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Correspondence should be addressed to Emrah Akyar, eakyar@anadolu.edu.tr

Received 2 February 2012; Accepted 6 August 2012

Academic Editor: Allan Peterson

Copyright q 2012 Emrah Akyar. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Fuzzy matrix games, specifically two-person zero-sum games with fuzzy payoffs, are considered.
In view of the parametric fuzzy max order relation, a fictitious play algorithm for finding the value
of the game is presented. A numerical example to demonstrate the presented algorithm is also
given.

1. Introduction

Game theory is a mathematical discipline which studies situations of competition and
cooperation between several involved parties, and it has many applications in broad areas,
such as strategic warfare, economic or social problems, animal behaviour, and political voting
systems.

The simplest game is a finite, two-person, zero-sum game. There are only two players,
player I and player II and it can be denoted by a matrix. Thus, such a game is called a matrix
game. More formally, a matrix game is an m × n matrix G of real numbers. A (mixed) strategy
of player I is a probability distribution x over the rows of G, that is, an element of the set

Xm =

{
x = (x1, . . . , xm) ∈ R

m : xi ≥ 0 ∀i = 1, . . . , m,
m∑
i=1

xi = 1

}
. (1.1)

Similarly, a strategy of player II is a probability distribution y over the columns of G, that is,
an element of the set

Yn =

{
y =

(
y1, . . . , yn

) ∈ R
n : yi ≥ 0 ∀i = 1, . . . , n,

n∑
i=1

yi = 1

}
. (1.2)
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A strategy x of player I is called pure if it does not involve probability, that is, xi = 1 for some
i = 1, . . . , m and it is denoted by Ii. Similarly, pure strategies of player II are denoted by IIj for
j = 1, . . . , n.

If player I plays row i (i.e., pure strategy x = (0, 0, . . . , xi = 1, 0, . . . , 0)) and player II
plays column j (i.e., pure strategy y = (0, 0, . . . , yj = 1, 0, . . . , 0)), then player I receives payoff
gij and player II pays gij , where gij is the entry in row i and column j of matrix G. If player I
plays strategy x and player II plays strategy y, then player I receives the expected payoff

g
(
x, y

)
= xTGy, (1.3)

where xT denotes the transpose of x.
A strategy x∗ is called maximin strategy of player I in matrix game G if

min
{
(x∗)TGy, y ∈ Yn

}
≥ min

{
xTGy, y ∈ Yn

}
, (1.4)

for all x ∈ Xm and a strategy y∗ is called minimax strategy of player II in matrix game G if

max
{
xTGy∗, x ∈ Xm

}
≤ max

{
xTGy, x ∈ Xm

}
(1.5)

for all y ∈ Yn. Therefore, a maximin strategy of player I maximizes the minimal payoff of
player I, and a minimax strategy of player II minimizes the maximum that player II has to
pay to player I.

von Neumann and Morgenstern (see [1]) proved that for every matrix game G there
is a real number ν with the following properties.

(i) A strategy x of player I guarantees a payoff of at least ν to player I (i.e., xTGy ≥ ν
for all strategies y of player II) if and only if x is a maximin strategy.

(ii) A strategy y of player II guarantees a payment of at most ν by player II to player I
(i.e., xTGy ≤ ν for all strategies x of player I) if and only if y is a minimax strategy.

Hence, player I can obtain a payoff at least ν by playing amaximin strategy, and player
II can guarantee to pay not more than ν by playing a minimax strategy. For these reasons, the
number ν is also called the value of the game G.

A position (i, j) is called a saddle point if gij ≥ gkj for all k = 1, . . . , m and gij ≤ gil for
all l = 1, . . . , n, that is, if gij is maximal in its column j and minimal in its row i. Evidently, if
(i, j) is a saddle point, then gij must be the value of the game.

2. Fuzzy Numbers and a Two-Person Zero-Sum Game with
Fuzzy Payoffs

In the classical theory of zero sum games the payoffs are known with certainty. However, in
the real world the certainty assumption is not realistic on many occasions. This lack of preci-
sion may be modeled via fuzzy logic. In this case, payoffs are presented by fuzzy numbers.
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2.1. Fuzzy Numbers

In this section, we give certain essential concepts of fuzzy numbers and their basic properties.
For further information see [2, 3].

A fuzzy set Ã on a set X is a function Ã : X → [0, 1]. Generally, the symbol μÃ is used
for the function Ã and it is said that the fuzzy set Ã is characterized by itsmembership function
μÃ : X → [0, 1] which associates with each x ∈ X, a real number μÃ(x) ∈ [0, 1]. The value of
μÃ(x) is interpreted as the degree to which x belongs to Ã.

Let Ã be a fuzzy set on X. The support of Ã is given as

S
(
Ã
)
=
{
x ∈ X : μÃ(x) > 0

}
, (2.1)

and the height h(Ã) of Ã is defined as

h
(
Ã
)
= sup

x∈X
μÃ(x). (2.2)

If h(Ã) = 1, then the fuzzy set Ã is called a normal fuzzy set.
Let Ã be a fuzzy set on X and α ∈ [0, 1]. The α-cut (α-level set) of the fuzzy set Ã is

given by

[
Ã
]α

=

⎧⎨
⎩
{
x ∈ X : μÃ(x) ≥ α

}
, if α ∈ (0, 1]

clS
(
Ã
)
, if α = 0,

(2.3)

where cl denotes the closure of sets.
The notion of convexity is extended to fuzzy sets on R

n as follows. A fuzzy set Ã on
R

n is called a convex fuzzy set if its α-cuts Ãα are convex sets for all α ∈ [0, 1].
Let Ã be a fuzzy set in R, then Ã is called a fuzzy number if

(i) Ã is normal,

(ii) Ã is convex,

(iii) μÃ is upper semicontinuous, and

(iv) the support of Ã is bounded.

From now on, we will use lowercase letters to denote fuzzy numbers such as ã and
we will denote the set of all fuzzy numbers by the symbol F. Generally, some special type
of fuzzy numbers, such as trapezoidal and triangular fuzzy numbers, are used for real life
applications. We consider here L-fuzzy numbers.

The function L : R → R satisfying the following conditions is called a shape function:

(i) L is even function, that is, L(x) = L(−x) for all x ∈ R,

(ii) L(x) = 1 ⇔ x = 0,

(iii) L(·) is nonincreasing on [0,+∞),

(iv) if x0 = inf{x > 0 | L(x) = 0}, then 0 < x0 < +∞ and x0 is called the zero point of L.
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Let a be any number and let δ be any positive number. Let L be any shape function.
Then a fuzzy number ã is called an L-fuzzy number if its membership function is given by

μã(x) = L

(
x − a

δ

)
∨ 0, x ∈ R. (2.4)

Here, x∨y = max{x, y}. Real numbers a and δ are called the center and the deviation parameter
of ã, respectively. In particular, if L(x) = 1 − |x|we get

μã(x) =

⎧⎨
⎩1 − 1

δ
|x − a|, x ∈ [a − δ, a + δ]

0, otherwise
(2.5)

and ã is called a symmetric triangular fuzzy number.
It is clear that for any shape function L, an arbitrary L-fuzzy number ã can be

characterized by the its center a and the deviation parameter δ. Therefore, we denote the
L-fuzzy number ã by ã ≡ (a, δ)L. In particular, if ã is a symmetric triangular fuzzy number,
we write ã ≡ (a, δ)T . We also denote the set of all L-fuzzy numbers by FL.

Let ã ≡ (a, δ)L be an L-fuzzy number then by (2.4) we see that the graph of μã(x)
approaching line x = a as δ tends to zero from the right. Therefore, we can write that

μã(x) =
{

1, x = a
0, x /=a.

(2.6)

The function in (2.6) is just a characteristic function of the real number a. Hence, we get
R ⊂ FL. From now on, we will call a fuzzy number ã as an L-fuzzy number if its membership
function is given by (2.4) or (2.6).

Let ã, b̃ ∈ F and k be any real number. Then the sum of fuzzy numbers ã and b̃ and the
scalar product of k and ã are defined as

μã+b̃(z) = sup
z=x+y

min
{
μã(x), μb̃

(
y
)}

,

μkã(z) = max

{
0, sup

z=kx
μã(x)

}
,

(2.7)

respectively. In particular, if ã ≡ (a, δ1)L and b̃ ≡ (b, δ2)L are L-fuzzy numbers and k is any
real number, then one can verify that

ã + b̃ ≡ (a + b, δ1 + δ2)L,

kã ≡ (ka, |k|δ1)L.
(2.8)

Let ã be any L-fuzzy number. By the definition of the α-cut, [ã]α is a closed interval
for all α ∈ [0, 1]. Therefore, for all α ∈ [0, 1] we can denote the α-cut of ã by [aL

α, a
R
α ], where

aL
α and aR

α are end points of the closed interval [ã]α.
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For any symmetric triangular fuzzy numbers ã, b̃ Ramı́k and Řı́mánek (see [4])
introduced binary relations as follows:

ã = qb̃ ⇐⇒ aL
α � bLα, a

R
α � bRα ∀α ∈ [0, 1]

(
fuzzy max order

)
,

ã � b̃ ⇐⇒ ã = qb̃, ã /= b̃ ∀α ∈ [0, 1]
(
strict fuzzy max order

)
,

ã  b̃ ⇐⇒ aL
α > bLα, a

R
α > bRα ∀α ∈ [0, 1]

(
strong fuzzy max order

)
.

(2.9)

Following theorem is a useful tool to check fuzzy max order and strong fuzzy max order
relations between symmetric triangular fuzzy numbers.

Theorem 2.1 (see [5]). Let ã ≡ (a, δ1) and b̃ ≡ (b, δ2) be any symmetric triangular fuzzy numbers.
Then the statements

ã = qb̃ ⇐⇒ |δ1 − δ2| � a − b,

ã  b̃ ⇐⇒ |δ1 − δ2| < a − b
(2.10)

hold.

It is not difficult to check that the fuzzy max order is a partial order. Then we may
have many minimal and maximal points with respect to fuzzy max order. Therefore, use of
the fuzzy max order is not so efficient in computer algorithms. Furukawa introduced a total
order relation which is a modification of the fuzzy max order with a parameter (see [5, 6]).

Let 0 ≤ λ ≤ 1 be arbitrary but a fixed real number. For any L-fuzzy numbers ã ≡ (a, δ1)L
and b̃ ≡ (b, δ2)L we define an order relation with parameter λ by

ã≤λb̃ ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(i) x0|δ1 − δ2| ≤ b − a,

or
(ii) λx0|δ1 − δ2| ≤ b − a < x0|δ1 − δ2|,
or
(ii) |a − b| < λx0|δ1 − δ2|, δ2 > δ1,

(2.11)

where x0 is the zero point of L. The simple expression of (2.11) is as follows:

ã≤λb̃ ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩
(i) λx0δ1 + a < λx0δ2 + b,

or
(ii) λx0δ1 + a = λx0δ2 + b, δ2 ≤ δ1.

(2.12)

It is clear that for any L-fuzzy numbers ã ≡ (a, δ1)L and b̃ ≡ (b, δ2)L, ã≤0 b̃ if and only
if a ≤ b. Therefore, the relation ≤0 is the order among the centers of L-fuzzy numbers. On the
other hand, ã≤1 b̃ if and only if b̃ = ã or they are incomparable and δ2 > δ1. For 0 < λ < 1,
the relation ≤λ determines the order with respect to their values of center and their size of
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ambiguity. The smaller λ is, the larger the possibility of ordering by the value of center is, and
the larger λ is, the larger the possibility of ordering by the size of ambiguity is.

Theorem 2.2 (see [5]). For every shape function L and for each λ ∈ [0, 1], the relation ≤λ is a total
order relation on FL.

Let λ ∈ [0, 1] be fixed arbitrarily and let Ṽ = (ṽ1, ṽ2, . . . , ṽn) be any L-fuzzy vector, that
is, all components of Ṽ are L-fuzzy numbers and expressed by a common shape function L.
Then maximum and minimum of Ṽ in the sense of the total order ≤λ are denoted as

Max
λ

Ṽ , Min
λ

Ṽ , (2.13)

respectively.

Example 2.3. Let Ṽ = ((−2, 0.1)L, (0, 0.1)L, (−3, 0.3)L, (−1, 0.4)L) be L-fuzzy vector. Then

Max
λ

(
Ṽ
)
= (0, 0.1)L, Min

λ

(
Ṽ
)
= (−3, 0.1)L, (2.14)

for all λ ∈ [0, 1].

Let ã and b̃ be any L-fuzzy numbers, then the Hausdorff distance between ã and b̃ is
defined as

d
(
ã, b̃

)
= sup

α∈[0,1]
max

{∣∣∣aL
α − bLα

∣∣∣, ∣∣∣aR
α − bRα

∣∣∣}, (2.15)

that is, d(ã, b̃) is the maximal distance between α-cuts of ã and b̃. In particular, if ã ≡ (a, δ1)
and b̃ ≡ (b, δ2) are any symmetric triangular fuzzy numbers, then d(ã, b̃) = |a − b|.

2.2. Two-Person Zero-Sum Game with Fuzzy Payoffs and
Its Equilibrium Strategy

In this section, we consider zero-sum games with fuzzy payoffs with two players, and we
assume that player I tries to maximize the profit and player II tries to minimize the costs.

The two-person zero-sum gamewith fuzzy payoffs is defined bym×nmatrix G̃whose
entries are fuzzy numbers. Let G̃ be a fuzzy matrix game

G̃ =

II1 II2 · · · IIn

I1

I2
...
Im

⎛
⎜⎜⎜⎜⎝

g̃11 g̃12 · · · g̃1n

g̃21 g̃22 · · · g̃2n
...

...
. . .

...
g̃m1 g̃m2 · · · g̃mn

⎞
⎟⎟⎟⎟⎠

(2.16)
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and x ∈ Xm, y ∈ Yn, that is, x and y are strategies for players I and II. Then the expected
payoff for player I is defined by

g̃
(
x, y

)
= xTG̃y =

∑
i

∑
j

xiyj g̃ij . (2.17)

Example 2.4. Let

G̃ =

II1 II2 II3 II4

I1

I2

I3

⎛
⎜⎜⎝

(−10, 0.1)T (−8, 0.7)T (−8, 0.7)T (−6, 0.7)T
(−9, 0.8)T (−1, 0.7)T (3, 0.8)T (8, 0.9)T
(−3, 0.2)T (−1, 0.5)T (−2, 0.2)T (−3, 0.7)T

⎞
⎟⎟⎠ (2.18)

be a fuzzy matrix game whose entries are symmetric triangular fuzzy numbers.
For this game, if player I plays second row (x = (0, 1, 0)) and player II plays third

column (y = (0, 0, 1, 0)), then player I receives and correspondingly player II pays a payoff
g̃(I2, II3) ≡ (3, 0.8)T . On the other hand, for a pair of strategies x = (1/2, 1/2, 0) and y =
(0, 1/3, 1/3, 1/3) the expected payoff for player I is g̃(x, y) = (−2, 3/4)T .

Now, we define three types of minimax equilibrium strategies based on the fuzzy max
order relation (see [7]). A point (x∗, y∗) ∈ Xm×Yn is said to be aminimax equilibrium strategy
to game G̃ if relations

x∗TÃy∗ = qxTÃy∗, ∀x ∈ Xm,

x∗TÃy = qx∗TÃy∗, ∀y ∈ Yn

(2.19)

hold.
If (x∗, y∗) ∈ Xm × Yn is the minimax equilibrium strategy to game G̃, then a point

ν̃ = x∗TÃy∗ is said to be the (fuzzy) value of game G̃ and the triplet (x∗, y∗, ν̃) is said to be a
solution of game G̃ under the fuzzy max order “=”.

A point (x∗, y∗) ∈ Xm × Yn is said to be a nondominated minimax equilibrium strategy to
game G̃ if

(i) there is no x ∈ Xm such that xTÃy∗ � x∗TÃy∗,

(ii) there is no y ∈ Yn such that x∗TÃy∗ � x∗TÃy

hold.
A point (x∗, y∗) ∈ Xm×Yn is said to be a weak nondominated minimax equilibrium strategy

to game G̃ if

(i) there is no x ∈ Xm such that xTÃy∗  x∗TÃy∗,

(ii) there is no y ∈ Yn such that x∗TÃy∗  x∗TÃy

hold.
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By the above definitions, it is clear that if (x∗, y∗) ∈ Xm × Yn is a minimax equilibrium
strategy to game G̃, it is a nondominated minimax equilibrium strategy, and if (x∗, y∗) ∈
Xm × Yn is a nondominated minimax equilibrium strategy to game G̃, then it is a weak
nondominated minimax strategy.

Furthermore, if G̃ is crisp, that is, game G̃ is a two-person zero-sum matrix game, then
these definitions coincide and become the definition of the saddle point.

3. The Fictitious Play Algorithm

The solution of matrix games with fuzzy payoffs has been studied by many authors. Most
solution techniques are based on linear programming methods (see [3, 8–11] and references
therein).

The Fictitious Play Algorithm is a common technique to approximate calculations
for the value of a two-person zero-sum game. In this algorithm, the players choose their
strategies in each step k assuming that the strategies of the other players in step k correspond
to the frequency with which the various strategies were applied in the previous k − 1 steps.
First, Brown (see [12]) conjectured and Robinson (see [13]) proved the convergence of this
method formatrix games. Thismethod has also been adapted to interval valuedmatrix games
(see [14]).

Let G = (gij) bem × nmatrix. gr
i will denote the ith row of G and gc

j is the jth column.
A system (U,V ) consisting of a sequence of n-dimensional vectors U0, U1, . . . and a

sequence ofm-dimensional vectors V0, V1, . . . is called a vector system for G provided that

(i) minU0 = maxV0,

(ii) Uk+1 = Uk + gr
i(k), Vk+1 = Vk + gc

j(k),

where

vi(k) = maxVk, uj(k) = minUk. (3.1)

Here, vi(k) and uj(k) denote the i(k)th and j(k)th components of the vectors V and U,
respectively.

Theorem 3.1 (see [13]). If (U,V ) is a vector system for G and ν is the value of G, then

lim
k→∞

minUk

k
= lim

k→∞
maxVk

k
= ν. (3.2)

Now, in view of Furukawa’s parametric total order relation we will adapt this method
for two-person zero-sum games with fuzzy payoffs.

Let

G̃ =

II1 II2 · · · IIn
I1
I2
...
Im

⎛
⎜⎜⎜⎜⎝

g̃11 g̃12 · · · g̃1n

g̃21 g̃22 · · · g̃2n
...

...
. . .

...
g̃m1 g̃m2 · · · g̃mn

⎞
⎟⎟⎟⎟⎠

(3.3)
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be a fuzzy matrix game whose entries are L-fuzzy numbers expressed by a common shape
function L. Then a vector system (Ũ, Ṽ ) for fuzzy matrix G̃ is expressed as follows.

Definition 3.2. Let λ ∈ [0, 1] be fixed. Then for all k ∈ N a pair (Ũ, Ṽ ) consisting of n-
dimensional L-fuzzy vectors Ũk = (ũ1, ũ2, . . . , ũn) and m-dimensional L-fuzzy vectors Ṽk =
(ṽ1, ṽ2, . . . , ṽm) provided that

Min
λ

(
Ũ0

)
= Max

λ

(
Ṽ0

)
,

Ũk+1 = Ũk + g̃r
i(k), Ṽk+1 = Ṽk + g̃c

j(k),

(3.4)

is called a vector system for fuzzy matrix G̃. Here, i(k) and j(k) satisfy

ṽi(k) = Max
λ

(
Ṽk

)
, ũj(k) = Min

λ

(
Ũk

)
, (3.5)

where g̃r
i and g̃c

j denote the ith row and jth column of G̃, respectively.

Instead of defining Ũk and Ṽk simultaneously, a new vector system can be obtained
by changing the condition on j as ũj(k+1) = Minλ(Ũk+1). In numerical calculations, the latter
converges more rapidly than the former.

Now, we can state our main theorem, the proof of which resembles the proof of the
theorem given in [13, 14].

Theorem 3.3. Let G̃ be an m × n fuzzy matrix game whose entries are L-fuzzy numbers expressed
by a common shape function L and let ν̃ be the value of G̃. If (Ũ, Ṽ ) is a vector system for G̃ and
λ ∈ [0, 1] fixed, then

lim
k→∞

Maxλ
(
Ṽk

)
k

= lim
k→∞

Minλ

(
Ũk

)
k

= ν̃. (3.6)

Here, the convergence is with respect to the Hausdorff metric on F.

4. A Numerical Example

The best way to demonstrate the Brown-Robinson method for fuzzy matrix games is by
means of an example.

Let us consider the modified example of Collins and Hu (see [15]). This shows
an investor making a decision as to how to invest a nondivisible sum of money when
the economic environment may be categorized into a finite number of states. There is no
guarantee that any single value (return on the investment) can adequately model the payoff
for any one of the economic states. Hence, it is more realistic to assume that each payoff is
a fuzzy number. For this example, it is assumed that the decision of such an investor can
be modeled under the assumption that the economic environment (or nature) is, in fact,
a rational “player” that will choose an optimal strategy. Suppose that the options for this
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player are strong economic growth, moderate economic growth, no growth or shrinkage,
and negative growth. For the investor player the options are to invest in bonds, invest in
stocks, and invest in a guaranteed fixed return account. In this case, clearly a single value for
the payoff of either investment in bonds or stock cannot be realistically modeled by a single
value representing the percent of return. Hence, a game matrix with fuzzy payoffs better
represents the view of the game from both players’ perspectives. Consider then the following
fuzzy matrix game for this scenario, where the percentage of return is represented in decimal
form:

G̃ =

Bonds Stocks Fixed

Strong

Moderate

None

Negative

⎛
⎜⎜⎜⎜⎜⎝

(0.1230, 0.1300)T (0.1420, 0.1700)T (0.0450, 0)T
(0.1025, 0.1950)T (0.0310, 0.0110)T (0.0450, 0)T
(0.0555, 0.0065)T (0.0310, 0.0110)T (0.0450, 0)T
(0.0260, 0.0040)T (−0.1250, 0.0275)T (0.0450, 0)T

⎞
⎟⎟⎟⎟⎟⎠

. (4.1)

We choose λ = 0.5 and we first assume that Ũ0 = ((0, 0.1)T , (0, 0.1)T , (0, 0.1)T ) and
Ṽ0 = ((0, 0.1)T , (0, 0.1)T , (0, 0.1)T , (0, 0.1)T ). Then Minλ(Ũ0) = Maxλ(Ṽ0) = (0, 0.1)T .

In the next step (k = 1), since all components are the same, we can choose i(1) and j(1)
as any integer from 1 to 3 and from 1 to 4, respectively. If we choose i(1) = 1 and j(1) = 1,
then we find

Ũ1 = Ũ0 + g̃r
i(1) = ((0, 0.1)T , (0, 0.1)T , (0, 0.1)T )

+ ((0.1230, 0.1300)T , (0.1420, 0.1700)T , (0.0450, 0)T )

= ((0.1230, 0.2300)T , (0.1420, 0.2700)T , (0.0450, 0.1)T ),

Ṽ1 = Ṽ0 + g̃c
j(1) = ((0, 0.1)T , (0, 0.1)T , (0, 0.1)T , (0, 0.1)T )

+ ((0.1230, 0.1300)T , (0.1025, 0.1950)T , (0.0555, 0.0065)T , (0.0260, 0.0040)T )

= ((0.1230, 0.2300)T , (0.1025, 0.2950)T , (0.0555, 0.1065)T , (0.0260, 0.1040)T ).
(4.2)

In the second step, we get

Min
λ

(
Ũ1

)
= Min

λ
((0.1230, 0.2300)T , (0.1420, 0.2700)T , (0.0450, 0.1)T )

= (0.0450, 0.1)T ,

Max
λ

(
Ṽ1

)
= Max

λ
((0.1230, 0.2300)T , (0.1025, 0.2950)T , (0.0555, 0.1065)T , (0.0260, 0.1040)T )

= (0.1230, 0.2300)T .
(4.3)
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Table 1: The Brown-Robinson method for solving the example.

k i(k) j(k) Minλ(Ũk)/k Maxλ(Ṽk)/k
1 1 1 (.450e − 1, .1)T (.1230, .2300)T
2 1 3 (.4500000000e − 1, .5000000000e − 1)T (.8400000000e − 1, .1150000000)T
3 1 3 (.4500000000e − 1, .3333333333e − 1)T (.7099999999e − 1, .7666666666e − 1)T
4 1 3 (.4500000000e − 1, .2500000000e − 1)T (.6450000000e − 1, .5750000000e − 1)T
5 1 3 (.4500000000e − 1, .2000000000e − 1)T (.6060000000e − 1, .4600000000e − 1)T
6 1 3 (.4500000001e − 1, .1666666667e − 1)T (.5800000001e − 1, .3833333334e − 1)T
7 1 3 (.4500000001e − 1, .1428571429e − 1)T (.5614285716e − 1, .3285714287e − 1)T
8 1 3 (.4500000000e − 1, .1250000000e − 1)T (.5475000000e − 1, .2875000000e − 1)T
9 1 3 (.4500000000e − 1, .1111111111e − 1)T (.5366666666e − 1, .2555555555e − 1)T
10 1 3 (.4500000000e − 1, .1000000000e − 1)T (.5280000000e − 1, .2300000000e − 1)T
...

...
...

102 1 3 (.4500000000e − 1, .1000000000e − 2)T (.4578000000e − 1, .2300000000e − 2)T
...

...
...

103 1 3 (.4500000000e − 1, .1000000000e − 3)T (.4507800000e − 1, .2300000000e − 3)T
...

...
...

104 1 3 (.4500000000e − 1, .1000000000e − 4)T (.4500780000e − 1, .2300000000e − 4)T
...

...
...

105 1 3 (.4500000000e − 1, .1000000000e − 5)T (.4500078000e − 1, .2300000000e − 5)T
...

...
...

106 1 3 (.4500000000e − 1, .1000000000e − 6)T (.4500007800e − 1, .2300000000e − 6)T

Therefore, we obtain i(2) = 1, j(2) = 3 and

Ũ2 = Ũ1 + g̃r
i(2)

= ((0.1230, 0.2300)T , (0.1420, 0.2700)T , (0.0450, 0.1)T )

+ ((0.1230, 0.1300)T , (0.1420, 0.1700)T , (0.0450, 0)T )

= ((0.2460, 0.3600)T , (0.2840, 0.4400)T , (0.0900, 0.1000)T ),

Ṽ2 = Ṽ1 + g̃c
j(2)

= ((0.1230, 0.2300)T , (0.1025, 0.2950)T , (0.0555, 0.1065)T , (0.0260, 0.1040)T )

+ ((0.1420, 0.1700)T , (0.0310, 0.0110)T , (0.0310, 0.0110)T , (−0.1250, 0.0275)T )
= ((0.1680, 0.2300)T , (0.1485, 0.2950)T , (0.1025, 0.1065)T , (0.0740, 0.1040)T ).

(4.4)

Continuing in this way, and using the Maple computer algebra system, we build up Table 1.
By virtue of Table 1, we see that the value of the game approaches the crisp number
(0.045, 0)T .
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5. Conclusion

In this paper, we have adapted the Brown-Robinson method to fuzzy matrix games. It is
shown that bymeans of this method, the value of fuzzymatrix games can be easily calculated.
Although the method is no way as useful as linear programming for calculating the solution
of the game exactly, it is an interesting result and the method can be easily programmed by
novice programmers. In addition, linear programming methods are not efficient enough for
high dimensional fuzzy matrix games, but the Brown-Robinson method can be used even if
the matrix dimension is too high.
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