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Experimental and theoretical analyses of mouldability for feedstocks used in powder injection moulding are performed. This
study covers two main analyses. (i) The experimental analysis: the barrel temperature, injection pressure, and flow rate are factors
for powder injection moulding (PIM). Powder-binder mixture used as feedstock in PIM requires a little more attention and sen-
sitivity. Obtaining the balance among pressure, temperature, and especially flow rate is the most important aspect of undesirable
conclusions such as powder-binder separation, sink marks, and cracks in moulded party structure. In this study, available feed-
stocks used in PIM were injected in three different cavities which consist of zigzag form, constant cross-section, and stair form
(in five different thicknesses) and their mouldability is measured. Because of the difference between material and binder, mea-
sured lengths were different. These were measured as 533 mm, 268 mm, 211 mm, and 150 mm in advanced materials trade marks
Fe−2Ni, BASF firm Catamould A0-F, FN02, and 316L stainless steel, respectively. (ii) The theoretical analysis: the use of artificial
neural network (ANN) has been proposed to determine the mouldability for feedstocks used in powder injection moulding using
results of experimental analysis. The back-propagation learning algorithm with two different variants and logistic sigmoid transfer
function were used in the network. In order to train the neural network, limited experimental measurements were used as training
and test data. The best fitting training data set was obtained with three and four neurons in the hidden layer, which made it possible
to predict yield length with accuracy at least as good as that of the experimental error, over the whole experimental range. After
training, it was found that the R2 values are 0.999463, 0.999445, 0.999574, and 0.999593 for Fe−2Ni, BASF firm Catamould A0-F,
FN02, and 316L stainless steel, respectively. Similarly, these values for testing data are 0.999129, 0.999666, 0.998612, and 0.997512,
respectively. As seen from the results of mathematical modeling, the calculated yield lengths are obviously within acceptable un-
certainties.

Copyright © 2007 Çetin Karataş et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Powder injection moulding (PIM) is a powder production
method that is used to produce parts which are small,
complex-shaped, high-dimension precise, with smooth sur-
face, difficult to machine, with a low cost.

Most stages of the PIM are similar to the stages of poly-
mer injection moulding. Equipments and mould design of
PIM are based on the polymer injection moulding method.
In PIM processing, the powder flow and thermal behavior ef-
ficiency of materials look like thermoplastics; however, some
extra attention should also be paid to the adequate mould
filling. The most efficient mixture temperature requires a
temperature that gives a viscosity lower than 100 Pa.s and
varies with mixtures. For continuous plastic transformation,
powder-binder mixture in injection cylinder should be ho-
mogeneous, and heat transfer into the filling polymer should
be fast. Reverse fast cooling behavior may lead to some prob-

lems. As a result, to minimize the stress and shrinkage, mould
should be heated during the filling [1, 2].

The progress of neurobiology has allowed researchers to
build mathematical models of neurons to simulate neural be-
havior. Artificial neural network (ANN) approach is a well-
known type of evolutionary computation methods in the last
decades. Also ANN technique has been adapted for a large
number of applications in different scientific areas [3–11].
In the field of process engineering, ANNs are a good alter-
native to conventional empirical modeling based on polyno-
mial and linear regressions.

The aim of the present study is to propose a new ap-
proach based on ANNs to determine the mouldability for
feedstocks used in powder injection moulding. This study
consists of two cases.

(i) The experimental analysis: in this case, to examine the
flow and filling, the most optimum mouldability parameters
such as injection temperature, injection pressure, injection
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Figure 1: Schematic diagram that shows the formation condition
of rate and press control according to the time for mould defects
[2].

flow, and mould temperature were investigated by feeding
the feedstocks, manufactured for PIM, into the moulding
manufactured for this purpose.

(ii) The theoretical analysis: the use of ANN has been
proposed to determine the yield length in moulding as an-
alytic formula at different barrel temperature, injection pres-
sure, and flow rate using results of experimental analysis. The
back-propagation learning algorithm with two different vari-
ants and logistic sigmoid transfer functions were used in the
network. In order to train the neural network, limited exper-
imental measurements were used as training and test data.
The importance of the ANN approach, apart from reducing
the time required, is that it is possible to make mould ap-
plications more viable and thus more attractive to potential
users such as design engineers.

2. EXPERIMENTAL ANALYSIS

2.1. Mouldability

Mouldability is defined as gauge of rate and ease of shaping of
feedstock for a given characteristic. With a simple approach,
related pressure, rate, and time for moulding are given in
Figure 1. Figure 1 shows the behavior of the whole moulding
processing. Here, until the mould vacancy fills, screw con-
trol supervises the process. This is shown in the left side of
Figure 1. Pressure control for vacancy is used during ironing
and cooling. That is also shown in the right side of Figure 1.
When mould vacancy is filled and pressure is applied, trans-
formation of feedstock from molten to solid occurs. This
transformation is related to errors originating from screw
rate of movements in mould deadheading pays. As a result,
there is restrictive region between process parameters and
component of feedstock and the geometry of mould vacancy.
This restrictive region is for the defective parts [1, 2, 12].

Incomplete filling occurs under low pressure and tem-
perature. At high temperature and pressure, the sample will
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Figure 2: Molten feedstock flow along the mould canal.
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Figure 3: Separation of powder-binder during the direction change
[2, 13].

stick to the mould wall or it will give burred surface along
the separation line. Elevated pressures and temperatures give
good moulding results. The aim of the studies of mouldabil-
ity is to generate good mouldability situation by controlling
the conditions [2, 12–14].

A frozen layer is formed along the mould wall due to cold
mould. Heat flow is to wall from frozen layer. Middle canal
starts to fill while getting closer vacancy filling later. For this
reason completely filling the long canal is a sign of success
[1, 2, 14–16]; see Figure 2.

When the PIM products are compared with polymers,
they have higher thermal activity that leads to fast solidi-
fication. For this reason, very high injection rate is used.
However, high rates cause problems in case sudden direc-
tion changes. The most important two of these problems are
powder accumulation and separation of binder. Separation
of powder-binder due to sudden directional change leads to
defects in sample during the subsequent process of debind-
ing and sintering [2, 13]. Debinding is bidirectional during
the directional change; in the new direction an accumulation
of stones occurs and in the direction of melt a binder rich
zone is formed. Such zones lead to inappropriate shrinkage
during the sintering [12–16]; Figure 3.

A zigzag mould design was obtained for PIM mouldabil-
ity test (Figure 4). Side arms of these moulds force the flow
to change the direction. If powder and binder separate, pow-
der rich zones are formed at the end of each arm. In advance
to filling of powder rich end zone, binder rich region contin-
ues to flow through the side arm. The case of separation of
powder and binder is not desired, because the separation of
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Table 1: Feedstocks and their chemical contents.

Feedstock Picnometer density (g/cm3) Chemical content

Catamould FN02 4.53 Hardenable carbon steel with 2% nickel addition

Catamould 316L 5.04 nonmagnetic X2 CrNiMo 17 13 2 DIN 1.4404 AISI/SAE 316L UNS S31603

Catamould A0-F 2.81 Aluminum oxide 99,8%

Fe−2Ni-Res-9903 4.83 %2 Ni, %0.76 C, %0.71N, %0.32 Si

Entrance

Powder
blockage

Figure 4: Zigzag test mould used for PIM feed stock experiments
[2, 13].

powder and binder is one of the most important reasons for
the differences in sintering and distortion. For this reason,
zigzag mould test is very important to succeed in separating
the powder binder as well as the mouldability [13].

Capillary rheometer tests (flow criteria) are useful to
characterize the mouldability because of the measurability
of viscosity as a function of temperature and slide ratio.
However, using the rheologic data for practical estimation of
mouldability is difficult. At higher temperatures and higher
solid feed, ahead the low viscosity rheometer puts a base and
proves the evaluation of behavior of relative feedstock [2].

2.2. Feedstock

In this study, Catamould FN02, Catamould 316L made by
BASF and Fe−2Ni-Res-9903 made by advanced metalwork-
ing moulds were used (Table 1).

ARBURG Allrounder 220S type plastic injection ma-
chine, TOOL-TEMP TT-157 E type mould conditioner to
keep the temperature constant through the process, and
JEOL JSM 6360V electron microscope were used.

2.3. Injection mould

In this study, yield length of feedstock is examined by press-
ing in a mould having a zigzag canal with 2.5 mm radius and
800 mm length. This mould has also a staircase-shaped va-
cancy with the dimension of 0.5-1-2-5-10 mm, and a vacancy
with the dimension of 90× 12.7× 7 mm (Figure 5.)

2.4. Experimental procedure

In this study, the effects of four different feedstocks, mould
conditions, and injection parameters on mouldability and
yield length were investigated. In a mould which is attached

Figure 5: Zigzag-shaped yield length measurement mould.

to injection machine and has a zigzag canal, the effects of
injection temperature and pressure and injection flow on
present feedstocks samples, were pressed and the length in
the zigzag canal was measured.

During the experiment, one sample was obtained after
each parameter change. Pressure, cylinder temperature, flow,
and mould temperature used injection moulding were tabu-
lated in Table 2.

3. THEORETICAL ANALYSIS

3.1. Artificial neural networks

ANNs have been widely used for many areas, such as control,
data compression, forecasting, optimization, pattern recog-
nition, classification, speech, vision, and so forth. The use of
the ANNs for modeling and prediction purposes is increas-
ingly becoming popular in the last decades [1–11].

The system has three layers which are an input layer, a
hidden layer, and an output layer. The input layer consists
of all the input factors, information from the input layer is
then processed in the course of one hidden layer, followed by
output vector which is computed in the final (output) layer.
Generally, hidden and output layers have an activation func-
tion. A sigmoid function as an activation function is a widely
used nonlinear activation function [8] whose output lies be-
tween 0 and 1.

An important stage of a neural network is the training
step, in which an input is introduced to the network to-
gether with the desired output, the weights and bias values
are initially chosen randomly and the weights are adjusted
so that the network attempts to produce the desired output.
The weights, after training, contain meaningful information,
whereas before training, they are random and have no mean-
ing. When a satisfactory level of performance is reached, the
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Table 2: Injection parameters.

Injection pressure (bar) Cylinder temperature (◦C) Injection moulding (cm3/s) Mould temperature (◦C)

600 170 5 32

800 180 10 75

1000 190 15 140

1200 200 20 —

1400 210 25 —

1600 220 30 —

— 230 35 —

— 240 40 —

training stops, and the network uses the weights to make de-
cisions.

Many alternate training processes are available such as
back-propagation, which has different variants. The goal
of any training algorithm is to minimize the global error
such as mean % error, root-mean-squared (RMS), and R2.
An important characteristic of this function is differentiable
throughout its domain. The error for hidden layers is deter-
mined by propagating back the error determined for the out-
put layer.

Error during the learning is called RMS and defined as
follows:

RMS =
((

1
p

)∑
j

∣∣t j − oj
∣∣2
)1/2

. (1)

In addition, absolute fraction of variance (R2) and mean ab-
solute percentage error (MAPE) are defined as follows, re-
spectively:

R2 = 1−
(∑

j

(
t j − oj

)2

∑
j

(
oj
)2

)
,

MAPE = o− t

o
∗ 100,

(2)

where t is target value, o is output value, and p is pattern
value [9]. Input and output layers are normalized in the
(−1, 1) or (0, 1) range.

ANNs have been used in a broad range of applica-
tions including pattern classification, function approxima-
tion, optimization, prediction, and automatic control [9].
The back-propagation learning algorithm has been used in
feedforward single hidden layers. Variants of the algorithm
used in the study are scaled conjugate gradient (SCG) and
Levenberg-Marquardt (LM). Inputs and outputs are normal-
ized in the (−1, 1) range. Neurons in input layer have no
transfer function. Logistic sigmoid (logsig) transfer function
has been used. The transfer function used is

f (z) = 1
1 + e−z

, (3)

where z is the weighted sum of the input.

3.2. Application

Computer program has been performed under MATLAB in
order to use different algorithms and neurons in the ANN.
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Figure 6: ANN architecture.

Here ANN is used for modeling yield length in mould. Inputs
for the network are pressure, flow rate, mould temperature,
and cylinder temperature; output is yield length. Figure 6
shows the single hidden-layer ANN architecture used in our
application.

The new formula of the output as the best algorithm SCG
with 4 neurons is given (4) for BASF firm Catamould A0-
F. This equation can be used to estimate yield length in the
mould where known process parameters are

YLA0-F = 1
1 + e−(−0.6309F1−6.2172F2+0.9975F3+6.3704F4−2.959)

,

(4)

where Fi can be calculated according to (5). The formula for
the prediction of yield length in mould (4) is dependent on
moulding parameters as seen in (6):

Fi = 1
1 + e−Ei

, (5)

where Ei is given (6), which is moulding parameters:

Ei = C1i∗CT + C2i∗P + C3i∗FR + C4i∗MT + C5i. (6)

The constants (Cij) in (6) are given in Table 3.
Similarly, the new formulas of the output as the best algo-

rithm SCG with 4 neurons, LM with 3 neurons, and LM with
4 neurons are given (7) for FN02, Fe−2Ni, and 316L stainless
steel, respectively. These equations can be used to estimate



Çetin Karataş et al. 5

Table 3: Constants in (6) obtained by SCG algorithm with 4 neu-
rons.

i
Constants for (6)

C1i C2i C3i C4i C5i

1 2.4914 4.8335 −2.1974 7.1626 −8.0053

2 −3.2333 −2.3844 −0.5510 −0.6651 4.6082

3 −5.3732 −7.2194 −0.3189 0.1571 8.5420

4 −0.4859 0.6690 19.1268 5.9300 −0.6356

Table 4: The weights between input layer and hidden layer for
FN02.

i
Ei = C1i∗CT + C2i∗P + C3i∗FR + C4i∗MT + C5i

C1i C2i C3i C4i C5i

1 −30.0670 −2.0510 −12.0376 −9.0621 30.1897

2 7.3823 7.2679 −11.7743 1.1232 −5.3141

3 −7.6696 −3.2846 −10.7568 0.4640 4.4136

4 9.4738 −9.8601 5.4982 −4.0309 6.4619

Table 5: The weights between input layer and hidden layer for
Fe−2Ni.

i
Ei = C1i∗CT + C2i∗P + C3i∗FR + C4i∗MT + C5i

C1i C2i C3i C4i C5i

1 14.0376 11.2986 21.1265 0.4865 −15.4581

2 −2.6309 −8.9653 −32.7151 7.6853 15.7506

3 8.0538 −6.2073 −39.9853 −1.8748 13.4369

Table 6: The weights between input layer and hidden layer for 316L.

i
Ei = C1i∗CT + C2i∗P + C3i∗FR + C4i∗MT + C5i

C1i C2i C3i C4i C5i

1 −18.2060 0.0458 −3.4031 8.9875 6.6427

2 0.5202 −2.2229 −3.0021 6.3676 3.8423

3 8.9857 4.5141 5.6770 13.6497 −11.7285

4 12.7485 −0.7047 3.1882 −3.2476 −3.5585

yield length in the mould where known process parameters
are

YLFN02 = 1
1 + e−(−8.3518F1+0.7482F2−8.7813F3+4.523F4+2.6568)

,

YLFe−2Ni = 1
1 + e−(1.1453F1−2.81182F2+2.7358F3−1.0451)

,

YL316L = 1
1 + e−(−3.341F1+5.3258F2+1.2802F3−8.9476F4+1.9964)

,

(7)

where Fi can be calculated according to (5) and similarly, Ei
and the constants (Cij) are given in Tables 4–6, which are
moulding parameters for FN02, Fe−2Ni, and 316L stainless
steel, respectively.

The input and output values in network need normaliza-
tion” according to

VN = 0.8×
[

VR −Vmin

Vmax −Vmin

]
+ 0.1. (8)

Table 7: Values for normalization.

Vmin Vmax

Pressure (P) (bar) 400 1800

Cylinder temperature (CT) (◦C) 100 300

Flow rate (FR) (cm3/sn) 3 50

Mould temperature (MT) (◦C) 20 170

Yield length (mm) (YL) 10 600
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Figure 7: Temperature versus visible viscosity for present feedstocks
(load 1,878 MPa).

The Vmin and Vmax values for normalization are given in
Table 7.

4. RESULTS AND DISCUSSION

4.1. Results of experimental analysis

Variation of visible viscosities of Catamould FN02, A0-F,
316L present feedstocks, and Fe−2Ni feedstock from ad-
vanced metalworking with temperature is given in Figure 7.
While the viscosities of Catamould materials are in the same
interval (2000–500 Pa.s), the viscosities of advanced metal-
working Fe−2Ni are generally less than 500 Pa.s. The reason
of this difference is originated from that the companies use
different binder, size, and shape difference of powder and the
different ratios of powder-binder. It is observed that there is
a reverse ratio between flow rate, which is flow rate of feed-
stocks in viscosity graph (Figure 8) and visible viscosity.

It can be seen from the graphs in Figures 7 and 8 that
Catamould materials have high viscosity and low flow rate
and Fe−2Ni feedstocks have low viscosity and high flow rate.

Temperature versus yield length graph in zigzag mould
for pressed feedstocks is represented in Figure 9. Here in-
jection pressure and flow were kept to be 1000 bar and
15 cm3/s, respectively. The variation of yield length with
pressure (Figure 10) was examined under the conditions of
200◦C and 15 cm3/s flow rate. Figure 10 represents the graph
for the injection flow versus yield length. Here, injection
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Figure 8: Slide ratio versus visible viscosity for present feedstocks
(load 1878 MPa).
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Figure 9: Yield length versus temperature graph for feedstocks.
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Figure 10: Yield length versus pressure graph for feedstocks.

pressure and temperature were kept as 1000 bar and 200◦C,
respectively. In Figure 11, graph shows that there is flow in-
crease in the interval of 10 cm3/s and 25 cm3/s for the Cata-
mould materials. The graph in Figure 12 shows the variation
of yield length versus pressure at 140◦C mould temperature.
Here cylinder temperature and flow were kept as 200◦C and
15 cm3/s, respectively.
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Figure 11: Yield length versus flow graph for feedstocks.
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Figure 12: Yield length versus pressure graph for feedstocks pro-
duced for PIM by BASF at mould temperature of 140◦C.

It can be understood from the graphs that yield lengths
of feedstocks in the mould increase gradually as follows:
Catamould FN02, Catamould A0-F, Catamould 316L, and
Fe−2Ni advanced metalworking. While the cylinder tem-
perature versus yield length curves of feedstocks manufac-
tured by BASF varies with the same manner (Figure 7), the
graph of cylinder temperature versus yield length of the feed-
stock, Fe−2Ni by advanced metalworking, increases with a
higher degree of slope. Since the viscosities and flow rates of
Catamould and advanced metalworking materials are differ-
ent, both temperature-yield length and pressure-yield length
in zigzag canal of two feedstocks vary with different man-
ner. This kind of behavior is caused by the different pow-
der size and binder systems used by two companies. Cata-
mould materials have shown lower separation at higher
mould temperatures. This behavior is important to get an ad-
vantage for filling the small-sized vacancy. The longest yield
lengths of materials were measured as 253 mm for advanced
metalworking (at 220◦C, 1600 bar, and 15 cm3/s), 268 mm
for Catamould A0-F (at 220◦C, 1600 bar, and 15 cm3/s),
211 mm for FN02 (at 230◦C, 1600 bar, and 15 cm3/s), and
150 mm for 316L (at 230◦C, 1600 bar, and 15 cm3/s). The
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(a) (b)

(c) (d)

Figure 13: SEM micrographs of the end sections of samples with unresolved binder that are pressed into zigzag mould; (a) Fe−2Ni, (b)
FN02, (c) 316L, (d) A0-F.

most appropriate injection parameters were found to be 180–
220◦C cylinder temperature, 800–1200 bar injection pres-
sure, and 10–25 cm3/s flow intervals.

German [1], German and Bose [2], and Hens [13] have
reported on literature that sudden directional changes lead to
the aggregation of powders in aside and separation of powder
and binder. This phenomenon is represented symbolically in
Figure 3.

SEM micropictures taken from the end sections of sam-
ples, which are pressed at high speed of flow that leads
the highest separation of powder/binder, pressed in zigzag
moulds are given in Figure 13. Powder and binder structures
are seen in clearly on the pictures. Figure 13(a), light areas
show the binder rich zones and in dark areas powder remain
separated. In Figures 13(b), 13(c), and 13(d) are taken from
the samples pressed with Catamould FN02, Catamould 316L
and Catamould A0-F, respectively. In Figure 13(c), powder
grains are light because of brightness of stainless steel. A
more homogeneous powder-binder structure can be seen
Figures 13(b), 13(c), 13(d). From the view of In Figure 13
(d), it is difficult to distinguish the powder and binder due to
the mixed-shaped ceramic powder involvement of the sam-

ple pressed with Catamould A0-F. However, nonexistence of
the dark area in the picture indicates that vacancy is not
formed in the structure.

German and Bose [2] have reported that there is a
moulding region in the combination of temperature and
pressure to produce a high-quality part. They also argue that
the graph of time versus other injection moulding parame-
ters in Figure 1 can help to analyze the errors and problems.

In pressed prismatic samples, it is observed that burred
sections are sticking on mould vacancy at high temperature
and pressure while deficient filling at low temperature and
pressure. Additionally, low ironing pressure and too high
mould temperature lead to wreckage regions in the very thick
sections of samples. Some pictures of samples pressed under
different pressures are given in Figure 14.

4.2. Results of theoretical analysis

Figures 15–18 present the yield length (YL) simulated results
versus YL experimental data for the testing database. Devia-
tions between experimental results and theoretical results are
very small for each parameter and negligible. Figures 15–18
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(a)

(b)

(c)

Figure 14: Pressed 316L stainless steel samples: (a) zigzag flow test,
(b) five stepped part, (c) rectangular prism part.

show the model’s ability to predict the YL values at different
injection parameters for selected powder materials. As seen
from results, ANN can be used for the determination of YL.
From this correlation and statistical test, it is evident that the
model was successful in predicting the experimental data of
YL values. This shows the importance of the artificial neural
network to determine the YL.
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Figure 15: Comparison of the measured and predicted yield length
based on temperature and pressure for A0-F.
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Figure 16: Comparison of the measured and predicted yield length
based on temperature and pressure for FN02.

For YL, the best approach which has minimum errors is
obtained SCG with 4 neurons for BASF firm Catamould A0-
F. Similarly, the best algorithm is SCG with 4 neurons, LM
with 3 neurons, and LM with 4 neurons for FN02, Fe−2Ni,
and 316L stainless steel, respectively. For these approaches,
Figure 19 and Table 8 show performance of ANN. The statis-
tical error values for these approaches are given in Table 8.

5. CONCLUSIONS

5.1. Experimental analysis

The following conclusions can be written for this study.

(i) Yield length of the feed stock proceeding in mould va-
cancy increases with increasing injection parameters
such as pressure, temperature, and flow.
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Figure 17: Comparison of the measured and predicted yield length
based on temperature and pressure for Fe−2Ni.
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Figure 18: Comparison of the measured and predicted yield length
based on temperature and pressure for 316L.

(ii) While the feedstocks have high viscosity, yield lengths
are small, low viscosities lead to longer yield lengths.

(iii) The best flow conditions are feed pressures of 800–
1200 bar, mould temperatures of 180–220◦C, and flow
of 10–25 cm3/s.

(iv) Low pressure, temperature, and flow lead to deficient
filling. Burred regions, wreckage regions, sticking to
the mould, and separation of powder and binder occur
under too high pressure, temperature, and flow condi-
tions.
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Figure 19: Comparison of the measured and predicted yield length
for A0-F.
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Figure 20: Comparison of the measured and predicted yield length
for FN02.

5.2. Theoretical analysis

(i) The results of validation and comparative study in-
dicate that the ANN-based estimation technique for
yield length of the mouldability for feedstocks used in
powder injection moulding is more suitable.

(ii) This study confirms the ability of the ANN to predict
the yield length.

(iii) The results indicate that the ANN model seems
promising for evaluating powder flow in the mould
known injection parameters.
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Table 8: Statistical error values.

Algorithm-neurons Materials
Training data Testing data

RMS R2 MAPE RMS R2 MAPE

LM-3 Fe−2Ni 0.012531 0.999463 1.466718 0.01582 0.999129 2.50893

SCG-4 BASF firm Catamould A0-F 0.007364 0.999445 1.74265 0.005917 0.999666 1.841596

SCG-4 FN02 0.005254 0.999574 1.71989 0.009779 0.998612 2.853247

LM-4 316L stainless steel 0.004149 0.999593 1.708994 0.010765 0.997512 2.63659
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Figure 21: Comparison of the measured and predicted yield length
for Fe−2Ni.
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Figure 22: Comparison of the measured and predicted yield length
for 316L.

NOMENCLATURE

YL Yield length (mm)

P Pressure (bar)

CT Cylinder temperature (◦C)

FR Flow rate (cm3/sn)

MT Mould temperature (◦C)

p Pattern

t Target

o Output
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[9] Ç. Karataş, A. Sözen, E. Arcaklioglu, and S. Erguney, “Mod-
elling of yield length in the mould of commercial plastics using
artificial neural networks,” Materials & Design, vol. 28, no. 1,
pp. 278–286, 2007.
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