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The variance-based global sensitivity analysis technique is robust, has a wide range of applicability, and provides accurate sensitivity
information for most models. However, it requires input variables to be statistically independent. A modification to this technique
that allows one to deal with input variables that are blockwise correlated and normally distributed is presented. The focus of this
study is the application of the modified global sensitivity analysis technique to calculations of reactor parameters that are dependent
on groupwise neutron cross-sections. The main effort in this work is in establishing a method for a practical numerical calculation
of the global sensitivity indices. The implementation of the method involves the calculation of multidimensional integrals,
which can be prohibitively expensive to compute. Numerical techniques specifically suited to the evaluation of multidimensional
integrals, namely, Monte Carlo and sparse grids methods, are used, and their efficiency is compared. The method is illustrated
and tested on a two-group cross-section dependent problem. In all the cases considered, the results obtained with sparse grids
achieved much better accuracy while using a significantly smaller number of samples. This aspect is addressed in a ministudy, and
a preliminary explanation of the results obtained is given.

1. Introduction

The apportioning of uncertainty in the output of a model
(numerical or otherwise) to different sources of uncertainty
in the model input is known as sensitivity analysis [1], and the
associated quantitative values are known as sensitivity indices.
The sensitivity indices can be used to rank the input variables
of the model, based on the influence they have on the output.
It thus becomes possible to recognize the probabilistically
insignificant/unessential input variables that exert little influ-
ence on the output. This allows for the reduction of the
dimensionality of the problem by fixing the unessential input
variables, whilst more experiments, computations, research,
and so forth can be done to determine the essential input
variables with a higher degree of accuracy.

The focus of this study will be on global sensitivity
analysis (GSA), which explores the full phase space of input
parameters, as opposed to local sensitivity analysis (LSA)
methods that are usually based on derivatives and analyse

the behaviour of the model output around a chosen point.
The implementation of GSA can be achieved by using
either variance-[1–3] or entropy-[4, 5] based methods. In
our study, we will use the Sobol’s variance-based method
[3]. This method is referred to as “variance-based” because
within the framework of this approach, the uncertainty of the
output is characterized by its (output) variance. The Sobol’s
method is robust, has a wide range of applicability, and, as
stated in [6, 7], provides accurate sensitivity information
for most models. However, the Sobol’s method is defined
for mutually independent input variables that are uniformly
distributed. A modification of the method which allows one
to deal with input variables that are blockwise correlated and
normally distributed is presented in this work.

The modified method can then be applied to nuclear
reactor calculations. Many reactor parameters of interest
(such as the neutron multiplication factor, decay heat,
reaction rates, etc.) are dependent on neutron cross-sections.
These cross-sections are often described by only their first
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two statistical moments and are assumed to be normally
distributed [8]. The uncertainties associated with the cross-
sections are propagated to the final result of the calculated
reactor parameters, and the uncertainty in a calculated
reactor parameter can be apportioned to the different sources
of uncertainty in the neutron cross-sections.

In this paper, we will present the method of global
sensitivity analysis that will address the previous limitations
and take into account the previously mentioned assumptions
with an emphasis on the numerical/calculational aspects in
implementing the method. The rest of the paper is organised
in the following way. Section 2 contains two major parts:
in the beginning, we give theoretical background and some
mathematical derivations for the method we present, and
in the second part of the section, we discuss its practical
numerical implementation. The theory description is sup-
ported by two appendices: Appendix A is used to summarize
the definitions and properties of the functional ANOVA
decomposition, and Appendix B provides explanations
concerning the sparse grid integration method. In Section 3,
we describe the particularities of our implementation of
the proposed method and the problem we use to test and
characterise the method, as well as the results obtained.
Finally, Section 4 is used to present our conclusions.

2. Method

2.1. Definitions and Assumptions. Consider a problem in
which some important reactor parameters, such as the
neutron multiplication factor and the decay heat, depend on
multigroup or few-group neutron cross-sections. We will use
Y to denote the reactor parameter of interest and Xi (i =
1, 2, . . . ,d) to denote the cross-sections. The dependence of
the parameter of interest on cross-sections can be written as
a model

Y = f (X1,X2, . . . ,Xd), (1)

where Xi are called inputs and Y is called the output
or response. Model (1) is generally nonlinear and often
calculated numerically in practice.

The cross-sections can be gathered in a column vector
X = (X1,X2, . . . ,Xd)T , where the symbol “T” denotes the
operation of transposing a row to a column. If input X is
a random vector with a joint probability density function
p(x) = p (x1, x2 . . . , xd), then the response Y is a random
variable with the expected value E[Y] and the variance
Var[Y] defined as

E
[
f (x)

] =
∫

Rd
f (x)p(x)dx,

Var
[
f (x)

] = ∫
Rd
(
f (x)− E

[
f (x)

])2
p(x)dx,

(2)

correspondingly. Note that we will use, as it is the rule in
statistics, a capital letter to denote a random variable and a
lowercase letter to denote its value (realizations).

In this work, we will assume that the cross-sections are
random variables distributed according to the normal law

with known means and covariances. The multivariate nor-
mal distribution for the probability Pr[Xi < xi : i = 1, . . . ,d]
is characterized by the probability density function [9]

p(x) = 1

(2π)d/2 det (Σ)1/2 exp
[
−1

2

(
x − µ

)T
Σ−1(x − µ

)]
,

(3)

where X is the column vector of random variables,
µ = E[X] is the column vector of their expected values, and
Σ = E[(x− µ)(x− µ)T] is the covariance matrix.

2.1.1. Block-Correlated Random Variables. Let us assume that
the input vector X can be partitioned into Γ subsets of
variables, that is, X = (X1, X2, . . . , XΓ), and that random
vectors Xα and Xβ from this partitioning are mutually
independent for α,β = 1, 2, . . . ,Γ.

Using the definition of a covariance matrix, one can show
[9] that in this case Σαβ = Σβα = 0 for α /=β. Hence,
the covariance matrix becomes block diagonal, that is, Σ =
diag(Σ11,Σ22, . . . ,ΣΓΓ), where Σαα is the covariance matrix of
Xα (α = 1, 2, . . . ,Γ). The inverse of a block diagonal matrix
is another block diagonal matrix, composed of the inverse of
each block, that is, Σ−1 = diag(Σ−1

11 ,Σ−1
22 , . . . ,Σ−1

ΓΓ ). Moreover,
taking into account that for block matrices det(Σ) =
∏Γ

α=1 det(Σαα), one can write the expression for the joint
probability density function defined in (3) in a form that
reflects the block independence of variables:

p(x) =
Γ∏

α=1

1

(2π)dα/2 det (Σαα)1/2

× exp
[
−1

2

(
xα − µα

)T
Σ−1
αα

(
xα − µα

)]
,

(4)

where p (xα) is the joint probability density function of a
subset α and dα = dim(xα) is the number of variables in Xα.

2.2. Global Sensitivity Analysis. The variance-based global
sensitivity analysis method aims to quantify the relative
importance of each input parameter in the response variance.
It involves the calculation of the global sensitivity indices,
sometimes called Sobol’s sensitivity indices [2, 10].

In order to describe the global sensitivity indices, let us
introduce the following notations: let {1, 2, . . . ,d} be the set
of input variable indices and let u be its arbitrary subset.
Hence, Xu is a subset of variables whose indices are in
u, whereas X−u are the complimentary variables, that is,
variables with indices not in u. Notation |u| will be used
for the cardinality of the set u. Variables Xi from non-
overlapping sets u and −u constitute the input vector X =
(Xu, X−u)T .

Let us consider a subset Xu of input variables. Two types
of sensitivity indices of the model response to the input
random variables Xu can be introduced:

(i) the main effect sensitivity index SXu , which describes
the fraction of variance of the output Y that is
expected to be removed if the true values of variables
Xu become known.
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(ii) the total sensitivity index Stot
Xu

, which can be inter-
preted as the fraction of variance of the output Y that
is expected to remain if the true values of variables
X−u become known.

In other words, SXu represents the effect due to Xu only,
and Stot

Xu
represents the contribution to the variance of Xu

with all the interactions of this variable with other variables.
The definition of sensitivity indices and their theoretical

justification comes from functional ANOVA (analysis of
variance). In Appendix A, we summarize formulae of the
functional ANOVA decomposition, assuming that inputs are
independent random variables with arbitrary continuous
distributions.

Sobol [2, 3] introduced an alternative way of calculating
sensitivity indices by sampling directly from f (x), that is,
without passing through the ANOVA decomposition. Sobol’s
alternative formulae are valid for uniformly distributed,
independent random variables. Generalizing this result for
continuous independent random variables with an arbitrary
probability density function p(x) = p(x1) · · · p(xd), one can
write:

f∅ =
∫

Rd
f (x)p(x)dx, D =

∫

Rd
f 2(x)p(x)dx − f 2

∅,

(5)

DXu =
∫

R2d−|u|
f (x) f

(
xu, x′−u

)
p(x)p

(
x′−u

)
dx dx′−u − f 2

∅, (6)

Dtot
Xu
= 1

2

∫

Rd+|u|

[
f (x)− f (x′u, x−u)

]2
p(x)p

(
x′u
)
dx dx′u. (7)

Here, the prime symbol over a variable (e.g., as in x′u) means
that this variable has to be sampled independently from the
corresponding marginal distribution (p(x′u) in this case) of
its unprimed analogue. Using the results from (5)–(7), the
global sensitivity indices can be calculated as ratios:

Stot
Xu
= Dtot

Xu

D
, SXu =

DXu

D
. (8)

Note that f∅ and D correspond to the output mean and the
output variance introduced in (2).

The independence condition for input variables can be
relaxed. As discussed in [11], it is not necessary that all
variables are mutually independent—this result holds when
assuming independent blocks of input variables Xα instead
of single independent input variables Xi. Thus, if subsets of
variables from Xu and X−u are mutually independent, that is,
p(x) = p(xu)p(x−u), the sensitivity analysis formulas (6) and
(7) are still applicable. Moreover, as one can see from (5), the
formula for the output variance does not explicitly involve
any particular subset of input variables. As a result, the
variance of the output (D) can be calculated with the method
presented here even in the case when all input variables
are correlated. Since the variance is used to characterise the
uncertainty in the output due to the uncertainty of the input,
the method from this paper can be used for uncertainty
analysis disregarding whether normally distributed inputs
are correlated or not.

As follows from the previous description, the evaluation
of sensitivity indices requires the calculation of the integrals
in (5)–(7), which can be written in the following general
form:

Ideff

[
g
] =

∫

Rdeff

g(x̃)p(x̃)dx̃, (9)

where Ideff [·] is the integration operator, g(x̃) represents a
function being integrated, deff = dim(x̃) is the effective
dimensionality of the integral, and p(x̃) is the joint prob-
ability density function of x̃. For instance, in integral (6),
function g (x̃) represents [ f (x) f (xu, x′−u)], x̃ = (x, x′−u) =
(xu, x−u, x′−u), p(x̃) = p(x)p(x′−u), and the effective dimen-
sionality is deff = 2d − |u|.

2.3. Standard Normal Law Representation. Though the
blockwise representation (4) of the joint probability density
function (3) allows the exploiting of the independence of
different subsets of variables, it gives no information about
the practical way of a sensitivity index calculation. It is
convenient to rewrite the expression in the so-called standard
form in order to simplify future numerical evaluations of the
global sensitivity indices.

Since covariance matrices are both symmetric and posi-
tive definite, for each Σαα there is a nonsingular matrix Pαα

such that Σαα = PααPT
αα (Cholesky factorization). Consider

the linear transformation zα = P−1
αα (xα − µα). For any α, it

leads to
(

xα − µα

)T
Σ−1
αα

(
xα − µα

)
= zTα zα, (10)

and one can show that E[zα] = 0, Cov[zα] = Iα, where
Iα = diag(1, 1, . . . , 1) is the dα × dα identity matrix. Since
∑Γ

α=1 zTα zα = zTz, the joint probability density function can
be written in the standard form:

p(z̃) = 1

(2π)deff/2
exp

(
−1

2
z̃T z̃

)
= 1

(2π)deff/2
exp

⎛

⎝−1
2

deff∑

i=1

z2
i

⎞

⎠,

(11)

where p(x̃)dx̃ = p(z̃)dz̃. New standard random variables Zi
(i = 1, 2, . . . ,d) have zero mean, standard deviations equal to
one, and are not correlated, that is, Zi ∼ N(0, 1).

Representation (11) can now be used for the calculation
of sensitivity indices: variables Zi can be sampled individually
from N(0, 1) and the corresponding x̃-points can be calcu-
lated as

xα(z̃) = µα + Pααzα, (12)

where α goes over all subsets of X̃. Nevertheless, in order to
simplify the sampling procedure, to allow the use of a single
calculational path and make a wider range of numerical
integration techniques suitable for solving the problem, we
do one more transformation from the normally distributed
variables to the uniformly distributed ones.

Consider the following coordinate-wise change of vari-
able from zi ∈ R to si ∈ (0, 1):

si(zi) = Φ(zi), (13)
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where Φ(·) is the cumulative distribution function for the
normal distribution. From the properties of Φ(·) follows
limzi→−∞si(zi) = 0, limzi→+∞si(zi) = 1,

dsi = 1√
2π

exp
(
−1

2
z2
i

)
dzi. (14)

Applying this transformation coordinate-wise (i.e., for i =
1, 2, . . . ,deff) and introducing h(s̃) = g(x̃[z̃(s̃)]) give the
representation of the integral (9) in the form

Ideff

[
g
] =

∫

[0,1]deff
h(s̃)ds̃. (15)

Here, zi(si) = Φ−1(si) for i = 1, 2, . . . ,deff, where Φ−1 (·) is
the inverse cumulative distribution function for the normal
distribution, called the probit function, and x̃ (z̃) is defined
by (12).

2.4. Numerical Calculation of Sensitivity Indices

2.4.1. Numerical Quadratures. The integral in (15) can be
approximated with a quadrature (sometimes called cubature
in the literature), that can be written in the following general
form:

Ideff [h(s̃)] ≈ QN
deff

[h(s̃)] =
N∑

n=1

wnh(s̃n), (16)

where wn are method-dependent quadrature weights, h (s̃n)
are samples of the integrand at method-dependent nodes
s̃n ∈ [0, 1]deff , and N is the number of samples.

The integral in (15) is multidimensional, and, therefore,
special numerical techniques, that can cope with the curse
of dimension, are required to calculate it. Monte Carlo
(including quasi-Monte Carlo) and sparse grid integration
methods are suitable for this task and will be considered in
our paper. Later, we will briefly introduce these methods and
discuss their implementation in our work.

2.4.2. Monte Carlo and Quasi-Monte Carlo Quadratures. In
the case of the traditional Monte Carlo method, the integral
is sampled on a set of deff-dimensional pseudo-random points
s̃n, uniformly distributed in the unit hypercube [0, 1]deff .
In the case of quasi-Monte Carlo, so-called low discrepancy
sequences of quasirandom points (also uniformly distributed
in [0, 1]deff ), are used for integration. For both traditional
Monte Carlo and quasi-Monte Carlo, the weights wn are
point-independent and equal, that is, wn = 1/N . The
quasi-Monte Carlo quadratures have a higher asymptotic
convergence rate and often outperform the traditional Monte
Carlo quadrature in practical applications [12].

There is a strong similarity between traditional Monte
Carlo and quasi-Monte Carlo quadratures except for the
type of sampling points (pseudo-random or quasi-random)
and the way of error estimation. The error estimation will
be done in the same way for both quadratures (see the
discussion later). Hence, in this paper, both the traditional
Monte Carlo and the quasi-Monte Carlo quadratures will be
referred to as Monte Carlo quadratures.

In this work, we follow Sobol’s recommendations [3]
on the implementation of the Monte Carlo quadratures for
the calculation of sensitivity indices. In particular, sampling
is done from hypercube [0, 1]2d instead of [0, 1]deff and, in
order to improve the accuracy of the estimation in (15), the
function f (x) − c0 is evaluated instead of f (x) in (5)–(7),
where c0 ≈ f∅.

Our estimation of the accuracy of the Monte Carlo
quadratures is based on a so-called randomization procedure
[13]. This procedure consists of calculating R independent
estimates, ÎNr , of integral (15). The approximation to integral
(15) is then calculated as an average of independent esti-
mates, that is:

ÎN = 1
R

R∑

r=1.

ÎNr , (17)

and the error of such an approximation is characterized by
the sample standard deviation, defined as

ε̂RN =

√
√
√
√√

1
R(R− 1)

R∑

r=1

(
ÎNr − ÎN

)2
. (18)

Each estimate ÎNr is based on an independent sequence of N
quasi- or pseudo-random points, where each new sequence
of points is obtained from the initial one by a random
modulo 1 shift [13].

2.4.3. Sparse Grid Quadratures. A sparse grid H�,deff is a set
of deff-dimensional points, which is generated using Smolyak
construction [14] and is based on a chosen sequence of the
univariate quadrature formulas Ql, where l ≥ 0 is the accu-
racy level of Ql (see Appendix B for details). When applied
to the integration of multivariate functions, the Smolyak
construction is a multidimensional quadrature Q�,deff based
on a tensor product of one-dimensional quadratures Ql,
which are combined in a special way in order to optimize
the quadrature convergence rate [15, 16]. The sequence
of univariate quadrature formulae Ql leads to a sequence
of sparse grid quadratures with an increasing sparse grid
accuracy level � ≥ 0.

Q�,deff [h(s̃)] is a linear functional that depends on h(s̃)
through function values at the set H�,deff , and the number
of terms N in (16) is defined by its cardinality. The sparse
grid points s̃n ∈H�,deff and the quadrature weights wn can be
calculated using the procedure described in Appendix B.

If H�,deff ⊂ H�+1,deff , the quadrature is called nested.
Nested quadratures permit the use of function values from
previous levels, thus making integration less computationally
expensive. Quadrature rules are said to be open when they
do not include points on the boundary and closed otherwise.
Points on the boundary (i.e., si = 0 or si = 1 for
i = 1, 2, . . . ,deff) represent a problem for the numerical
integration in (9), as a transformation si → zi will lead to
infinities in these points. Hence, only nested and strictly open
sparse grid quadratures will be used in this work.
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The sequence of sparse grid quadratures naturally leads
to a formula for a practical estimation of the integration error

ε̂� =
∣
∣Q�,deff [h(s̃)]−Q�−1,deff [h(s̃)]

∣
∣, (19)

although this estimation is usually quite conservative.
Note that sparse grids are often defined on the hypercube

s∗ ∈ [−1, 1]deff . In this case, they can easily be mapped to the
unit hypercube [0, 1]deff using the transformation of variables
si = (s∗i + 1)/2. When this mapping is performed, all sparse
grid quadrature weights wn have to be adjusted by a factor of
2deff .

2.4.4. Inversion of the Standard Normal Cumulative Density
Function. According to the methodology discussed in the
previous section, each sample vector s̃n, generated with
either Monte Carlo or sparse grid techniques, requires
transformation to the corresponding z̃n vector.

The traditional way to generate normally distributed
points in conventional Monte Carlo is to sample from
the uniform distribution and then to use the so-called
Box-Muller transformation [17]. Unfortunately, it is not
recommended [18] for use with quasi-Monte Carlo and is
not suitable for use with sparse grids. An alternative way is
to sample from the uniform distribution and then to use the
inverse of the standard normal cumulative density function.
It is recommended to use Moro’s inversion algorithm [19],
which is reported to be faster than the Box-Muller approach
and has good accuracy for both the central region and the
tails of the normal distribution [18].

In our work, Moro’s algorithm is used for variable
transformation s̃n → z̃n (n = 1, 2, . . . ,N) coordinate-wise
(i.e., for each si,n, where i = 1, 2, . . . ,deff) for both Monte
Carlo and sparse grid samples.

2.4.5. Algorithms for Calculation of Global Sensitivity Indices.
Algorithms 1 and 2 provide examples of how to calculate
sensitivity indices based on a Monte Carlo quadrature
and a sparse grid quadrature, respectively. Note that these
algorithms are given for the sake of illustration and do
not contain details about possible memory management or
performance enhancements.

3. Results

3.1. Test Problem Description. The OECD LWR UAM
(OECD: Organization for Economic Co-operation and
Development; LWR: light water reactor; UAM: Uncertainty
Analysis in Modelling) benchmark [8] seeks to determine
the uncertainty in LWR system calculations at all stages of
coupled reactor physics/thermal hydraulics calculations. The
benchmark specification consists of three phases, where the
first phase is the neutronic phase.

The neutronic phase involved obtaining multigroup
microscopic cross-section libraries. These libraries would
then be used to calculate few group macroscopic cross-
sections, which are to be used in criticality (steady state)
stand-alone calculations. One of the reactors that was chosen
as a reference LWR for the benchmark was the Peach Bottom

Table 1: Assembly homogenized 2-group cross-sections [21].

Variable Notation Value, cm−1

Fast capture Σ1
c 5.336 · 10−3

Thermal capture Σ2
c 2.693 · 10−2

Fast fission Σ1
f 1.9124 · 10−3

Thermal fission Σ2
f 2.8438 · 10−2

Fast neutron production νΣ1
f 4.920 · 10−3

Thermal neutron production νΣ2
f 6.929 · 10−2

Fast removal Σ1→ 2
s 2.063 ·10−2

Table 2: Test covariance matrix [21]. Values in bold correspond to
Case A, in bold and non-italic correspond to Case B, and the full
covariance matrix correspond to Case C.

Σ1
c Σ2

c Σ1
f Σ2

f νΣ1
f νΣ2

f Σ1→ 2
s

Σ1
c 1.21 0.23 −0.63 −0.04 −0.57 −0.03 0.77

Σ2
c 0.23 0.54 −0.09 −0.48 −0.07 −0.34 −0.01

Σ1
f −0.63 −0.09 0.68 0.11 0.87 0.08 −0.68

Σ2
f −0.04 −0.48 0.11 0.32 0.06 0.72 0.04

νΣ1
f −0.57 −0.07 0.87 0.06 0.98 0.12 −0.64

νΣ2
f −0.03 −0.34 0.08 0.72 0.12 0.45 0.04

Σ1→ 2
s 0.77 −0.01 −0.68 0.04 −0.64 0.04 1.11

reactor. By energy collapsing and spatial homogenization of
microscopic cross-section and covariance data [20], Williams
et al. [21] obtained the 2-group homogenized neutron
cross-section, with an energy boundary of 0.625 eV, and
the corresponding covariance matrix for the Peach Bottom
reactor fuel assembly. The neutron cross-sections are given
in Table 1, they are assumed to be independent and normally
distributed, and their mean values (given in the third
column of Table 1) correspond to the vector µ used in our
methodology. The covariance matrix is shown in Table 2,
where the diagonal terms are the percentage relative standard
deviation and the off-diagonal terms are the correlation
coefficients.

The global sensitivity analysis methodology discussed in
Section 2 was applied to nuclear reactor calculations. The
reactor parameter of interest that was chosen for this study
is the infinite neutron multiplication factor, k∞, and it was
modelled as [22]

k∞ =
νΣ1

f

Σ1
c + Σ1

f + Σ1→ 2
s

+
νΣ2

f Σ
1→ 2
s

(
Σ2
c + Σ2

f

)(
Σ1
c + Σ1

f + Σ1→ 2
s

) ,

(20)

where the traditional notation for macroscopic cross-
sections is used (see Table 1). To illustrate our methodology,
three cases were considered (all three cases are shown in
Table 2): one with a diagonal covariance matrix, another one
with a block-diagonal covariance matrix, and the last one
with the full covariance matrix.

In the first case (hereafter referred to as Case A), it was
assumed that the input parameters (cross-sections) are not
correlated, and the covariance matrix consisted of only the
diagonal entries, highlighted in bold, while all other elements
of the matrix were set to zero.

In the second case (hereafter referred to as Case B), we
assumed a test block-diagonal covariance matrix. The test
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input: µ1, . . . ,µΓ,Σ11, . . . ,ΣΓΓ,u,R,N
for α = 1 to Γ do

Pαα ← Cholesky decomposition of Σαα
P
′
α, µ

′
α ← Pα, µα

end for
P̃← diag(P11, . . . , PΓΓ, P

′
11, . . . , P

′
ΓΓ)

µ̃← vec(µ1, . . . ,µΓ,µ
′
1, . . . ,µ

′
Γ)

deff ← dim(µ̃)
for n = 1 to N do

for r = 1 to R do
s̃n ← deff-dimensional quasi- or pseudo-random point
wn ← 1/N
z̃n ← Φ−1(s̃n)
x̃n ← µ̃ + P̃z̃n
gn ← g(x̃n)

end for
( f∅ ,D,DXu ,Dtot

Xu )r ←
∑N

n=1 wngn
end for
calculate SXu , Stot

Xu , ε̂RN
return SXu , Stot

Xu , ε̂RN

Algorithm 1: The calculation of sensitivity indices using Monte Carlo quadrature.

input: µ1, . . . ,µΓ,Σ11, . . . ,ΣΓΓ,u, �max

for α = 1 to Γ do
Pαα ← Cholesky decomposition of Σαα
P
′
α, µ

′
α ← Pα, µα

end for
P̃← diag(P11, . . . , PΓΓ, P

′
11, . . . , P

′
ΓΓ)

µ̃← vec(µ1, . . . ,µΓ,µ
′
1, . . . ,µ

′
Γ)

deff ← dim(µ̃)
for � = 1 to �max do

generate H�,deff

N ← size of H�,deff

for n = 1 to N do
s̃n ← node from H�,deff

wn ← sparse grid weight
z̃n ← Φ−1(s̃n)
x̃n ← µ̃ + P̃z̃n
gn ← g (x̃n)

end for
( f∅ ,D,DXu ,Dtot

Xu )� ←
∑N

n=1 wngn
calculate SXu , Stot

Xu , ε̂�
return SXu , Stot

Xu , ε̂�
end for

Algorithm 2: The calculation of sensitivity indices using sparse grid quadrature.

matrix was artificially constructed based on the 2-group
covariance matrix from [21] in such a way that the input
variables can be partitioned into three mutually independent
subsets {Σ1

c ,Σ
2
c ,Σ

1
f ,Σ

2
f }, {νΣ1

f , νΣ2
f }, and {Σ1→ 2

s }, such that
elements in the off-diagonal blocks are set to zero, that is,
terms highlighted in italic are set to zero. It should be noted
that the elements of the first subset correspond to those
terms that contribute to the absorption cross-section. The
elements of the second subset correspond to those terms that
contribute to the production of neutrons, and the last subset

corresponds to the removal of neutrons from the fast group
to the thermal group.

For the last case (hereafter referred to as Case C), it was
assumed that all the input parameters (cross-sections) are
correlated with one another, and the full covariance matrix
was used, that is, all entries highlighted in bold, italic, and
non-italic.

It should be emphasised that neither of the first two
examples (Cases A and B) considered pretends to reflect
physical reality, but both the cross-section values and the
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Table 3: Estimated uncertainty of the infinite multiplication factor in terms of variance and standard deviation (given in parenthesis).

Case Traditional Monte Carlo Quasi-Monte Carlo Sparse grid

A 3.680 · 10−5 (607 pcm) 3.680 · 10−5 (607 pcm) 3.671 · 10−5 (606 pcm)

B 3.575 · 10−5 (598 pcm) 3.576 · 10−5 (598 pcm) 3.567 · 10−5 (597 pcm)

C 3.115 · 10−5 (558 pcm) 3.116 · 10−5 (558 pcm) 3.108 · 10−5 (558 pcm)

elements of the test covariance matrix are of a plausible
order of magnitude (close to the values given in [21]): hence,
this example is representative and suitable for testing of
our method. Therefore, the results and conclusions will be
given in order to characterise the method presented and not
the neutron multiplication properties of the Peach Bottom
reactor.

3.2. Method Implementation. A Fortran 90 program was
written to implement all the steps of the methodology
outlined in Section 2. The program was subdivided into
blocks of code, where each block had an input to be evaluated
to give an expected output and corresponded to step(s)
along the calculational path of the methodology. The testing,
verification, and validation of the program were done for
each block of code using test functions, for which the
corresponding results could be evaluated analytically.

Pseudo-random points were generated using the Fortran
intrinsic subroutine random number(). In implementing
quasi-Monte Carlo, a Sobol quasi-random number generator
written by J. Burkardt [23] was used. Furthermore, a ran-
domization procedure was used in estimating the integration
error, ε̂RN , for the Monte Carlo quadratures, by considering
R = 100 independent sequences with N = 106 samples in
each sequence.

The implementation of sparse grid quadratures was
greatly facilitated by subroutines written by J. Burkardt [23].
Different open sparse grid quadrature rules such as Fejer,
Gauss-Patterson, and Gauss-Legendre rules were applied
(note that closed rules were also tested and, as expected,
numerical problems for the boundary points were encoun-
tered). The Gauss-Legendre quadrature outperformed the
other rules in terms of computational time needed to achieve
a given accuracy for the cases considered, and its results will
be reported up to a sparse grid level of � = 4. A conservative
procedure defined by (19) was used in estimating the
integration error ε̂� for the sparse grid quadratures and is
reported in this paper.

Variations were introduced into the neutron cross-
sections by using a standardizing transformation as
explained in (12), that is, x̃ (z̃) = µ̃ + P̃z̃, where P̃ is the
extended Cholesky decomposed neutron cross-section
covariance matrix, and z̃ is obtained by using Moro’s
inversion of samples required by each of the implemented
quadratures. Finally, in order to improve the accuracy of
the Monte Carlo estimation of integral (15), a variance
reduction technique [3], which consists of sampling
function Δ f (x) = [ f (x) − c0] instead of f (x) in (5)–(7),
where c0 ≈ f∅, was used.

3.3. Computed Uncertainty and Sensitivity. The uncertainty
of multiplication factor k∞, computed in terms of variance
D, are given in Table 3 for Cases A, B, and C. Though
the output variance is the natural result of variance-based
sensitivity analysis, the standard deviation is preferred in
the literature because it allows an intuitive interpretation as
the error bar for the value of the analysed parameter. The
standard deviations are calculated as square root of variance,√
D, and reported in Table 3 in parentheses for all cases

and each quadrature. The uncertainty of the multiplication
factor (expressed in relative units as 100% × δk/k), which
we obtained in Case C, was 0.51% for each of the three
quadratures, and this result is in good agreement with the
value of 0.49% reported in [21].

The computed sensitivity indices for each of the variables
(cross-sections) in Case A and for each subset in Case B
are given in Table 4. No sensitivity analysis was performed
for Case C, since any sensitivity indices computed with our
method would be meaningless because all input parameters
are correlated in this case.

Considering the results of Case A, the input variable with
the greatest influence on the infinite neutron multiplication
factor is the thermal neutron production, νΣ2

f , and the
input variable with the least influence is the fast neutron
fission, Σ1

f . This is similar to what we anticipated, given
the fact that the infinite neutron multiplication factor is
highly dependent on the number of neutrons produced in
the system. Since the system being considered is thermal, the
thermal neutron production should account for most of the
neutrons produced, and the effect of fast neutron fission was
not expected to be significant.

Considering the results of Case B, the subset {νΣ1
f , νΣ2

f },
which corresponds to the neutron production, had the
greatest influence on the infinite neutron multiplication
factor. The subset {Σ1→ 2

s }, which corresponds to the fast
neutron removal, was the least influential. It should be noted
that the value of the sensitivity index for {Σ1→ 2

s } is different
in Cases A and B. This is because the off-diagonal terms of
the covariance matrix influenced the results for {Σ1→ 2

s }. In
other words, due to the off-diagonal terms in the correlation
matrix, Cases A and B define different problems.

3.4. Error Analysis. The results for Cases A and B, in Tables 3
and 4, were obtained by using a high number of samples with
all three numerical quadratures (N = 106,R = 102 in the case
of Monte Carlo quadratures and � = 4, N = 56785 in the
case of sparse grid quadrature), and these results are taken
as the reference. There seems to be very good agreement of
the computed uncertainties and sensitivity indices between
all three quadratures.
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Table 4: Estimated sensitivities of the infinite multiplication factor to different cross-sections (Case A) or their subsets (Case B).

Case
Subset of cross-sections Traditional Monte Carlo Quasi-Monte Carlo Sparse grid

Xu SXu Stot
Xu SXu Stot

Xu SXu Stot
Xu

Σ1
c 0.1766 0.1766 0.1766 0.1766 0.1766 0.1766

Σ2
c 0.1624 0.1626 0.1626 0.1626 0.1626 0.1626

Σ1
f 0.0071 0.0072 0.0072 0.0072 0.0072 0.0072

A Σ2
f 0.0640 0.0641 0.0641 0.0641 0.0641 0.0641

νΣ1
f 0.0807 0.0808 0.0808 0.0808 0.0808 0.0808

νΣ2
f 0.4676 0.4678 0.4677 0.4677 0.4677 0.4677

Σ1→ 2
s 0.0409 0.0410 0.0410 0.0410 0.0410 0.0410

Σ1
c ,Σ

2
c ,Σ

1
f ,Σ

2
f 0.3453 0.3453 0.3453 0.3453 0.3453 0.3453

B νΣ1
f , νΣ2

f 0.6124 0.6126 0.6125 0.6125 0.6125 0.6125

Σ1→ 2
s 0.0420 0.0422 0.0422 0.0422 0.0421 0.0421

The accuracy obtained for the reference results is much
better than the accuracy needed to draw practical con-
clusions concerning the contribution of uncertainties of
different cross-sections. By this we mean that the accuracy of
the sensitivity index estimation has to be, at least, sufficient
to discriminate between the contribution of different inputs
and should also be able to discriminate between Stot

Xu
and SXu

for a given input Xu.
Therefore, an error estimation study was done in order

to determine the influence of the number of samples on
the absolute and relative quadrature error of the computed
sensitivity indices, where the relative quadrature error is
given by

δ̂ =
ε̂
(
S(tot)

Xu

)

S(tot)
Xu

× 100 [%], (21)

where the absolute quadrature error ε̂ is given by either
(18) or (19). This study would help in determining the
number of samples that is needed to get a good estimation of
the sensitivity indices with the different numerical methods.
For Monte Carlo methods, three different sample sizes were
considered, N = 102, N = 104, and N = 106. In all cases, the
number of independent sequences R was taken as 102. For
the sparse grid, levels � = 1 to � = 4 were considered.

It was observed in both cases that the results obtained for
Stot

Xu
and SXu are statistically similar for all subsets of the input

variables, for all the three numerical methods that were used.
This implies that the interaction effects can be neglected.
It was also observed that the integration error for Stot

Xu
was

smaller than for SXu in all the cases; hence, from now on, we
will only consider Stot

Xu
.

When considering Case A, it was observed that increasing
N by a factor of 100 resulted, as expected, in a reduction of
the integration error by a factor of approximately 10 for all
the computed total sensitivity indices when using traditional
Monte Carlo. The results for quasi-Monte Carlo showed that
increasing N from 102 to 104, and subsequently from 104 to
106, resulted in a decrease of the integration error by a factor
of about 30 and 40, respectively, for all the computed total
sensitivity indices. For the sparse grid, a level change from

� = 2 to � = 3 and from � = 3 to � = 4 both resulted in a
decrease of the integration error by a factor of about 3.

The maximal absolute and relative errors for the total
sensitivity indices computed with different number of sam-
ples are reported in Table 5 for Monte Carlo quadratures and
Table 6 for sparse grid quadrature. These maximal absolute
errors are obtained by taking the maximal absolute error of
all the sensitivity indices for a given case, a given number of
samples, and a given quadrature. The maximal relative error
is obtained in the same way.

As one can see from Table 5, a relatively small number
of samples (100 × 100) in the case of Monte Carlo gave
fairly good accuracy (about 2%) in the estimation of the total
sensitivity indices.

It should be noted that levels � = 0 and � = 1 for
the sparse grid were not considered in the error estimation.
This is because for level � = 0, the abscissa consists of
only one point, and the variance is zero; hence, the total
sensitivity index will be undefined. For the same reason, the
application of (19) cannot give reasonable results for level
� = 1. However, looking at Table 6, it can be seen that the
maximal difference between the results obtained for levels
� = 1 and � = 2 is smaller than 2 · 10−5, and the maximum
relative quadrature error obtained when moving from level
� = 1 to � = 2 is smaller than 3.8 · 10−2%. Hence, this shows
that for both cases, level � = 1, which contains only 29 points,
is sufficient to estimate the total sensitivity indices with a very
good accuracy.

The relatively small number of sparse grid points needed
for an accurate estimation of the sensitivity indices as well
as the absence of interactions between input variables (as
discussed earlier) was unexpected. This result can potentially
be explained in the following way: the uncertainty in cross-
sections is so small that only the vicinity of the cross-
section mean values contributes to the integrals used in the
estimation of sensitivity indices. In this vicinity, the neutron
multiplication factor, which is used as the example, can be
approximated with a fairly linear function.

A small numerical experiment was done to clarify this
aspect. The standard deviations given in Table 1 were initially
multiplied by arbitrary factors between 1 and 10 and, in
the second phase, by arbitrary factors between 1 and 20,
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Table 5: Maximal error of Monte Carlo quadratures.

Case
Samples Traditional Monte Carlo Quasi-Monte Carlo

N × R ε̂RN δ̂, % ε̂RN δ̂, %

102 × 102 9.0 · 10−3 2.2 7.4 · 10−3 1.6
A 104 × 102 8.0 · 10−4 1.9 · 10−1 2.7 · 10−4 5.8 · 10−2

106 × 102 7.8 · 10−5 2.0 · 10−2 6.8 · 10−6 1.8 · 10−3

102 × 102 1.2 · 10−2 2.1 9.8 · 10−3 1.6
B 104 × 102 1.1 · 10−3 1.9 · 10−1 3.5 · 10−4 5.8 · 10−2

106 × 102 9.1 · 10−5 2.0 · 10−2 1.2 · 10−5 1.9 · 10−3

Table 6: Maximal error for the sparse grid quadrature.

� N
Case A Case B

ε̂� δ̂, % ε̂� δ̂, %

1 29 N/A N/A N/A N/A
2 477 2.0 · 10−5 3.8 · 10−2 1.3 · 10−5 3.0 · 10−2

3 5769 6.4 · 10−6 1.3 · 10−2 4.3 · 10−6 1.0 · 10−2

4 56785 2.0 · 10−6 4.1 · 10−3 1.4 · 10−6 3.6 · 10−3

and the sensitivity indices were recalculated. These factors
were chosen to make the effect of a wider distribution more
prominent without introducing a significant nonphysical
effect due to negative cross-section values at the left tail
of the distributions. It was observed that as the values of
the standard deviations increase, interaction effects can be
observed, that is, Stot

Xu
becomes statistically different from

SXu . Furthermore, a larger number of points (higher levels)
is needed to achieve the same accuracy as in the reference
case. These results may be used to confirm our assumption
on the nature of the good performance of the sparse grid
quadrature. However, a proper study was done to confirm
our conclusion, and the results are reported in [24].

4. Conclusions

In this paper, the global variance-based sensitivity and
uncertainty analysis of reactor parameters dependent on few-
group or multigroup neutron cross-sections was discussed. It
was assumed that the cross-sections are normally distributed
random variables, with known means and correlation matri-
ces, which can be partitioned into statistically independent
blocks of variables and that this partitioning allows one
to formulate scientifically and practically sound sensitivity
analysis problems. The theoretical and mathematical aspects
of the calculation of the global sensitivity indices under the
previous assumptions have been discussed. The problem of
practical numerical calculations of the variance-based global
sensitivity indices was addressed; namely, different options
for numerical integration were considered. A consistent
overall path for the calculation of sensitivity indices was
proposed and described.

The method was successfully implemented in practice
and was tested on a problem that involved two-group
assembly homogenised cross-sections as input variables. The
performance of different numerical integration techniques
was tested on a reactor problem with arbitrary, but plausible,
two-group cross-sections and covariance matrices. Different

implementations gave consistent results for the test problem
under consideration. The implementation based on sparse
grid quadrature demonstrated the best accuracy with as low
as a few dozen samples.

This good performance of sparse grid integration was
not expected and a special mini-study was performed with
the purpose of explaining its origin as well as the absence of
interactions in the obtained sensitivity indices. The results
of this study confirmed our hypothesis that the observed
results can be explained by the very small cross-section error.
Nevertheless, this conclusion still has to be supported by a
theoretical explanation.

From the methodological point of view, the method
presented in the paper is applicable to problems with an
arbitrary number of input variables. Nevertheless, one has
to be cautious when dealing with multivariate problems in
order to escape the curse of dimension. In this work, the
applicability of our method to a few-group problem was
demonstrated, but its applicability to multigroup reactor
problems will be the topic of future studies.

Appendices

A. Functional ANOVA Decomposition for
Independent Random Variables

Let p(x1, x2 . . . , xd) be a joint probability density function of
d random variables Xi:

P[X1 ≤ x1, . . . ,Xd ≤ xd]

=
∫ xd

−∞
· · ·

∫ x1

−∞
p(x1, x2 . . . , xd)dx1 · · ·dxd.

(A.1)

Let f : Rd → R be a square integrable function over
x = (x1, . . . , xd). The expected value and the variance of
the function f (x) with respect to the probability density
function p(x) are defined as

E
[
f (x)

] =
∫

Rd
f (x)p(x)dx,

Var
[
f (x)

] = ∫
Rd

(
f (x)− E

[
f (x)

]2
)
p(x)dx.

(A.2)



10 Science and Technology of Nuclear Installations

The functional ANOVA decomposition is a representation
of the function f (x) as a sum of terms of increasing
dimensionality:

f (x) =
∑

u

fu(xu) = f∅ +
∑

i

fi(xi) +
∑

i< j

fi j
(
xi, xj

)

+ · · · + f12···d(x1, x2, . . . , xd),

(A.3)

where the sum is assumed over 2d subsets u ⊆ {1, 2, . . . ,d}
and fu (xu) is a function that depends on x only through xi
with i ∈ u. Here, xu is a subset of variables whose indices are
in u, whereas x−u are the variables with indices not in u, and
|u| is the cardinality of the set u.

According to Sobol’s definition, for the representation
given by (A.3) to be a functional ANOVA decomposition
it has to satisfy the so-called zero means and orthogonality
properties [2, 3]. Let random variables Xi (i = 1, 2, . . . ,d)
be mutually independent with a joint probablity density
function p(x) = p1(x1) p2(x2) · · · pd(xd). Using an analogy
with the case of uniformly distributed input variables,
one can demonstrate that the functional ANOVA can be
constructed by applying the following recurrent formula:

fu(xu) =
∫

Rd−|u|

(

f (x)−
∑

v⊂u
fv(xv)

)

p(x−u)dx−u. (A.4)

The constant mean term, f∅, is thus obtained by calculating
f∅ = ∫

Rd f (x)p(x)dx, first order effects fi(xi) (where
i = 1, . . . ,d) are obtained from fi(xi) =

∫
R(d−1) ( f (x) −

f∅)[p(x)/p(xi)]dx/dxi and so on. For functions fu(xu)
obtained with recurrence (A.4), the zero means property
becomes

E
[
fu(xu)

] =
∫

R|u|
fu(xu)p(xu)dxu =

∫

Rd
fu(xu)p(x)dx = 0.

(A.5)

The orthogonality property holds in the weighted form
∫

Rd
fu(xu) fv(xv)p(x)dx = 0. (A.6)

Properties (A.5) and (A.6) are crucial for the functional
ANOVA method because they lead to the variance decom-
position formula:

Var
[
f (x)

] =
∑

u⊆{1,2,...,d}
Var

[
fu(xu)

]
. (A.7)

Let us assume that the function f (x) allows order-wise
decomposition over subsets of variables (A.3). Applying the
variance operator (A.2) to the left-hand side and right-hand
side of (A.3) and using a standard statistical formula, we can
write:

Var
[
f (x)

] = Var

[
∑

u

fu(xu)

]

=
∑

u

Var
[
fu(xu)

]

+ 2
∑

u,v /=u
Cov

[
fu(xu), fv(xv)

]
.

(A.8)

By definition,

Cov
[
fu(xu), fv(xv)

] =
∫

Rd

(
fu(xu)− E

[
fu(xu)

])(
fv(xv)

−E
[
fv(xv)

])
p(x)dx,

(A.9)

and it can be observed from (A.9) that properties
(A.5) and (A.6) lead to the zero-covariance condition
Cov[ fu(xu), fv(xv)] = 0 for u /= v and hence to the variance
decomposition in the form of (A.7).

B. Approximation of Multidimensional
Integrals with Sparse Grid Quadratures

Let ϕ : Ω → R be a continuous function of its arguments
and with bounded mixed derivatives of order r:

∥
∥
∥∥
∥
∥

∂‖k‖1ϕ(x1, . . . , xd)

∂xk1
1 · · · ∂xkdd

∥
∥
∥∥
∥
∥∞

<∞, ki ≤ r, (B.1)

where Ω = Ω1 · · ·Ωd, d is the dimensionality of the problem
and Ωi ⊂ R (i = 1, 2, . . . ,d) are bounded or unbounded
intervals. We consider an approximation to the integral

I
[
ϕ(x)

] =
∫

Ω
ϕ(x)ρ(x)dx, (B.2)

where x = (x1, . . . , xd), with the tensor product form ρ(x) =
ρ1(x1) · · · ρdeff (xd) of the weight function ρ.

In order to construct a multidimensional sparse grid
quadrature, let us consider a sequence of univariate quadra-
ture formulas

Qli

[
ψ(xi)

] =
mli∑

j=1

wli
jiψ

(
xliji

)
, (B.3)

which approximate one-dimensional integrals

∫

Ωi

ψ(xi)ρi(xi)dxi, i = 1, 2, . . . ,d. (B.4)

Here, ψ : Ωi → R is a continuous function of its argument,
li ∈ Z, li ≥ 0 is the accuracy level of the quadrature formula,
mli is the number of abscissas (knots) xliji of the quadrature,

and wli
ji is the corresponding weight. The index li is written

explicitly over abscissas and weights in order to remind that
they may change for different levels. Hli = {xliji : 1 ≤ ji ≤
mli} will be used to denote the set of knots of the one-
dimensional quadrature formula.

In the sparse grid method, the integral (B.2) is approx-
imated via the Smolyak formula [14, 15], defined for an
accuracy level � ∈ Z (� ≥ 0) of the sparse grid as follows:

Q�,d
[
ϕ(x)

]=
∑

�−d+1≤‖l‖1≤�
(−1)�−‖l‖1

(
d − 1
� − ‖l‖1

) d!

i=1

Qli

[
ϕ(x)

]
,

(B.5)
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where ‖l‖1 =
∑d

i=1 li, and the multi-index l = (l1, l2, . . . , ld) ∈
Zd contains the accuracy level of the one-dimensional
quadrature (B.4) for each dimension. The tensor product ⊗
in (B.5) can be calculated as

d!

i=1

Qli

[
ϕ(x)

] =
ml1∑

j1=1

· · ·
mld∑

jd=1

ϕ
(
xl1j1 , . . . , xldjd

) d∏

i=1

wli
ji , (B.6)

where the tensor product of quadrature weights wli
ji is

replaced with the ordinary product, since they are real
numbers. As one can see from the structure of (B.5) and
(B.6), quadrature Q�,d[ϕ(x)] is a linear functional that
depends on ϕ through function values at a finite set of points.
This set of points is called a “sparse grid” and is denoted by
H�,d. A sparse grid is defined as the union

H�,d =
⋃

�−d+1≤‖l‖1≤�

(
Hl1 × · · · ×Hld

)
. (B.7)

For nested one-dimensional sets (Hli ⊂ Hli+1), the corre-
sponding sparse grids are also nested H�,d ⊂ H�+1,d and can
be simplified, yielding

H�,d =
⋃

‖l‖1=�

(
Hl1 × · · · ×Hld

)
. (B.8)

The integral (B.2) can now be approximated by the sum:

Q�,d
[
ϕ(x)

] =
∑

xl
j∈H�,d

wl
jϕ
(

xl
j

)
,

(B.9)

where multidimensional knots xl
j = (xl1j1 , xl2j2 , . . . , xldjd ) can

be constructed based on (B.7) and (B.8). The formulae for
the quadrature weights wl

j in (B.9) can be obtained in an
analytical form only in a few particular cases; in all the other
cases weights can be either precalculated or calculated online
using (B.5) and (B.6).
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