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1. Introduction 
 
Technical analysis is a generic term which includes many different techniques whose goal is to 
predict the future evolution of asset prices from the observation of past prices. There are two 
approaches to technical analysis. The first is purely graphical as it looks for patterns in past data. 
The second approach derives some trading rules on the basis of filters applied to past data. These 
techniques were introduced a long time before modern financial theory was born and have 
therefore no theoretical foundation. This is one of the reasons why academics have looked at 
these techniques with contempt. Several other facts have contributed to this situation. The main 
reason is that technical analysis violates one of the basic principles of financial theory: the 
efficient market hypothesis, which claims that it is impossible to predict future prices from the 
observation of past prices. Another reason is that a major part of these techniques cannot be 
tested as they are purely graphical and they do not have precise rules. Finally, early tests of 
technical trading rules have produced very poor results which reinforced the general feeling of 
academics towards technical analysis. However, practitioners are still using these techniques to 
make investment decisions often in conjunction with more traditional tools as fundamental 
analysis1. Recently, some academics have slightly changed their mind towards technical analysis 
as they found that it is possible to predict future returns with some simple technical trading rules.  
 
Our paper is in line with recent literature on technical trading rules as it tests if these rules are 
profitable when they are applied to Swiss stock prices. We consider different trading rules which 
are all based on one of the main tools of technical analysis: moving averages. The idea is that 
financial prices are volatile but that they follow some trend. Moving averages are supposed to 
capture trends and leave aside the "noisy" part of the evolution of prices. According to this rule, 
buy or sell signals are generated by two moving averages of the level of the index: a long period 
moving average and a short period moving average. The strategy involves buying (being long in) 
the asset when the short average is above the long moving average and selling (being short in) 
the asset when the short period moving average is below the long period moving average. We 
also test these rules with the addition of other signals such as oscillators, which are supposed to 
detect trend reversals. We consider two popular oscillators in this paper: the relative strength 
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index and the stochastic indicator. We also test these rules by adding bands to the moving 
averages in order to avoid false signals. These strategies are tested on the Swiss Bank 
Corporation General Index for the period 1969-1997. The results show that a simple buy-and-
hold strategy on the SBC index produces a daily average return of 0.025% or 6.25% yearly. The 
use of technical trading rules produces a daily average return of 0.097% or 24.30 % annualy, 
which is significantly different and above the buy-and-hold average return. These results are 
obtained with simple moving averages with a short window of one day and a long period moving 
average of five days.  
 
The predictability of asset returns could be due to some well-known features of the data as non-
normality, serial correlation and time-varying moments. In order to check if these features do not 
bias the test statistics we conduct some bootstrap tests which assume that returns follow an 
AR(1) and a GARCH(1,1) processes. The results show that these features are present in our data 
set but they are not the cause of the profitability of technical trading rules. Finally, we consider if 
these results still hold for individual stocks and in the presence of transaction costs. The results 
for individual stocks are similar to those found for the SBC index. When we consider transaction 
costs, we find that small investors cannot benefit from the profits generated by the trading rules 
which means that the weak form efficient market hypothesis cannot be rejected for a large 
fraction of the market. Only some large investors fulfilling certain conditions could possibly get 
some profit from these techniques. 
 
The paper is organized as follows. Section 2 summarizes the literature on the use of technical 
trading rules. Section 3 presents the data used in this study and section 4 gives the results for 
different trading rules based on moving averages and oscillators. Section 5 provides the 
empirical results obtained with the bootstrap methodology and section 6 considers the real 
profitability of these strategies by considering the results obtained on individual stocks and also 
by incorporating the trading costs in the computation of the trading rule results. Section 7 offers 
some conclusions. 
 
2. Previous research 
 
Technical trading rules investigated in academic literature can be divided in two major areas: 
filter rules and moving average rules. Early research focused on filter rules. This rule involves 
buying a security if it had risen by x% on the last period or selling it if its price has decreased by 
x% on the last period. Alexander (1961) was the first to examine the profitability of this kind of 
rule on individual stocks and he found that they were profitable. In a second article, Alexander 
(1964) included transaction costs and found that the profits generated by this strategy vanished. 
Fama and Blume (1966) confirmed this conclusion and this led the academic community to be 
skeptical about technical analysis not only because it lacked theoretical justification but also 
because it yielded poor results. Sweeney (1988) re-examined the results of Fama and Blume 
(1966) for another period and found that, depending on the level of transaction costs, filter rules 
still yielded profitable results.  
 
At the beginning of the nineties, research focused on moving average rules. Brock, Lakonishok 
and LeBaron (1992) investigated moving average rules on a century of daily data of the Dow 
Jones Industrial Index. They found that these rules yielded profitable results and that the signals 
generated by these rules were able to detect abnormal returns when compared to the average 
buy-and-hold return. They investigated moving averages of length 1,2 and 5 days for the short 
period and 50 to 200 days for the long period moving average. They also investigated other rules 
based on resistance levels showing that they were also generating signals which are able to 
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detect abnormal returns. They conducted some bootstrap tests and showed that the results 
obtained with these strategies were robust to other specifications of the return generating 
process. They did not include transaction costs in their tests, so they could not conclude if these 
strategies were really implementable and profitable. Hudson, Dempsey and Keasey (1996) who 
replicate Brock et al's (1992) tests on the UK stock market for the period 1935 to 1994 
considered this issue. They also found profitable results with the moving average strategies but 
these profits vanished when transaction costs were considered. Levich and Thomas (1993) and 
Kho (1996) also considered moving average strategies but on another asset: currency futures. 
Both studies found profitable results for these strategies even by taking account of transaction 
costs. Kho (1996) showed that these results are partly due to a time-varying risk-premia, a new 
avenue for future research in this field. 
 
The literature on the use of technical trading rules indicates that it is possible to obtain profitable 
results by using these strategies. It is interesting that only a few of the possible strategies 
provided by technical analysis have been investigated so far. However, there is no clear-cut 
conclusion on the profitability of these strategies when transaction costs are considered. 
 
3. Data description 
 
Our study examines the profitability of technical trading rules applied to the Swiss Bank 
Corporation General Index for the period running from the beginning of January 1969 to the end 
of December 1997. We have chosen this index because it is the only broadly based Swiss index 
for which data is available on a long period of time. The SBC index was created in 1963 to 
reflect as closely as possible the evolution of the Swiss stock market (SBC (1963)). Although the 
index was recomputed until December 1958, we have only obtained daily data on the index from 
Datastream International since January 1969. This index is a large-scale, value-weighted index, 
as it includes all the available securities on the market. It is computed with the Laspeyres 
formula.  
 

Table 1 : Summary statistics for daily returns of the SBC index 
 ─────────────────────── 
 Number of observations 7084 
 Mean 0.000250 
 Standard deviation 0.008422 
 Skewness -1.164 
 Kurtosis 19.576 
 
 ρ(1)  0.101* 
 ρ(2)  0.011 
 ρ(3)  0.004 
 ρ(4)  0.045* 
 ρ(5)  0.030* 
 ─────────────────────── 
 * Indicate a significant number at the 5% level for 
 a two-tailed test, ρ are the autocorrelation coefficients 
 
The SBC index is a price index and therefore does not include dividends. In order to truly reflect 
the evolution of stock prices we should use a performance index (which includes dividends) to 
test the trading rules. The omission of dividends in the index could lead to wrong signals from 
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the trading rule as the dividend payment induces a drop in stock prices2. Unfortunately a 
performance index over the considered period is not available for the Swiss stock market. 
However as the dividend yield is relatively low in Switzerland (on average it is never higher than 
5% over the period) and as we use a value-weighted index we expect that the effects of 
individual dividend payments on the index are diluted and therefore that the results for the 
trading rules should be close for both type of indexes3. The composition of the index is adjusted 
twice a year to reflect the fact that some new securities are available and that others disappear 
from the market. Table 1 presents summary statistics for the daily returns of this index, which 
are computed as the first difference of price logarithms. 
 
The figures in Table 1 show that the return series is asymmetric as indicated by the negative 
skewness coefficient and that it is leptokurtic, i.e. it has fatter tails than the normal distribution. 
There is also some positive autocorrelation in returns which is a common phenomenon in 
indexes. As the SBC index contains the majority of Swiss stocks, a non-negligible fraction of 
them is relatively illiquid and therefore stale prices (due to stocks which are not traded every 
day) could explain the large first-order autocorrelation. Despite the fact that the fourth- and fifth-
order autocorrelation coefficients are statistically significant, it is likely that they are spurious as 
they do not make much sense economically. The mean daily buy-and-hold return for the index is 
0.025% or, assuming 250 working days in a year, an average of 6.25% yearly. We also apply 
technical trading rules to individual stocks. Data for the stocks is also obtained from Datastream. 
In certain cases, some trading rules give a neutral signal, i.e. neither a buy or sell signal. We 
assume throughout our study that when the investor receives a neutral signal he invests its assets 
in a risk-free asset. It is therefore necessary to choose an appropriate rate to reflect the yield on 
the risk-free asset. We use a one-day money market rate called the "tomorrow next" rate which 
was either set in Zürich or on the Euromarket. This rate is obtained in various issues of the 
monthly bulletin of the Swiss National Bank. 
 
4. Empirical results 
 
4.1 Moving averages 
 
One of the simplest, oldest and most widely used technical trading rule is the moving average 
rule. According to this rule, buy or sell signals are generated by two moving averages of the 
level of the index: a long period moving average and a short period moving average. The 
strategy involves buying (being long in) the asset when the short average is above the long 
moving average and selling (being short in) the asset when the short period moving average is 
below the long period moving average. The use of moving average rules is based on the fact that 
financial time-series are volatile and on the belief there exist some underlying trends in these 
series. When a short period moving average cuts a long period moving average, a trend is 
supposed to be initiated. The most popular moving average rule used is (1,200), where the short 
period is one day (in fact it is the index itself) and the long period is 200 days (almost a year). 
The academic literature has shown that the best results were obtained when the short average is 
one day but has not reached any distinct conclusion on the length of the long period. The 
different lengths considered in these papers were 200, 150, 100 and 50 days. Our paper also 
investigates shorter lengths for the long period as 30, 10 and 5 days. Numerous variations on 

                     
2 We are grateful to an anonymous referee for pointing out this problem. 
3 In order to test for this hypothesis we compare the results of trading rules on the subperiod May 1993-December 
1998 where we have data on the SPI index ex-dividend with that of the SPI index (which includes dividends). We 
find close results for both indexes. The results are presented in Table AI in the Appendix. 
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moving average rules exist. They basically add other signals to the relative positions of moving 
average to detect trend reversals or other phenomena. We consider two popular kinds of 
variations : bands and oscillators. Bands are used to eliminate "noisy" signals. A band of 1% 
around the long-term moving average is often used in practice. This means that if the difference 
between the long-term and short-term moving average is less than 1% of the value of the long-
term average, there is no clear signal and the investor is neutral. In those situations, he should be 
out of the market and invest in the risk-free asset. 
 
The results for various lengths of moving averages are presented in Table 2. The moving average 
rule is used to divide the full sample in either buy or sell periods. The strategy investigated here 
is the following: when the investor observes a buy signal he holds a long position in the index 
and when he observes a sell signal the investor holds a short position in the index. The first 
column of Table 2 indicates the length of the moving averages for the trading rules. The next two 
columns indicate the number of days when the investor is long or short. The figures in brackets 
indicate the proportion of right signals i.e. the percentage of positive returns observed after buy 
signals and the percentage of negative returns observed after sell signals. The next two columns 
report the average daily return obtained in long or short positions. For these figures, we compute 
t-statistics which test if the average return obtained in long (or short) positions is significantly 
different from the average return obtained by the buy-and-hold strategy. According to Brock, 
Lakonishok and LeBaron (1992) these t-statistics are computed in the following way: 
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where µz is either the buy or sell period mean return and Nz is the number of observations in 
these periods. µ and N are respectively the unconditional mean of the series and the total number 
of observations. σ2 is the estimated variance for the entire sample. The figures in parentheses 
under the average returns are the standard deviation of the different periods. What really matters 
to the investor systematically following these rules is to know whether or not the return obtained 
from these strategies earn him a return which is superior to that obtained by the buy-and-hold 
strategy. The mean return of this global strategy is4 :  
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where rt is the return on the index at time t, dt is a variable which equals 1 if the signal is buy and 
equals -1 if the signal is sell. The test which checks whether the average return obtained through 
the global strategy based on the trading rule is different from the buy-and-hold return is 
performed with the following t-statistics : 

 µ µ

σ σ
str

str

strN N

−

+
F
HG

I
KJ

2 2 1 2  (3) 

where µ str  is as defined in equation (2) and σ str
2  is the variance of the return of this strategy. The 

last column of the table presents the number of trades generated by the strategy. This is the 
number of times it is necessary to buy or sell the index according to the signals of the trading 
rule. This figure is important when we consider transaction costs. We consider different 

                     
4 In the literature, this type of return has not been considered yet. Usually, only the difference between the average 
return of buy and sell periods is investigated. Unfortunately, this figure does not indicate to the investor the 
potential profit of using trading rules. 
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combinations for computing moving averages. It appears that results obtained with short period 
moving averages of 2 or 5 days are all dominated by those obtained with a one-day moving 
average. Therefore, we only present the results obtained with a one-day moving average in Table 
2. 
 
The results of Table 2 are striking. They show that the signals produced by the trading rule based 
on moving averages are able to clearly identify positive and negative returns on the index. 
Moreover, in the majority of cases, the average returns are significantly different from the buy-
and-hold return. The fact that the rule is appropriate is confirmed by the number of buy 
positions, which is superior to the number of sell positions. This is consistent with an upward-
sloping trend. We also observe that buy signals are more accurate than sell signals as shown by 
the larger fraction of right signals obtained in buy periods. The second more remarkable result is 
that the global strategy consisting of being long in the market after buy signals and short after 
sell signals produces an average daily return which is above and significantly different from the 
buy-and-hold return. For instance, the average return of the strategy (1,5) is 0.0972%, which in 
annual terms amounts to 24.30%, an impressive average compared to the 6.25% obtained with 
the buy-and-hold strategy. Notice that the average return of these strategies increases 
monotonically when the length of the long period moving average decreases. Strategies with a 
long average below 50 days all yield returns which are significantly different from the buy-and-
hold return. 
 

Table 2 : Results for moving average rules 
────────────────────────────────────────────────────── 
Trading rule N(buy) N(sell) µ(buy) µ(sell) µ(strategy) N(trades) 
────────────────────────────────────────────────────── 
(1,200) 4466 2618 0.000519 -0.000210* 0.000405 144 
 [52.4] [49.3] (0.00747) (0.00982) (0.00842) 
(1,100) 4331 2753 0.000545 -0.000214* 0.000417 220 
 [52.7] [48.6] (0.00736) (0.00984) (0.00842) 
(1,50) 4220 2864 0.000662* -0.000358* 0.000539* 366 
 [52.6] [48.0] (0.00720) (0.00992) (0.00841) 
(1,30) 4182 2902 0.000774* -0.000506* 0.000664* 478 
 [53.0] [48.8] (0.00705) (0.01003) (0.00840) 
(1,10) 3971 3113 0.000923* -0.000608* 0.000785* 962 
 [53.3] [48.7] (0.00723) (0.00967) (0.00839) 
(1,5) 3863 3221 0.001120* -0.000794* 0.000972* 1500 
 [54.6] [49.3] (0.00718) (0.00960) (0.00837) 
────────────────────────────────────────────────────── 
The column "Trading rule" gives the length of the moving averages for the trading rules. N(buy) and N(sell) 
indicate the number of days when the investor is long or short. Figures in brackets indicate the proportion of right 
signals, e.g. having a positive (negative) return after a buy (sell) signal. µ(buy) and µ(sell) report the average daily 
return obtained in long or short positions. µ(strategy) gives the average daily return obtained with the strategy over 
the whole period. Figures in parentheses are the standard deviations of the strategies. N(trades) is the number of 
times it is necessary to change the position according to the trading rule.* indicates that the average return is 
significantly different from the average buy-and-hold return at the 5% level for a two-tailed test.  
 
Moreover, the results are all economically significant as the returns from every trading rule are 
above the buy-and-hold return. As expected, the number of trades increases with the reduction of 
the window of the long moving average, because trading rules are more sensitive to variation in 
the index. In terms of volatility, buy periods have a lower standard deviation than sell periods. 
This is consistent with a well-known feature of asset returns, called the leverage effect and 
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initially documented by Black (1976), where the volatility associated to negative returns is larger 
than the volatility associated to positive returns. What is more puzzling is that the results of the 
global strategies have a higher average return than a buy-and-hold policy but a similar standard 
deviation of about 0.0084.  
 
Another interesting question is whether these results hold on subperiods. We can report that the 
results are fairly stable as the same type of results is obtained for subperiods of fifteen and ten 
years5. We also find that the highest returns are obtained with the (1,5) rule and that they are 
systematically above the buy-and-hold returns. 
 
Finally, it could be argued that the results of Table 2 are not feasible on the Swiss market as 
short positions could be relatively difficult to build over the period. Another way to achieve 
similar results is to use the following strategy: when he observes a buy signal the investor 
borrows and doubles his investment in the index. This yields twice the market return less the 
risk-free rate. When the investor observes a sell signal, he sells the index and invests all his 
money in the risk-free asset. If there is an equal number of buy and sell signals and if the 
borrowing and lending rates are close, then such a strategy would yield similar results to the 
long-short strategy investigated in Table 2. When we implement this alternative strategy on our 
sample we find that the results of such an investment policy yield very similar results6. 
confirming therefore that the results of Table 2 are relevant and feasible. 
 
4.2 Moving averages and bands 
 
Let us now turn to some refinements of the basic moving average rule. Table 3 presents the 
results of the use of a 1% band with moving averages. The idea behind the use of bands is to 
avoid "noisy" signals or in other words to be sure that a trend is really initiated. The principle is 
the following : when the distance between the short moving average and the long moving 
average is less than 1% of the long moving average, it is considered that the relative positions of 
moving averages cannot give reliable indications regarding the existence of a trend in stock 
prices. If such a situation happens the individual should not invest in the market and should hold 
the risk-free asset. The main difference with the previous strategy based on the crossing of 
moving averages alone is that there is not only a possibility of being either short or long but also 
neutral, that is out of the market and holding the risk-free asset. In the case of bands, the 
computation of the mean return of the global strategy implied by the technical trading rule is the 
following: 

 µ str t t t t
t

T

T
r d f d= +

=
∑1

1 2
1
b g  (4) 

where rt is the daily return on the index at time t, ft is the one-day risk-free return, d1t is a 
variable which equals 1 if the signal is buy, -1 if the signal is sell and 0 if the signal is neutral, d2t 
is a variable which equals one if the signal is neutral and 0 if the signal is either buy or sell. The 
computation of the t-statistic is identical to equation (3). 
 
Table 3 shows that the number of long and short positions decreases with respect to Table 2. 
Except for the first strategy, the mean returns of buy and sell periods are all higher in absolute 
value with this rule than without it, showing that the introduction of a band has removed days 
with poorer performance and it permits to sort out the most extreme returns. This is confirmed by 
the proportion of right signals which have increased with respect to those obtained in Table 2. 
                     
5 These results are presented in Table AII in the Appendix 
6 These results are presented in Table AIII in the Appendix 
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However, the average return of the global strategy is inferior to those obtained without a band in 
Table 2. This is due to the fact that the use of bands induces neutral positions which yield much 
less return (the risk-free rate) than days when the investors is in the market. This is particularly 
true for the (1,5) strategy, where the rule induces only 1577 days where the investor is in the 
market and 5507 days with neutral position. Despite the use of band permits to identify higher 
buy or sell returns, the global profits are lower than strategies without bands because of the 
neutral positions. 
 

Table 3 : Results for moving average rules with 1% band 
────────────────────────────────────────────────────── 
Trading rule N(buy) N(sell) µ(buy) µ(sell) µ(strategy) N(trades) 
────────────────────────────────────────────────────── 
(1,200) 4201 2290 0.000519 -0.000115 0.000355 285 
 [52.6] [49.2] (0.00750) (0.0101) (0.00816) 
(1,100) 3878 2315 0.000634* -0.000301* 0.000459 420 
 [53.4] [49.4] (0.00745) (0.01024) (0.00804) 
(1,50) 3378 2155 0.000788* -0.000389* 0.000518* 678 
 [53.8] [48.3] (0.00708) (0.01072) (0.00768) 
(1,30) 2999 1947 0.000939* -0.000529* 0.000577* 857 
 [54.5] [48.9] (0.00713) (0.01087) (0.00735) 
(1,10) 1822 1269 0.001391* -0.001114* 0.000624* 1429 
 [55.5] [51.1] (0.00782) (0.01279) (0.00673) 
(1,5) 836 741 0.001762* -0.001032* 0.000410 1368 
 [55.2] [49.7] (0.00931) (0.01459) (0.00573) 
────────────────────────────────────────────────────── 
The column "Trading rule" gives the length of the moving averages for the trading rules. N(buy) and N(sell) 
indicate the number of days when the investor is long or short. Figures in brackets indicate the proportion of right 
signals, e.g. having a positive (negative) return after a buy (sell) signal. µ(buy) and µ(sell) report the average daily 
return obtained in long or short positions. µ(strategy) gives the average daily return obtained with the strategy over 
the whole period. Figures in parentheses are the standard deviations of the strategies. N(trades) is the number of 
times it is necessary to change the position according to the trading rule.* indicates that the average return is 
significantly different from the average buy-and-hold return at the 5% level for a two-tailed test.  
 
As before we notice that the volatility of short period is higher than those of buy periods. We 
also notice that the volatility of the global strategy is always smaller than the volatility of the 
buy-and-hold return. This is due to the fact that this strategy has a reduced risk when the investor 
has neutral position (and holds the risk-free asset). Finally it is of interest that except for the (1,5) 
strategy the number of trades is larger in Table 3 than the number of trades incurred by the 
strategy without bands in Table 2. This phenomenon can be explained in the following way : 
when the short moving average crosses the 1% band without crossing the long moving average a 
trade is generated when the rule with bands is used. If the moving average rule without bands is 
used no trade would have been generated in this situation. As the number of trades has increased 
significantly from Table 2 to Table 3 it can be deduced that the short moving average crosses 
more often the 1% band than the long moving average. 
 
4.3 Moving averages and oscillators 
 
Bands were used to get more clear-cut signals on the beginning of a trend. Another aim of 
technical analysis is the prediction of trend reversals. This is typically what is achieved by tools 
called oscillators. These indicators are complementary to moving averages as they are supposed 
to give appropriate signals to neutralize (to step out of the market) a short or a long position. 
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Oscillators try to detect if an asset is overbought or oversold in which case they give the signal to 
neutralize the position. According to Pring (1991) and Béchu and Bertrand (1998) the two most 
popular oscillators are the relative strength index (RSI) and the stochastic indicator (SI). Our 
paper considers both of them. The RSI has been proposed by Wilder (1978). It is defined as: 
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where d is the number of days on which the RSI is computed and pn is the price at time n. 
Intuitively, the RSI compares the magnitude of increases in the price level of an asset with the 
magnitude of decreases over a given period. A high ratio means that the rises in prices have been 
more frequent and larger than decreases in prices. This situation is considered as overbought, 
and the asset under consideration should be sold as a return reversal is expected in the near 
future. On the other hand a low ratio means that the rises in prices have been less frequent and 
lower than decreases in prices. This situation is considered as oversold, and the position in the 
asset under consideration should be neutralized as a return reversal is expected in the near future. 
 
The number of days d and the level of neutralization must be determined before applying the 
RSI. As for moving averages these parameters do not correspond to some theory but are rather 
determined by practice. According to Béchu and Bertrand (1998), popular levels for the number 
of lags used is 5, 14 and 21 days (which represent roughly 1, 3 and 4 weeks of trading) and 
levels of neutralization are 90 for overbought situations and 10 for oversold situations (the 
magnitude of rise (decreases) has been 9 times larger than decreases (rises)). This means that 
when the RSI is over 90 or under 10, the position is neutralized. As the results for different lags 
d and for different levels of neutralization are very close, we only present the results for d equals 
to 21 days and neutralization levels 90/10 in Table 4. 
 

Table 4 : Results for moving average rules with 21-day relative strength index 
────────────────────────────────────────────────────── 
Trading rule N(buy) N(sell) µ(buy) µ(sell) µ(strategy) N(trades) 
────────────────────────────────────────────────────── 
 
(1,200) 4385 2607 0.000501 -0.000200* 0.000384 181 
 [52.4] [49.3] 
(1,100) 4248 2742 0.000534 -0.000204* 0.000401 262 
 [52.8] [48.6] 
(1,50) 4137 2853 0.000653* -0.000349* 0.000523 408 
 [52.6] [47.9] 
(1,30) 4099 2891 0.000767* -0.000497* 0.000648* 520 
 [53.0] [48.7] 
(1,10) 3895 3102 0.000926* -0.000601* 0.000773* 999 
 [53.3] [48.6] 
(1,5) 3789 3210 0.001124* -0.000772* 0.000959* 1522 
 [54.6] [49.2] 
────────────────────────────────────────────────────── 
The column "Trading rule" gives the length of the moving averages for the trading rules. N(buy) and N(sell) 
indicate the number of days when the investor is long or short. Figures in brackets indicate the proportion of right 
signals, e.g. having a positive (negative) return after a buy (sell) signal. µ(buy) and µ(sell) report the average daily 
return obtained in long or short positions. µ(strategy) gives the average daily return obtained with the strategy over 
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the whole period. N(trades) is the number of times it is necessary to change the position according to the trading 
rule.* indicates that the average return is significantly different from the average buy-and-hold return at the 5% 
level for a two-tailed test.  
 
The results are close to those obtained without oscillators in Table 2. This is due to the fact that 
the number of days where the position is neutralized by the RSI is small. The limits of 90 and 10 
are only crossed a few times by the RSI. The only time when it happens, it does not remove 
enough returns to significantly improve the performance of the strategy.  
 
The other popular oscillator is the stochastic indicator (SI). It is defined as follows: 
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where x>y, pt is the price at time t, Lt-1,t-1-x is the lowest price between time t-1 and t-1-x, Ht-1,t-1-x 
is the highest price between time t-1 and t-1-x. The SI is another way of depicting overbought or 
oversold situations. Instead of focusing on a series of variations, it focuses on the distance 
between the last quoted price and the high/low of a price on a certain window.  
 
More precisely, the SI compares the distance between the last price of an asset and the lowest 
price in a period of x days before with the distance between the highest and lowest price on the 
same period of x days. This ratio is then recomputed for y preceding periods and averaged over 
time. This means that if the latest price is systematically close to the lowest observed price in a 
certain period, the asset is considered as oversold and that prices are expected to rise in the near 
future. On the other hand if the last price is systematically close to the highest price observed 
then the SI indicates that the prices are going to drop soon. Intuitively, this means that if the 
latest observed price is systematically close to the highest/lowest price during several days, a 
trend reversal is expected.  
 
 

Table 5 : Results for moving average rules with 10/20 days stochastic indicator 
────────────────────────────────────────────────────── 
Trading rule N(buy) N(sell) µ(buy) µ(sell) µ(strategy) N(trades) 
────────────────────────────────────────────────────── 
  
(1,200) 2974 2118 0.000258 -0.000267* 0.000223 459 
 [51.0] [49.6] 
(1,100) 2748 2171 0.000267 -0.000311* 0.000236 574 
 [51.3] [49.1] 
(1,50) 2575 2260 0.000450 -0.000511* 0.000365 743 
 [51.1] [48.4] 
(1,30) 2534 2293 0.000643* -0.000690* 0.000493 844 
 [51.9] [49.4] 
(1,10) 2623 2640 0.000859* -0.000674* 0.000600* 1159 
 [52.3] [48.9] 
(1,5) 2746 2852 0.001046* -0.000827* 0.000764* 1664 
 [53.5] [49.5] 
────────────────────────────────────────────────────── 
The column "Trading rule" gives the length of the moving averages for the trading rules. N(buy) and N(sell) 
indicate the number of days when the investor is long or short. Figures in brackets indicate the proportion of right 
signals, e.g. having a positive (negative) return after a buy (sell) signal. µ(buy) and µ(sell) report the average daily 
return obtained in long or short positions. µ(strategy) gives the average daily return obtained with the strategy over 
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the whole period. N(trades) is the number of times it is necessary to change the position according to the trading 
rule.* indicates that the average return is significantly different from the average buy-and-hold return at the 5% 
level for a two-tailed test.  
 
Again, the user of this indicator must choose some levels and no theoretical arguments are 
available for this choice. Popular number of lags for x and y include 5/10 days (1 and 2 trading 
weeks) and 10/20 days (2 and 4 trading weeks). Levels of neutralization are also 90 and 10. 
Again we compute the results for 5/10 and 10/20 lags and for different levels of neutralization. 
As we observe very similar results we only present the results for the 10/20 SI and 90/10 
neutralization level in Table 5. 
 
Compared to the RSI, the SI neutralizes more frequently long or short positions as can be seen 
from Table 5. However the days which are neutralized are not the worst days as the average 
returns are again very close to those obtained with simple moving averages. For the global 
strategy the lower average return can also be attributed to the presence of the neutral signals. 
 
The conclusion of tests performed with various bands or oscillators is that they do not lead to a 
great improvement over results obtained with technical trading rules using only double moving 
averages. The use of bands permits to identify higher returns but this is compensated by the fact 
that it also induces neutral positions which reduce the average return of the global strategy. 
Oscillators do not really permit to identify higher returns than simple moving averages. In the 
rest of the paper, we only analyze results obtained with simple moving averages. 
 
5. Empirical results of bootstrap tests 
 
Statistical tests performed in the previous section assume that returns are normally distributed, 
that the observations are independent and that the distribution does not change trough time. 
Since Fama (1965) a number of studies have documented that asset returns have special 
statistical properties. In particular return distributions are known to be non-normal, returns 
present some degree of dependance and they have time-varying moments. For instance, if the 
returns are normally distributed they should have a skewness of 0 and a kurtosis of 3. Table 1 
shows that it is not the case and that the return distribution of the SBC index has fatter tails than 
the normal and is asymmetric. Moreover, the returns are not independent as is witnessed by the 
significant ρ(1), ρ(4) and ρ(5) coefficients. The apparent predictability of the returns could 
simply be due to these features. To be more precise the problem is that as usual statistical tests 
used in the previous section do not take into account these deviations, they could indicate that 
the average return obtained with the trading strategies are statistically significantly different 
from the average return that is obtained with the buy-and-hold strategy, but in reality they can 
not be considered as being different. In order to check if these features of asset returns modify 
the distribution of test statistics, we use the bootstrapping method. The basic idea is to simulate 
the empirical distribution of returns and compute p-values with respect to these simulated 
distributions instead of the theoretical normal distribution. There are three steps in this approach: 
estimate the alternative model (AR and/or GARCH model), simulate the empirical distribution 
and finally compare the parameters with the empirical p-value. 
 
The application of the bootstrap methodology in this context has been proposed by Brock, 
Lakonishok and LeBaron (1992)7. Empirical distribution of the parameters (in our case, the 
                     
7 The interested reader can find the details and demonstrations relative to the application of the bootstrap 
methodology in our framework in Brock, Lakonishok and LeBaron (1992). Maddala and Li (1996) discuss more 
generally the application of bootstrap tests in financial models. 
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mean return produced by the trading rule) are simulated under various null hypothesis for the 
return generating process. The null model is estimated on the original series, e.g. a random walk 
with drift. Then the residuals of the model are resampled; i.e. they are randomly drawn with 
replacement from the original residual series, to form a new simulated series of returns and 
prices for the index. Technical trading rules are then applied to this simulated series and an 
average return is obtained for the buy and sell periods as well as for the global strategy. This step 
(resampling) is repeated 500 times8 to get the empirical distributions of the mean return of the 
trading rule under the null model. The return obtained with the original series is then compared 
to this distribution as it would have been done with a theoretical distribution. In our paper, we 
consider several null models which all coincide with observed features of the data. The first null 
model is a random walk with drift, which simply assumes independence and identical 
distribution for returns but does not assume a normal distribution. The second specificiation that 
we consider is an AR(1) model because of the strong first order autocorrelation in returns 
documented in Table 1. This model is the following: 
 r a a rt t t= + +−0 1 1 ε  with a1 1<  (7) 
This model assumes time-varying expected return and it is estimated on the SBC index returns 
using ordinary least squares. The two other models considered for null hypothesis are ARCH-
type models. These models explicitly take account of the fact that financial series exhibit a time-
varying conditional variances9 or more precisely that the conditional variance of returns changes 
through time according to an AR process. Dubois and Durini (1995) found that these models 
capture properly the dynamics of Swiss stock returns. We first estimate an AR(1)-GARCH(1,1) 
model on the returns SBC index: 
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Where εt is a normally distributed residual with mean zero and variance σ t
2 . This model assumes 

that both conditional mean and variance are time-varying. Different ARCH models exist and 
they differ by the specification of the variance equation. Another common feature of stock 
returns we have already mentioned is the leverage effect, where there are asymmetric responses 
to past shocks on variance, i.e. past negative and positive shocks have different impacts on the 
present conditional volatility. Different models have been proposed to capture this feature of the 
data as the EGARCH model of Nelson (1991) or the Asymmetric GARCH of Glosten, 
Jaggananthan and Runkle (1993). We only present the results obtained with the latter (GJR) 
specification as they are close to those obtained with the EGARCH model. The GJR model can 
be written as:  
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where dt is a dummy which takes the value of 1 if εt is negative and zero otherwise and εt is a 
normally distributed residual with mean zero and variance σ t

2 . The results of the various 
estimations are presented in Table 6. GARCH models have been estimated with the maximum 
likelihood method and t-statistics are computed with the robust Bollerslev-Wooldridge (1992) 
standard errors. 

                     
8 Brock, Lakonishok and LeBaron (1992) have shown that the results obtained with 500 simulations are reliable. 
9 The interested reader can find the details on GARCH models and their application to financial data in the survey of 
Bollerslev, Chou and Kroner (1992). 
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Table 6 : Estimation results for various null models 
────────────────────────────────────────────────────── 
Panel A : AR(1) model 
a0 : 0.000251* a1: 0.100772* 
 
Panel B : AR(1)-GARCH(1,1) model 
a0 : 0.000534* a1: 0.168754* 
 
α0 :0.00000555* α1: 0.166264*  β1: 0.758429*  
 
Panel C : AR(1)-GJR(1,1) model 
a0 : 0.000320* a1: 0.177412* 
 
α0 :0.00000576* α1: 0.082022* α2: 0.173189*  β1: 0.751590* 
────────────────────────────────────────────────────── 
Numbers marked with a * are significant at the 5% level for a two-tailed test 
 
For every estimated model the residuals are resampled with replacement and trading rules are 
applied to the new series. This operation is repeated 500 times and then we compute the fraction 
of simulated returns which have a greater mean (or standard deviation) than the mean return (or 
standard deviation of returns) obtained from the original SBC index. These fractions can be 
interpreted as p-values and are shown in Table 7. The results in the µ columns are the results for 
the average return and those in the σ columns are the results for standard deviations. Each row 
represents a different null model. The number in the column µ(buy) and row RW for the strategy 
(1,200) is 0.01 and it means that only 1% of the simulations generated by the random walk 
model yields an average buy return higher than the average buy return obtained on the original 
series. It means that the high level of average buy return cannot be explained by the fact that the 
series follows a random walk. For the σ(buy), we see that 100% of the standard deviations 
generated by the random walk are greater than the random walk of the original SBC index. This 
means that the random walk model cannot explain the low level of volatility observed in buy 
periods. For the sell periods, we see that 100% of the mean returns generated by the random 
walk are higher than the average return of the original series and that all the volatilities generated 
by the sell signals on the random walk model are lower than the standard deviation of the sell 
periods of the original series.  
 
Again the random walk model can neither explain the level of the mean or the standard deviation 
of returns observed on the original series. Finally, we see that there is 0.2% of the simulated 
average returns which are larger than the average return of the global strategy applied to the 
original series. In this case, the standard deviations are similar. These results indicate that the 
random walk with drift model cannot explain the various results obtained by applying trading 
rules to the original series. We repeated these simulations for the various strategies and for the 
various null models as can be seen from Table 7. Globally, the results are very similar to those 
obtained for the random walk model for the (1,200) strategy. The only exception is for the 
GARCH and GJR model which can produce slightly larger average buy returns and also slightly 
higher standard deviations in sell periods. But this is not enough to explain the results obtained 
with the trading strategy on the original SBC index. The conclusion of the bootstrap simulations 
is that the predictability and profits obtained by applying trading rules on the original SBC index 
are not the result of the omission of one of the well-known features of asset returns as non-
normality, autocorrelation, or time-varying mean or variance. 
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Table 7 : Results of bootstrap simulations 

────────────────────────────────────────────────────── 
Trading rule Null model µ(buy) σ(buy) µ(sell) σ(sell) µ(strat.) σ(strat.) 
────────────────────────────────────────────────────── 
(1,200) RW 0.010 1.000 1.000 0.000 0.002 0.604 
 AR(1) 0.034 1.000 0.992 0.000 0.010 0.574 
 GARCH(1,1) 0.084 0.974 0.976 0.058 0.028 0.460 
 GJR(1,1) 0.108 0.992 0.978 0.098 0.026 0.578 
 
(1,100) RW 0.006 1.000 1.000 0.002 0.000 0.582 
 AR(1) 0.046 1.000 0.982 0.000 0.014 0.542 
 GARCH(1,1) 0.110 0.990 0.964 0.086 0.030 0.478 
 GJR(1,1) 0.166 0.998 0.972 0.092 0.042 0.572 
 
(1,50) RW 0.004 1.000 1.000 0.000 0.000 0.554 
 AR(1) 0.018 1.000 1.000 0.000 0.002 0.608 
 GARCH(1,1) 0.048 1.000 0.982 0.064 0.000 0.548 
 GJR(1,1) 0.096 1.000 0.990 0.076 0.008 0.584 
 
(1,30) RW 0.000 1.000 1.000 0.000 0.000 0.596 
 AR(1) 0.002 1.000 0.998 0.000 0.000 0.592 
 GARCH(1,1) 0.020 1.000 1.000 0.050 0.002 0.496 
 GJR(1,1) 0.068 1.000 0.998 0.082 0.004 0.630 
 
(1,10) RW 0.000 1.000 1.000 0.000 0.000 0.610 
 AR(1) 0.006 1.000 1.000 0.000 0.000 0.604 
 GARCH(1,1) 0.048 1.000 0.988 0.066 0.000 0.470 
 GJR(1,1) 0.094 0.998 0.986 0.088 0.006 0.602 
 
(1,5) RW 0.000 1.000 1.000 0.000 0.000 0.650 
 AR(1) 0.000 1.000 1.000 0.002 0.000 0.656 
 GARCH(1,1) 0.034 1.000 0.996 0.078 0.000 0.470 
 GJR(1,1) 0.072 1.000 0.984 0.100 0.010 0.588 
───────────────────────────────────────────────────── 
RW indicates that the null model used in the simulations is the random walk with drift, AR(1) stands for the AR(1) 
model, GARCH(1,1) for the AR(1)-GARCH(1,1) model and GJR(1,1) for the AR(1)-GJR(1,1) model. 
 
 
6. Profitability of technical trading rules 
 
All the results presented so far have been obtained on the SBC General Index which is not an 
easily replicable index and we have not included trading costs in our tests, which makes the 
results unrealistic. This section checks if these results can also be obtained on more easily 
holdable securities as individual stocks. It also analyzes the previous results by including trading 
costs to see if technical trading rules are really profitable. 
 
Table 8 shows the results obtained for 5 individual stocks which are chosen from the main 
industrial sectors of the Swiss market. We only present results for the (1,5) rule as this is the 
trading rule which gives the best results on the index. All the considered securities are bearer 



 

15

shares. The test periods are different as some stocks were merged into other categories before the 
end of 1997 and some data is missing before 1980. Again, the average returns based on the 
trading strategies are all higher than the return of the buy-and-hold strategy. Only two of them 
are not statistically significantly different from the buy-and-hold return. As for the SBC Index, 
volatilities for buy-and-hold returns and for returns of the global strategies are very close and 
cannot explain the difference in average returns. The results for individual stocks are similar to 
those obtained for the index which shows that technical trading strategies are also operational 
with individual stocks. 
 

Table 8 : Results of moving averages trading rule (1,5) for individual stocks 
────────────────────────────────────────────────────── 
Stock Period Nb obs. µ(buy & hold) µ(strategies) N(trades) 
────────────────────────────────────────────────────── 
UBS 1.1.80-31.12.97 4320 0.000323 0.001324* 969 
   (0.01199) (0.01192) 
ABB 1.1.80-31.12.97 4320 0.000421 0.001526* 1011 
   (0.01599) (0.01599) 
Nestlé 1.1.80-28.05.93 3162 0.000415 0.000905 762 
   (0.01184) (0.01181) 
Ciba-Geigy 1.1.80-29.11.96 4049 0.000515 0.000731 1005 
   (0.01572) (0.01571) 
Zürich 1.1.80-30.06.95 3691 0.000249 0.001152* 857 
   (0.01396) (0.01391) 
────────────────────────────────────────────────────── 
Nb obs. gives the number of observations. µ(buy & hold) reports the average daily return obtained with a buy-and-
hold strategy. µ(strategy) gives the average daily return obtained with the strategy over the whole period. N(trades) 
is the number of times it is necessary to change the position according to the trading rule.* indicates that the average 
return is significantly different from the average buy-and-hold return at the 5% level for a two-tailed test.  
 
Finally, we consider the effect of trading costs on the profits generated by the trading rules. As 
has been emphasized among others by Sweeney (1988), the level of transaction costs charged to 
investors depends largely on the type of investor considered. Let us consider from this point of 
view the level of fees faced by Swiss investors. Bruand and Gibson-Asner (1998) estimate that 
trading costs are between 0.3% and 1.6% depending on the magnitude of the order and if the 
investor has direct access to the market or not. Clearly, 0.3% would be the fee charged to an 
important financial institution which has direct access to the market and 1.6% would be the fee 
charged to the individual investor. Discussions with practitioners have shown that 0.3% is a very 
conservative figure for big institutions and that they probably face lower transaction costs. In 
order to have an idea of the impact of these costs on the previous profits we compute the 
resulting returns when costs are included. The average costs to be deduced from the average 
daily return of the strategy depends on the number of trades an investors makes. In the case of 
the (1,5) trading rule for the SBC index there are 1500 trades out of 7084 holding days. If the 
trading cost is 0.3%, the average trading costs is 0.003(1500/7084) = 0.000635. As this trading 
rule yields an average 0.000972 and the average buy-and-hold period is 0.000250, there remains 
an excess return of using this trading strategy of 0.0087% or 2.18% yearly. This means that a 
large investor can still earn 2.18% over the buy-and-hold strategy after deduction of fees. Table 
9 provides the average excess returns from the trading strategy over the buy-and-hold return 
after deduction of fees. We have also computed the level of fees for which the trading strategy 
based on moving averages yields the same return as the buy-and-hold strategy. 
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Table 9 : Trading rules and transaction costs 
 

 ────────────────────────────────────── 
 Asset-Rule 0.3% 1.6% Max. fees 
 ────────────────────────────────────── 
 SBC-(1,200) 0.0094% -0.0170% 0.764% 
 SBC-(1,100) 0.0074% -0.0330% 0.535% 
 SBC-(1,50) 0.0134% -0.0537% 0.560% 
 SBS-(1,30) 0.0212% -0.0666% 0.621% 
 SBC-(1,10) 0.0128% -0.1638% 0.395% 
 SBC-(1,5) 0.0087% -0.2666% 0.343% 
 
 UBS-(1,5) 0.0328% -0.0251% 0.445% 
 ABB-(1,5) 0.0403% -0.0264% 0.469% 
 Nestlé-(1,5) -0.0023% -0.3366% 0.205% 
 Ciba-Geigy-(1,5) -0.0053% -0.3755% 0.088% 
 Zürich-(1,5) 0.0206% -0.2812% 0.389% 
 ────────────────────────────────────── 
The 0.3% and 1.6% columns indicate the daily average excess returns of the buy-and-hold strategy in presence of 
these transaction costs. The max. fees column gives the maximum amount of fees an investor can face in order to 
get a higher return than the buy-and-hold strategy. 
 
Table 9 shows that for a 0.3% transaction cost, all trading rules are still profitable for the SBC 
index, and that some of them are also profitable for individual stocks. On the other hand, for a 
1.6% trading cost, no technical trading rule yields profitable results anymore. This means that an 
individual investor cannot gain anything with these technical trading rules. This is confirmed by 
the maximum level of fees which is far below 1.6%. Does this mean that large investors can 
benefit from these trading rules and that markets are inefficient? An additional condition has to 
be fulfilled before this can be seen as true, i.e. that these investors should be able to trade these 
assets at the closing prices used in this study. The profitability of these simple technical trading 
rules depend critically on the fulfillment of these conditions.  
 
In order to illustrate the impact of transaction costs on the profitability of the strategies we have 
plotted in figure 1 the evolution of the wealth invested according to a strategy based on moving 
averages of one and thirty days10. Note that the scale of the graph is logarithmic. We use this 
type of graph because the magnitudes of the series are very different (especially at the end of our 
period). This means that in a graph with arithmetic scale the 1.6% line would be difficult to 
distinguish from the x-axis and it would be difficult to compare the evolution of the series. 
Figure 1 shows the evolution of 100.- CHF invested on January 1, 1969. This would have 
yielded 457.17 CHF at the end of 1997 for an investor who would have invested in the SBC 
index (bold line). An investor using the (1,30) strategy during all the period and who would have 
0.3% fees per transaction would have ended with with 2058.07 CHF at the end of 1997. On the 
other hand a small investor who would have followed the same strategy but with 1.6% fees per 
transaction would have ended with only 3.92 CHF at the end of 1997. Clearly even if the 
strategy seems very profitable without transaction costs, their inclusion changes the picture and 
shows that only investors with very low transaction costs could gain some profits from these 
strategies. For a small investor the level of transaction costs he faces largely offsets the potential 

                     
10 As the SBC index is a price index, the evolution of wealth depicted in figure 1 does not include the effects of 
dividends payments. 
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profits generated by the trading rule. If this type of investors is rational it will not use such 
investment strategies. 
 

Figure 1 : Evolution of wealth according to the (1,30) rule and including transaction costs 
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7. Conclusions 
 
This paper tests if simple technical trading rules are profitable on Swiss stock prices. It considers 
different trading rules as simple moving averages or moving averages with bands and oscillators. 
Tests of the various rules are performed on daily prices of the Swiss Bank Corporation Index for 
the period January 1969 to December 1997. The most profitable rule appears to be a double 
moving average with respective windows of one and five days. This technique yields an annual 
average return on the SBC Index of 24.30% compared to a buy-and-hold return on the same 
index of 6.25%. These results are statistically significantly different from each other. The trading 
rules permit to identify clearly periods with positive returns from periods with negative returns. 
We also find that buy periods are characterized by lower volatility and sell periods are 
characterized by high volatility which is consistent with a leverage effect. We find that the use of 
bands permits to isolate even higher returns for buy and sell periods. However, this strategy does 
not lead to higher returns for the investor as he faces neutral periods where he must stay out of 
the market. We introduce and perform tests with oscillators, such as the relative strength index 
and the stochastic indicator, which aims at detecting trend reversals. The results show that they 
do not allow to improve significantly the performance obtained with simple moving averages. 
 
As asset returns are known to present a certain number of features as non-normality, serial 
correlation and time-varying conditional moments, we perform bootstrap simulations to check if 
previous results are not due to one of these characteristics. We find that it is not the case and that 
an AR(1) and GARCH(1,1) component although present in the data is not responsible for the 
documented profits. Finally, we investigate whether the results are feasible from an investor's 
point of view as the SBC index is not easily replicable and does not include transaction costs. 
Tests are repeated on individual assets and the same kind of profitable results are obtained. 
When transaction costs are considered we find that the results of the trading strategies only yield 
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profitable results for large investors who must fulfill two conditions: pay transaction costs of 
0.3% or lower and trade the index at closing prices. As small investors cannot achieve such 
conditions, they cannot get any profits from these simple technical rules. This could also explain 
why the profit opportunities associated with these strategies have not disappeared as a large 
fraction of the market participants could not get any profit because of the presence of transaction 
costs. If these investors are rational, it is very likely they have used other investment strategies 
during this period. This also means that the hypothesis of weak form efficiency of the market 
cannot be rejected for a large fraction of market participants. 
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Appendix 
 

Table AI : Comparative results for cum and ex-dividend indexes 
────────────────────────────────────────────────────── 
Trading rule N(buy) N(sell) µ(buy) µ(sell) µ(strategy) Ν(trades) 
────────────────────────────────────────────────────── 
 

SPI (cum dividend) 
1468 observations, SPI cum mean return : 0.000597 

 
(1,200) 965 303 0.000758  0.000088 0.000555 17 
(1,100) 907 361 0.000693  0.000357 0.000394 46 
(1,50) 876 392 0.000752  0.000253 0.000441 80 
(1,30) 853 415 0.000918 -0.000060 0.000637 97 
(1,10) 785 483 0.000941  0.000040 0.000567 187 
(1,5) 770 498 0.001214 -0.000354 0.000876 274 
 

SPI (ex dividend) 
1468 observations, SPI ex mean return : 0.000536 

 
(1,200) 984 320 0.000696  0.000060 0.000505 19 
(1,100) 891 377 0.000695  0.000159 0.000441 52 
(1,50) 856 412 0.000781  0.000026 0.000519 72 
(1,30) 842 426 0.000877 -0.000139 0.000629 91 
(1,10) 777 491 0.000860  0.000022 0.000518 193 
(1,5) 762 506 0.001122 -0.000347 0.000814 276 
 

SMI (cum dividend) 
1468 observations, SMI cum mean return : 0.000665 

 
(1,200) 970 298 0.000799  0.000227 0.000558 23 
(1,100) 932 336 0.000774  0.000360 0.000473 40 
(1,50) 871 397 0.000909  0.000129 0.000584 82 
(1,30) 844 424 0.001041 -0.000084 0.000721 105 
(1,10) 787 481 0.001041  0.000049 0.000628 190 
(1,5) 750 518 0.001176 -0.000075 0.000726 292 
 

SMI (ex dividend) 
1468 observations, SMI ex mean return : 0.000599 

 
(1,200) 957 311 0.000752  0.000129 0.000536 19   
(1,100) 919 349 0.000746  0.000213 0.000482 50   
(1,50) 856 412 0.000896 -0.000017 0.000610 78   
(1,30) 839 429 0.000997 -0.000178 0.000720 103 
(1,10) 777 491 0.000960  0.000027 0.000578 198 
(1,5) 743 525 0.001076 -0.000076 0.000661 294 
 
────────────────────────────────────────────────────── 
The period considered here is 1.5.1993-15.12.1998 
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Table AII : Results for moving average rules for subperiods 
 
────────────────────────────────────────────────────── 
Trading rule N(buy) N(sell) µ(buy) µ(sell) µ(strategy) N(trades) 
────────────────────────────────────────────────────── 
 

Subperiod 1 : 1969-1983 
3570 observations, SBC mean return : 0.000042 

 
(1,200) 1852 1718 0.000372 -0.000313 0.000343 76 
(1,100) 1863 1707 0.000382 -0.000329 0.000357 116 
(1,50) 1895 1675 0.000506* -0.000482* 0.000495* 200 
(1,30) 1945 1625 0.000605* -0.000632* 0.000617* 242 
(1,10) 1833 1737 0.000868* -0.000829* 0.000849* 466 
(1,5) 1804 1766 0.000996* -0.000932* 0.000964* 746 
 
 

Subperiod 2 : 1984-1997 
3514 observations, SBC mean return : 0.000461 

 
(1,200) 2614 900 0.000624 -0.000013 0.000468 68 
(1,100) 2468 1046 0.000668 -0.000028 0.000477 104 
(1,50) 2325 1189 0.000789 -0.000182* 0.000584 166 
(1,30) 2237 1277 0.000921 -0.000346* 0.000712 236 
(1,10) 2138 1376 0.000971* -0.000330* 0.000720* 496 
(1,5) 2059 1455 0.001228* -0.000625* 0.000979* 754 
 
────────────────────────────────────────────────────── 
* Indicates that the average return is significantly different from the average buy-and-hold return at the 5% level for 
a two-tailed test. 
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Table AII (continued) : Results for moving average rules for subperiods 
 
────────────────────────────────────────────────────── 
Trading rule N(buy) N(sell) µ(buy) µ(sell) µ(strategy) N(trades) 
────────────────────────────────────────────────────── 
 

Subperiod I : 1969-1979 
2564 observations, SBC mean return : -0.000017 

 
(1,200) 1361 1203 0.000264 -0.000335 0.000297 61 
(1,100) 1329 1235 0.000302 -0.000360 0.000330 81 
(1,50) 1310 1254 0.000477* -0.000532 0.000504* 146 
(1,30) 1348 1216 0.000646* -0.000751* 0.000696* 166 
(1,10) 1298 1266 0.000915* -0.000972* 0.000943* 328 
(1,5) 1291 1273 0.001072* -0.001121* 0.001096* 522 
 

Subperiod II : 1979-1989 
2509 observations, SBC mean return : 0.000284 

 
(1,200) 1638 871 0.000544 -0.000204 0.000426 45 
(1,100) 1639 870 0.000503 -0.000129 0.000374 76 
(1,50) 1594 915 0.000652 -0.000357* 0.000544 116 
(1,30) 1549 960 0.000780 -0.000515* 0.000679 164 
(1,10) 1441 1068 0.000947* -0.000610* 0.000804* 325 
(1,5) 1390 1119 0.001131* -0.000768* 0.000969* 534 
 
 

Subperiod III : 1989-1997 
2011 observations, SBC mean return : 0.000547 

 
(1,200) 1467 544 0.000729 -0.000057 0.000517 38 
(1,100) 1363 648 0.000832 -0.000052 0.000581 62 
(1,50) 1316 695 0.000859 -0.000043 0.000577 104 
(1,30) 1285 726 0.000902 -0.000081 0.000606 148 
(1,10) 1232 779 0.000903 -0.000015 0.000559 308 
(1,5) 1182 829 0.001159* -0.000325* 0.000815 444 
 
 
 
────────────────────────────────────────────────────── 
* Indicates that the average return is significantly different from the average buy-and-hold return at the 5% level for 
a two-tailed test. 
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Table AIII : Results for moving average rules without shortsales 
────────────────────────────────────────────────────── 
Trading rule N(buy) N(sell) µ(buy) µ(sell) µ(strategy) N(trades) 
────────────────────────────────────────────────────── 
(1,200) 4466 2618 0.000919* 0.000123 0.000625* 144 
   (0.01493) (0.00009) (0.01186) 
(1,100) 4331 2753 0.000972* 0.000127 0.000644* 220 
   (0.01473) (0.00010) (0.01152) 
(1,50) 4220 2864 0.001208* 0.000128 0.000772* 366 
   (0.01441) (0.00010) (0.01113) 
(1,30) 4182 2902 0.001433* 0.000128 0.000898* 478 
   (0.01410) (0.00010) (0.01085) 
(1,10) 3971 3113 0.001726* 0.000123 0.001021* 962 
   (0.01445) (0.00010) (0.01085) 
(1,5) 3863 3221 0.002120* 0.000122 0.001211* 1500 
   (0.01435) (0.00010) (0.01065) 
────────────────────────────────────────────────────── 
* Indicates that the average return is significantly different from the average buy-and-hold return at the 5% level for 
a two-tailed test. Figures in parentheses are the standard deviations of the strategies. 
 
 
 
 
 
 
 


