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We propose a method for detecting paired states in either bosonic or fermionic systems using interference
experiments with independent or weakly coupled low-dimensional systems. We demonstrate that our method
can be used to detect both the Fulde, Ferrel, Larkin, Ovchinnikov, and the d-wave paired states of fermions, as
well as quasicondensates of singlet pairs for polar F=1 atoms in two-dimensional systems. We discuss how
this method can be used to perform phase-sensitive determination of the symmetry of the pairing amplitude.

I. INTRODUCTION

Interference experiments are the primary tool of detecting
and characterizing cold atom systems [1,2]. While original
experiments focused on demonstrating macroscopic coher-
ence of large Bose-Einstein condensates (BEC’s) [3], subse-
quent work used interference experiments to explore more
interesting phases and phenomena. For example, interference
in the time of flight (TOF) experiments was used for obser-
vation of the superfluid to Mott insulator transition in optical
lattices [4], analysis of fluctuations in low-dimensional sys-
tems [5,6], and studies of phase diffusion and decoherence in
dynamically split condensates [3,7,8]. Interference can also
give rise to interesting patterns in second-order coherence
[9]. This approach was used to demonstrate that Hanburry
Brown Twiss experiments with both bosons and fermions
[10-17] and to observe pairing of fermions [17]. A series of
recent theoretical and experimental papers explored the idea
that one can use interference between two or more low-
dimensional systems to probe their nontrivial correlation
functions [5,6,18]. Partially using this ideas Hadzibabic er al.
were able to detect Berezinskii-Kosterlits-Thouless transition
in two-dimensional bosonic systems which is associated with
vortex proliferation [5]. One of the features of this approach
was the idea to use not only the average contrast but the full
distribution functions [6,19,20]. Distribution functions are
determined by high-order correlation functions and contain a
wealth of information about underlying systems. Distribution
functions of interference fringe amplitudes were recently
analyzed for one-dimensional quasicondensates and provided
a direct probe of long wavelength phase fluctuations in the
system of either quantum or thermal origin [6]. However
there is another source of fluctuations of the fringe amplitude
which is purely quantum in nature. Namely, this is shot noise
coming from the discreteness of particles [60]. Shot noise is
especially strong in systems with short-range single particle
correlations, in particular in fermionic systems. Thus inter-
ferometric probes in such systems are intrinsically more dif-
ficult than in the systems with long- or quasi-long-range or-
der for which shot noise is less important than the low
wavelength thermal and/or quantum fluctuations [20,21].
Our emphasis on low-dimensional systems has two main rea-
sons: they exhibit exotic phases more often and it is easy to
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perform interference experiments with them. In this paper we
focus on fermionic and bosonic systems in low dimensions
and continue to study the possibility of using interferometry
to probe strongly correlated many-body states.

In interacting systems one is often interested in states
which do not have coherence of individual particles but ex-
hibit a coherence (or slowly decaying correlations) of par-
ticle pairs. For example, fermionic paired states are charac-
terized by the pairing amplitude

A(r) =fd77f(n)q(r— n2)ci(r+ 7/2). (1)

Here r is the center of mass position of Cooper pairs which
are formed by particles described by fermionic operators
¢y, (x) having two spin states T, |. The concrete form of the
Cooper pair wave function f(7) depends on the symmetry of
the pairing [23]. The ordered state corresponds to the con-
densation of pairs of particles and should be analyzed using
correlation functions of the form (Af(r;)A(r,)). Correlation
functions of this type which we will refer to as anomalous
correlation functions also arise in the context of exotic states
of interacting bosons such as condensates of pairs of bosons
[24] and polar condensates in two-dimensional systems
[25,26]. In principle one can extract anomalous correlation
functions analyzing higher-order moments of the interference
amplitude. However, as we will show below, this might be a
very difficult task in practice because of effects of shot noise
[20,21] and because such anomalous correlation functions
can appear as small corrections on top of normal correlation
functions.

In this paper we suggest an alternative method for identi-
fying paired states and for measuring directly their anoma-
lous correlation functions using interference experiments
with two (or more) systems. This paper extends earlier work
on the analysis of interference experiments with pairs of in-
dependent condensates of single component bosons
[5,6,18-20]. Our main purpose here is to show that one can
probe fermionic superfluidity in low-dimensional systems. In
particular, we define an observable, which we refer to in the
text as anomalous interference amplitude, which should van-
ish when there is no pairing between fermions and which is
nonzero when there is paring in the system. We suggest two
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methods to detect this anomalous amplitude. The first ap-
proach relies on detecting interferometric signal in two dis-
joint parts of the system R;;; and averaging appropriate ob-
servable over these disjoint regions. The sizes of these
regions should be at least of the order of the superfluid co-
herence length (Cooper pair size) while the widths can be
smaller than this scale. This way of detecting pairing corre-
lations relies on the existence of the long-range (or quasi-
long-range) order in the pairing channel and thus requires
phase ordering in the fermionic superfluids. Note that aver-
aging over two disjoint regions is necessary to cancel the
effects of an undefined relative phase of the superfluid order
parameter in two independent layers. One can straightfor-
wardly extend this idea and split the system to a larger num-
ber of disjoint regions improving the signal to noise ratio, but
other than that not affecting our analysis. In the second
method we introduce a weak tunneling coupling between the
systems to lock the relative phase. We show that in suffi-
ciently large systems there is always a broad range of param-
eters, where the coherence is established but the correlation
functions are still not affected by the presence of this weak
tunneling term. Because the phase locking transition does not
require long-range order in each superfluid, this method is
more sensitive to the formation of the local pairing ampli-
tude. We further argue that in lattice fermionic systems one
can measure the symmetry of the pairing gap and thus dis-
tinguish, for example, d-wave from s-wave superfluidity.
This can be achieved by aligning the probing laser beam
along different axes of the lattice. The two schemes we de-
scribe here are based on two slightly different physical
mechanisms: while for the first scheme we require an exis-
tence of a long-range (at least algebraic) coherence to have
roughly the same phase in both regions, the second scheme
rely on formation of a well-defined order parameter in a sys-
tem.

The ideas presented in this paper can be further extended
to low-dimensional Bose systems. We show that in a similar
setup one can measure anomalous correlators in bosonic su-
perfluids. These correlators have an unusual property that
they grow with the separation between the particles showing
effective “antibunching” behavior for bosons. Usually
anomalous correlations are not easy to detect, since they are
not gauge invariant, i.e., they are sensitive to the global su-
perfluid phase. The two setups considered here eliminate ef-
fects of this phase and make such measurements possible.

Carusotto and Castin have previously suggested an ex-
periment which relies on particle interference to detect paired
states [27]. While there is some conceptual connection be-
tween their work and our approach, our method has an ad-
vantage that it does not require Bragg out coupling of atoms,
splitting and mixing of atom beams, and using single atom
detectors to measure coincidences. As we demonstrate be-
low, interference of two ballistically expanding independent
clouds does all of this work itself.

The paper is organized as follows. In Sec. II we first ana-
lyze the basic structure of anomalous correlators and the in-
terference amplitude between two independent fermionic su-
perfluids. We then introduce the observable, the anomalous
interference amplitude, which probes the pairing amplitude.
In Sec. III we show how this anomalous amplitude can be

detected performing simultaneous measurements in disjoint
parts of the time of flight image. Using this scheme we dis-
cuss possible setups for observing the d-wave superfluid and
the Fulde, Ferrel, Larkin, Ovchinnikov (FFLO) phases. We
suggest how one can detect not only the amplitude, but also
a phase of the pairing function. We perform explicit quanti-
tative analysis of the anomalous amplitude for two-
dimensional superfluids with s- and d- wave pairing based on
BCS theory. Then in Sec. IV we discuss the second way of
detecting anomalous interference amplitude by introducing a
weak interlayer tunneling. We show that on the one hand its
presence introduces corrections to the results of Sec. II,
which are not related to the superfluidity. On the other hand
the presence of this tunneling establishes the interlayer phase
coherence. We show that by decreasing the imaging area and
increasing the system size one can always achieve the regime
where the coherence between the superfluids is established
and yet the effect of the tunneling on the correlation func-
tions is negligible. In Sec. V we extend our analysis to
bosonic superfluids. In particular, we show that in the super-
fluids with quasi-long-range order the anomalous interfer-
ence amplitude grows superlinearly with the imaging size A.
In turn this implies that the corresponding interference con-
trast increases with A. This behavior is opposite to that of
the normal interference amplitude, which always decreases
with A. And finally in Sec. VI we summarize our results.

Throughout the paper we use BCS approximation to per-
form explicit calculations. This approximation is only reli-
able in the weak coupling regime; at strong coupling one has
to do more elaborate calculations. However, we do not ex-
pect any qualitative difference between BCS and exact re-
sults.

II. ANALYSIS OF THE INTERFERENCE AMPLITUDE:
BASIC SETUP

We start our discussion from analyzing the interference
amplitude of two fermionic condensates. Extension of our
results to the case of a stack of several condensates is
straightforward. For concreteness we will focus on the case
of two dimensions. First we analyze the usual interference
amplitude, which is determined by normal correlation func-
tions and show that it is not a reliable detection tool of su-
perfluidity. Then we describe how one can use the same in-
terference experiments but analyze the results differently to
extract anomalous correlation functions.

A. Normal correlation functions

Consider two independent systems (layers) and assume
that each system contains two species of atoms, which we
label by a spin index o. Let ] (r) be the creation operators
for atoms with spin o in layer i=1,2 and the in plane coor-
dinate r. After the expansion we find interference fringes in
the z direction, so that the density p;, ,(z,r)~ C,(r)cos[Qz
+ ¢,(r)] where Q=md/ % (this assumes sufficiently long ex-
pansion time, see, e.g., Ref. [28]). Because the phase ¢, (r) is
a random variable for independent systems the average den-
sity does not show any interference fringes. Averaging here
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implies average over many realizations, such as in usual in-
terference experiments. Thus to filter out this oscillating
component we have to consider Fourier transform of the
density-density correlation function. Indeed one can chose
the following operator, which corresponds to the square of
the interference amplitude [21]:

|A|2= ijp(zlarl’t)p(zz»r27t)eiQ(Zl_Z2)ledZ2drldr2

T f p(z,r,t)dzdr, (2)

where the upper (lower) sign corresponds to bosons (fermi-
ons). Here p(z,r,t) is the atomic density at position z, r at
time ¢ after the expansion. The z coordinate is orthogonal to
the atomic systems, while r describes positions of the atoms
within each individual system. For two-dimensional systems,
integration over one of the directions is done automatically
by the laser beam, whereas integration in the other direction
is done manually [5]. We assume that the transverse confine-
ment is tight and when the atoms are released, they expand
strongly in the transverse z direction, while their in-plane
expansion can be neglected. This assumption is well justified
if the transverse confining energy is large compared to any
other energy scales in the problem.

Before explaining where the expression (2) came from let
us investigate it a little further. Assuming that the long time
of flight allows us to use the far field expressions [20-22] we
find

|A|2= 2 fJdl‘1drzcr,g(r1)C;,Ur(1'2)02,0'(1’1)01,”(1'2)~
(3)

Note that both for bosons and the fermions the expression
above can be obtained from the complex interference ampli-
tude defined as

A= f drA,(r) = f drc],(r)cy(r). (4)

One can think about A as of the Fourier transform of the
density of the expanded cloud in the z direction (for a given
r) [61]. Then the expression (3) can be obtained as the nor-
mal ordered product of A'A,

A= = :ATA:, (5)

where the “+” sign corresponds to bosons and the “—” sign
to fermions.

In the case of independent systems there is no coherence
between atoms, hence expectation value of A is zero. This
does not mean the absence of interference fringes in indi-
vidual shots but only tells us about the random phase of
interference fringes. Indeed the quantity |A|? is insensitive to
this phase. It directly measures the (square of the) amplitude
of the interference and it does not average to zero even for
independent systems.

Let us make a few comments on where the expressions
above come from. In Eq. (2) we are taking Fourier transform

of the product of the densities of atoms after expansion. This
Fourier transform picks the component in this product oscil-
lating with the wave vector Q and thus corresponding to the
interference between the two systems. Note that the operator
|A|? in Eq. (2) is very similar to the one originally introduced
for bosons [18] except for the negative sign appearing for
fermions and except for the additional second term. The
negative sign takes care of the fermionic statistics, or equiva-
lently of the additional 7 phase shift in the interference part
of the density-density correlation functions [21]. The second
term in Eq. (2) removes the trivial contribution to the Fourier
transform coming from shot noise which is not related to the
interference. This term is usually unimportant for bosonic
systems. Note that Eq. (2) can be rewritten using the normal
ordered product of densities,

|A|2=f (2111, 0)pl22. 1, 1):€"0C172), (6)

Substituting the far field expansion of the bosonic operators
[20-22] into Eq. (6) we easily recover Eq. (3). We emphasize
that it is important to first take the normal order in the prod-
uct of densities p(z;,r;,#)p(z,,r5,1) and only after use the far
field expansion for the density operators. Using the opposite
order will give spurious contributions. In bosonic systems
with a large number of atoms in the same state the creation
and annihilation operators can be approximately treated as
commuting classical fields and thus no ambiguity with order-
ing appears and the shot noise contribution is small [20,21].
However, for fermionic systems, where the shot noise is usu-
ally important one has to be careful in evaluating integrals
such as those appearing in Eq. (2).

For bosons statistical and scaling properties of |A|*> con-
tain important information about superfluidity [18,19], which
can be straightforwardly detected in experiments [5,7]. At
the same time for fermions information about superfluidity is
encoded in the Cooper pair correlation functions. Although
the operator |A|? certainly contains the information about su-
perfluidity (see Appendix A) and in principle can be used to
determine the pairing, it does not provide a clear-cut way for
detecting superfluidity. Indeed pairing only quantitatively af-
fects the magnitude of the interference amplitude |A|. This
magnitude can be affected also by various other reasons.
Thus it is important to find another observable which van-
ishes unless fermions are paired. We are going to introduce
such an observable in the next section.

B. Anomalous correlation functions

An observable, which directly probes the pairing wave
function, can be constructed from Eq. (2) with a slight modi-
fication,

A2Q=fp(z1,1‘1,I)P(Zz,rz,t)eiQ(Z‘+Zz)d11dzzd1‘1d1‘2' (7)

Note the difference between Egs. (2) and (7). The former
corresponds to taking the product of the Fourier transform of
the density p(z) and its complex conjugate. The latter corre-
sponds to taking the square of the Fourier amplitude without
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FIG. 1. The experimental setup corresponding to scheme I of
our approach. The integration in X direction is performed automati-
cally by the imagine beam, whereas the integration in the Y direc-
tion is done by “hands.” The interference signal is collected from
two disjoint regions R; and Ry;.

taking complex conjugation. For the long expansion time this
expression reduces to

A= ffdl‘1d1‘201,g(1‘1)C-L,r(rz)cz,a'(l‘z)cz,o(ﬁ)-
(8)

The quantity A%>= :A%: looks similar to exactly what we
need. Indeed for independent layers it depends only on the
product of the pairing amplitudes in the two layers,

A= <A2>=J f drdryF(ry,x5) Fo(r,15), 9)

where Fj(r, ,r2)=(cIT(r])cL(r2)>. However, there is one
subtlety. Unlike the normal amplitude squared |A|?, which is
always a positive real number, the anomalous amplitude
squared A? is complex. Moreover for independent conden-
sates A2 is equal to zero because the phases of F; and F, are
not correlated. To avoid this phase uncertainty one can try to
look into |A2|?, which will involve second-order correlation
functions in each layer. However, it is easy to see that |A%[?
will be dominated by shot noise and normal (not anomalous)
correlation functions. Thus there will be no advantage com-
pared to analyzing A2.

The main purpose of this paper is to show that one can
overcome the effect of the uncertain relative phase and mea-
sure the anomalous amplitude A and thus detect superfluidity
in fermionic systems. We note that the fundamental reason
why extra efforts are needed to measure A> compared to |A[?
is because the former (for independent systems) is not a
gauge invariant quantity. This difficulty will similarly arise
if one tries to measure not gauge invariant quantities in other
setups. The ideas of this work can be extended to those situ-
ations as well. In later sections we will discuss some other
examples of this kind.

Here we suggest two different setups to fix the problem
with the unknown phase in Eq. (9). In the first setup, which
we refer to as scheme I (see Fig. 1), we eliminate the random
phase by making a special choice of the spatially separated
integration domains. Namely, instead of integrating A% over
the entire region, one splits the imaging area spanned by r;
and r, to two spatially separated domains R; and R;;. In each
experimental run one independently determines A in the two
domains then takes the absolute value of their square and
averages over many experimental runs. As we will show in

A

000000

FIG. 2. The experimental setup corresponding to scheme II of
our approach. The nonzero tunneling between two layers locks the
phases of superfluids. The interference signal is collected now from
the whole areas of superfluids.

detail this setup relies on the fact that single particle corre-
lation functions decay sufficiently fast with the distance,
while the pair correlation functions decay slowly or do not
decay at all. This setup has an obvious advantage compared
to measuring |A?|? because single particle normal correlation
functions decay fast with the distance. As a result the quan-
tity A%2(Q2,)A**(€),) is dominated by anomalous correlation
functions:

<C}L,ICI,ICLIICT,II> ~ <c¥,ICI,1><Cl,IICT,Il>’

where subscripts / and /I indicate that spatially these opera-
tors are located in regions R; and Rj. Note that if the do-
mains are not spatially separated or single particle correla-
tions functions do not decay fast there are additional
(unwanted) cross correlations in the equation above similar
to (c;’lc?”) <CI,ICi,11>~

In the second setup, which we refer to as scheme II (see
Fig. 2), we introduce a weak tunneling ¢, between the two
layers. This tunneling locks the phases of pairing amplitudes
in the two layers and makes the expectation value of A real
and positive. Besides the phase locking effect, the tunneling
induces the mixing between the fermions in the two layers
and results to the nonzero contribution to A% in Eq. (8), even
in the absence of pairing. Below we will show that at small
temperatures it is always possible to choose the tunneling
such that phase locking transition already occurred but the
correlation functions are not yet significantly affected so that
Eq. (12) still holds. The two setups are complimentary to
each other and can be used depending on the situation.
Scheme T essentially relies on the existence of the long- (or
quasi-long-) range order in the pairing amplitude. As we will
show this scheme can be adopted to measuring not only the
existence of superfluidity but also to the symmetry of the
order parameter and even its phase, while scheme II is more
sensitive to the local pairing between fermions and less to
the existence of long-range order in the superfluid phase.
Such setup can be used, for example, to measure pseudogap
phenomena. Scheme II can also be used to determine the
local symmetry of the pairing wave function, but not its
phase.

III. SCHEME I: BASIC SETUP AND VARIOUS EXAMPLES

Keeping the analogy with analysis of normal correlations
we emphasize the integration region R in the definition of the
operator A and denote it as A%(R) in what follows:
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A*(R) =A;(RDA (R))

=J drlf drzc}(rl)Ch(rz)Czi(l'z)CzT(1'1)
R, R,

(10)

Since for independent condensates the correlation function
above factorizes into a product of anomalous correlation
functions in each system and from Eq. (10) we arrive at Eq.
(9). As we argued earlier, because A%(R)) is a complex num-
ber with a phase which is random from shot to shot, taking
the expectation value of Eq. (9) gives us zero. To eliminate
this random phase we compare interference patterns from a
pair of regions, R; and Rj. More precisely we take
[A%2(R)]'A*(R;), so that the random relative phase between
pairing functions F; and F, drops out. Experimentally this
procedure corresponds to taking a square of the Fourier
transform of the density along the x direction integrated over
the region / and multiplying it by a complex conjugate of a
similar quantity integrated over the region two. The result of
this manipulation is then averaged over many experimental
runs. Assuming that the system has a true long-range order,
taking regions R; and Rj; to be separated by a distance which
is appreciably larger than the size of the Cooper pairs, and
taking R; and Rj; to be identical, we find

([A*(R)T'A*(Ry)y =

2

jdrlf drzFf(rl,rz)Fz(r],rz) .
R, Ry

(11)

We now consider several specific examples in which
analysis of expectation values of the type (11) can be used to
identify interesting many-body states.

A. Analysis of the anomalous interference amplitude within
the BCS theory

We now consider the integral in Eq. (11). To simplify
calculations we also assume the translational invariance in
both systems. In this case the pairing wave function depends
only in the difference between r; and r,: F,(r;,ry) =F,(r;
-r,). Then

A, = 2Af drFJ{(r)FQ(r), (12)
R

where the integration is again taken over the part of a con-
densate R; or R;; with the imaging area A. As we noted once
the relative phase is taken care of and assuming the two
condensates are identical we have F;=F, and thus

_ dk 2
Az_zAf (ZW)Z|F(1<)| . (13)

The integral above can be easily evaluated within the BCS

model (we take zero temperature limit)
A ([ dk A}
=5 | S (14)
2 ) 2m)’E;,

where the pairing function Ay has to be specified for concrete
type of pairing, Ey = \"§i+Ai and &=Kk?/2m—u is a single-

particle dispersion. Thus if the pairing gap is isotropic and
energy independent A=A, then in two dimensions we find

ApoA A
oo arctan —2, (15)
M

where the two-dimensional (2D) constant density of states pg
is introduced. In the weak coupling limit Ay<< u, where w is
a chemical potential, we have A2~NA3/ 4u?, where N
~2up, is the total number of particles (the factor of 2 takes
into account two different spin components). If the pairing is
strong then BCS extrapolation gives A,~ N/4. We see that
A, is a monotonically increasing function of the pairing gap
and thus can serve as a direct probe of the fermionic super-
fluidity. Note that Eq. (14) also can be analyzed in the case of
d-wave pairing, where A(K)~ A, cos(26y), where 6 is the
polar angle of the wave vector k. The result is (see Appendix

)
2
A§d>=@27m(\/1+(%> —1). (16)
2 M

However, since only the square of A enters Eq. (14) and we
are explicitly averaging over angles, the difference between s
and d parings will be minor. In fact one can show that in the
d wave case Eq. (15) is multiplied by a smooth function of
Ay/ o which changes between 1/2 at Ag<<u and 2/7r in the
opposite limit.

AY =

B. Phase sensitive detection of the d-wave pairing

In the section above we discussed a possibility to detect
anisotropy of the pairing amplitude using one-dimensional
integration. In particular for the d-wave pairing (dSF) the
interference signal should vanish along the nodal directions.
There are also other earlier suggestions for the detection of
dSF, which rely on the detection of the Dirac-like dispersion
of quasiparticles [29-32]. This, however, is not a unique sig-
nature of the d-wave pairing state. A Dirac cone of quasipar-
ticles may also arise for an anisotropic s-wave pairing [33] or
d-density wave states [34].

Here we would like to show how the scheme I can be
extended to do phase sensitive detection of dSF. In high-
temperature cuprate superconductors, the crucial experiments
which identified the d-wave character of pairing were phase
sensitive experiments by Wollman ef al. [35] and Ariando et
al. [36]. These experiments unambiguously demonstrated the
correct angular dependence of the pairing amplitude. Experi-
mental setup by Wollman et al. used a combination of
s-wave and d-wave superconductors in a corner supercon-
ducting quantum interference device (SQUID) geometry. In-
terference of s-wave Cooper pairs with different parts of
d-wave Cooper pairs was used to establish the relative phase
of the Cooper pair wave function.

What we discuss below is the cold atoms analog of the
Wollman et al. experiments. Hence we also need a source of
s-wave Cooper pairs and a source of d-wave Cooper pairs.
We imagine a pair of two-dimensional fermionic systems,
made of the same species of atoms, but having s-wave pair-
ing in one layer and d-wave pairing in the other layer. This



/ldoc.rero.ch

http

may be achieved, for example, using magnetic field depen-
dence of the scattering length and applying a strong field
gradient. Now we analyze interference patterns from two re-
gions, R; and Ry, which differ only by the 90° rotation. The
quantity Ay(R;) is a complex number which has a random
phase from one shot to another. Analogously Ay(R;) is a
complex number with a random phase. But the d-wave sym-
metry of the pairing requires that phases of these two com-
plex amplitudes differ by precisely . Hence one can look at
([AQ(RI)]TAQ(R,,)) and the d-wave symmetry dictates that
this expectation value should be negative. On the other hand,
when R; and R;; have the same orientation, expectation value
of ([AQ(R,)]TAQ(R,,)) should be a positive number. It is im-
portant to emphasize that this statement is general and does
not rely on the specific microscopic model for d-wave pair-
ing. We stress that only one of the layers should have a
d-wave symmetry, otherwise A, being proportional to the
product of anomalous correlation functions in two layers,
does not change sign under rotations [see Eq. (12)]. While
the precise value of ([A(R)]"Ay(R;)) is not easy to calcu-
late, especially if we are dealing with nonidentical superflu-
ids, that statement of the 7 phase difference between Ay (R))
and B,(Ry;) relies only on the d-wave nature of pairing.

The crucial feature of the method discussed in this section
is that it should provide a qualitative and model independent
signatures of d-wave pairing. It does not rely on detailed
analysis of the microscopic models but it uses only the fun-
damental symmetry of the d-wave order parameter.

C. Probing of the anisotropy of pairing amplitude

We now discuss another probe of d-wave pairing. Unlike
the previous method, it cannot be used to demonstrate the
change of the sign of the gap function A(k). However it can
be used to observe anisotropy of the gap. We study the cor-
relation function (8) but integrate it in a highly anisotropic
way. In particular, one length, say along the probing beam,
should be macroscopic and the other W should be shorter
than the coherence length. Then (the square of) the anoma-
lous interference amplitude becomes

%, (17)

a,(0) =2AW J dz|F(z,0)

where 6 is the polar angle which defines direction of integra-
tion. We introduced a new notation a, to avoid possible con-
fusion with A, analyzed earlier. Note that typically d-wave
symmetry of the order parameter requires the presence of the
optical lattice. This lattice in turn breaks rotational symmetry
in the superfluid and locks the phase of the pairing amplitude
with the lattice’s principal axes. Therefore there is no ambi-
guity in defining 6 from one experimental run to another.
One can expect that for s-wave pairing (17) should give iso-
tropic result, while for the d-wave pairing the outcome will
be highly anisotropic. While this approach does not provide a
clear signatures of the change of sign in the Cooper pair
wave function, this method is easier to do experimentally; if
successful it should provide a strong indication of aniso-
tropic pairing.

It is straightforward to show that in the s-wave case the
function F is isotropic and is given by

F(z,0) = p)AJo(2/ ) Ko(2/§), (18)
where

1 , 1

T AL A2
k,+ky—k,

2

- |4 4 2°
Vkﬂ+kA+kN

k,= \2mu/h?, and ky=+2mA/h>. This expression shows
that the pairing wave function diverges logarithmically at
small z and decays exponentially with the characteristic cor-
relation length ¢ at large z. The logarithmic divergence is the
usual artifact of the BCS theory with pointlike interactions.
This divergence is cutoff at short distances.

Using Egs. (18) we evaluate the integral in Eq. (16) and
find

772 111
QZZFAWPSAzgx 4F3(<59§955 >,(1,151)s_ _2)7
(19)

where ,F; is the generalized hypergeometric function. At
small and large ratio of A/u the expression above gives the
following asymptotics:

L A2 A
a, = \—AWPO— ln3<—), A< u; (20)
3 k, M
188 ppA’
ay = A= A> pu. (21)
4 ky

As before the high energy estimate of the asymptotics is the
extrapolation of the BCS result to the strong coupling limit.
For d-wave pairing the correlation function F(z,,0) vanishes
along the nodal direction and thus aQ(ﬂ) should vanish as
well. On the other hand, along the antinodal direction we can
recover the asymptotics similar to s-wave case,

1 ZA2 A
ay ~ — AW 1n3( mt ) A< p. (22)
6m k, 8\V2u

For details of computations see Appendixes B and C.

D. FFLO phase

One of the most intriguing suggestions for the paired
states of fermions with attractive interactions is the idea of
FFLO phase for systems with spin imbalance. This state cor-
responds to Cooper pairing at a finite momentum and has
been a subject of extensive theoretical studies during the last
couple of years [37-42]. Experimental situation remains un-
clear (for recent review see Ref. [43]). We now discuss how
interference experiments can be adopted to look for the
FFLO state. An earlier proposal for the detection of the
FFLO phase can be found in Ref. [44].

The FFLO phase is characterized by the finite center of
mass momentum of the Cooper pairs so that F(r;,r,)
=(c;(r))c|(ry)) e ™ Q#1222 Therefore when one analyzes
the anomalous interference amplitude one expects additional
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modulations which can be detected by taking an appropriate
Fourier transform. This can be achieved by changing the
integration procedure in Egs. (4) and (12). We note that this
integration is not equivalent for the two directions. In the
direction of the x axis, integration is done automatically by
the laser beam. In the other direction, i.e., along the y axis, it
is performed “manually” by integrating interference fringes
(see Fig. 2). An alternative approach is to take a Fourier
transform of the interference amplitude A (y)=[dxA (x,y)
along the y axis. This can also be thought of as modifying
the integral in Eq. (4),

Ago(R) = f Ag(r)e’eidr = J dre'@ci (r)ey,(r),  (23)
R R

where we implicitly assume that the direction of the vector Q
coincides with the direction of integration x, Q=(Q,0). De-
fining now

Ay(R)=(Ag (R)Ap »(R))
:f drlj drye QO (1 1)) Fy(ry,r) . (24)
R R

In the FFLO phase A, should have additional peaks at Q
matching the finite momentum of the Cooper pair. The global
unknown relative phase can be removed again either by mul-
tiplying the signal coming from two spatially separated im-
aging areas R; and Rj; or by introducing weak tunneling cou-
pling between the layers as discussed in the next section.

One may be concerned that in rotationally invariant sys-
tems the direction of the FFLO ordering wave vectors will
not generically coincide with the x axis used for the obser-
vation. This issue should be avoided by using systems that
do not have a rotational symmetry in the xy plane. In fact,
one of the most promising systems for observing the FFLO
phase is an array of weakly coupled 1D systems [40,41]. In
this case the ordering wave vector should be in the direction
of the tubes.

IV. SCHEME II: ANOMALOUS CORRELATION
FUNCTIONS IN PHASE LOCKED SYSTEMS

Another way to overcome the effect of unknown relative
phase detecting anomalous interference amplitude is to intro-
duce a weak tunneling between the two layers (see Fig. 2).
As it was shown in Refs. [45,46] such tunneling leads to the
phase-locking transition. At the same time if the tunneling is
sufficiently weak then correlation functions do not apprecia-
bly change and Eq. (12) is still valid. Below we will show
that there is indeed a wide range of parameters where the
phases between pairing amplitudes in two layers are locked
and Eq. (12) gives the dominant contribution into expression
(8).

In the next section we analyze the effect of weak coupling
more carefully. We will explicitly analyze only the case of
two coupled s-wave superfluids. However, our results should
be very general because the precise nature of the symmetry
of the pairing amplitude (s-wave, d-wave, FFLO, etc.) is not
very important for the phase-locking phenomena.

A. Role of the interlayer coupling

Two imaging areas used in the setups discussed previ-
ously were needed to cancel the unknown relative phase be-
tween the order parameters in two layers. The same effect,
however, can be achieved by introducing a weak tunneling
coupling between the layers. Then phases of order param-
eters should lock [45,46] and one does not have to combine
signals from two different areas. Conversely different imag-
ing areas can be used as independent sources so that one can
effectively average A, over several independent imaging ar-
eas in a single experimental run.

As before we will work in the BCS limit. The BCS
Hamiltonian of two coupled condensates reads

H= 2 (k) (T + Aem) (k) — 1, > [ (K) 7.4(K)
k,«a k

+ (K T4 (K)], (25)

where we used Nambu notations for the spinor field lﬂL(k)
= (Pl 0l ) =(ch 1 (6) e (), (Yo (K)=cp (k). ih, (k)
=c2’ i(k))’ and where a=1,2 corresponds to two different
layers, and 7, and 7, are the Pauli matrices. It is convenient
to introduce symmetric and antisymmetric combinations:
.= +n) /N2 and _=(y;—1),)/\2. The Hamiltonian
splits into the symmetric and antisymmetric parts H=7H,

+H_,
Ho= 2 gL ®)[(s £ 1)7+ A (k).  (26)
k

Let us now find the effect of ¢, on A, using Eq. (8).
Reexpressing the operators ¢, and cz through the Nambu
spinors ¢ and ' and using Wick’s theorem and expanding to
the leading order in the tunneling coupling 7, it is straight-
forward to show that

Ay=Ay 1 +A+Ass, (27)
where

A [ dk Af
A ~ — —, 28
2 ) eniER 28
LA ) o)

2y emiE |’

dk A}
Ayy=~2A7 X 30
2,3 1 (27T)d Ef( ( )

Here E; =\(g = 1,)>+A}.

Note that A, ; coincides with our earlier expression (14).
The two other terms A, , and A, ; are proportional to ti. We
point out that A,, scales faster with the imaging area than
the other terms. The reason is that even in the absence of
superfluidity the tunneling forces fermions to occupy prefer-
ably the symmetric state. This is in turn equivalent to estab-
lishing a well-defined relative phase between the two atomic
systems. Since we are interested in detecting A, ; and not
A, , in fermionic systems, contrary to bosonic, it is prefer-
able to make the imaging area as small as possible, of the
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order of the Cooper pair size (or superconducting coherence
length). Indeed the integral in Eq. (12) converges at long
distances thus there is no need to go to r larger than the
coherence length. The third term A, 3 comes from the An-
dreev process. It is always subdominant at small 7, and we
can safely ignore it.

For the s-wave pairing the integrals above can be explic-
itly evaluated,

ApoA A
Ay = Po arctan —, (31)
M
At 2
Az’zzl ;p0<1+ , 211&)] (32)
VM

In the weak and strong pairing regimes we have the follow-
ing asymptotics:

.ApoAz

Ay~ YRR Ay= Ay, A<p (33)

T 1
Ap= ZApOA, Al= EAztipg, A>pu. (34)
Both at weak and strong pairing we find that
N (35)

where 7 is the atom density. The A, , contribution is an un-
wanted correction coming from the interlayer coupling,
which have nothing to do with superfluidity. This contribu-
tion can be suppressed either by decreasing the tunneling
amplitude 7, or by decreasing the imaging area A. Note that
the tunneling amplitude cannot be pushed down all the way
to zero, because then one will loose phase coherence be-
tween the two layers. In the next section we will see that it is
always possible to find the regime where A, , is negligible
and at the same time the two superfluids are locked. We also
comment that one can distinguish two contributions A, ; and
A, , by looking into the dependence of A, on 7).

B. Phase locking transition

In this section we examine the effect of the tunneling
coupling on establishing phase coherence between the two
fermionic superfluids. From a prior work it is known that two
energy phase fluctuations in superfluids can be described by
means of a conventional xy model with the effective La-
grangian [47-49],

AL e SN Ut Vi
L=no 4m(V0) o (Vn) 2y (36)
where
n=ng—pol 0+ (V&)/4m) (37)

plays the role of the superfluid density, 6 is the phase of the
superfluid order parameter. We emphasize that if fluctuations
of 6§ are small then 7 is close to the total density of atoms. It

is straightforward to generalize the derivation of the La-
grangian given in Ref. [48] to the bilayer system. A similar
derivation but for a tunneling through a point can be also
found in Ref. [47] and it is sketched in Appendix B for
completeness. We use this formalism to evaluate the tunnel-
ing Hamiltonian from the effective action given in Eq. (C9).

In the case of s- and d-wave pairings the integral appear-
ing in Eq. (C9) can be easily evaluated yielding the follow-
ing coupling term to the Hamiltonian of the system,

2

Hip== g —poT(A/)cos(6; - 6,), (38)
where the functions T(A/w) for the s- and d-wave pairings
are given in Appendix C. In both cases T(A/u) is a smooth
function, which interpolates between T(A/u)=2 at A<pu
and T(A/u)=1 in the opposite limit. When the pairing is
small A<y the effective Josephson coupling becomes sim-
ply J zz‘ipo, i.e., independent on A. This is a bit surprising
result since one would naively expect that J should vanish as
A—0. And this is indeed the case in superfluids with inho-
mogeneous tunneling where J~ ti pSA (see Ref. [47] for de-
tails). In superfluids with uniform 7, the Josephson coupling
become enhanced by the coherence factor 1/(ppd)~k/é,
where ¢ is the BCS coherence length, and the dependence of
J on A disappears.

The minimal tunneling required to lock the two phases
together between two superfluids can be estimated from
equating the energy gap required to transfer one particle
from one superfluid to another,

1
E.~ pWES (39)
0

to the energy gain due to the tunneling term,
E;~ 1, pol?, (40)

where L? is the area of each condensate. Note that L? can be
significantly larger than the imaging area A. From these
equations we find that E;,> E_ is equivalent to

(41)

This condition is compatible with the dominance of A; over
A, in Eq. (35) if

A> %\W . (42)
poL

In the weak coupling limit A <<y this requirement reduces to

A> py A/nL* and in the strong coupling regime A= u Eq.

(42) reduces to \.A/nL*<1. Clearly both conditions can be

easily satisfied using either small imaging areas or systems

with sufficiently large number of particles nL>.

For convenience we assumed the zero temperature case
throughout the paper. However, we would like to stress that
our results will be robust to the effects of temperature as long
as it is below the temperature corresponding to the
Kosterlitz-Thouless transition. Indeed in coupled conden-
sates it is the global phase which is destroyed by thermal
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FIG. 3. (Color online) Anomalous interference amplitude A,
=A,1+A;, and separately contributions A,; [Eq. (43)] and A, ,
[Eq. (32)] versus tunneling 7, / u for sample parameters (see text for
details). The red line (dashed-dotted line) (A, ,) is the contribution,
which comes from normal fermions, the black line is the superfluid
contribution.

fluctuations, but the relative phase remains locked all the
way to the Kosterlitz-Thouless transition [45].

C. Discussion

Having the effective action for the fluctuations of the or-
der parameter phase we can lift the assumption used in deri-
vation of Eq. (32) that the phases between two superfluids
are locked together and obtain

AppA A
21 = arctan —e
M

./4 Po A A
=~ arctan —
2 M

(652

! ) (43)

% -
6Xp< 2pot . Ts, p(A/p)L?

We note that A,, is not sensitive to the relative phase be-
tween the two superfluids and thus Eq. (32) holds for an
arbitrarily small ¢, .

In Fig. 3 we plot A,=A,+A,, and separately contribu-
tions A, [Eq. (43)] and A,, [Eq. (32)] versus tunneling
t,/ u for sample parameters A/ u=0.2, A/L*=0.02, N=103,
where N is the total number of fermions per condensate. The
graph indicates that there is an intermediate tunneling re-
gime, where the superfluid contribution A, ; dominates over
the normal part A,,. We note that because A, , is not sensi-
tive to the superfluid gap one can perform separate measure-
ments of A, in the normal and superfluid regimes. Then the
difference between the two will be precisely given by A, ;.

So far considering interlayer coupling we focused only on
large imaging areas, with both transverse and longitudinal
dimensions large compared to microscopic length scales. In
the opposite limit one has to study the correction to Eq. (12).
Instead of repeating the rather tedious analysis of Sec. IV A
we will make a couple of simple points. (i) There will be
additional contribution to a,,(6) which scales as ¢7. This
contribution will have the same origin as A, , in Eq. (32) and
will be insensitive to superfluidity. (ii) This unwanted contri-

bution will be greatly suppressed because it scales as the
square of the imaging area, which is small since one length
scale is microscopic. Thus the effect of the interlayer cou-
pling on the interference in this case will be even smaller
than in the case of the macroscopic imaging area.

V. ANOMALOUS CORRELATION FUNCTIONS IN BOSE
SYSTEMS

So far the main focus of our work was analysis of the
possibility of measuring anomalous correlation functions in
fermionic superfluids. There such measurements are key for
determination of the pairing gap. On the contrary one can
obtain substantial information about the superfluid properties
of Bose systems analyzing normal correlation functions
[5,18,19]. Nevertheless the possibility to measure anomalous
correlation functions can provide additional valuable infor-
mation about properties of these systems. As we will see
below these functions have very unusual behavior in the sys-
tems with quasi-long-range order such as zero-temperature
one-dimensional and finite-temperature two-dimensional
systems. In this section we will give explicit results both for
1D and 2D systems.

We consider setup analogous to that discussed in Sec. I'V.
Using the same arguments we find that

A=A f drF;(r)Fy(r), (44)
reA

where F,(r)=(a,(r)ay(0)), a=1,2; A is the imaging area
for 2D systems and the imaging length in the 1D setup. The
operators a, have bosonic statistics. As in the case with fer-
mions A, vanishes if the two systems are uncoupled. How-
ever, as we argue below if the imaging area is smaller than
the system size, one can always find the regime of small
transverse tunnelings 7, such that the phases of two super-
fluids are locked together, but the correlation functions re-
main independent of 7,. In this case assuming that the two
systems are identical, as in Sec. IV, we have

Ay = A J dr|F(r)?, (45)
reA

where F describes anomalous correlation functions in either
of the two systems. We note that the scheme I, where we use
two imaging areas cannot be straightforwardly applied to
bosons because the single particle correlation functions de-
cay slowly. However, in bosonic systems one can deal even
without tunneling for the following reason. The relative
phase between two independent superfluids is random from
shot to shot. Nevertheless in each shot the interference am-
plitude is well defined and fluctuates only weakly [5,18].
Thus this unknown relative phase can be reliably determined
in each run. Then one can evaluate anomalous correlation
functions putting the origin of integration along z in the po-
sition of the central interference peak. It is easy to see that
this procedure eliminates the effect of the unknown phase
and leads to Eq. (45).
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A. One-dimensional superfluids

Let us first analyze Eq. (45) for two coupled Bose systems
at zero temperature. If the imaging length is larger than the
healing length of the condensate then boson-boson correla-
tion functions are approximately

¥ \12K

(a(x)a(0)) = (Z) +oo (46)
where K is the Luttinger parameter related to the interaction
strength (see, e.g., Ref. [50]) and L is the length of a system.
Dots indicate other contributions which scales with larger
power and thus their contribution is less important. For a
Lieb-Liniger gas with short-range repulsive interactions K
>1 in the weakly interacting Gross-Pitaevskii regime and
K—1 in the fermionized Tonks-Girardeau regime. Notice
that this correlation function increases with the distance. This
unusual behavior also reflects the scaling of Bé with the
imaging length A,

Ay(A) ~ CAX(AK)E, Ak<1,

Ay(A) ~ CA%,  Ax>1, (47)
where C is a nonuniversal constant and ko V’Z is the char-
acteristic wave vector corresponding to the transverse tunnel-
ing (see details below). At sufficiently short distances the
anomalous interference amplitude A, grows faster than the
area squared. As the imaging size approaches the cutoff
length the superlinear dependence becomes linear and we
recover the expected result for the system with a long-range
order.

We can make the analysis more quantitative using a low-
energy description of two coupled one-dimensional Bose
systems (see, e.g., Ref. [51] for more details). In particular,
for weakly interacting superfluids it can be shown that the
Lagrangian governing properties of the relative phase ¢(x, 7)
between the condensates is

K| 1
| 08+ (0,07 -2 cos(9) | (48)

L(x,7) =

where 7 is the imaginary time, v, is the sound velocity in
each condensate, and «k?=~4t n/vK.

The analysis of either normal or anomalous correlation
functions can be performed using the form-factor approach.
For more details on this approach we refer to Ref. [52] for a
general scheme and to Ref. [51] for the application to the
one-dimensional condensates. This analysis is rather in-
volved for the generic value of the interaction parameter K
and requires the summation of many contributions coming
from the intermediate processes including creation and anni-
hilation of soliton-antisoliton pairs as well as their bound
states—breathers. Anomalous correlation functions would
correspond in that case to the soliton-creating or soliton-
annihilating form factors [53]. On the other hand, for weak
interactions (large K) the Lagrangian can be simplified even
further if we invoke Gaussian approximation replacing
cos(¢) by 1—¢?*/2. More carefully, this can be done using
the self-consistent harmonic approximation [54]. In this
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FIG. 4. (Color online) The ratio of A, and (KL_)2 vs kL for
imaging length equal to the system size A=L; k\t, is the char-
acteristic wave vector related to the gap A [see Eq. (48)]. The inset
shows A,/ A? as a function of A/L for different values of kL. The
superlinear behavior of A, vs A is a consequence of unusual be-
havior of anomalous correlation function F(x)~ (exp{i[ ¢(x)

+3(0)]}).

simple Gaussian approximation the calculation of the anoma-
lous correlation function becomes trivial and we obtain

F(x) = (a|(x)a(x)a}(0)a,(0))
~ C<ei[¢(x)+¢(0)]>

_C,<K>”K ( 2771) { 1 }
= N X\ fexp - —Ky(kx) |,
(49)

where C and C' are nonuniversal numerical factors and A is
the short-distance cutoff of the order of interparticle density
A ~n (we assume that x/ A <1). The first exponential factor
appearing in the equation above is similar to that, which we
discussed earlier [see Eq. (43)]. It shows that for small
enough ¢, such that k<2m/KL the phases between two su-
perfluids are not locked and anomalous correlations are ex-
ponentially suppressed. If on the other hand the opposite is
true the phases are locked together and this term is close to
unity. And finally the last multiplier gives the spatial depen-
dence of the correlation function F(x). At kx<1 we have
K,(kx) =~—-In(kx) and we recover the asymptotic F(x) = x*X,
in the opposite limit kx>1 we have Ky(kx)<<1 and thus
F(x) = const(x).
Using Eq. (49) we find that

B Ac’z(K)M [ 4ar 1 ]
= — €X -
2 A Pl" Kk wL

A 2
X fo dx exp[— §K0(Kx)] .

In Fig. 4 we plot the dependence of A,/(kL)? on L for the
imaging size equal to the system size A=L. At small tunnel-
ing kL<<1 the two condensates are decoupled and the
anomalous correlator is exponentially suppressed. As the
transverse tunneling increases kL~ 1 the anomalous interfer-
ence amplitude increases faster than linearly and at «L>1
we have A, > L. Note that there is a very wide range of pa-

(50)
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rameters 3 =< «L =100, where the superlinear behavior can
be observed. Similarly one can fix the transverse tunneling
and the system size and analyze the dependence of A, as a
function of the imaging size. The inset shows such plots for
different values of xL. Again one observes the superlinear
behavior of A, in a wide regime of parameters. We remind
the reader that the normal interference amplitude A, defined
in Sec. IT A always has sublinear behavior [18-20].

We can easily generalize the analysis above to the case of
finite temperatures. In the regime when the thermal coher-
ence length &=~Kuv /T is large compared to the healing
length of the condensates the phase model described by the
Lagrangian (48) gives the correct low energy description of
the two coupled superfluids. Within this model one finds

| 2 2
VNG~ + K
4 cothqz—T
i qx
0))=nexp|-— —COSZ— .
(a(x)a(0)) = n exp KL% e 5

(51)

In the zero temperature limit this expression reduces to Eq.
(49) while at T=v,« we obtain

(a(x)a(0)) = n exp[— qu (1+ e-m)} L (52)

s

In this case we have exponentially increasing correlations

7T (x —2/k) )

Kv (53)

(a(x)a(0)) ~ exp(
s

for kx=<1 and then their saturation as «x becomes larger

than one. In turn this behavior of the correlation functions

implies that in the regime 7= kv, the anomalous interference

amplitude scales as

27T
Ay Aexp|l ——(A-2/k) (54)
Kv,
at A<1/k and then in the usual way A, ~ A? in the opposite
limit. Thus anomalous correlation functions can be used to
probe the temperature in the system. We note, however, that
in the high temperature regime 7> kv, the anomalous inter-
ference amplitude A, is exponentially suppressed.

B. Two-dimensional superfluids

In a similar fashion to the previous section we can analyze
behavior of the anomalous correlation functions and the
anomalous interference amplitude for two-dimensional
bosonic superfluids. Below the Kosterlits-Thouless phase
transition temperature the low energy properties of the super-
fluids can be described by the effective Lagrangian (defined
as the ratio of the energy density to the temperature), which
is very similar to Eq. (48),

thx 2 2
L(r) = ——[(Vd)*—2k" cos ¢], (55)
4mT
where as before ¢ is the local phase difference between the
two superfluids, T is the temperature, p, is the superfluid

11

density, m is the boson’s mass, and x>~ 4mt, /h>. Because
of the formal analogy of Lagrangians (55) and (48) the
anomalous correlation function F(r)={a(r)a(0)) in two di-
mensions is identical to Eq. (49) under the substitution K
— ah?p,/(mT) and v,— 1. So one can expect a similar su-
perlinear behavior of the anomalous interference amplitude
Ay,

Az — A2+l/2K (56)

for K\S"Z< 1 and A,~ A? in the opposite limit.

C. Paired multicomponent bosonic condensates

Condensates of atom pairs can also be realized with
bosonic atoms. The original idea of fragmented condensates
goes back to Nozieres and Saint James [55]. They empha-
sized the difficulty of achieving such states since attraction
between bosonic atoms favors binding not just two but many
particles and may lead to the system collapse. More recently,
paired condensates were discussed by Kuklov er al. [24] for
a two component bosonic mixture in an optical lattice. Per-
haps the most natural setting for the appearance of bosonic
pairing is polar condensates of S=1 atoms in two dimensions
[56-58]. As discussed in Refs. [25,26], in such systems gen-
eral topological considerations suggest the appearance of
quasi-long-range order for singlet pairs rather than individual
spinor components. This is the system that we focus on in
this section.

Let ¢,(r) be individual spinor components with m
=*+1,0. We can make a spin singlet pair operator A(r)
=i (N (r)+ gbzo(r). As discussed in Refs. [25,26] for two-
dimensional polar condensates, such as 23Na, one expects to
find a phase in which (A'(r,)A(r,)) shows power-law corre-
lations. At the same time there are only short-range correla-
tions for individual spin components. In an interference ex-
periment from a pair of independent S=1 polar condensates
one should measure interference amplitude for individual
spin components, A,,z, then construct Ag=A_ 1rRA_1g+Agg. In
each shot the phase of A(R) is random, so one can again take
two regions, R; and Ry, and consider (A};lA R11>' This expec-
tation value should decay as a power law of the distance
between the two regions.

VI. SUMMARY AND CONCLUSIONS

In this paper we addressed questions of application of
interference experiments to detect paired states of either fer-
mions or bosons in low dimensions. We showed that direct
generalizations of approaches used in analyzing interference
of independent bosonic condensates do not work due to over-
whelming shot noise contribution. Thus we proposed and
analyzed two alternative schemes of interference experi-
ments which can be used to study anomalous correlation
functions, which contain information about pairing ampli-
tudes. These (gauge-noninvariant) correlation functions pro-
vide complimentary information to normal correlation func-
tions and can be used to characterize the properties of the
superfluids.
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It was shown how the method of studying the anomalous
functions can be used to detect various pairing orders. One of
the scheme we propose is based on the phase sensitive de-
tection employed earlier in the condensed matter systems.
On the other hand, another scheme deals with two superflu-
ids weakly coupled by interlayer tunneling. We establish the
condition of validity of this scheme which involves the tun-
neling strength, imaging area, and the system size. We em-
phasized important roles of different form of expansion
(transversal and longitudinal) and directions of observation.
In the case of bosonic superfluids anomalous correlation
functions have an unusual property that they increase with
the separation between quasiparticles.
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APPENDIX A: EXPECTATION VALUES OF THE NORMAL
CORRELATIONS FOR THE SYSTEMS WITH
PAIRING

In the BCS approximation the expectation value of the
square of the interference fringe amplitude discussed in Sec.

II can be fOund as
(2 ”) E]{ ’

where n/Ey) is the Fermi distribution function, Ej
=& +A;, §=K>/2m—p, A is the imaging area of the inter-
ference. The pairing gap function A, is a constant A 9 for the
s-wave pairing and the k-dependent functlon A,
=A8d)[cos(kx) —cos(k,)] for the case of the d-wave pairing. In
the absence of superconductivity and at zero temperature
|A|>=2N, where N is the total number of fermions in each
system. The nonzero value of |A|? in this case simply reflects
antibunching of fermions [note the negative sign in Eq. (3)].
As expected for fermions A~ VN (see, e.g., Ref. [21]).

Considering s-wave pairing and using the constant density
of states p, in 2D one finds

(A=A (A1)

|A]?=2N - AAY p0< 5t arctan(r,) — 2[1* + 1]”2) ,

(A2)

where 7,= ,u/ Ay () and w is the chemical potential. In the BCS
limit ,u>A " the equation above reduces to A,=2N
—AWPOA(S> If we formally extrapolate BCS theory towards
the unitarity limit ©—0 and A —n/p, then A,— N(2
—m/2). So we see that A, is a monotonlcally decreasing
function of the pairing gap. The results will be somewhat
different for the superfluids with the d— wave pairing in
which case is

12

(AP =2N + 2 Ap A2 + 1712 (A3)

+2tE(- t‘_’2)+2(1+t")1/28<1itd>} (A4)

where t;=u/ Agd) and where E(x) is complete elliptic inte-
gral.

APPENDIX B: TRANSVERSAL VS LONGITUDINAL
EXPANSIONS

In this Appendix we compare the two regimes of expan-
sions: the transversal expansion advocated in the main text
versus longitudinal one which is more close to the standard
time of flight technique.

The quantity similar to A, in Eq. (12) can be also mea-
sured in the standard time of flights experiments. For the
low-dimensional superfluidity it is advantageous to have lon-
gitudinal expansion so that the atoms from different layers
do not mix with each other. If one assumes that the interac-
tions are not important during the expansion then the spatial
image of the cloud after time of flight gives the momentum
distribution of atoms in the initial condensate. As it is shown
in Ref. [9] the density-density correlation maps to the Fou-
rier transform of the pairing amplitude,

(n(R,Hn(-R,1) = (B1)

where Q=mR/fit. We note that the transverse expansion dis-
cussed in the previous section directly probes the spatial
structure of (the square of) the pairing wave function and
thus gives a complimentary information to the quantity (B1).
If one integrates Eq. (B1) over the momentum Q then one
recovers the expression identical to Eq. (13). So the two
setups give equivalent information. We note, however, that in
the transverse expansion regime one can benefit from inde-
pendently averaging over several imaging areas within a
single shot.

Doing the longitudinal expansion one can also determine
the spatial structure of the pairing amplitude. Indeed if one
integrates Eq. (B1) along a preferred direction then the out-
come should be isotropic for the s- wave pairing and highly
unisotropic in the d- wave regime. Thus within the BCS
model in the s- wave case and in the d- wave case if one
integrates along the antinodal direction (where the pairing
gap is maximal) one obtain
Vu+ Vu? + A?

\'M2+A2

f dx(n(R,H)n(-R,1)) « A (B2)
On the other hand if one integrates Eq. (B1) along the nodal
direction in the d-wave case (i.e., the direction where the
pairing gap vanishes) one should obtain zero.

The clear advantage of the longitudinal expansion method
is that one avoids the issues with coupling between different
layers. In principle, one can perform this experiment even on
a single layer. However, there is a big disadvantage too.
Namely, one has to rely on the free expansion to obtain the
right correlation functions. In the case of a bilayer system
predominantly transverse expansion is guaranteed by the
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large kinetic energy of the transverse confinement. On the
other hand for the longitudinal expansion collisions between
atoms shortly after expansion started can affect the outcome
of the experiment. We note that instead of purely longitudi-
nal expansion one can have the full three-dimensional time
of flight experiment and obtain similar results. However, if
one is interested in two-dimensional superfluidity allowing
expansion in all three dimensions one clearly looses in the
signal to noise ratio.

APPENDIX C: EFFECTIVE ACTION APPROACH TO
COUPLED SYSTEMS

The effective action [Sy=[;L(7)d7] for the phase fluc-
tuations reads [48]

1

Ser 01, 6,] = Tr > (GoS)" - 2% f drdr(|A,(r, 7|
n=1

+|Ay(r, D), (C1)

where g is the interaction strength, which we assume to be
short range, G, and X are 4 X 4 matrices,

G, 0 5, T
(o) =0 L)
0 G, T 3,
Here G, are the fermion’s Green’s functions in the super-

fluid with a nonfluctuating phase. In the Nambu notation
their inverses are

(C2)

hZ

d,— —V? A, 5
. 2m
Giy= . (C3)
A a4+ ——V?
’ 2m

3, contains fluctuations of the order parameter [48]

h2
21’2 == a(vzﬁl,z + 2 V 01’2 V )7'0

U
+{ =02+ ——(V6,2)° |7, 8A 5|7 (C4)
2 8m

And finally T corresponds to the tunneling coupling between
two layers,

_ i(6;/2-6,/2)7,
T= tle 1 2 T

(C5)

For simplicity we assume that two layers are identical and
A =]4,]=A.

Next we expand the effective action (C1) to the second
order in small fluctuations in derivatives of ¢;, and to the
second order in ¢, . For simplicity we ignore fluctuations in
the magnitude of the order parameter §|A ,|. Then one ob-
tains

Setr = S1+S2+ 512, (Co)

where S|, correspond to the quadratic Lagrangians (36) of
decoupled layers and

13

S1,==Tr(GyTG,T"). (C7)

Note that we can ignore slow spatial variations of the phases
0, , in the tunneling matrix 7 in the equation above. Indeed
keeping these variations will result in corrections to the gra-
dient terms in S, , proportional to tzl. Then taking into ac-
count the expression for the nondiagonal elements of the
Green’s function,

A in0+ ng:;—Ale

= 2, 2 2
w, + &+ A;

0— s (CS)

where &, is dispersion and 7 ; 5 are Pauli matrices in Nambu
space, Eq. (C7) can be evaluated in the limit of zero tem-
perature as

&Pk A}
27 (o + Ei)2 ’

(C9)

d
Sip== 211 py X cos(6; — 6,) f =
21

where 1,(0) is a density of state at the Fermi level and Ej
=§i+Ai. For the s-wave superfluid we use Ay=A and §
=k?/2m— u, whereas for the d-wave pairing A,=A[cos(k,)
—cos(ky)].

APPENDIX D: TECHNICAL DETAILS

We present some details of our computations of contribu-
tions from the anomalous correlation functions. While the
expression for the most functions in the case of s-wave pair-
ing can be evaluated straightforwardly, its treatment for the
d-wave case require some approximations which we describe
here. However, some integrals can be done without these
approximations which is also discussed.

1. Nodal approximation

In the T— 0 limit we are interested in, to evaluate the
d-wave related integrals we use the nodal approximation de-
veloped in [59]. It consists in focusing on the regions close

to four nodes of the d-wave order parameter, knzkplgn (n
=1,2,3,4) on the Fermi surface. Explicitly,

~ X+y . —X+¥

Kk, = , ky=——=, (D1
=5 k= o )

~ —X-§ . X-¥

ky=——, Kk,= . (D2)
’ V2 M)

In the vicinity of nodes we can expand k=k,+ Jk, and then

§k=UF5kJ_’ Ak=vA5k”, (D3)

Ep =050k + 036k (D4)
Here ok, ; are components of momentum perpendicular and
parallel to the Fermi surface, vy is a Fermi velocity, and
va=|dAy/ Jk)|. Finally introducing the angular parametriza-
tion

(D5)

& =vpdk, =€cos @, Ap=uv,0k=e€sina,
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Ek = €. (D6)
The integrals can be performed according to the following
rule:
&’k d ok dok
(o) — E o () (D7)
f (2m)? n=1 (2m)?
2
max da
f f ), (D8)
27TUFUAn 1

where the limit €,,,,= A, makes sure that the integration area
is equal to the area of the Brillouin zone. It can be sent to
infinity for practical purposes.

Considering the tunneling integral of Eq. (C9) we observe

that
f max dwf max kdk
0 2m)?

2
{arctan(y) yln( u 2)] (D10)
I+y

(D9)

27TZUFUA

where y= w,,,/ €a- In the limit y—o the expression in
square brackets goes to 7 and we arrive at Eq. (38) if one

assumes that the ratio €,,,,/vzv, is a constant independent of
A.

2. Explicit evaluation of some integrals

Some explicit expressions are possible to obtain for sev-
eral important quantities: in particular we focus on the func-
tion b, introduced in Sec. IIl C and the tunneling integrals.

Starting from the expression for the anomalous Green’s
function

F(r):f:

writing cos” 2¢=(1/2)+cos(4¢)/2, and using the expansion
formula

. 2m*\1/2
2m*kdk fzﬁ glkr cos d’(—hz—) A cos 2¢d
Cm**)y - )P+ A2cos?2¢

(D11)

1 5 (= DRE) I
= (k!)222k

(D12)

: =
VI+x =0

for x=A? cos(4¢)/2, one can obtain a systematic expansion
of the integrand. Restriction to the first term in this expres-
sion already produces a very good uniform approximation
for the integral. Doing the ¢ integration

fZﬂ'
0

where 7=r(2m*/h?)!? gives an expression

<D co5(2 ) = — 2711, (kF), (D13)

- oy -
~ =) o]

Tunneling integrals

o

25 5 75 10
A

1

125 15 175 20

FIG. 5. Comparison of the tunneling elements for the s-wave
pairing (lower curve) vs d-wave pairing (upper curve).

Jo(k7)

F(r) = - pyA f kdik———, (D14)
\ (&= w? £

where p,=m*/mh? is the constant density of states in 2D
(summed over spin polarizations). The expression (D14) can
be further evaluated using the so-called & approximation, fre-
quently used in the theory of superconductivity. In the argu-
ment of the Bessel function we write k%>—u=(k—u)(k
+\m) = (k= )2\ u. On the other hand, in the BCS regime
where u/A>1 after variable’s rescaling we shift the lower
limit of integration to —o and use the summation theorem for
the Bessel function J,(z+1)=2,___J, (1)J;(z). Restricting to
the n=0 from this sum already produce a good approxima-
tion for the function F(r),

7A )K( FA
4w2,u, 0 4w’2tu

Now, the integral for sz can be computed in the same BCS
limit by using the asymptotic behavior of Bessel functions
for large and small arguments. The In? result is similar to the
s-wave case but with a different prefactor given in Eq. (22).
Tunneling integrals in the d-wave case can be evaluated
exactly. The answer is shown in Eq. (38) with the function

F(r)=- _Jz(\'MA710< ) (D15)

y2
2) +E&(=y?) - K(-y?)
+y

)

where £(y) and K(y) are complete elliptic integrals and y
=A/u. In Fig. 5 it is compared with the exact expression for
the s-wave tunneling integral

2 | ——
Tp(y)=1+ —2{ V1 +y25(
my 1

L IC( i (D16)
\rl+y2 1+y

Tg(y)=1+ (D17)

J’ 2 ’

vy +1

The similarity of the tunneling integrals for the s- and
d-wave pairings is remarkable.
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