
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2009, Article ID 450607, 22 pages
doi:10.1155/2009/450607

Research Article

OveRSoC: A Framework for the Exploration of
RTOS for RSoC Platforms

Benoı̂t Miramond,1 Emmanuel Huck,1 François Verdier,1 Amine Benkhelifa,1

Bertrand Granado,1 Thomas Lefebvre,1 Mehdi Aı̈chouch,1 Jean Christophe Prevotet,2

Yaset Oliva,2 Daniel Chillet,3 and Sébastien Pillement3

1 ETIS, CNRS-UMR8051, ENSEA, Université de Cergy-Pontoise, 6 avenue du Ponceau, 95000 Cergy-Pontoise, France
2 IETR INSA—UMR 6164 CNRS, CS 14315, 35043 Rennes, France
3 CAIRN—IRISA/ENSSAT, 6 rue de kerampont, 22300 Lannion, France

Correspondence should be addressed to Emmanuel Huck, emmanuel.huck@ensea.fr

Received 15 March 2009; Revised 19 October 2009; Accepted 20 December 2009

Recommended by Lionel Torres

This paper presents the OveRSoC project. The objective is to develop an exploration and validation methodology of embedded Real
Time Operating Systems (RTOSs) for Reconfigurable System-on-Chip-based platforms. Here, we describe the overall methodology
and the corresponding design environment. The method is based on abstract and modular SystemC models that allow to explore,
simulate, and validate the distribution of OS services on this kind of platform. The experimental results show that our components
accurately model the dynamic and deterministic behavior of both application and RTOS.

Copyright © 2009 Benoı̂t Miramond et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Nowadays, algorithmic complexity tends to increase in many
domains such as signal, image processing or control. In
parallel, embedded applications require a significant power
of calculation in order to satisfy real-time constraints. This
leads to the design of hardware architectures composed of
heterogeneous and optimized computation units operating
in parallel. Hardware components in SoC (System on Chip)
may exhibit programmable computation units, reconfig-
urable units, or even dedicated data-paths. In particular,
reconfigurable units, denoted here as Dynamically Reconfig-
urable Accelerators (DRA), allow an architecture to adapt to
various incoming tasks at runtime.

Due to their intrinsic complexities, such heterogeneous
architectures need even more complex management and
control. In this context, the utilization of an RTOS (Real
Time Operating System) is more and more required to
support services such as communications, memory manage-
ment, task scheduling, task placement, and so forth. These
services have to be fulfilled in real-time according to the
application constraints. Moreover, such an operating system

must provide a complete design framework independent of
the technology and of the hardware architecture. As for stan-
dard computers, the RTOS must also provide an abstraction
and a unified programming model of the heterogeneous
platforms. This abstraction permits to drastically reduce the
time to market by encouraging re-usability.

Embedded RTOS for SoCs are of great interest and
are subject of several significant studies. In the context of
reconfigurable architectures, a study in [1] has determined
and classified the different services that operating systems
should provide to handle reconfigurability. Today, two
different approaches have emerged for the development and
the integration of these dedicated services. The first consists
in utilizing an existing standard RTOS (RTAI, RTLinux,
VxWorks, etc.) and in adding functionalities dedicated to the
management of the reconfigurable resources [2]. The second
is to develop a specific RTOS from scratch by implementing
the necessary functionalities devoted to the management of
the reconfigurable resources [3, 4].

The design process of such complex and heterogeneous
reconfigurable systems requires method, rigor and tools.
The OveRSoC framework is developed to take into account

2 International Journal of Reconfigurable Computing

both the RTOS, and the platform to propose an efficient
exploration of the design space. The OverSoC methodology
is based on 4 important design concepts: exploration,
separation of concerns, incremental refinement and re-
usability.

Firstly, a number of design choices have to be done
prior any implementation, especially when the platform
itself is designed and tailored for a specific application. We
advocate the use of a high level model of Reconfigurable
SoCs (RSoC) in order to explore different critical design
choices. Among these important choices we distinguish two
exploration issues:

(i) the exploration of the application partitioning onto
the processing resources (topic already addressed in
the literature [5, 6]),

(ii) the exploration of the RTOS services distribution and
their algorithms.

Each design strategy belonging to these exploration levels
is manually made by the designer. But the proposed method
helps the designer to easily and quickly build the executable
specification of the corresponding systems. The underly-
ing tools then bring performance evaluations in order to
analyze and compare design strategies. The design choices
corresponding to the second exploration issue (RTOS) are
the architecture of the embedded RTOS (centralized or
distributed, OS services organization, software, or hardware
implementation, etc.), the services algorithms (scheduling
policies, etc.), the interactions between OS service functions
and underlying resources (reconfigurable, memories, inter-
connects) and the software programming model.

Secondly, once validated the candidate design solutions
are incrementally refined toward lower levels of abstrac-
tion down to the final implementation. The OveRSoC
methodology permits the separation of concerns during the
modeling and refinement process. It also defines modeling
rules that facilitate independence and re-usability between
components. For each design concern specific and related
refinement steps are proposed. The resulting methodology
serves as a design map for the designer of RSoC platforms.

Finally, the method imposes a functional approach
at each level of abstraction which allows the validation
of the application functionality besides the performance
evaluation.

As a consequence, in the rest of the paper the problem of
OS design is presented as a platform management problem.
This paper presents the OveRSoC methodology and the
related framework that consists of a set of SystemC models.
The associated graphical exploration environment is also
presented.

The remainder of the paper is as follows. Related work
is described in Section 2. Section 3 presents the OveRSoC
methodology and the corresponding tool for RTOS design.
The flexible SystemC abstract RTOS model which allows
RTOS service distribution and customization is presented
in Section 4. Section 5 describes the RSoC architecture
modeling step. Section 6 provides experimental results while
Section 7 brings out our conclusions and presents the
perspectives of this work.

2. Related Work

One of the main issues in reconfigurable platforms consists
in determining efficient control mechanisms that may have
dynamical properties in the sense that they must take on-line
decisions from unpredictable system properties [7]. Several
studies such as [3, 8] aimed at identifying the properties
of the RTOS that can take dynamic reconfiguration into
account. Specific properties such as application partitioning
and tasks placement are described and placed in the context
of reconfigurable computing which is often based on a farm
of reconfigurable circuits. In [8], authors present one of the
first attempts to develop an OS dedicated to the management
of reconfigurable resources.

For the particular SoC domain, the authors in [9] list
important properties to stress the usefulness of an OS to
manage heterogeneous and static resources.

Adding reconfigurable units in a chip brings up many
other issues from a design point of view. Introducing an OS
for the management of an RSoC is of high interest in the
research community [10]. Indeed, the partial reconfiguration
abilities of current architectures need to be fully exploited
in order to improve performance, cost, power-efficiency and
time-to-market. Even if classical software approaches can
be used, the OS then needs to be adapted to this new
computation paradigm. More precisely, specific services are
requested to manage the specific properties and resources of
the dynamically reconfigurable units.

Designing a complete RSoC including an RTOS is a very
complex task and requires appropriate methodologies. In
this section we firstly introduce constraints on a dedicated
RTOS for RSoC, we then discuss a proposal of methodologies
in order to design these circuits efficiently.

2.1. Dedicated OS Services. The required specific services for
RSoC can be roughly decomposed in four categories:

2.1.1. Spatiotemporal Scheduling. The task scheduling service
is obviously one of the most important features of a multi-
tasking OS. Scheduling of hardware tasks on reconfigurable
areas adds a spatial dimension to the classical temporal
problem [11]. This is defined as the spatiotemporal schedul-
ing problem. The mapping of hardware tasks onto the
reconfigurable unit can follow two spatial schemes according
to the technology [3]: 1D or 2D schemes. While the 1D
technique is simple to support, its performance in terms
of computation density is low. On the other side, the 2D
placement technique ensures a more efficient utilization of
the reconfigurable area, but the associated algorithms are
more complex.

2.1.2. Reconfiguration and Resource Usage Management. The
resource management is very close to the placement service
which needs to know the global state of the system. The
resource table needs to be extended to store specific infor-
mation necessary to manage the reconfiguration [2]. We can
cite for example the area information for each reconfigurable
task, the task communication needs which must be ensured

International Journal of Reconfigurable Computing 3

when the task is placed on the reconfigurable resource, the
form factor, and so forth. The area fragmentation problem
also appears when managing reconfigurable resources [12,
13]. This problem can prevent the placement of tasks while
there is enough area within the reconfigurable resource. In
this case, the designer can decide to implement a defrag-
mentation service into the OS to limit the task placement
rejection.

The reconfiguration latency of DRA represents a major
problem that must be taken into account. Several works can
be found addressing temporal partitioning for reconfigu-
ration latency minimization [14]. Moreover, configuration
prefetching techniques are used to minimize the reconfigura-
tion overhead [15]. A prefetch and replacement unit modifies
the schedule and significantly reduces the latency even for
highly dynamic tasks.

2.1.3. Task Preemption and Migration. hardware task migra-
tion is an interesting property that requires the imple-
mentation of the hardware task preemption service [16].
Efficient implementation of preemption and migration
requires several additional OS services, such as online
communications routing and spatial placement. To limit
the scheduling overhead and the number of configuration
phases, which can be very time consuming, some OS prevent
the preemption of hardware tasks. Non preemptive operating
systems are known to be more deterministic, but do not
take full advantage of platform flexibility. The conditions
allowing more complex hardware task preemptions are
defined in [17]. In this article, the authors describe three
types of requirements allowing to perform multitasking
on FPGA. First, save and restore mechanisms of current
state of all registers and internal memories are required.
Second, the configuration manager must obviously support
fast configuration and readback of the FPGA. It must also
have complete control over all the clock signals in order to
freeze execution during context switching. Finally, it requires
an open bitstream format in order to readback the status
information bits.

As an example, preemption of hardware tasks have been
studied in [18]. The authors present prospective architectural
extensions of SRAM-based FPGA devices allowing a very
fast and efficient context save and restoration. The proposed
architecture supports the hardware defragmentation.

2.1.4. Flexible Communications. This property deals with the
inter-task communication property of an OS and impacts the
routing service [19]. The communication functionality is an
important part of the system to ensure the data exchanges
between all tasks, whatever their type or localization. Con-
sidering the localization of the tasks, communications are
classically divided into two different types:

(i) the global communications: this communication
level enables data exchanges between the different
available resources (e.g., DSP, processors, reconfig-
urable units, etc.).

(ii) the local communications: this level ensures the data
routing between different tasks placed simultane-
ously into the same reconfigurable area.

The global communication structures have to support
flexible throughput and guaranteed bandwidth. In this case,
OS services must provide the capacities to manage these
structures. The requirements of the local communications
within the reconfigurable area are quite different. Tasks
implemented within this area are dedicated to intensive
computation and are generally constrained by real time
execution. In this case, communications do not support any
delay nor excessive latency.

2.2. RSoC Dedicated Methodologies. Several studies tend to
abstract the reconfiguration management by working at a
system-level model. This level enables the exploration of
systems while software, hardware or reconfigurable parts
are not completely defined. It also enables the validation of
various configurations to find the most efficient solution.

In order to introduce the reconfiguration in Symbad
[20] which is a system-level codesign platform for SoC, the
refinement phase has been modified to handle static and
reconfigurable modules [21]. Specific simulation parame-
ters, such as the reconfiguration time, are taken into account.
Associated tools enable the evaluation of the reconfigurable
contribution to the system performances. In [22], the
authors propose a methodology in order to implement an
application in an RSoC. This methodology is based on a
UML descriptive model of the software parts and on a
SystemC description of the architecture. Currently, these
works do not take the dynamicity of the reconfiguration into
account.

The collaborators of the Adriatic project propose an
original methodology that handles dynamic reconfiguration
[23]. The reconfigurable block is composed of a controller
that launches or stops reconfigurable tasks, and features an
input router that dispatches data among active blocks. Adri-
atic then proposes high level estimation of performances.
Different strategies and approaches of estimation, simulation
and partitioning are implemented in the Perfecto [24] and
ReChannel [25] frameworks. Unfortunately, none of these
works considers the development of an OS in order to
dynamically manage the RSoC.

New approaches tend to provide a high-level hardware
design model while managing the hardware implementa-
tion efficiently. This goal is achieved by a multi-languages
approach.

In [26], the authors develop a framework based on
the RTL language HIDE for implementation purpose, and
on Handel-C to describe hardware at a higher level of
abstraction. At present, the proposed framework does not
handle dynamically reconfigurable architectures.

The multi-languages strategy is also used in the European
Project Andres [27] which addresses heterogeneous systems.
It is built around the HetSC methodology for the specifica-
tion of the software part and the OSSS+R SystemC library for
the reconfigurable part. Andres also includes a part of analog
mixed design by supporting the SystemC AMS.

4 International Journal of Reconfigurable Computing

A special case of RTOS generation is the definition
of dedicated OS services for DRA. The work presented
in [28] addresses this problem by proposing a RTOS/SoC
codesign framework. The customized RTOS is automatically
generated from existing OS basic blocks which are available
in software and/or in hardware. The 4S project [29] provides
a design flow to develop RSoC platforms including an
OS. In this project, algorithms are implemented into tasks
which are mapped onto reconfigurable or non reconfigurable
modules. The proposed tool provides information about
the performances of each task for a given mapping. In
an exploration step, the OS manages the implementation
of tasks within reconfigurable units and generates flexible
communication mechanisms. At present, these projects do
not include the OS definition as part of the design process.

As a conclusion, adding reconfigurability in a platform
imposes the management of hardware tasks at run-time.
These tasks have to be placed into a reconfigurable unit in
a dynamic and flexible manner. To ensure this management,
some OS services need to be adapted (synchronization,
migration, etc.), but some other services are completely
new and need to be developed from scratch (spatiotemporal
scheduling, fragmentation management, etc.). In the litera-
ture, to the best of our knowledge, no work proposes a com-
plete solution, neither on real platforms nor in simulation,
for the DRA management. The main contribution of this
paper is to propose a unified modeling environment where
all the needed services can be specified, tested and validated
when distributed onto an heterogeneous multiprocessor
platform. In this paper we do not provide and describe new
spatiotemporal algorithms nor defragmentation methods
but an open platform for the exploration of these complex
algorithms where existing and upcoming methods for DRA
management may be evaluated and compared. The services
and the underlying platform are part of the exploration
process. This objective has been reached thanks to the
following contributions:

(i) a design methodology adapted to the exploration of
the RSoC specific services,

(ii) a tool implementing this methodology,

(iii) a set of generic simulation models of MPSoC (Multi
Processors System-on-Chip) components,

(iv) a high-level model of a DRA,

(v) a top-down refinement process.

3. The OveRSoC Methodology

In this section, we describe the methodology which is devel-
oped in the OveRSoC project and the tool that implements
it. Our main goal is to provide a simulation framework for
hardware/software design exploration of an RSoC including
a dedicated RTOS. The framework is based on four main
concepts: a methodology based on several design and analysis
steps, the automation of simulation code generation from
a library of basic blocks, the separation of concerns and
the capability to simulate heterogeneous abstraction levels
during the modeling process.

3.1. Platform Exploration Flow. The global methodology
focuses on the original concepts addressed by OveRSoC,
that is, the exploration of a distributed control of dynamic
reconfiguration. In this way the methodology aims to explore
the appropriate OS services that will be necessary to manage
the RSoC platform. It relies on an iterative approach based
on the refinement concepts as depicted in Figure 1.

The input of the exploration flow consists in specifying
both the application and the system constraints. The RSoC
platform model requires parametrization. The application is
described as a set of tasks implemented whether in hardware
or software. Their communications and synchronizations are
also described as a graph of connections and dependencies.
These dependencies can represent either pure data streams
or synchronization mechanisms. Since version 2.0, SystemC
supports a very powerful generic model of computation [30]
but at the present time we only consider Communicating
Sequential Process, Data-flow, and Kahn Process Networks
[31]. These models satisfy the set of properties of the digital
and signal processing domains that we address in this work.
As imposed by the methodology, the functional behavior of
each task must be defined as a pure C specification whether
the tasks are executed in software or in hardware. During the
early modeling steps, we use a common specification for the
software or hardware implementation of a task. But for all
the tasks, information about the execution time, periodicity,
deadline are taken into account and considered as imple-
mentation specific attributes. This type of information may
be either first estimated and refined afterwards or directly
obtained by other tools that are capable of delivering accurate
timing in the case of reused software or hardware IPs.

The basic RSoC platform considered is composed by
three main types of components: the OS that manages
the entire structure, the Processing Elements (PEs): the
processors and the DRA, and the Communication Elements
(CEs) composed of a communication media and a memory
hierarchy. The OS may be distributed on the PEs of the
RSoC platform (at least one processor and one DRA). The
framework provides a set of models stored into the system
library for each type of component. The library can be
extended by adding new models to take into account new
architectures. All the components feature their own list of
design attributes. These attributes are used to customize
each block within the RSoC platform. For example, the
scheduler algorithm of a specific instance constitutes an
attribute for an operating system, the latency of a specific task
corresponds to an attribute for the application, the numbers
and types of available resources within the reconfigurable
area constitute one of the attributes that describe the
DRA.

Once the platform architecture is defined and cus-
tomized, the central work for the designer is to specify the
different services that are required by the operating system
in order to manage the global platform. Some services are
available in a service library, but it is also possible to create
new ones by specifying their behavior.

The validation of the design is based on the notion of
metrics. Metrics are component specific measurements that
can be reported to the designer during the simulation. They

International Journal of Reconfigurable Computing 5

Distributed RTOS

DOGME tool

Application
System

constraints
OveRSoc

methodology

RsoC & RTOS
modeling

uP

IO DRA

Interconnect

Simulation

Validation

Library

Services

PE

CE

Do not fit constraints

Exploration

Design steps
& refinement

Step 1

Step 2

Step 3

Step 4

Application

+ architecture

+ RTOS

+ refinement

Virtual nodes
Annotated nodes

CA nodes
RTL nodes

Final
application
description

Final
architecture
description

Final
RTOS

description

Mapping
rules

Performance
report

Memory
hierarchy

Figure 1: The OveRSoC exploration and refinement flow. Exploration is defined as an iterative process: modeling, simulation/validation
and exploration. The inputs of the method are the specification of the application as a pure functional C code, and the system constraints.
Once the system validated, the design process starts again at a lower level of abstraction until the final system description. At each level of
abstraction, the goal of the exploration depends on the separation of concerns paradigm (Section 3.2). This paradigm is defined as a 4 steps
process where the following concerns are successively addressed: application specification, architecture description, RTOS definition and
platform refinement.

help the designer to verify the system constraints such as the
PE workload, the communication congestion and so forth.

Examples of metrics that are already provided by the
library components concern the tasks sequencing, the num-
ber of preemptions, the usage of resources and all events that
may occur during the execution (semaphore’s pend and post,
etc.).

In particular, these metrics help to check the respect of
the timing constraints. Obviously, the functional behavior of
the application can still be validated by the designer. Once
the attributes are completely defined, the whole platform is
simulated in SystemC and metrics are evaluated. The analysis
step is then manually performed by the designer in order
to analyse the results of the simulation and to estimate the
impact of specific attributes on the overall performances. The

designer may then modify the value of some attributes and
iterate the global simulation of the platform to explore the
design space.

For the validation of the design choices, both the appli-
cation (functionality) and the underlying RSoC platform
(concurrency and timing) are simulated at high level in order
to substantially decrease the simulation time of the whole
platform. The exploration flow is conceived in a hierarchical
way, according to the refinement concepts, and allows
the designer to refine progressively his description of the
platform to get more and more detailed results. We identified
4 refinement levels described in Section 3.3. At the highest
level, we only consider the duration of tasks and RTOS calls,
but not the memory nor the communication time. Then
new attributes and metrics may appear as the description

6 International Journal of Reconfigurable Computing

Modeling layer Concern

Application

F1
F2

F3
F4

Concurrency
API

Architecture

Proc Proc
DRA

accelerator

Communication media

Memory hierarchy I/Os

Application
functionality

Concurrency
management

RTOS architecture

Platform architecture

Performance evaluation

Figure 2: Our modeling approach follows the separation of con-
cerns paradigm. The Application layer is a set of pure C functions
and focuses on the functional specification of the algorithms. The
Concurrency layer is a set of RTOS services and focuses on the
distribution of these services. This layer also brings concurrency
between threads according to the type of the associated PE. The
Architecture layer is a set of parametrizable PEs, CEs and memories
and represents the embedded platform. This layer also brings
accurate timing evaluations.

becomes more accurate. For example, communications that
are not taken into account in a coarse level of description
may be accurately described to get more realistic values of
the execution latency. New metrics like deadlocks on an
interconnection network may also appear and provide the
designer with new information about the global functioning
of the platform.

3.2. Separation of Concerns. One of the main challenges of
the proposed method is to keep the RTOS model as abstract
as possible for exploration reasons while providing accuracy
of performance estimation. The RTOS is maintained at a
high level of description in order to easily add, remove,
and deploy services without impacting the binary code of
the cross-compiled application. The application is compiled
once and the designer cannot only modify and refine the
implementation of the RTOS services, but also scale the
number of processors and DRA in the platform. As a result,
the modeling space is separated into three independent
layers depicted in Figure 2 according to the principle of the
separation of concerns [32].

The top layer focuses on the functional specification of
the application. This is described as a pure functional C code
partitioned in C functions.

Then, some of these functions are associated with the
notion of task in the following layer. Functional code calls
RTOS services through a standard API (Application Pro-
gramming Interface) as explained in Section 4. Communica-
tions between tasks depend on the synchronization services

provided by the RTOS, for example, mutex, semaphores,
fifos, mailboxes, and so forth.

In the next step, the OS layer deals with the concurrency
between explicitly defined software processes. To reach this
goal, we have developed a flexible SystemC model of a RTOS
which is described in Section 4. Concurrent tasks are created
thanks to specific services within the RTOS API. Multiple
scheduling algorithms can be tested at this level according
to the application constraints and possible task mapping
to the underlying architecture without modification of the
functional layer. In this layer, the designer can also explore
the architecture of services into the distributed RTOS.

Finally, at the Architecture layer, the architecture of
the embedded system is specified as a composition of
heterogeneous processing elements (PEs) and communica-
tion elements (CEs). Each PE and CE may be modeled at
different levels of abstraction and a refinement process can
be performed without impacting the other modeling layers.
Precisely, an ISS (Instruction Set Simulator) of a general-
purpose processor executing a sequence of instructions
is a refined model for an abstract function block. The
independence of the hardware layer is ensured by a low
level API, the Hardware Abstraction Layer (HAL) that
always provides the same low-level services but with more
or less accuracy as described in Section 3.3. This layer is
also responsible for metrics’ evaluation: execution time,
processor utilization, memory usage, and so forth. Adopting
such a modeling approach allows to reach the presented
objective, that is, to explore the RTOS implementation at a
high level while providing accurate performance evaluation
of the entire system. According to the RTOS timer frequency,
we observed on our application (see Section 6) that the
execution time of the RTOS services represents ≈3 percent
of the total application execution time. This observation
corresponds to the results presented by Kohout et al. in [33].
Authors characterized the RTOS overhead according to the
processing power used by the applications. The measured
overhead grows from 2% to 9% for a preemptive RTOS and
from 0.6% to 1.25% for a RTOS using a nonpreemptive
strategy. But this is only for a monoprocessor system. In
our case, when deploying an application on a MP-R-SoC,
scheduling strategies and communication will completely
change the system behavior and the waiting state durations.
To deal with the OS overhead, we propose to keep the OS
services at high level to ease exploration of its distribution
or implementation. This observation is consistent with our
approach that will provide accurate performance estimation
on the Application layer which thus represents at least 90%
of the total execution time.

3.3. HAL Transactor and System Refinement. Independence
between modeling layers is ensured by a set of constant and
standard services provided to the upside neighbor layer:

(i) independence between the Application layer and the
Concurrency layer is ensured by the OS API,

(ii) independence between the Concurrency layer and the
Architecture layer is ensured by the HAL API.

International Journal of Reconfigurable Computing 7

Table 1: Example of services provided by the OS and HAL API.

Service component OS API

Task management void OScreateTask(code pointer t f,

intu8 priority);

void OSdeleteTask(int task id);

. . .

Semaphore sem desc OScreateSem(sem state init);

management void OSreleaseSem(int sem id);

. . .

Timer management void OS time delayHMSM(

int h,int m, int s, int ms)

. . .

. . .

Architecture component HAL API

PE void compute(task t∗ t);

save context(task t∗ t);

restore context(task t∗ t);

timer set(int nbms);

timer set irq handler(

code irq handler t f);

timer start();

timer stop();

CE oversoc t rsp t transport(

oversoc t req t ∗REQ);

The set of services provided by the OS depends on the
chosen services. An example of service functions provided
by the OS and HAL API is presented in Table 1. PEs and CEs
provide to the OS components execution and transaction
services similar to those presented in [34]. The call to the
HAL services remains constant during all the refinement
process but their implementation depends on the accuracy of
the underlying layer. So both the OS and the HAL API allow
to explore and refine lower layers while keeping higher layers
unchanged.

Indeed PEs can represent abstract processing compo-
nents when modeled at high level. They can also repre-
sent cycle-accurate processor, FPGA, or dedicated hardware
models when described at lower levels. When the embedded
application is partitioned and assigned to a PE, the PE mainly
provides a compute() and transport() pseudo service to the
RTOS, allowing a timed simulation for the computation
and the communication. It also provides a service to trigger
interrupts as components of the corresponding RTOS HAL.

The simulation accuracy then depends on the description
of the internal architecture of the PE. We identify and
advocate 4 refinement levels depicted in Figure 3.

(i) Virtual nodes: the PEs are used as empty boxes and
the simulation is not timed. It corresponds to the
Programmer View of the TLM approach [35], that
is, a pure functional verification at high simulation
speed.

(ii) Annotated nodes: the PEs are described as simple
tables containing predicted execution times. The tim-
ings correspond to a back annotation of the execution
time of each application basic block (Programmer
View plus Time [35]) but without any modification
of the application source code.

(iii) Cycle accurate nodes: at an intermediate level, soft-
ware PEs are classically modeled as ISS (cycle-
accurate) as explained in Section 5.2. In Section 5
we describe an equivalent model for the hardware
PE (the DRA). From this refinement level, the HAL
is implemented as a transactor, that is, a modeling
artifact that translates transactional calls to RTL
signals activations.

(iv) RTL nodes: at the lower abstraction level, a PE
can still be described as an RTL model providing
cycle-accurate timing evaluations and bit-accurate
informations.

In a more general manner, thanks to the SystemC
blocking calls mechanism, the Architecture layer interacts
with the simulation core (SystemC) to advance the simu-
lation time of the caller process according to the executed
task. As for the synchronization and the preemption of
the SystemC processes, it is ensured by the upper level
which manages notification and waiting of SystemC events
as described in [37]. In the case of MPSoC platforms,
synchronization between processors is ensured by inter-
ruptions and by a hardware shared semaphore model.
But whatever the chosen abstraction level of the Archi-
tecture layer, the Concurrency layer (i.e., the OS services)
remains at the same abstraction level. This level is called
SAT (Service Accurate plus Time) and is described in
Section 4.

3.4. The DOGME Tool. Due to the complexity of the
exploration process, the HW/SW designer needs tools to
apply the OveRSoC methodology. The DOGME (Distributed
Operating system Graphical Modeling Environment) soft-
ware provides an integrated graphical environment to model,
simulate, and validate the distribution of OS services on
RSoC. The goal of the tool is to ease the use of the
exploration methodology and to generate automatically a
complete executable model of the RSoC platform (hardware
and software). The automation is based on a flexible
SystemC model of RTOS described in Section 4. This RTOS
model is a package of modular services. To develop each
service, an Object Oriented Approach has been adopted
and implemented using the SystemC 2.2 library. This
tool allows an application specific RTOS to be built by
assembling generic and custom OS service basic blocks
using a graphical editor [38]. The application is linked
to the resulting OS thanks to a standard POSIX API.
Finally, the entire platform is simulated using the SystemC
kernel.

8 International Journal of Reconfigurable Computing

The developed tool follows five main design steps repre-
sented in Figure 4.

(i) Design of the platform: the design phase consists
in choosing and instantiating toolbox components
into the graphical workspace editor in order to
assemble the OS services and distribute them onto
the RSoC processing elements. Figure 5 shows an
example of RTOS composition including services
like task management, scheduling, semaphore, IRQ
controller. . . At this step the designer will succes-
sively, and according to the separation of concerns
paradigm, take decisions about

(i) functions mapping into threads,

(ii) hardware/software partitioning,

(iii) instantiation of the required services,

(iv) distribution of the services onto the PEs.

(ii) SystemC source code generation: after interconnecting
all components and verifying the bindings between
services, the structural source code of all the objects
that are instantiated into the platform is automati-
cally generated.

(iii) Compilation and simulation of the platform: to com-
plete the design of the platform, the parametrized
structural SystemC description is combined with the
behavioral source code of the components provided
by the user. The global SystemC description is
compiled and simulated.

(iv) Analysis of the simulation results: graphical diagrams
are produced to visualize the evolution of the system
metrics during the simulated time. This step helps the
designer to evaluate the current design quality. It acts
as a decision guide for the exploration of the design
solution space.

We are currently implementing the DOGME tool as
a stand-alone application based on an Eclipse Rich Client
Platform [39]. Typical project management functions like
importation of platforms or components into the standard
library are supported as well as the creation of new platform
models. Reusability is achieved in the tool by the possibility
to add the newly created platform to the standard library. All
data manipulated by DOGME are loaded and stored using
a proprietary XML format dedicated to embedded software
modeling as depicted in Figure 4.

4. Distributed RTOS Model

This section presents the essential mechanisms needed to
jointly model and simulate hardware/software tasks and the
RTOS in SystemC.

4.1. A RSoC Model Based on RTOS Services. In order to
model complex embedded platforms composed of multiple
parallel and heterogeneous (and reconfigurable) resources,
it is important to be able to jointly model the functional

OS API OS API

HAL PE
HAL CE

CAS

Virtual nodes
PE0 PE1

OS API OS API

uP

1 1
2
3
4
5
6

DRA

HAL CE

CAS
Annotated nodes

Execution time
Task

OS API OS API

uP Memory DRA

CA/RTL nodes

OCP bus

Figure 3: Example of refinement of the minimal RSoC platform.
The first level begins after hw/sw partitioning of the application
and corresponds to virtual nodes. The second level refines PEs
to annotated nodes. At this level, each task has an estimated
execution time. The CE is modeled as a transactional bus called
CAS (Calling Abstraction Service). The two last levels correspond
to Cycle Accurate or RTL nodes. The global CE has been refined to
an OCP bus [36]. The memory accesses are now taken into account
accurately, that is, all the communications can be evaluated at the
lower level.

software, the underlying hardware and the glue between,
which is generally composed of RTOS instances.

In the step 3 of the design process (see Figure 1), to
explore the design solution space, we choose to model the
system at a high level of abstraction, where the hardware
is partially hidden. We focus our modeling process on the
services provided by the platform.

At the Concurrency layer (see Figure 2), we address
the SAT level of abstraction: Service Accurate plus Time.
This allows us to very quickly simulate the behavior of the
application, compared to lower detailed levels of abstraction.
This level of concern is different from the Donlin’s CP+T

International Journal of Reconfigurable Computing 9

T1 T2 T3

API API

Task
manager Scheduler

Mutex Core OS

XML
library

Iterate over
the design flow

If the results
quality is low

High
quality
results

R
efi

n
em

en
t

Application

Sy
st

em
C

SystemC/TLM
library

Metrics analysis

Figure 4: The DOGME tool brings facilities to manipulate the
components of the library. These components model RTOS services
for the control of an RSoC platform. In the library the services
are described both by a SystemC generic source code and an XML
exchange file. The designer graphically instantiates the components,
then the tool automatically adds debug components for metric
evaluation into the specification and generates the code of the
corresponding platform. The platform is compiled and linked with
the SystemC libraries and simulated thanks to graphical interfaces.
The designer can finally evaluate the metrics of his platform and can
take decisions about exploration or refinement.

(Communicating Processes with Time) level [35] which
mainly focuses on hardware modeling but which does not
include the RTOS services. This level of modeling implies
that the architecture is not modeled explicitly, all the appli-
cation tasks are functional, annotated with approximated or
measured execution timing, and all the RTOS services are
explicit and timed.

The core element of our distributed architecture model
is a high-level functional model of a RTOS written in
SystemC. Since SystemC does not support OS modeling
facilities in its actual version, a first step was then to extend
SystemC with embedded software modeling features [37].
The works presented in [40–43] are examples of simulation
environments dealing with this challenge.

The proposed RTOS model [37] acts as a Service Accurate
+ Time model of a virtual PE (processor or DRA) in the
sense that all the necessary services of an embedded RTOS are
modeled as independent modules with their own behavior
and timing. The RTOS model is built as a collection of
service modules implemented in the form of a hierarchical

sc modules to foster high level exploration of custom
architectures. The main RTOS model instantiates all its
modules and uses sc export to provide a global API to
the application code as illustrated in Figure 6. Each service
module has its own interface that furnishes the corresponding
services’ functions to the embedded application. This model
includes mechanisms for modeling dynamic creation of
tasks, task preemption and interrupt handling as described
in [37]. Figure 6 illustrates the hierarchical structure of the
SystemC RTOS model composed of the following service
modules:

(i) a task manager that keeps the information and
properties of each task according to its implementa-
tion (software or hardware): state, context, priority,
timings, area, used software or hardware resources . . .

(ii) a scheduler that implements a specific algorithm:
EDF [7], HPF [7], horizon [44], . . .

(iii) a synchronization service using semaphores.

(iv) a time management service that keeps track of time,
timeouts, periods, deadlines . . .

(v) an interrupt manager that makes the system reactive
to external or internal events.

(vi) a specific simulation service (advance time).

Each service module is modeled as a SystemC hierarchi-
cal sc channel and is symbolized in the figure using the
SystemC representation [30]. A service module thus provides
several service functions through its interface.

For example, the task manager provides the following
functions: create (dynamically) a task, delete a task, get
the state of a task, change the state of a task. . . The task
creation function associates a simulation process (and thus
concurrency) to one of the pure C function present at the
Application layer.

Some service functions are accessible from the Appli-
cation layer through the OS API. Those are called external
service functions. Others are only accessible from the other
service modules through a SystemC port to establish inter-
module communications and are called internal service
functions.

At this layer, timed simulations of the application use
a specific simulation call (called OS WAIT()), associated
to each bloc of task code between two system-calls and
redirected through the Concurrency layer toward the Archi-
tecture layer. This service, represented in Figure 6, allows
each function to progress in time. In addition, each OS
service function within the OS itself may also be annotated
with timing information (depending on the processor)
allowing a timed simulation of a realistic system.

Actually the system library provides a set of basic generic
services: interrupt management, timer management, inter-
tasks synchronization, and memory management. It also
provides hardware and software specific services such as the
task management of software or hardware tasks, software
scheduling policies and hardware placement algorithms.

10 International Journal of Reconfigurable Computing

Figure 5: The DOGME tool represents a distributed RTOS through hierarchical views: the Component Graphical Editor, where the services
are organized inside each PE, and the Platform Graphical Editor, where the groups of services are composed according to the number and
type of PEs into the RSoC platform. Here the Component Graphical Editor is shown. It uses toolbox components to specify and customize the
services of a dedicated group. Each service is modeled as a software (C++) component having ports and interfaces. Each service component
provides several service functions.

T1 T2 Tn ITn

API Synchro Timer Task IRQ Simu

Semaphore

Timer

Task
manager IRQ

manager

Scheduler
Other

os wait

SystemC terminology

Port

Interface

sc module

sc channel

sc export (of interface)

Primitive canal/connection

ITn
Interrupt

Tn
Task

Figure 6: The modular RTOS model and its composed API. Each
OS service exports its own interface to the application. Services are
connected together to ensure the global OS coherency and behavior.

4.2. Distant Communications and Services Requests. We
extend the model for distributed multiprocessor architec-
tures exploration with the following features: the whole
application is decomposed into multiple threads sharing

the same addressable memory, the application is statically
partitioned onto multiple processing nodes, each processor
has its own scheduling strategy (policy, priorities, etc). All
inter-processor communications are modeled using trans-
actions with respect to TLM 1.0 methodology. A unique
transport method is used for both requests and replies. All
communications are currently performed instantaneously
but this allows a communication refinement process and
thus a time accurate simulation by introducing bus-related
or network-related timings into transactional ports.

Our approach for modeling distributed OS services is
inspired from the middleware philosophy which consists in
using proxies and skeletons services. A proxy service provides
a local entry point to a distant service accessible through
an interconnection infrastructure. This adds dedicated ports
and interfaces to the RTOS (and also on services modules
needing to communicate).

Figure 7 illustrates transactions between two local
semaphore services (proxies) and a shared distant semaphore
implementation (skeleton). Get and release semaphore
invocations are performed locally to the proxy which for-
wards transactions to the distant service. By using a simple
transport method, all distant calls put the caller tasks into
an active waiting state. In case of access conflicts, the shared
service has its own arbitration policy. Then, replies are sent
back to the caller at the end of the service execution.

Communication from a distant service to local proxies
are performed by using signals which are similar to interrupt
requests that are managed by local proxies. Suspended tasks
may then be resumed by their own schedulers depending on
local policies.

International Journal of Reconfigurable Computing 11

Task 1

Semaphore
proxy

Semaphore
skeleton

Semaphore
proxy Task 2 Scheduler

Release
semaphore

Distant release

ACK

ACK

IRQ

NACK

Distant get

Get
semaphore

Change state

Premption

Resume

Notify

Processor 1 HW semaphore Processor 2

Figure 7: Activity diagram of local/distant calls to a shared semaphore proxy/skeleton between two OS models.

Based on this distant service invocation, we can easily
imagine and construct a model of a shared distant syn-
chronization service (potentially implemented in hardware),
like a semaphore. Then it allows to quickly map the
application onto a multiprocessor platform and evaluate
the potential acceleration that distribution of computations
could potentially allow, as shown on Figure 8.

Based on this mechanism, we can design a new RTOS
with dedicated services for a DRA. We can then explore
and evaluate their behavior, as shown in Figure 9, and
try different scheduling policies specific to hardware IP
placement on the DRA.

As illustrated in Figure 9, we propose a set of high-level
models for the preceding specific services. We are able to
create, schedule, preempt, and delete hardware tasks onto
a distant DRA. All these tasks execute and communicate
with the other local or distant tasks indifferently. At this first
level, the specific properties of the hardware implementation
remain abstract and the scheduler only considers the current
free area to take scheduling decisions. At lower levels of
abstraction, the services implementation directly depends on
the properties provided by the DRA model in the hardware
modeling layer as described in the next section.

5. Abstract Models of
the Reconfigurable Platform

During the refinement steps of the methodology, we need
to refine some elements of the design, as the Dynamically
Reconfigurable Area, and the processors for software tasks.
This implies to integrate more detailed elements as ISS for
processors and also a detailed DRA model referred as a
CSS (Configuration Set Simulator). These refined models

allow to automatically annotate software and hardware tasks
timing and to analyze more accurately their behavior during
execution.

5.1. Reconfigurable Architectures Modeling. Reconfigurable
modeling is a well known issue and has been addressed for
example by Becker in [45] for 1D partial regions.

In the OveRSoC project, the DRA model is composed of
both an active and a reactive component. Active component
models the hardware physical architecture. It encapsulates
the constraints of the physical circuits. It corresponds to the
internal organization of the DRA and ensures the execution
of hardware tasks. The Reactive component models the
dynamic behavior of the architecture. It represents the API
of the DRA which provides several OS services and attributes
through a fixed logical interface. In the OveRSoC project this
component constitutes the interface between the external OS
model and the DRA model.

These two components represent the reconfigurable
hardware unit and must support the exploration strategy
and the refinement of all manipulated objects. To ensure the
exploration process of OveRSoC and keep complexity under
control, the DRA is defined through a multilevel model.

Both active and reactive components are tightly coupled
and the refinement of each impacts the other. The explo-
ration process of the active and reactive parts of the DRA is
constrained by the level of description of each component.

Three levels of abstraction for each component are
proposed (see Figure 10). The refinement process applied to
the DRA consists in successively defining the three proposed
levels and their properties.

In the model, the level 1 corresponds to an annotated
node (Section 3.3). The different components are modeled

12 International Journal of Reconfigurable Computing

Timer
Task

manager

IRQ
manager

Scheduler

Proxy Basic
OS

Timer
Task

manager

IRQ
manager

Scheduler

Proxy Basic
OS

Timer
Task

manager

IRQ
manager

Scheduler

Skeleton

TLM bus

Proxy Basic
OS

Timer
Task

manager

IRQ
manager

Scheduler

Proxy Basic
OS

T1 T2 Tn
ITn T1 T2 Tn

ITn T1 T2 Tn ITn T1 T2 Tn ITn

1 · · ·n

Figure 8: Model of MPSoC RTOSes with a hardware shared semaphore service. Each RTOS has a local Proxy service which forwards a
(semaphore) request to an external device (the skeleton) that processes the real service, as a RPC (Remote Procedure Call), except the skeleton
services could be refined in hardware.

OS and tasks on a processor

T1 T2 Tn ITn

Timer

Task
manager IRQ

manager

Scheduler

Sem. proxy
OS

Reconf. zone
manager

OS and IPs on a DRA
(dynamicaly reconfiguranle area)

DRA OS

IPn IPn IPn

Timer

Sem. proxy
Loader placer

1 · · ·n

Sem. skeleton

Service to explore

Shared semaphore
(external, hardware)

Figure 9: Model of RSoC specific OS: one standard customized with a DRA manager, one specific into the DRA, and another one specific
for a refined shared semaphore service alone as an external device.

through a small number of parameters and permit a fast and
coarse evaluation of methods and performances. The active
component is considered as an homogeneous unconstrained
rectangular area with a reconfiguration memory. The only
parameter which is required to execute the tasks in the
DRA is the task’s area. At this level, the resources of the
DRA are considered as unconstrained, that is, no bandwidth
limitation, no latency, no area constraints, and so forth.
In terms of performance, the designer evaluates the global
area required in the active components, as well as the
reconfiguration overhead introduced by its task management
services.

The second level refines the active components defined as
a rectangle which contains a set of heterogeneous resources

such as memory, abstract running blocks and interconnect
resources with limited bandwidth. The task heterogeneity
is present at this level and a minimal placement service
is required. At this level, the reactive component uses the
structural information of the active component to verify the
constraints of tasks. The corresponding definition of tasks
must be completed by parameters, such as the rectangular
size, the form factor of the area and so forth.

The level 3 is the most accurate level of description and all
the elementary blocks of the active components are described.
They are defined as an array of LUT (Look Up Table) with
glue logic for arithmetic computation and the corresponding
sequential elements, a set of memory allocated throughout
the array, columns of hardwired blocks and eventually

International Journal of Reconfigurable Computing 13

Level 1

Level 2

Level 3

Re-active components Active components

Task 1
-Nb CLB
-Nb LUT
-Mem size
-· · ·

T1.width ≤ Rbi.width
&&
T1.height ≤ Rbi.height

T1.nb Clb ≤ Rbi.Clb
&&
T1.nb Lut ≤ Rbi.nb Lut

CLB1CLB2 RB2

RB1

Task 1
-width
-height

Task 1
-x au

semGive()

Creat task (Ti)
T1.x ≤ DRA.x

Delete task (Ti)

semGive()

Creat task (Ti)

Delete task (Ti)

semGive()

Creat task (Ti)

Delete task (Ti)

DRA

Tj RB2

RB1 Tk

Figure 10: Hierarchical model of the active and reactive compo-
nents of the DRA. The different levels permit to represents the DRA
with more or less details. Refinement process leads to the complete
definition of the internal architecture of the DRA. Belonging
to the refinement of architectural aspects (active component),
the supported services can be developed and evaluated (reactive
component).

hardware core processors like PowerPCs in last Xilinx’s
technology. The corresponding reactive component must
implement all the services described in Section 2. These
services take both the application constraints and the precise
circuit organization into account.

From this model, the DRA management can be explored
through the implementation of distributed OS services.

For example, we present a particular implementation of
the createTask OS service in Figure 11. In this example, a
placer and a loader service are also implemented in the DRA.
The first sequence of Figure 11 shows the hardware task
creation call, createTask(T3h). This OS call is performed
by the software task T1 and is handled by a processor
OS service. Since the task to create must be executed
onto the DRA, the OS service call is passed to the DRA
through the interface, createHWTask(T3h). This interface,
implemented by the reactive component, calls the DRA OS
service of task creation. Before loading the task, the DRA
must verify if this new task can be loaded and placed in
the reconfigurable area. To do that, the hardware OS calls
the placer service, isLoadable(T3h). At this step, the
verification depends on the level of DRA description. For
example, at level one, the placer checks if the available area

is sufficient for this new task. In this case, we can model this
verification as

Nt∑

i=1

Ai + Anewtask ≤ totalArea, (1)

whereAi is the necessary area for the task i,Anewtask is the area
of the new task to instantiate onto the DRA, Nt represents
the number of tasks already instantiated within the DRA, and
totalArea the total DRA area.

In the first part of this diagram, we illustrated
the case where the placement of a new task is pos-
sible. In this case, the placer calls the loader service,
loadTask(T3h). The loader ensures the loading of the
task bitstream, loadBistream(T3h), and finally starts the
task, start(T3h). This sequence can be modified in order
to evaluate potential overhead of different implementation
solutions.

In the second part of this sequence the CreateTask OS call
is performed by the software task T2, createTask(T4h).
The beginning of the sequence is the same as the first
sequence presented above, but in this case, we consider that
the placement of the new task into the DRA is not possible,
ie. the return value for the isLoadable(T4h) function is No
OK due to unavailable area. In this case, the task execution
is refused by the DRA, and an error signal is returned. To
finish this example, we suppose that a software version of task
T4h exists and the system decides to switch to the software
version, create(T4s), and to schedule it immediately.

5.2. Processor Modeling. In this work, we use ISS for soft-
ware simulation. As a proof of concept of our embedded
software modeling approach, we developed a SystemC ISS
corresponding to the ATMEL AVR Instruction Set Archi-
tecture. Targeting either hardcore processors or ISS follows
the same compilation flow. We can thus reuse standard
compilation tools. The binary code must then be loaded into
SystemC memory models by external modules (bootstrap).
The ISS communicates with memory through standard
hierarchical channels. At this level of the model framework,
communications can be refined towards Register Transfer
Level. The ISS fetches instructions and simulates opcode
execution. We implemented two modes of operation for the
ISS: accurate and fast mode. When functioning in its main
(accurate) mode the ISS classically extracts, executes 16-
bits opcodes and increments the program counter. Once a
basic block, has been executed, the ISS keeps track of the
simulated execution time into specific tables to minimize the
simulation overhead. Each basic block is thus associated with
a block ID which corresponds either to an entire software
task code or to instruction blocks within the task code.
The ISS can also be interrupted and can thus model task
preemption at a very fine level. In fast mode, preemption
is also possible but at a coarser level since simulated time
advances with a basic block precision. Interrupts can not
occur before the end of the single SystemC wait time
parameter. Once interrupted, the remaining time is saved in
tables and reused when the basic block is started again.

14 International Journal of Reconfigurable Computing

Task
T1

Task
T2

Application
software tasks

Application
hardware tasks

OS services
on processor

DRA
interface

OS services
on DRA

Task
T4s

CreateTask

Start(T1)

Start(T3h)

Start(T2)

Start(T4s)

Restart(T2)

CreateTask(T3h)

CreateTask(T3h)

CreateTask(T4h)

Create(T4s)

Stop(T2)

Schedule

Reschedule

Reschedule

Reschedule

Error

CreateHWTask(T3h)

CreateHWTask(T4h)
CreateTask(T4h)

isLoadable(T4h)

isLoadable(T3h)

LoadTask(T3h)
LoadingBitstream(T3h)

HWTaskFinished
TaskFinished

No OK
No OK

OK

Reactive components
CreateTask

Active components
Task
T3h

Task
T4h

Placer Loader

Area or form or · · ·
verification

Area or form or · · ·
verification

Figure 11: Sequence diagram of the CreateTask service implementation. After a Create task system call a sequence of system call depends on
the services implemented on the DRA. Here we can evaluate and develop the loader and the placer services of the DRA dedicated RTOS.

Since components within each layer can be described
at different levels of abstraction, the challenge is therefore
to synchronize the functional and timed simulation across
the layers. This is particularly difficult for the software
models that exist at three different layers simultaneously:
the draft application specification is modeled as C func-
tions in the Application layer, RTOS services as SystemC
transactions in the Concurrency layer, and advanced version
software as instruction-accurate (compiled) descriptions in
the Architecture layer. Thanks to the adopted separation of
concerns approach, functional (Application layer) and timed
(Architecture layer) aspects can be separated. Functional and
timed aspects are thus limited to the corresponding layers.
Consequently, a cycle-accurate software description has its
high-level functional equivalent inside the top layer. Here,
the duplication of the application description follows and
reinforces the separation of concerns. It eases embedded
software design by allowing software IP reuse, simulation
of code portions with heterogeneous development levels,
and RTOS services exploration. Furthermore, the method
can be equally applied to hardware implementation of
the application tasks since the Application layer makes no

assumption about the hardware/software partitioning. This
co-existence of the task description and its implementation
version is referred as a Simulation Couple (SC) in our
framework. Thus coherent execution of the SC only depends
on a common definition of synchronization points. Those
correspond to the RTOS system calls present both in the
high-level code and in the binary code. So the granularity
of the Basic Blocks (BB) for the ISS is defined as the
sequences of instructions between two system calls. Each task
is associated a SystemC process and a synchronization event
managed by the RTOS model and shared by all the BB of the
task.

As depicted in Figure 12 the scheduler launches the
highest priority ready task by notifying its synchronization
event. The corresponding process is activated and its func-
tional code executes in the top layer in zero simulation
time till encountering a call to the RTOS API. The RTOS
service first uses the HAL API and delegates the execution
time evaluation of this BB to the PE. Without interrupt,
the PE estimates the duration of the BB and advances the
simulation time. If an interrupt occurs in the middle of a
BB, the ISS stops at the corresponding date and saves task

International Journal of Reconfigurable Computing 15

Functional
results

void task code(){
int n = OS fifo pend();
int BB = fib(n) + fib(n− 1)
OS mutex pend(shared var mutex);
shared var = BB;

OS mutex post(shared var mutex);

}

void OS mutex pend(OS EVENT mutex){
HAL.compute(current Task);
wait for mutex(mutex);
reschedule();
}

PE

Time

· · ·
00000066 fib:
66: 0f 93 push r16
68: 1f 93 push r17
6a: cf 93 push r28
6c: df 93 push r29
6e: d9 2f mov r29, r25
70: c8 2f mov r28, r24
· · ·
90: 02 c0 rjmp .+4 ; 0x96
92: 81 e0 ldi r24, 0x01 ; 1
94: 90 e0 ldi r25, 0x00 ; 0
· · ·

Figure 12: Example of a Simulation Couple. The software part of
the application has two representations: a functionnal one used in
high level abstraction layer and a timed one based on the use of an
ISS.

context. The interrupt is then processed and the related
routine is executed in the Concurrency layer. When the
scheduler is reactivated, it can decide (according to the
chosen scheduling policy) to resume the task or to elect a new
one. The same scenario is repeated again until the end of the
simulation.

6. Experiments

We applied our framework to a realistic application in the
field of image processing for robotic vision. The application
(see Figure 13) is used to learn object views or landscapes
and extracts local visual features from the neighborhood of
image’s keypoints.

We specified at the Application layer the application
as a set of 30 different communicating tasks and some
of them could be run 400 times dynamically in parallel
depending on the entry data as depicted in Figure 14. The full
description of our application is out of the scope of this paper
[46]. However, following a biologically inspired approach,
this vision architecture belongs to a larger sensorimotor
loop that brings interesting dynamical properties: the degree
of parallelism and the execution time varies according to

input data, namely the number of interest points, and
the robot speed mode (high, intermediate, and low detail
mode).

6.1. Software Exploration. In this context, we performed
the profiling of the entire application on a hardware SoC
platform. We also built the profile of the μC/OS-II [47]
services (deterministic). For the purpose of the exploration
we have targeted a Nios-II [48] based multiprocessor
architecture (MPSoC) prototyped onto an Altera Cyclone-
II FPGA circuit. The profiling of embedded software is a
long and rigorous work which needs a non-preemptive and
non-intrusive measurement technique. For this purpose, we
modified the source code of the RTOS in order to provide
such a measure technique both for the application basic
blocks and for the OS services. After several executions
onto a set of representative images, we built a timing
data base for this application. For a simulation purpose,
assigning a unique and representative execution time to the
application tasks is a complex problem when the variance
of the measured values is important. According to the
refinement layers presented in Section 3.2, we currently
recommend the use of an average value as a first approx-
imation of the execution time and a stochastic draw into
the timing data-base as a better estimation. Then, these
timing data must be back-annotated into the high-level
model in order to explore and evaluate the architecture
dimensioning and the implementation strategies: tasks dis-
tribution, services distribution, scheduling algorithms, and
so forth.

At this step, the application and the soft RTOS services
were fully annotated into the Architecture layer. Following
the design flow presented in Figure 1, we then performed a
first set of simulations in order to evaluate the critical parts
of the application when partitioned onto several processors.
During these simulations the SystemC models related to
the Architecture layer estimate the global system execution
times. Figure 15(a) summarizes this information. Each plot
represents an average value of the system performance for
different images (number of keypoints). We can see that
a pure software application could not be more accelerated
using more than three processors (only a small gain between
two and three). This MPSoC implementation reaches a
global execution time of ≈27000 ms. Moreover we identified
that the gaussian pyramid [46] represents the critical part
of the application. So, we then explored the implementation
of the related tasks into hardware in a reconfigurable
device.

6.2. Heterogeneous Exploration Based on System Metrics. We
deployed our application using a static partitioning between
software and hardware tasks (more details can be found
in [46]). The result of the partitioning is a set of 12
software tasks and a set of 18 hardware regular treatments.
We realized the design of the hardware blocks in VHDL
and back annotated the synthesis results (number of slices,
execution times, communication latencies and configuration
times) into the functional DRA model. The acceleration of

16 International Journal of Reconfigurable Computing

Figure 13: Graphical results of the SystemC functional model simulation of the robotic vision application.

a hardware implementation for the critical software tasks is
very important: their total execution time is divided by a
factor 4000. A second iteration of simulations (upper loop of
Figure 1) was processed in order to define the new adequate
architecture.

To figure out the right number of processors, we
performed a new set of experimentations, as shown on
Figure 15(b). The result of the second exploration is an
architecture composed of 3 processors and a DRA with
a yet undefined size. Indeed, the gain obtained by the
hardware implementation of the gaussian pyramid permits
to parallelize the 12 remaining software tasks to have a
significant gain.

During this exploration/refinement process, the designer
can use the system metrics presented in Section 3.1 and
automatically extracted by the tool. Some examples of
metrics used for the system dimensioning are the Gantt
chart, the DRA chart (Figure 16) and the Communication
chart depicted in Figure 17. The Gantt diagram represents
the state of each task (software or hardware) along time:
ready, running, waiting states and a configuring state for

hardware tasks only. The Gantt charts of Figure 16(a) depict
the new configuration of the system architecture. The 12
upper lines represent the ordering of the software tasks
onto the 3 processors and the remaining lines represent the
18 hardware tasks running in parallel in the DRA. This
architecture corresponds to the best achievable performances
since the size of the DRA has been computed as the sum of
the hardware tasks occupation. More precisely, the hardware
partition uses near to 1200 slices (In the Virtex-5 FPGA
slices are organized differently from previous generations.
Each Virtex-5 FPGA slice contains four LUTs and four
flip-flops -previously it was two LUTs and two flip-flops-),
14 BRAM and 12 DSP48 blocks. Hence, the estimated
resource utilization for the global architecture (DRA + three
processors) is about 4375 slices, 21 BRAM and 16 DSP48
blocks. This estimation would correspond for example to
the size of a LX30T Virtex 5 circuit [49]. The global
system latency ranging from 950 ms (Gantt of Figure 16)
to about 60 ms depending of the application mode. We
obtain about x28 acceleration compared to the pure software
implementation.

International Journal of Reconfigurable Computing 17
N

u
m

be
r

of
pr

oc
es

se
s

0

50

100

150

200

250

300

350

400

450

Video frame

0 1000 2000 3000 4000 5000

High detail mode
Intermediate mode
Low detail mode

Figure 14: Number of processes created and managed by the OS
model during the application simulation on a set of 6000 images for
each modes.

6.3. Reconfiguration Management. In order to reduce the size
of the hardware partition we vary the number of slices of
the DRA and evaluated the capability of the system to adapt
the hardware scheduling to a restricted area. In Figure 16,
we present the results for one of the explored restricted
architecture. We observe on the Gantt chart a different
schedule of the hardware IP depending on the occupation
rate of the DRA. The comparison between DRA charts of
Figures 16(c) and 16(d) shows a clear difference in the
utilization of the DRA over the time.

In the first case (Figures 16(a) and 16(c)), the DRA
is never full and the tasks are configured as soon as the
RTOS puts them in the Ready State. Here, the configuration
only depends on the data dependencies in the application
graph.

In the second case (Figures 16(b) and 16(d)) we consider
a smaller DRA composed of 3000 slices. The DRA can not
configure all the tasks at the same time. Here configuration
depends both on the data dependencies and on the available
resources. At level 1 of the DRA model, the hardware
scheduler only manages available resources. It searches for
sleeping tasks within the DRA to be replaced by a new
task asking for resources. Besides, once a hardware task
finishes its execution, it is removed (its resources are freed),
enabling another task to be implemented. For the estimation
of the configuration time we used a metric which depends
on the size of the partial bitstream for the targeted DRA
technology (about 50 μs per block of 16 CLBs on a Virtex
5).

As a first conclusion the exploration of the architecture
for the robotic vision application leads us to model a
complete RSoC platform at a high-level of abstraction. This
high-level model focuses on the definition of the RTOS
services needed by the identified architectures. For the

systems presented in this section, we used as many OS as
processors. All these components (Figure 9) are composed of
the following services:

(i) a task management service to dynamically create
keypoints extraction tasks,

(ii) several shared semaphores and mutex to synchronize
the application and to protect image data into the
shared memories,

(iii) a priority based scheduler on each processor,

(iv) a time management service for timeouts,

(v) an interrupt manager for the management of the
multiprocessor architecture.

Also, another RTOS model is dedicated to the manage-
ment of hardware tasks. This RTOS model provides several
additional services:

(i) at level 1 of the DRA, a specific scheduling service
using only the available resources,

(ii) at level 2 of the DRA, a refined scheduling service
using also the localization and the shape of the tasks,

(iii) a placement service related to the level of the DRA
model,

(iv) a communication service using hardware FIFO
(results are presented on Figure 17),

(v) several mutex and semaphore proxies for the syn-
chronization with software tasks.

The refinement of the DRA to level 3 allows to test low-
level hardware scheduling and placement strategies. We have
implemented two simple placement algorithms to manage
the DRA resources at a finer grain.

6.4. Accuracy and Simulation Overhead of the Model. To
evaluate the efficiency of our modeling approach, we per-
formed two sets of experiments. First, we evaluated the
model accuracy and compared the simulated execution
time relative to actual board measurements for multiple
implementations. The average application times measured
on board is 2926 ms and the simulated time gives 2836 ms.
Those results validate our high level model considering the
simulation’s accuracy is within 3-4% of board measure-
ments.

Then we evaluated the simulation time of the application
on top of our RTOS model in comparison with a purely
functional description. The deployment of the application
tasks was explored and simulated using the Application and
Concurrency layers of Figure 2. We vary the number of
PEs within the architecture from 1 to 6 OS (Processors or
DRA). Tasks execute and communicate in the same way on
board and in simulation trough a single shared memory
space protected with shared semaphores. Table 2 shows the
scalability of our model. It indicates the simulation time tn

18 International Journal of Reconfigurable Computing
E

xe
cu

ti
on

ti
m

e
(s

ec
on

ds
)

(m
ea

su
re

d
on

a
sa

m
pl

e
of

20
re

pr
es

en
ta

ti
ve

im
ag

es
)

24.5

25

25.5

26

26.5

27

27.5

28

28.5

29

Number of processors, mode: high detail

1 2 3 4 5

Full SW (max)
Full SW (avg)
Full SW (min)

(a) Pure software tasks implementation of the application

E
xe

cu
ti

on
ti

m
e

(s
ec

on
ds

)
(m

ea
su

re
d

on
a

sa
m

pl
e

of
20

re
pr

es
en

ta
ti

ve
im

ag
es

)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

Number of processors, mode: high detail

1 2 3 4 5

SW + HW (max)
SW + HW (avg)
SW + HW (min)

(b) Mixed hardware and software tasks implementation

Figure 15: Performance gain exploration for several sizes of MPRSOC architectures for case (a) all tasks in software; case (b) partitioned in
hardware (on a DRA) and software on multiple processors.

Table 2: Simulation overhead versus number of OS.

n 0 1 2 3 4 5 6

simulation

time tn 5.5 6 7.4 8.6 9.8 11.1 12.8

(second)

overhead −8.9 0 23.3 43.3 63.3 85 113.3

sn (%)

of a platform modeled at the Concurrency layer composed
of n RTOS and the average simulation overhead sn = (tn −
t1)/t1 for different platform sizes. t0 represents the execution
time of the pure functional application specification (at the
Application layer). Simulations were realized on an Intel
DualCore workstation running at 1.66 GHz with 2 GB of
RAM.

For monoprocessor platforms, the RTOS model does not
impact the simulation time since the overhead is only 8.9%
more than the purely functional application description.
Results indicate that the simulation time overhead is around
23% more per simulated RTOS. This overhead is due to the
SystemC simulation kernel that works for the whole list of
SystemC sc thread of the system, which increases with the
number of RTOS.

Finally, the framework allows to simulate an application
in a functional and non-intrusive debug mode as illustrated
in Figure 13.

6.5. Perspectives. We are now working on the integration
of all the components into a basic and scalable target
architecture which is composed of one ISS, a DRA model, a
shared bus, a global memory and a distributed OS. The final
platform model uses the three layers presented in Figure 2

(Application, Concurrency and Architecture layers) in order
to provide a good tradeoff between performance accuracy
and simulation overhead. The first experiments show that
going down till the cycle-accurate level of the Architecture
layer (ISS and CSS models) brings a simulation overhead
500 times longer compared to a timed simulation at the
Concurrency layer.

7. Conclusion and Perspectives

In this paper, we have presented a modeling framework
for the design of a complete RSoC platform including
processor(s), Dynamically Reconfigurable Architecture and
OS services. The proposed design flow is based on a system
level modeling approach which eases the exploration of the
RTOS services distribution both onto processors and directly
inside a reconfigurable region of the considered hardware
unit. The main contribution of this work consists in
proposing a unified modeling and refinement methodology
for the software and the hardware parts of a dynamically
reconfigurable system.

We have also listed the specific services that are needed
in the literature for the management of the reconfigurable
resources of the architecture. Thanks to a modular and
flexible modeling approach we developed a library of generic
components for the description of RSoC platforms. Among
them, we developed basic hardware services such as hardware
task management, hardware/software synchronization and
bitstream management at high level of abstraction. The
global method and the SystemC models were validated on
an image processing application.

Today, the presented results show that the framework
allows to define, simulate, and explore the specific services
of RTOS for RSoC platforms very early in the design flow.

International Journal of Reconfigurable Computing 19

(a) Gantt Chart for large DRA (b) Gantt Chart for smaller DRA

(c) Occupation rate of large DRA (d) Occupation rate of smaller DRA

Figure 16: (a) and (b) represent the Gantt diagram for all the application tasks in both software on 3 processors and in hardware on a DRA
of 4500 slices on the left and 3000 on the right. (c) and (d) represent the evolution of the DRA occupation over the time.

20 International Journal of Reconfigurable Computing

Figure 17: The DOGME tool provides several metrics helping the designer to evaluate the simulated design solutions. The window shows
communications between tasks over time. It also computes the filling ratio for FIFO based communications.

Now, we have to refine some existing services such as the
hardware scheduler at lower levels of abstraction in order to
manage and estimate more accurately the resources used by
an application on a real FPGA. We also have to extend the
library of models: processing units, refined communication
media and services such as placement algorithms from the
literature. The OveRSoc framework could then be used as
a comparison environment for upcoming methods in the
context of DRA management.

Acknowledgments

We would like to thank Sylvain Viateur for his help on the
ISS SystemC model. The work presented in this paper was
performed in the OveRSoC project which is supported by the
french ANR funding.

References

[1] O. Diessel and G. Wigley, “Opportunities for operating
systems research in reconfigurable computing,” Technical

Report ACRC-99-018, Advanced Computing Research Centre,
School of Computer and Information Science, University of
South Australia, Mawson Lakes, South Australia, 1999.

[2] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauw-
ereins, “Designing an operating system for a heterogeneous
reconfigurable SoC,” in Proceedings of International Parallel
and Distributed Processing Symposium (IPDPS ’03), p. 7, April
2003.

[3] C. Steiger, H. Walder, and M. Platzner, “Operating systems for
reconfigurable embedded platforms: online scheduling of real-
time tasks,” IEEE Transactions on Computers, vol. 53, no. 11,
pp. 1393–1407, 2004.

[4] J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann,
and J. Luka, “Dynamic and partial FPGA exploitation,”
Proceedings of the IEEE, vol. 95, no. 2, pp. 438–452, 2007.

[5] B. Miramond and J.-M. Delosme, “Design space exploration
for dynamically reconflgurable architectures,” in Proceedings
of Design, Automation and Test in Europe (DATE ’05), pp. 366–
371, Munich, Germany, March 2005.

[6] M. Yuan, X. He, and Z. Gu, “Hardware/software partition-
ing and static task scheduling on runtime reconfigurable
FPGAs using a SMT solver,” in Proceedings of the 14th IEEE

International Journal of Reconfigurable Computing 21

Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS ’08), pp. 295–304, St. Louis, Mo, USA, April 2008.

[7] K. Ramamritham and J. A. Stankovic, “Scheduling algorithms
and operating systems support for real-time systems,” Proceed-
ings of the IEEE, vol. 82, no. 1, pp. 55–67, 1994.

[8] G. Wigley and D. Kearney, “The first real operating system
for reconfigurable computers,” in Proceedings of Australasian
Conference on Computer Systems Architecture (ACSAC ’01), pp.
130–137, IEEE Computer Society, 2001.

[9] F. Engel, I. Kuz, S. Petters, and S. Ruocco, “Operating systems
on SoCs: a good idea?” in Proceedings of IEEE Embedded
Real-Time Systems Implementation Workshop (ERTSI ’04),
December 2004.

[10] I. Benkhermi, M. E. A. Benkhelifa, D. Chillet, S. Pillement,
J.-C. Prevotet, and F. Verdier, “System-level modelling for
reconfigurable SoCs,” in Proceedings of the 20th Conference on
Design of Circuits and Integrated Systems (DCIS ’05), Lisboa,
Portugal, November 2005.

[11] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast tem-
plate placement for reconfigurable computing systems,” IEEE
Design and Test of Computers, vol. 17, no. 1, pp. 68–83, 2000.

[12] A. Kuhn, F. Madlener, and S. Huss, “Resource management for
dynamic reconfigurable hardware structures,” in Proceedings
of Reconfigurable Communication Centric System-on-Chips
(ReCoSoC ’06), 2006.

[13] J. C. Van Der Veen, S. P. Fekete, M. Majer, et al., “Defragment-
ing the module layout of a partially reconfigurable device,” in
Proceedings of the 5th International Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA ’05), pp. 92–
101, Las Vegas, Nev, USA, June 2005.

[14] K. Puma and D. Bhatia, “Temporal partitioning and schedul-
ing data flow graphs for re-configurable computers,” IEEE
Transactions on Computers, vol. 48, no. 6, pp. 579–590, 1999.

[15] J. Resano, D. Mozos, D. Verkest, F. Catthoor, and S. Vernalde,
“Specific scheduling support to minimize the reconfigura-
tion overhead of dynamically reconfigurable hardware,” in
Proceedings of the 41st Annual Design Automation Conference
(DAC ’04), pp. 119–124, San Diego, Calif, USA, 2004.

[16] L. Levinson, R. Manner, M. Sessler, and H. Simmler, “Pre-
emptive multitasking on FPGAs,” in Proceedings of the 8th
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM ’00), pp. 301–302, 2000.

[17] H. Simmler, L. Levinson, and R. Männer, “Multitasking
on FPGA coprocessors,” in Field-Programmable Logic and
Applications: The Roadmap to Reconfigurable Computing, vol.
1896 of Lecture Notes in Computer Science, pp. 121–130,
Springer, Berlin, Germany, 2000.

[18] D. Koch, A. Ahmadinia, C. Bobda, and H. Kalte, “FPGA
architecture extensions for preemptive multitasking and hard-
ware defragmentation,” in Proceedings of IEEE International
Conference on Field-Programmable Technology (FPT ’04), vol.
3203 of Lecture Notes in Computer Science, pp. 433–436,
Brisbane, Australia, December 2004.

[19] T. Marescox, A. Bartic, B. Verkest, S. Vernalde, and R. Lauw-
ereins, “Interconnection networks enable fine-grain dynamic
multitasking on FPGAs,” in Proceedings of the 12th Field
Programmable Logic and Applications Conference, vol. 2438, pp.
795–804, September 2002.

[20] Symbad, “SYMBAD—Formal Verification in SYsteM Level
Based Design,” 2002, http://www.setnet.org/Research/SYM-
BAD.htm.

[21] M. Borgatti, A. Capello, U. Rossi, et al., “An integrated design
and verification methodology for reconfigurable multimedia
systems,” in Proceedings of Design, Automation and Test in
Europe (DATE ’05), pp. 266–271, Munich, Germany, March
2005.

[22] P. Hsiung, C. Liao, C. Tseng, S. Lin, Y. Chen, and K. Chiu,
“Hardware-software codesign and coverification method-
ology for dynamically reconfigurable system-on-chips,” in
Proceedings of Workshop on Object-Oriented Technology and
Applications (OOTA ’04), 2004.

[23] Y. Qu, K. Tiensyrjä, and K. Masselos, “System-level modeling
of dynamically reconfigurable co-processors,” in Field Pro-
grammable Logic and Application, vol. 3203 of Lecture Notes
in Computer Science, pp. 881–885, Springer, Berlin, Germany,
2004.

[24] P.-A. Hsiung, C.-H. Huang, and C.-F. Liao, “Perfecto: a
systemc-based performance evaluation framework for dynam-
ically partially reconfigurable systems,” in Proceedings of
International Conference on Field Programmable Logic and
Applications (FPL ’06), Lecture Notes in Computer Science,
pp. 190–195, Madrid, Spain, August 2006.

[25] A. Raabe, P. A. Hartmann, and J. K. Anlauf, “ReChannel:
describing and simulating reconfigurable hardware in sys-
temC,” ACM Transactions on Design Automation of Electronic
Systems, vol. 13, no. 1, pp. 112–120, 2008.

[26] K. Benkrid, A. Benkrid, and S. Belkacemi, “Efficient FPGA
hardware development: a multi-language approach,” Journal
of Systems Architecture, vol. 53, no. 4, pp. 184–209, 2007.

[27] A. Herrholz, F. Oppenheimer, P. A. Hartmann, et al., “The
ANDRES project: analysis and design of run-time reconfig-
urable, heterogeneous systems,” in Proceedings of International
Conference on Field Programmable Logic and Applications
(FPL ’07), pp. 396–401, August 2007.

[28] J. J. Lee and V. J. Mooney III, “Hardware/software partitioning
of operating systems: focus on deadlock detection and avoid-
ance,” IEE Proceedings: Computers and Digital Techniques, vol.
152, no. 2, pp. 167–182, 2005.

[29] G. Smit, E. Schüler, J. Becker, J. Quévremont, and W. Brugger,
“Overview of the 4S project,” in Proceedings of International
Symposium on System-on-Chip, pp. 70–73, Tampere, Finland,
November 2005.

[30] OSCI, “IEEE 1666TM Standard SystemC Language,” http://
www.systemc.org/.

[31] E. A. Lee and S. Neuendorffer, “Concurrent models of com-
putation for embedded software,” IEE Proceedings: Computers
and Digital Techniques, vol. 152, no. 2, pp. 239–250, 2005.

[32] K. Keutzer, “System-level design: orthogonalization of con-
cerns and platform-based design,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
19, no. 12, pp. 1523–1543, 2000.

[33] P. Kohout, B. Ganesh, and B. Jacob, “Hardware support
for real-time operating systems,” in Proceedings of
the 1st IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS ’03), pp. 45–51, Newport Beach, Calif,
USA, October 2003.

[34] P. Gerin, H. Shen, A. Chureau, A. Bouchhima, and A. A.
Jerraya, “Flexible and executable hardware/software interface
modeling for multiprocessor SoC design using systemC,” in
Proceedings of the Asia and South Pacific Design Automation
Conference (ASP-DAC ’07), pp. 390–395, IEEE Computer
Society, Washington, DC, USA, 2007.

22 International Journal of Reconfigurable Computing

[35] A. Donlin, “Transaction level modeling: flows and use mod-
els,” in Proceedings of the 2nd IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and Systems Syn-
thesis (CODES+ISSS ’04), pp. 75–80, Stockholm, sweden,
2004.

[36] OCP-IP, “Open core protocol international partnership,”
http://www.ocpip.org/.

[37] E. Huck, B. Miramond, and F. Verdier, “A modular systemC
RTOS model for embedded services explorations,” in Proceed-
ings of Conference on Design and Architectures for Signal and
Image Processing (DASIP ’07), Grenoble, France, 2007.

[38] B. Miramond, F. Verdier, and M. Aichouch, “DOGME
distributed operating system graphical modeling environ-
ment,” http://oversoc.ensea.fr/ oversoc-graphical-modeling-
environment-1.

[39] “Eclipse rich client platform,” http://eclipsercp.org/.
[40] D. Desmet, D. Verkest, and H. De Man, “Operating system

based software generation for systems-on-chip,” in Proceedings
of Design Automation Conference, pp. 396–401, 2000.

[41] P. Hastono, S. Klaus, and S. A. Huss, “Real-time operating
system services for realistic systemc simulation models of
embedded systems,” in Proceedings of Forum on Specification
and Design Languages (FDL ’04), pp. 380–392, Lille, France,
September 2004.

[42] H. Posadas, J. A. Adamez, E. Villar, F. Blasco, and F. Escuder,
“RTOS modeling in SystemC for real-time embedded SW
simulation: a POSIX model,” Design Automation for Embedded
Systems, vol. 10, no. 4, pp. 209–227, 2005.

[43] Z. He, A. Mok, and C. Peng, “Timed RTOS modeling for
embedded system design,” in Proceedings of the 11th IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS ’05), pp. 448–457, San Francisco, Calif, USA, March
2005.

[44] P.-A. Hsiung, C.-H. Huang, and Y.-H. Chen, “Hardware task
scheduling and placement in operating systems for dynam-
ically reconfigurable SoC,” Journal of Embedded Computing,
vol. 3, no. 1, pp. 53–62, 2009.

[45] M. Ullmann, M. Hübner, and J. Becker, “On-demand FPGA
run-time system for flexible and dynamical reconfiguration,”
International Journal of Engineering Simulation, vol. 1, no. 3-4,
pp. 193–204, 2005.

[46] F. Verdier, B. Miramond, M. Maillard, E. Huck, and T. Lefeb-
vre, “Using high-level RTOS models for HW/SW embedded
architecture exploration: case study on mobile robotic vision,”
EURASIP Journal on Embedded Systems, vol. 2008, no. 1,
Article ID 349465, 17 pages, 2008.

[47] J. Labrosse, “MicroC/OS-II: the real-time kernel,” CMP
Media, 2002, http://www.micrium.com/page/support/book-
store.

[48] “Altera,” http://www.altera.com/.
[49] Xilinx, “Virtex 5 familly overview,” http://www.xilinx.com/.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

