time varying delay 7(t) satisfies

0<t<t()<T, TM)<T, 0<d()<d  (44)

where 7,,7,,7,,d are some constants and the leakage delay

o > 0 is a constant.
Now, the passivity condition for the neural networks (43)

is given in the following corollary and the result follows from

Theorem 5.

Corollary 7. Neural networks (43) are passive if there exist

Qii,‘m Qi,m
Pi,m > 0’ Qlim = T > 0’
” 2 3
li,m 1i,m
Q, <, 2, <,
in,m = ST 3 >0, Q3i,m = 5T 3 >0,
in,m in,m Q3i,m Q3i,m
Ut u?
>0, U= >0,
Q4 [UzT US]

(45)

positive symmetric matrices S| = SIT >0, 5, = SZT >0,8 =
St >0T, =T >0T, =T >0T, =T > 0
the positive definite matrices W, > 0, W, > 0; the diagonal
matrices A, > 0, A3, >0, A}, >0, A}, >0, A}, > 0;
and a scalar y > 0 such that for any (i,m) € (8,.#) the
following LMI holds:

(1]

= (""'J)lsxls <0,

z Panli,,, + Zﬂ:;lQlj,m + Z pm”Q3i,n + Zﬂ:;Q3j,m <U

nel jes nel jes

Z panZ,-,n + zﬂ:;inj,m < U,

neM jES

Z pan3im + Z”Z'IQ%M < U>

neM jES
(46)
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where
Eii= - P,C- CiTPi,m + QLM + Q;,.,m + TlU1
+ Q;,-,m + U +Qu— (1 - 1) S = S

— 47T, - 4(1, - 1))°T, - 40°T, - FlAli’m

m 2
+ Z DPrnPin + Znij Pj,m +0°W,,
neMl jes

= 2 2 2 2
E,=P,A+ Ql,;m + in_’m +7,U" + Q%

+ 12U2 + F2A1

i,m’

[1]

14 = PipBi 27 = (,—1) S Eio=35s

= T
SN Ci Pi,mci - z Pmnpi,n + zn;;lpj,m Ci + 40T3’

nedl jes
Eii2 = PuDs B3 =401,
Blu=4 (Tz - Tl) T, Eii5 =P

= _ A3 3 3 3 3
By = Ql,-,m + sz +7,U + QSW +7,U

+ ATRA; + d*W, + ATGA, - A}

im>

= T T = T T
8,4 =A[RB;+ A[GB,  E,9=-A[RC,~A]GC,

= T
‘:2)11 = —AP C

itimid

o T T
g,1, = ATRD,; + ATGD,
= T T
8,5=AR+AIG-1,

Bs=-(1-17,)Q -FA,
Ba=-(1-1,) Qi_ym +BAL,,
Bu=-(1-1,) Qi’m +B/RB; + B, GB, - A%,
B4 = -B/ RC; - B/ GC,,

E4,11 = _BiTPi,mCi’

- T T
E,1, = BRD; + B/ GD;,
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[1]
|

99 = ~Q; + CRC; + C[GC; = S5~ FyA]

i,m>

Enn = Z PrnPin + Z”ij i | Ci = Wy — 4T3,
neM jE€S

- T - T
Eiiz = —C; pimDis Ei115 = ~C; Pigm>

=
—

112 = DI RD; - D] GD, - W,

= T T
Eiis =D R+ D; G,

[1]
[1]

13,13 = _4T1: 14,14 = _4T1)
515)15 =R+G-yl,
Tl) N (

G=1T, +(T22 -

R=1 (1, - -1,)’S, + 6%S;,

TIZ)ZT2 +0'Ts,
(47)

and the remaining coefficients are all zero.

Proof. We can define the Lyapunov functional for the above
neural networks as in Theorem 5 by replacing o(t) by 0. The

proofis the same as that of Theorem 5, and hence it is omitted.
O

4. Problem without Switching

4.1. Description and Preliminaries. In this section, we derive
passivity criterion for the delayed neural networks using the
Lyapunov-Krasovskii functional without Markovian jumping
parameters.

Consider the following neural networks with mixed time-
delays:

x({t)= —-Cx(t—0o @)+ Ag(x(t)) +Bg (x(t —1(1)))
+DJt gx(s)ds+u(t),
t—d(t)

y()=g(x ().
(48)

1
Or, it has an equivalent form as follows:
d t
dt [x - J-t—a(t) *(s) ds]
=—Cx(t)-Cx(t—o(t))o(t) + Ag (x(t))
+Bg (x (t —1(1))) (49)

+DJt gx(s)ds+ul(t),
t-d(t)

y (@) =gx().

Now, we establish the following passivity condition for the
system (49).

Theorem 8. Neural network (49) is passive if there exist

Q @
P>0, Q, = > 0,
QzT Q3
1 1
Q @ QG @ (50)
Q, = >0, Q; = > 0,
2T 3 2T 3
2 QZ 3 Q3
Ul U?
Q,>0, U:[UZT U3] >0,

positive symmetric matrices S, = SIT >0, 8, = S; > 0,8 =
ST>0,T, =T >0, T, =T) >0,T; = T{ > 0; the positive
definite matrices W, > 0, W, > 0; the diagonal matrices A' >
0, A*>0, A’ >0, A* >0, A’ > 0; and a scalar y > 0 such
that the following LMI holds:

(1]

- (Ei’f)mxzo <0, (5D
where

En= _pC_CTP+Qi +Q;+TIU1 +Q;+72U1 +Qy
~(n-1)8 =S - 4Tz - 4(r, - )2T2
- 402T3 - FlA1 + O‘ZWZ,
Ejp=PA+ Qf + Q§ + Tle + Qg + T2U2 + FZAI,
7,)S;, Eio

Bi,=(n- =-PCo,,
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=Q+Q+1U +Q+,U° + ATRA + d°W,

(1]

+ ATGA - A,
E,; =A'RB+A'GB,  E,,=-A"RC-A'GC,

= T = T T
By =-A PC, 8,14=A RD+A GD,

(11

220= AR+ ATG-1,  By5=-(1-17,)Q - KA
Ba=—(1-7,)Q + KA
8,=-(1-7,)Q] + B'RB+B'GB - A?,
B, =-B'"RC-B'GC,  E,,, =-B'PC,

B4 =B"RD+B'GD, B, =B R+B'G,
By =-Qy =S, - F A, Bog = Q) + BA°,
Es7 =5, Ees = —Qi - A,

E77= _Q; —(-1)8 -8, - F1A4,

Brg = —Q§ + F2A4) Hgg = —Q§ - A4

Bgg =— (1 - 0;4) Q,+ c'rRc+C'GC - FIAS,

= T o 1
Euw=DR+D G Bisi5=——U",
Ty
1, 1 4
Eis6 =——U, Eis16 = ——U,
T T
1 1
B,y = ——U'—4T 8,15 = ——U?
217,17 = g 217,18 = >
T T
I 3
Eigis=—-U" Elo10 = =475,
T

520)20=R+G—y1,
RZTZZ(Tz 7)S, + (1 Tl) 32+US3>

2
G=1T, + (1'22 - 712) T, + 0Ty,
(52)

and the remaining coefficients are all zero.
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Proof. Denote { = [x(t)T g(x(t))T]T and consider the fol-
lowing Lyapunov-Krasovskii functional for neural network
(49):

V(%) =V (3) + Vo (x) + V3 (%) + Vi (%) + Vs (x,),
(53)

where
t T
Vi (x) = [x(t) -C; ,L o x(s) ds]

x P [x(t) -C; J: x(s) ds] ,

—o(t)

Vale)= | toTed@dss | oot s

+ J;_ C(s)TQ3C (s)ds + J x(s)TQ4x (s)ds

t—o(t)

. JO j;e C(s)TUC () dsdf

-1

N JO L:e ¢(s)TUC (s) dsd,

-1,

0t .
Vi(x) =1 (1) + J J x(s)" 8% (s) dsdb

-1, Jt+0

+(,-1) J_Tl Jt \ 5(s)7S,% (s) dsdf

-1, Jt+

0 t
+oj j £(5)7S,% (s) dsd6,
o Jt+6

t

V,(x,) = J g(x ()W, g (x (s)) dsd

).
ol

J x(s) W, x (s) dsdf,

Vs (x,) = 21 JO J J %(s) T, % (s) dsdAd@

t

v2(-12) rz LO | x99 dsddo

-7, +A

0 0 ot
+zazj J J #(5)T T, (5) dsdAdo.
-0 JO Jt+A

(54)

Taking time derivative acting on V(x,) along the neural
networks (49) is defined as follows:

Vi (x,) = [x(t) —Cf x(s) ds]T

—o(t)

d t
X Pa [x ®H-C ‘Lg(t) x(s) ds]
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t

d T
+ T [x t-C J'Hr(t) x (s) ds]

t

xP[x(t)—CL x(s)ds],

—o(t)
Vo(x) < 0QE® - t-t®)Q{(t -7 (1)
x(1-1,)
+ TR - (t-1) QL (t-7)
+{T QLM - (t-1,) QL (t- 1)
+x7 () Qux (£)

—x(t-o (1) Qux(t-o®)(1-0,)

=T,

0 T ! T
[ Covma-| Couied

0 t
| Couwod- | ToU©ds

-1,

Vs (x) = x0)" [13 (5, — 1) Sy + (15 - 7,)’S, + 0’8, ] % (1)

-5 (n-1) f_r %(s)"8,% (s) ds

t—1;

-(,-1) Jt 5%(s)7S,% (s) ds

t
. j (s)7'S,% (s) dis,
V, (x,) = d>g(x ()W, g (x (1))

AW ge() Wig e ds

+ 02 x() W,x () — o (1) r x(s) Wy x (s) ds,
t—o(t)

Vs (x,) = x(t)" [Tng +(13 - le)sz + 04T3] x(t)

0 t
—2T§j J %(s) T, % (s) dsd
-1, Jt+0
-1, t
—(Tzz—ff)J J ()" T, (s) dsd®
-1, Jt+0

0 t
—202J J £(5)TT, % (s) dsd.
—o Jt+6

(55)

13

Similarly like Theorem 5 we can use Lemmas 2 and 3 for the
integrals. On the other hand, we have from (5) that for any
A=1,2,...,n,

(g2 (%2 () = Fyx3 (1) (g (x, (1)) = Fyx, (1)) <0, (56)

which is equivalent to

Fy + F}
FiFepel -2 —"Aeel
T 2
CO| prop (@) <0, (57)
—A A el eer
2

where e, denotes the unit column vector having 1 element on
its Ath row and zeros elsewhere. Thus, for any appropriately
dimensioned diagonal matrix A" > 0, the following inequal-
ity holds:

(). (58)

0< CT(t) [—F;Al ]J_‘ZAI]

Al

Similarly, for any appropriately dimensioned diagonal matri-
ces A> > 0, A> > 0, A* > 0,and A’ > 0, the following
inequalities also hold:

o
0t -rwn | P -,
T [-F,A® F,A*]
0<¢ (t-1) . A3 ((t-1),
: F,A* FA4: >
0" (t-1,) _i —2A4 ((t-1),
r 5 57
0 t-o )| TN PN i -0 ).

Using inequalities (55) and adding (58)-(59) to V(x,), we get

V(x,) -2y Q) u@)—yu" Out) <p" ()Ep(t), (60)

where p(t) = [p] (1)  pi(t) pl(t) pi(t)] with

pr() = [x(t) gx@®) xt-1() glx(t-1(t)
x(t-n) glx@-7n))],
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PO = [5(t-1) gx(t-m) x(-o)

t

g(x(t—o () j

t—o(t)

x(5) ds],

t

t
ps(t) = [x (t-o0) L x(s)ds Jt—d(t) g(x(s))ds

-0

t t
J x(s)ds J g(x(s) ds] ,
t—1, t—1;
t t

Py (t) = [L x©ds | gueo)ds

Jtt_rl x(s)ds u(t) ] .

-1,

(61)
Hence we can obtain from (51) that
V(x,) = 2y ut) - yut) u ) < 0. (62)

The remaining part of the proofis the same as Theorem 5. [J

Remark 9. In this paper, Theorem 5 provides passivity crite-
ria for the Markovian jumping neural networks with leakage
time varying delays. Such stability criterion is derived based
on the assumption that the leakage time varying delays
are differentiable and the values of o, are known. A new
set of triple integral terms have been introduced in the
Lyapunov-Krasovskii functional to derive the leakage delay-
dependent passivity conditions via LMI approach. New type
of Lyapunov-Krasovskii functional is constructed in which
the positive definite matrices Qy; .., Q1> Qs; ,,, are dependent
on the system mode and a triple-integral term is introduced
for deriving the delay-dependent passivity conditions.

5. Numerical Examples

In this chapter, we provide two simple examples presented
here in order to illustrate the usefulness of our main results.
Our aim is to examine the passivity analysis of given delayed
neural networks.

Example 1. Consider the delayed neural networks (1) with
the following parameters and having Markovian jumping
parameters as below:

x(t)= -Cr®)xt-o@)+Ar)gx()

+B(r (1) g (x (t - 7(1)))
¢ (63)

+D(r(t))J )g(x(s))ds+u(t),

t—d(t

y(©) =gx@),
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where

C1=[2.4 0]’ C2=[2.6 0]’

0 35 0 32
0.4 16 0.5 1.2
A= [—0.5 0.2]’ Ar = [—0.5 0.8]’
(64)
0.9 0.5 03 0.6
B=[o7 03 ®=o3 53]
1.1 -16 0.6 0.4
D, = [0.4 0.9 ] D, = [1.2 —0.6]

and the activation functions are taken as follows: g,(«) =
gp(@) = tanh(a). It is found that F, = [$ 9] and F, = [} 9].
Furthermore, the transition probability matrices are

1 [-09 05 2 [-05 05
= ‘[0.7 0.6]’ = ‘[0.7 —o.s]’
s [-07 09
= ‘[0.5 —0.3]’ (65)
~07 02 025
A=|05 -12 03 |.
03 06 -05

We choose the lower and upper bounds of delay values of 7(t),
o(t),and d(t) aret; = 0.2, 7, = 1.5, 0 = 0.3, o, = 0.4, T, =
0.6, d = 0.5. By applying MATLAB LMI toolbox, we obtain

the feasible solution as follows:

P - [6.0138 0.2029]
117 10.2029 5.5897 |’
P - [5.9453 0.2180]
127 10.2180 5.5357 "
P [6.1753 0.5152]
137 10,5152 5.9589 |’
P - [9.2206 —0.4935]
21704935 5.5949 |’
P - [ 8.3958 —0.3461]
27 |-0.3461 52798 |’
b - [ 8.4741 -0.2735]
27 1-0.2735 52809 |’

Q1 = 96.5032  0.8993
=1 0.8993 101.4537 |’

—-20.1310

Quiz = [ ~0.5306

-0.5306
—22.4636 |’
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_63.6503 —-0.1830
113 =1 —0.1830 58.2996 |’

Qi = 109.9724 1.7802
1211 1.7802 115.7604 |’

Qi1 = —25.8818 -2.1403
122 7| —2.1403 -27.4127|°

Q1 = 69.9294 0.2372
12371 0.2372  63.8244 |’

121.1754 —0.3055 ]

Qi = [_0,3055 116.3565

U = 141.1052  4.9561
17 49561 148.6923]°

U. = -60.7043 -2.3397
27 [ -2.3397 -67.6228]|°

U, - [44.3204 02613 ]
37102613 46.7241)°

g _[01771 -0.0191]
17 ]-0.0191 -0.1934]’

g _ [ 02957 -0.0315]
27 [-0.0315 0.3223 |’

S, = 30.0136 —-0.8922
37 -0.8922 -31.0764 |’

W = 152.5941 -29.2867
17 1-28.2867 162.9678 |’

W, = [172.8581 —2.3076] )

-2.3076 174.9177

[ 0.6547 —0.0596]
|-0.0596 0.7113 |

~
1]

[ 0.6766 —0.0639]
| -0.0639 0.7368 |

Ng!
Il

[32.2540 -0.0557]
| -0.0557 32.3317 |

o
I

_ [358.6106 0
0 408.4828 |

L < 365.0550 0
=1 0 4144924 |°

[ _[4856460 0
3T | 0 5355544

Lo = 380.7375 0
U 419.7776 |

L _[3748279 0
27 0 4169314

15

L _[4840639 0

237 0 5299711

L _[993611 0

WT 0 90.0987)°

L _[96.8689 0

227 0 90.9087]"

L. _[87.238 0

27 0 80.2453)°

L _[s84163 0

217 0 1104032
L _[9353%95 0

27| 0 1155929)7°"
L[ o

207 0 134.5697)°

L [1106615 0

27| 0 132.6384)°
1114636 0

L523—[ 0 133'5637], y = 166.0447.
(66)

This shows that the given Markovian jumping neural net-
works (1) or (3) are globally passive with respect to the passive
control.

Example 2. Consider the delayed neural network (49) with
the following parameters and without markovian jumping
parameters as below:

x()= -Cx(t-o(t)+Ag(x(t))

+Bg (x (t - 7(2)))

t (67)
+DJ gx(s)ds+u(t),
t—d(t)

y () =g(x(0),

where

c=[3 5] =[5 05)

0 25 -1.7 1.2
(68)
1.1 0.5 0.8 0.2
B= [0.5 0.8]’ b= [0.2 0.3]‘
Further, we have the matrices
00 10
F, = [0 0], F, = [0 1]. (69)

Here, the bounds of time delays of 7(t), o(t), and d(t) are

chosen as follows: 7, = 0.5, 7, = 1,0 = 0.1, 0, = 0.1,
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7, = 0.2,d = 0.5. By applying MATLAB LMI toolbox, we
obtain the feasible solution as follows:

p= 0.2899 0.0371
~10.0371 0.2688]"

Q, = 4.9833 -0.0919
17 1-0.0919 4.8960 |’

Q. = [71:3685 00391
12700391 -1.3516]"
Q.. = [27359 07977 Q. — | 46114 -0.0801
13707977 2.6571 207 10,0801 4.4621 |’
Q,, = [71:2020 0.0433
2700433 -1.1716)
Q.. = [20159 01757 Q. = [ 43805 —0.0773
27 10.1757 2.0771]" 317 1-0.0773 44345 |
Q. = [F1:1979 0.0404
2700424 -1.1685)
Q.. = [#0158 01770 q, = [32009 07431
37101770 2.0774]° 4~ |0.7431 5.4021)°

U = 5.7038 -0.0258
17 -0.0258 5.5568 |’

—1.4144 0.0649 ]

U, = 2.9386 0.2022
271 0.0649 -1.3884 ’

Us = [0.2022 3.0092

S = 0.2360 0.0515
1710.0515 0.2458°

0.0798 0.4379

S — 0.4259 0.0798
2" ’ 0.0495 2.9462

[2.9380 0.0495]
S3 = >

W, = 4.8673 0.5358
1710.5358 4.1789 |’

W = 5.7616 0.4026
27 10.4026 5.7553 |

T = 0.0807 0.0460
1710.0460 0.0859 |’

T = 0.3553 0.0632
~10.0632 0.3633]

1.9454
s = [—0.0007 L

1.9459

-0.0007
’ 0 16.8346

_[17.3673 0 ]
1= >

0  3.2436

L4:[2.5591 0 ]

L2:[3.5738 0 ]

B 0  2.5662

L= 25698 0
3 ’ 0  2.5552

[ _[40154 0
5T 0 42815

] ,  y=6.5268.
(70)

This shows that the given Markovian jumping neural net-
works (49) are globally passive with respect to the passive
control.

Journal of Computational Methods in Physics

6. Conclusion

In this paper, stochastic stability analysis of Markovian
jump neural networks with leakage time-varying delay and
discrete and distributed time-varying delays is considered.
The Markov process in the underlying neural networks is
finite piecewise homogeneous. A leakage delay-dependent
passivity conditions have been derived in terms of LMIs by
constructing novel Lyapunov-Krasovskii functional having
triple integral terms. This performance not only depends
on the upper bound of the time-varying leakage delay o(t)
but also depends on the upper bound of the derivative of
the time-varying leakage delay 0,,. Two numerical examples
have been provided to demonstrate the effectiveness of the
proposed methods for both with and without Markovian
jumping parameters.
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