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Quick variability description is an important component for zone management practices. Precision farming requires topping
up of only the nutrients that are lacking in the soil to attain the highest yield with the least input. The apparent soil electrical
conductivity (ECa) sensor is a useful tool in mapping to identify areas of contrasting soil properties. In nonsaline soils, ECa is a
substitute measurement for soil texture. It is directly related to both water holding capacity and Cation Exchange Capacity (CEC),
which are key ingredients of productivity. This sensor measures the ECa across a field quickly and gives detailed soil features
(one-second interval) with few operators. Hence, a dense sampling is possible and therefore a high-resolution ECa map can be
produced. This study aims to characterize the variability of soil ECa within a Malaysian paddy field with respect to the spatial and
seasonal variability. The study was conducted at Block C, Sawah Sempadan, Selangor, Malaysia, for three continuous seasons. Soil
ECa was collected after harvesting period. The results showed that deep ECa visualized the pattern of the former river routes clearly
as continuous lines (about 45 m width) at the northern and central regions of the study area. This exploration has shown different
maps with higher contrast as compared to the existing soil series map for the study area. Seasonal variability test showed that the
ECa that was acquired during rainy season (collected after harvest in December to January) has the highest value as compared to
another season.

Copyright © 2009 W. Aimrun et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Soil variability in paddy fields is well recognized where its
spatial variability and seasonal variability of soil chemical
and physical properties within a field are unavoidable. Quick
variability description is an important component for zone
management practices. Precision farming requires topping
up of only the nutrients that are lacking in the soil to attain
the highest yield with the least input. Manual soil sampling
and the consequent laboratory analysis are expensive, labor-
intensive, and require a long time. The use of an on-the-go
apparent electrical conductivity (ECa) sensor can replace the
traditional way of acquiring data in a more efficient way.

Since farmers in the study area cultivate rice two seasons
a year, it leads to delay in acting for the coming season and
will not satisfy the concept of precision farming. Hence, soil

nutrient variability is needed for rapid measurement and
monitoring. In order to overcome the problems, a sensor
device known as VerisEC sensor was introduced. This device
can rapidly measure ECa and exactly know the location.
The relationship of ECa to variation in crop production
caused by soil differences have been reported by several
authors [1–4]. Rapid spatial measurement of bulk ECa can be
accomplished using noncontact electromagnetic induction
sensors [5, 6] or with direct-contact sensors such as rolling
coulters that measure electrical resistance directly [7, 8]. In
general, ECa can be affected by a number of different soils
properties, including clay content and soil water content
[9, 10]. According to Moore and Wolcott [11], they found
that ECa measures texture, nutrients, and crop yields as
shown in their study results. They depicted soil ECa in the
surface map using 400 square-foot grid cells. They found that
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Figure 1: Map of the soil chemical and physical sampling points in
block C.

the highest conductivity measurements in the eastern-most
portion of the figure fairly accurately depict the denser clay
soil in this area. Soil texture affects the amount of fertilizer
required to produce optimum crop yields. The surface map
may be used as a prescription map for fertilizer input based
on soil texture. In a separate study, soil samples were taken
from eight specific electrical conductivity zones and analyzed
for soil texture and organic matter. There was very high
correlation between electrical conductivity and clay content
(r = 0.99) and between electrical conductivity and organic
matter (r = 0.99). As mentioned earlier, similar information
for paddy soils in the humid tropic is constrained. This
study aims to characterize the variability of soil ECa within a
Malaysian paddy field with respect to the spatial and seasonal
variability.

2. Methodology

This study uses an on-the-go ECa sensor for producing
ECa map where its readings can be obtained through this
soil-to-instrument contact device that permits rapid soil
ECa measurement without requiring a permanently buried
detector. The study was conducted in a paddy field at Block
C, Sawah Sempadan, Tanjung Karang, Selangor, Malaysia.
The study site has 118 plots covering 145 ha with an average
plot size of about 1.2 ha (Figure 1). The ECa data acquisition
was done for three continuous seasons. The first season soil
samples were collected on 2nd to 20th June 2003 coinciding
with after harvest of the off-season for 2003 and, the second
season samples were collected on 16th December 2003 to 3rd
January 2004 coinciding with after harvest of the main season
for 2003. The third season samples were collected on 9th to
18th June 2004 (off-season 2004).

The Veris 3100 Sensor Cart was pulled across each field
behind a tractor in a series of parallel transects spaced about
15 m apart. The plot width was 60 m and the length was

200 m. The instrument was calibrated, as per manufacturer
instructions, prior to data collection for each field by
checking its resistance of lesser than 2 ohm using ohmmeter.
The Veris 3100 has three pairs of coulter-electrodes to
determine soil ECa. The coulters penetrate the soil surface
into a depth of 6 cm. One pair of electrodes emits an electrical
current into the soil, while the other two pairs detect
decreases in the emitted current due to its transmission
through soil (resistance). The depth of measurement is
based upon the spacing of the coulter-electrodes. The center
pair, situated closest to the emitting (reference) coulter-
electrodes, integrates resistance between depths of 0 and
30 cm (shallow), while the outside pair integrates between 0
and 90 cm (deep). Output from the Veris data logger was the
conversion of resistance conductivity (1/resistance = con-
ductivity). A Differential Global Positioning System (DGPS)
Trimble AgGPS132 (Trimble Navigation Ltd., Sunnyvale,
Calif, USA) with submeter accuracy was used to georeference
ECa measurements. This differential correction process was
done automatically on real-time basis by using available
beacon station at Lumut (4◦ 15.075′′ N and 100◦ 39.638′′E),
Perak, Malaysia (transmission frequency was 298.00 kHz).
The Veris data logger recorded latitude, longitude, and
shallow and deep ECa data (mS m−1) at 1-s interval in an
ASCII text format. The EC logger was available to log only
when DGPS signal was received. The locations of latitude
and longitude (WGS84) were then converted to Malaysian
Rectified Skew Orthomorphic (RSO) using GPS Pathfinder
Office 2.90.

The ECa data in ASCII format was then transferred
through a diskette to an available Geospatial and GIS
software such as GS+ version 5.1 and ArcGIS 8.3 with Spatial
Analyst extension in order to generate an ECa map by Kriging
technique. The GS+ was used to generate variogram and
the best model was selected for use in spatial interpolation
(kriging).

The Statistical Analysis System 8e (SAS) was used to
determine basic statistical descriptions. The significance test
of mean was determined between classes and seasons by
Duncan’s Multiple Range Test (DMRT) by PROC GLM in
SAS.

3. Results and Discussion

3.1. Spatial Variability of Soil ECa. The aim of this study was
to present the variability of ECa within the study area in a
local spatial variability characterization. Since the standard
classification did not visualize much variability, then most of
the data points fell into a single class. Thus, the classification
technique of smart quantiles, which was introduced by
ArcGIS software, was selected. This was based on natural
groupings of data values. It identifies break points by looking
for groupings and patterns inherent in the data. The features
are divided into classes whose boundaries are set where
there are relatively big jumps in the data values. This is a
compromise method between equal interval and quantile,
with unequal-sized intervals, such as quantile that generally
gets a bit wider at the extremes, but not so much as with
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Figure 2: Kriged Map for shallow ECa (mS m−1) classified by smart quantiles (a) Season 1, (b) Season 2, and (c) Season 3.

the quantile method, so there is also a decreasing number
of values in the extreme classes. This option tries to find a
balance between highlighting changes in the middle values
and the extreme values [12]. This study had decided to zone
the area into 5 manageable zones classified by smart quantile
method with the adjustment of the class value to a single
number based on three-season data range. They were less
than 20, 20 to 30, 30 to 40, 40 to 50 and more than 50 mS m−1

for shallow ECa. For deep ECa, they were less than 40, 40 to
60, 60 to 80, 80 to 100 and more than 100 mS m−1. This was
to produce a consistence range over the study seasons to use
as reference and simplify the comparison.

The new classification results for the shallow ECa dis-
played the appearance of the former water routes (once upon

a time, they were rivers), but they were still blur (Figure 2).
However, the previous classification method was unable to
justify them. Most of the area was occupied by classes 2 and
3 for all the seasons for more than 50 ha (34.50%) except
for class 3 in season 1. Class 1 occupied the area of 32.56
(22.49%), 14.66 (10.13%), and 14.25 ha (9.84%) for seasons
1, 2, and 3, respectively. This indicated that the area of low
shallow ECa (<20.00 mS m−1) was less than 23% of the total
area. Class 5 of more than 50 mS m−1 occupied the smallest
area (less than 6%) for all seasons (Table 1).

The new classification approach should be justified for
its strength. Strength of the classification approach can
be illustrated by compactness and isolation [13, 14]. The
compactness is referred to low within class variance or all
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Table 1: Summary of kriged shallow ECa maps for three seasons classified by smart quantiles.

Class Count Area Min Max Range Mean∗ Std. Deviation

Season 1 (ha) dS m−1

1 7586 32.56 (22.49%) 1.68 20.00 18.32 14.92e 4.02

2 12562 53.92 (37.25%) 20.00 30.00 10.00 25.04d 2.82

3 8841 37.95 (26.21%) 30.00 40.00 10.00 34.48c 2.86

4 3421 14.68 (10.14%) 40.00 50.00 10.00 44.07b 2.79

5 1318 5.66 (3.91%) 50.00 91.17 41.16 57.49a 7.17

Season 2

1 3415 14.66 (10.13%) 2.56 20.00 17.44 16.55e 2.98

2 12292 52.76 (36.45%) 20.00 30.00 10.00 25.43d 2.80

3 11702 50.23 (34.70%) 30.00 40.00 10.00 34.57c 2.86

4 4529 19.44 (13.43%) 40.00 50.00 9.99 44.07b 2.78

5 1789 7.68 (5.30%) 50.01 112.29 62.27 57.80a 8.18

Season 3

1 3319 14.25 (9.84 %) 4.94 20.00 15.06 17.16e 2.35

2 12240 52.54 (36.29%) 20.00 30.00 10.00 25.49d 2.81

3 12167 52.22 (36.07%) 30.00 40.00 10.00 34.51c 2.81

4 4675 20.07 (13.86%) 40.00 49.99 9.99 43.88b 2.75

5 1327 5.70 (3.93%) 50.01 141.31 91.30 55.76a 6.99

Total area 144.77
∗

Mean values in column were significant at α = 0.05 by DMRT.

Table 2: Summary of kriged deep ECa maps for three seasons classified by smart quantiles.

Class Count Area Min Max Range Mean∗ Std. Deviation

Season 1 (ha) mS m−1

1 4176 17.92 (12.38%) 0.89 40.00 39.11 26.11e 10.59

2 6375 27.36 (18.90%) 40.00 60.00 20.00 50.84d 5.75

3 9035 38.78 (26.79%) 60.00 80.00 20.00 70.04c 5.73

4 7469 32.06 (22.14%) 80.00 100.00 19.99 89.54b 5.75

5 6673 28.64 (19.78%) 100.00 166.02 66.02 113.75a 10.25

Season 2

1 1528 6.56 (4.53%) 15.44 40.00 24.56 32.04e 6.17

2 5366 23.03 (15.91%) 40.00 59.99 19.99 51.28d 5.65

3 7640 32.79 (22.65%) 60.00 80.00 19.99 70.05c 5.68

4 6702 28.77 (19.87%) 80.01 100.00 19.99 89.50b 5.73

5 12492 53.62 (37.04%) 100.00 278.44 178.44 129.33a 22.22

Season 3

1 2007 8.61 (5.95%) 8.50 40.00 31.50 31.44e 6.67

2 6350 27.26 (18.83%) 40.01 60.00 19.99 50.87d 5.71

3 8924 38.30 (26.46%) 60.01 80.00 19.99 70.22c 5.64

4 7729 33.18 (22.92%) 80.00 99.99 19.99 89.45b 5.76

5 8718 37.42 (25.85%) 100.00 208.41 108.41 116.93a 11.76

Total area 144.77
∗

Mean values in column were significant at α = 0.05 by DMRT.

objects within a class are highly similar to each other. The
isolation is referred to high distance between classes or the
objects within a class are dissimilar to objects in all other
classes. This study chose the statistical method of grouping
test, such as DMRT and LSD to identify the isolation of

the class where their mean values should be significantly
different from each other.

The labeled letter for mean values at each class indicated
significant difference (P < .001) showing the isolation
between classes when classified by adjusted smart quantiles
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Figure 3: Kriged map for deep ECa (mS m−1) classified by smart quantiles: (a) Season 1, (b) Season 2, (c) Season 3, and (d) Soil series map.

Table 3: Mean of the ECa for Seasons 1, 2, and 3.

Soil Properties Season 1 Season 2 Season 3

mS m−1

Shallow ECa
28.71c

(n = 93884)
32.17a

(n = 65618)
31.46b

(n = 63578)

Deep ECa
72.53c

(n = 85811)
92.59a

(n = 65667)
80.44b

(n = 63571)

Means within a row followed by the same letters are not significant at α =
0.05 level by DMRT.

approach. The standard deviation, especially for classes 2,
3, and 4, indicated the compactness of the classification
approach, when the standard deviations low and only classes

1 and 5 had higher standard deviations due to unlimited
values within the class. Therefore, this adjusted smart
quantiles classification approach was accepted due to its
classification strength.

Deep ECa maps which were classified according to
adjusted smart quantiles method visualized clearer the
former water routes. The new classification for the deep ECa

was identified as less than 40, 40 to 60, 60 to 80, 80, to 100 and
more than 100 mS m−1. The former water routes where deep
ECa was very low (class 1) had clear shape with the width of
about 45 m. They were found in the northeastern part as a
short distance and another crossing the study area from the
east to the west. Low deep ECa was also found at the edge
surrounding the former water routes. Most of the high ECa
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were distributed in the south and central east as illustrated
by the darker color of class 5. This appearance of the former
water routes found in all seasons indicated that deep ECa was
a good indicator to describe the variability pattern over the
period (Figure 3). Most of the deep ECa values fell into class
3 (more than 20.00% of the total area), class 4, and class 5
(Table 2). Class 1 (<40 mS m−1) was found in small areas of
less than 12% of the total area for all the seasons. Season 2
had the smallest area of the lowest deep ECa. This indicates
that most of the area had high (>40 mS m−1) ECa values in
the subsoil layer.

Count number of raster cells showed the areas that were
occupied by each class. The significant difference between
the mean of deep ECa values at 95% confidence level (α =
0.05) indicated the isolation of the classification, while low
variance (standard deviation), except for classes 1 and 5
which was wide range, indicates the compactness. Hence,
there was the effectiveness of classification method.

Both shallow and deep ECa maps showed the difference
to soil series map. This was because of the different sampling
scale, where soil ECa was more intensive sampling points as
compared to detailed soil survey map, which was at about
200 m grid. According to Aimrun et al. [15], deep ECa zone
can delineate rice yield and soil K where low deep ECa area
has a significant low yield and a significant high K when
tested by LSD at 5% level.

3.2. Seasonal Variability of Soil ECa. Mean shallow and deep
ECa values had similarly changed from one season to another
season (the same range of c, a, and b). Season 2 had
significantly highest mean values for shallow and deep ECa

as compared to seasons 1 and 3 (Table 3). The period of
seasons 1 and 3 was during the first cultivation of the year
(January to May) and the ECa data was acquired during
June. The similarity of means shallow and deep ECa for a
season indicated strong relationship between shallow and
deep values. On the other hand, in a season that had high
mean shallow ECa value, mean deep ECa value was also high
even though the population numbers were different. The
highest ECa values found in season 2 was due to high water
content in the field (above saturation point) caused by heavy
rain in December.

4. Conclusions

Spatial variability of the soil properties were found to be
different over the studied seasons, but both shallow and deep
ECa retained their patterns even though the mean values
were different. Deep ECa showed the pattern of the former
river routes clearly as continuous lines (about 45 m width) at
the northern and central regions of the study area. Most of
the high ECa levels were found in the southern and central
regions. All the three seasons showed that the pattern of the
map retained the same shape (clear former water route in
low ECa zone and zone of high ECa). This exploration has
shown different maps with higher contrast as compared to
the existing soil series map for the study area. It showed that
very detailed (as collected at every one meter) soil zoning

map can be produced and delineated faster using soil ECa

sensor at a submetre grid (less than 1 m) collected at every
1-second interval. Seasonal variability test showed that the
ECa that was acquired during rainy season (collected after
harvest in December to January) has the highest value as
compared to another season. The significance of the study
to the research problem is that soil ECa map can be as a
supplementary to soil series map. For conventional practice,
soil series were used to describe the soil condition at the field.
So far, ECa map can be produced more intensive, faster, lower
cost, and less labor, therefore, ECa map can be an alternative
way to describe the field condition.
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