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Microcalcification after excitotoxicity is enhanced in
transgenic mice expressing parvalbumin in all
neurones, may commence in neuronal mitochondria
and undergoes structural modifications over time
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Aims: Parenchymal microcalcification in the brain coin-
cides with neurodegenerative diseases, but is also fre-
quently found in neurologically normal individuals. The
origin and role of this process are still under debate. Par-
valbumin (PV) is a protein acting as a Ca** buffer and Ca*"
shuttle towards intracellular Ca** sinks, like mitochondria
and the endoplasmic reticulum. Constitutively, it is present
in a subset of inhibitory neurones. In transgenic mice
expressing pan-neuronal PV, the mitochondrial volume is
reduced. We tested whether elevated levels of intraneu-
ronal [Ca®] and reduced mitochondrial volume in the
neurone interfere with the generation of parenchymal
microcalcification. Methods: The striatum of wild type
and transgenic mice was injected with the glutamate
receptor agonist ibotenic acid (IBO), which is known to
induce not only excitotoxic neurodegeneration, but also
parenchymal calcification. Sections were studied by light

and electron microscopy at various time points after IBO
application. Results: Morphometric analysis 2, 4 and 20
weeks after IBO application revealed microcalcification in
transgenic and wild type mice; the calcification process,
however, was enhanced and accelerated in the transgenic
animals. Ultrastructural analyses suggest neuronal mito-
chondria as the nucleators of the deposits which consist of
hydroxyapatite. The time-dependent changes in size and
surface structure of the deposits indicate the presence of
biological mechanisms in the brain promoting regression
of bioapatites. Conclusions: The overload of intraneu-
ronal [Ca®'] in combination with impaired mitochondrial
function activates neuronal microcalcification. Tt is
hypothesized that this process is an alternative/adaptive
mechanism of the neurone to reduce further brain
damage.
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Introduction

Calcium precipitation in the brain is associated with a
number of diseases, namely, hypoxia [1,2], Fahr’s disease
[3], Alzheimer’s disease [4,5], Down’s syndrome [4],
diffuse Lewy body disease [5] and Parkinson’s disease
[5,6], but can also be found in the brain of neurologically
normal individuals, particularly in the basal ganglia and
the thalamus [7]. Neither the origin nor the role of this
microcalcification is yet clearly identified. Based on ultra-
structural analysis, the initiation site of deposition has
been proposed to be in astrocytes [8], in both neurones
and astrocytes [9], and primarily in neurones [5,10,11].
Recently, it has been hypothesized that calcium precipita-
tion in the brain helps to overcome excitotoxicity and
consecutive neurodegeneration by acting as a new, intra-
neuronal compartment in which free cytoplasmic calcium
ions are captured, stocked in the form of precipitates and
thereby ‘inactivated’ [5].

Intracellular Ca®* levels of neurones are controlled
via extrusion mechanisms like Ca®* pumps, Ca®*-storing
organelles (mitochondria and endoplasmic reticulum),
and are additionally modulated by Ca**-binding proteins
with Ca**-buffering capacity like parvalbumin (PV). PV
is a small (M, 12 kDa), acidic Ca**-binding protein of the
EF-hand family. Its expression in the brain is restricted
to a well-defined subpopulation of mostly gamma-
aminobutyric acid-ergic neurones [12,13].

Mitochondrial damage, nitrosative and oxidative stress
and, more directly, exposure to endogenous or exogenous
excitotoxins, all lead to intracellular Ca** overload which
is the final common pathway resulting in ischaemic and
neurodegenerative nerve cell death [14-16]. Yet, several
of these degenerative processes also occur in the normally
ageing brain [17,18]. Excitotoxicity causes elevated [Ca**];
and neuronal death through an exaggeration of the physi-
ological action of glutamate [19], and is known to provoke
cellular microcalcification [9,10,20]. Thus, elevated intra-
cellular Ca**-buffering and -shuttle capacity of neurones
due to pan-neuronal PV expression define an appropriate
model studying cerebral microcalcification induced by
excitotoxicity. This model is of particular interest as
expression of PV has been shown to decrease mitochon-
drial volume in the neurones of genetically altered mice,
whereas deficiency of PV upregulates mitochondrial
volume in specific cells (e.g. fast-twitch muscle fibres, cer-
ebellar Purkinje cells) normally expressing this protein
[21,22]. Tt is conceivable that neurones with a reduced

amount of mitochondria will be more vulnerable to stress
leading to further overload of Ca*". To test for this, ibotenic
acid (IBO), a glutamate analogue and excitotoxin, was
injected into the striatum of mice expressing pan-
neuronal PV and, as a control, into the striatum of wild-
type mice. The striatum was selected as target area
because of its paucity of PV-expressing neurones in
wild type mice.

The aims of this —to our knowledge — first genetic study
on cerebral microcalcification in mammals in vivo were: (i)
to investigate whether an additional cytosolic Ca** buffer
in neurones affects nucleation and growth of Ca** deposits
after excitotoxic lesion, thereby suggesting a neuronal
origin of parenchymal brain calcification; and (ii) to define
the localization and composition of the nucleator(s)
arguing for a probable pathogenic link between cellular
microcalcification, normal ageing and neurodegenerative
diseases.

As there is increasing evidence for endogenous mecha-
nisms that actively regulate growth and structure of
(extracellular) mineral deposition [23-27], it was a
further aim of the study to follow-up changes in structure,
composition and size of calcified deposits over prolonged
time periods.

Materials and methods

Mice

Mice with a C57BL/6] background, 20-34 g in weight,
expressing PV in all their neurones under the control of
the Thy-1 promoter (and therefore named Thy-PV mice)
were used (for details see [28]). C57BL/6] mice, 20-31 g
in weight, served as control animals. Mice were between
65 and 300 days old when IBO was injected, and no sex-
or age-related variations concerning the data obtained in
this or a pervious study [22] have been observed. All
animal experiments were performed with permission of
the local animal care committee and according to the
present Swiss law.

Determination of genotype

Detection of transgenic mice was carried out by poly-
merase chain reaction (PCR) and immunohistochemistry.
The PCR procedure on genomic mouse tail DNA was per-
formed as described previously [29]. Briefly, rat-specific PV
¢DNA primers (OL1, 5’-TCC AGA TGG TGG GCC TGA AGA
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AAA AGA GTG-3" and OL2, 5-GTC CCC GTC CTT GTC
TCC AGC AGC C-ATC-3" as the 5" and 3’ primers) and, as a
template, 1 ug of genomic DNA was used. A PCR ampli-
con of 194 bp was produced and analysed on agarose gels.

Surgical procedure

Mice were anaesthetized with ketaminum (Ketamin®,
1 g/kg i.p.), xylazinum (Narcoxyl®, Veterinaria AG,
Zirich, Switzerland; 0.02 g/kg i.p.) and atropin (Atropin,
Atropinum sulf, Sintetica SA, Mendrisio, Switzerland;
0.05 mg/kg i.p.), then placed in a stereotaxic apparatus.
IBO (Sigma, St. Louis, MO, USA; 0.4 pg in 0.4 pl buffered
saline) was injected with a Hamilton microsyringe into the
left striatum of the mice, according to the atlas of Franklin
and Paxinos [30] at the co-ordinates anterior/posterior
(AP) + 4.8 mm, lateral (L) 2.1 mm and ventral (V)
2.5 mm above ear zero plane. Injection time was 10 min,
and further 10-15 min elapsed to let the substance diffuse
into the surrounding tissue, before the needle was with-
drawn and the wound closed. Most of the mice showed a
marked tendency to rotate for several hours after IBO
injection, a behaviour that reflects the acute overstimula-
tion of the affected area and correlates with the precise
localization of the excitotoxin. Sham animals (n=2,
respectively) were injected with the same amount of 0.9%
NaCl and showed no rotation behaviour.

Tissue preparation

After a recovery period of 2 weeks (n=15), 4 weeks
(n=16) and 20 weeks (n = 4), mice were deeply anaesthe-
tized with pentobarbital (Vetanarcol®, Veterinaria AG,
Zirich, Switzerland; 0.04 g/kg i.p.) and transcardially
perfused first with 4% paraformaldehyde and 0.2% glut-
araldehyde in 0.1 M phosphate buffer, pH 7.4, followed by
the same fixative without glutaraldehyde. The dissected
brains were immersed in fixative overnight.

Histology

Serial sagittal 40-um sections were cut with a vibratome
and collected in cold Tris-phosphate-buffer (TBS, 0.05 M)
and mounted on glycerin-coated slides. They were stained
with 1% Alizarin Red S (E. Merck, Darmstadt, Germany) to
detect the calcium deposits, and with 0.5% cresyl violet to
visualize the position of the needle and morphological

aspects of the lesion. The slides were dehydrated in
increasing ethanol concentrations and coverslipped with
Eukitt.

Immunohistochemistry

Parvalbumin antibodies were used to distinguish Thy-PV
and wild-type mice immunohistochemically. The proce-
dure is described in detail elsewhere [12]. In brief, free-
floating vibratome sections were treated with 1% NaBH4
for 10 min, followed by 0.4% Triton X-100 in 0.05 M TBS
for 90 min and finally in 5% normal horse serum for 2 h.
Then sections were incubated with a monoclonal anti-
body against PV (PV235, 1:20000; Swant, Bellinzona,
Switzerland) for 48 h, followed by a biotinylated horse
anti-mouse antibody (1 : 200; Vector, Burlingham, CA,
USA) for 2 h, and by the avidin-biotin complex (Vector)
for 90 min. Immunoreaction was visualized with 0.05%
diaminobenzidine and 0.1% H,0,.

Morphometric analysis

For quantification of the deposits, from each alizarin-
stained series, the section with the largest lesion was
selected (L=1.95-2.25 mm). Calcium deposits were
counted (Thy-PV: n = 17; wild type: n = 18) and classified
into three types (see Figure 1g—i): type 1 deposits were the
transparent ones often reminiscent of the shape of neu-
rones (the ‘youngest’ deposits); type 2 deposits showed a
dense core and transparent halo; type 3 deposits were
clearly demarcated dense deposits without halo (the
‘mature’ deposits). These measurements were carried out
with a Leica Image Scale system 52 (Leica Microsystems,
Heerbrugg, Switzerland). For all data sets, the mean *
standard error of the mean were calculated and signifi-
cance was determined with Student’s t-test.

Transmission electron microscopy

At the ultrastructural level, visualization of excessive
in the striatum was carried out 5, 7, 14
and 28 days after the excitotoxic insult in two animals per
strain, respectively, according to the method of Probst
[31]. Fixed striatal tissue from unstained vibratome sec-
tions was treated with 1% 0sO, and 2.5% K,Cr»0; for 1 h,
dehydrated until 70% ethanol, blockstained in 1% uranyl
acetate in 70% ethanol, completely dehydrated with
graded ethanol and propylene oxide, and flat-embedded in

2+

presence of Ca
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Figure 1. Alizarin staining of parasagittal brain sections after ibotenic acid-induced excitotoxic lesion in the striatum revealed more deposits
in Thy-PV mice (right panel) compared with wild type mice (left panel) after 2 (a, b), 4 (c, d) and 20 weeks (e, f). Scale bar (a—f) = 500 um.
Over time, three different types of deposits could be distinguished at the light microscopic level: type 1 (g), type 2 (h) and type 3 (i). Scale bar
(g-i) = 10 um. For details see text.
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Figure 1. (Continued)

a plastic resin (Epon; Serva, Heidelberg, Germany). The
first 5 wm of the tissue block were sectioned, and 70-nm
samples were placed onto copper grids and contrasted
with 1% lead citrate. In addition, conventional processing
for visualization of lesioned tissue was done with 0.1%
0s04. A CM10 electron microscope (Philips, Eindhoven,
The Netherlands) at 80 kV served for examining the
tissue.

To reveal the crystalline structure of the intracellular
and extracellular deposits, a selected area electron dif-
fraction analysis was carried out on ultrathin sections
of conventionally processed tissue at 200 kV (Hitachi
H8000, Japan). Diffraction patterns were recorded on dif-
ferent parts of the deposit, imaged rings were measured
on the negatives using a calibrated camera length, and
the crystalline structure was identified with standard
powder diffraction files as described elsewhere [32]. Non-
calcified tissue and plastic resin without tissue served as
controls. For chemical analysis of the deposits, a Tracor
Energy dispersive (EDS) DTSA system on a Hitachi
H8000 microscope at an acceleration voltage of 200 kV
was used. Multiple parts of the deposits as well as non-
calcified tissue and plastic resin without tissue were
measured.

Scanning electron microscopy

Vibratome sections from animals with 2, 4 and 20 weeks
of survival time were placed onto glycerin-coated slides,
dehydrated in graded ethanol and air-dried, then carbon-
coated and sputtered with silver. A Phillips CM 30 envi-
ronmental scanning electron microscope was used for
visualization, and chemical analysis was carried out using
an EDAX EDS system.

Results

Differences in PV immunohistochemistry
between Thy-PV and wild type mice

As described previously [28], transgenic mice were found
to display no apparent phenotype when kept under stan-
dard housing conditions, but revealed marked differences
in PV immunohistochemistry. There was an increased,
rather homogeneous immunoreactivity throughout the
brain, which stands in contrast to the specifically distrib-
uted immunoreactivity of wild type mice with numerous
densely stained neurones, e.g. in the cerebellum and
the reticulothalamic nucleus and very few, but well-
demarcated PV-containing cells in the striatum (data not
shown, for detailed information see [22]). Typically, neu-
rones endogenously expressing PV contain higher con-
centrations of the protein as compared with the neurones
of the transgenic mice in which the Thyl promoter
induced a basal PV protein expression in all nerve cells.
Therefore, neurones with endogenous expression of PV
could still be distinguished from the rest by their
stronger immunoreactivity.

Higher number of calcium deposits in Thy-PV
mice after excitotoxic insult

At 2, 4 and 20 weeks after injection of IBO into the left
striatum of mice, brains were assayed for mineral deposi-
tion by light microscopy. Localization and characteristics
of selective neurone depletion, determined by cresyl stain-
ing, served as a control for adequate injection of the
substance, and was identical in both strains, with the
exception that the neurone-depleted zone was larger in
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Figure 2. (a) Quantification of the deposits revealed that Thy-PV mice exhibited more deposits per mm? neurone-depleted zone than wild
type animals (b—d). To compare the growth rate of biomineralization between Thy-PV and wild type mice, densities (deposits per mm?
neurone depletion) of the three different deposit maturation stages (Figure 1g—i) were determined 2, 4 and 20 weeks after the excitotoxic
insult. In addition to higher numbers of each deposit type in the Thy-PV mice compared with wild type ones at every time point investigated,
the reduction of type 1 deposits and the increase of type 3 deposits from 2 to 4 weeks was only significant in Thy-PV mice, indicating an

accelerated deposit maturation process in the transgenic mice.

Thy-PV mice 2 and 4 weeks after excitotoxicity, as was the
area of astrocytosis, determined with GFAP staining, 2
weeks after excitotoxicity [22]. Localization of mineral
deposition was determined by Alizarin staining. A necrotic
core devoid of staining was surrounded by an area where
calcium deposits were observed. Localization and size of
selective neurone depletion as determined in cresyl stain-
ing and area of mineral deposition were identical. There
was an obviously higher number of deposits observable in
Thy-PV as compared with wild type mice after 2, 4 and 20
weeks (Figure 1a—f). In sham animals, the needle tract
was identifiable in all stainings, but no neurone-depleted
zone or calcium deposition was observed (data not
shown).

The quantitative analysis revealed that Thy-PV mice
exhibited more than twice as many deposits per mm?
neuron-depleted zone as wild type animals after 2 (67 vs.
33 deposits per mm?, P < 0.05) and 4 weeks (67 vs. 24

deposits per mm?, P < 0.001, Figure 2a). After 20 weeks,
two animals per group were studied, and deposit density
showed also a large difference between Thy-PV and wild
type mice (113 vs. 24 deposits per mm?, Figure 2a).

Increased growth rate of calcium deposits in
Thy-PV mice after excitotoxic insult

Two weeks after injection of IBO, type 1 was the most
predominant type of deposit observed in wild type and in
Thy-PV mice (Figure 1g), reflecting the beginning step of
the calcification process. At this early stage, the density
of type 2 (Figure 1h) deposits was approximately half of
that of type 1 in both investigated strains, respectively.
Type 3 deposits (Figure 1i) were even less abundant. The
density of all deposit types was clearly higher in trans-
genic mice than in wild type ones (type 1, 36 vs. 20
deposits per mm? neurone depletion, P < 0.05; type 2,
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20 vs. 10 deposits, P=0.06; type 3, 11 vs. 3 deposits,
P < 0.005; Figure 2b). Four weeks after IBO injection, a
progress in the deposit maturation process was evident;
the density of type 1 deposits was lower than after 2
weeks, while the density of type 3 deposits had increased
in both strains. Again, density of all deposit types was
significantly higher in Thy-PV mice compared with
control mice (type 1, 23 vs. 12 deposits per mm? neuron
depletion, P<0.05; type 2, 23 vs. 6 deposits,
P<0.0001; type 3, 22 vs. 6 deposits, P<0.005;
Figure 2c¢). Finally after 20 weeks, types 1 and 2 deposits
were rare in both groups (types 1, 5 vs. 3 deposits; types
2, 11 vs. 6 deposits per mm? neuron depletion), whereas
type 3 deposits were predominant (Figure 2d). The
number of type 3 deposits in the two Thy-PV mice at this
time point was much higher than in the two control
animals (100 vs. 14 deposits per mm? neuron depletion).
In Thy-PV mice, reduction of type 1 deposits (from 36 to
23, P <0.05) and increase of number of type 3 deposits
(from 11 to 22, P < 0.05) from 2 to 4 weeks were signifi-
cant, but not in wild type mice (P=0.06 and 0.16,
respectively). This indicates that the rate of deposit matu-
ration in Thy-PV mice is increased in the period between
2 and 4 weeks after IBO injection.

Calcified mitochondria in different compartments
of neurones

Transmission electron microscopy (TEM) analysis at early
time points after IBO injection revealed features of apop-
tosis and necrosis (Figure 3a), while with longer survival,
degenerating perikarya were practically absent in the
neurone-depleted zone. In the necrotic core of the lesion,
no intact cell structures, except macrophages, were found,
and there were no signs of deposition.

At early time points, after bichromate staining, densely
stained granules were seen randomly distributed in the
matrix of neurones but not in other cell types. Their
appearance was either floccular (Figure 3b—e) or needle-
like (Figure 3f). They were frequently situated in dark
and/or swollen mitochondria still recognizable by their
double-membrane structure and the internal cristae
(Figure 3b,d—f). Affected mitochondria were localized in
different compartments of degenerating neurones of the
neurone-depleted zone, preferably in dendrites and in
axons. Boutons were mostly intact and rarely contained
calcium-loaded mitochondria. Furthermore, greyish glob-
ules which exhibited faintly visible remnants of cristae

(Figure 3b’) could be found in perikarya and dendrites.
Larger, lobulated globules with similar appearance
(Figure 3c) were present extracellularly. All of these char-
acteristics were observed in both Thy-PV and wild type
mice at all time points investigated.

Extracellular deposits

Deposits with diameters between 3 and 15 um were
observed in the area of neurone depletion (Figure 3g).
They were found to have highly variable morphologies,
were not limited to recognizable cell boundaries, but were
mostly engulfed by microglial extensions. Astroglial cells
were less frequent in close vicinity of the deposits. The
deposits had bud-like protrusions on their exterior bound-
ary, and remnants of cell organelles in their centres. These
could occasionally be identified as mitochondria which
were heavily filled with floccular or needle-shaped
material.

Changes in surface topography of the deposits
over weeks and months

Surface topography of the deposits was studied with
scanning electron microscopy (SEM). After 2 weeks, the
surface of the single deposit appeared ‘flat’” and
polygonal, with sharp straight borders, which were
studded with unorganized protruding bulbs, the surface
of the bulbs being also flat and angular (Figure 4a). After
4 weeks, the deposits showed stronger budding, the
surface of the bulbs was not as angular and borders
appeared smoother and more rounded than after 2
weeks. Smooth filamentous bridges connected one bulb
with another (Figure 4b). After 20 weeks, the density of
calcified material in the deposits had rather diminished,
as the bulbs were more globular-shaped and the bridges
elongated and smooth. The surface textures of the bulbs
appeared not as flat as they were after 2 and 4 weeks
(Figure 4c).

Sizes of the — extracellular — deposits (3—15 um) were
found to be highly consistent using the different tech-
niques applied in this study (histology, TEM, SEM).

Hydroxyapatite is the main component of
calcified mitochondria and extracellular deposits

Electron diffraction patterns of crystalline mitochondria
and extracellular deposits were recorded in the TEM, and
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Figure 3. Ultrastructural analyses of ibotenic acid-induced calcium precipitation argue for mitochondria as the main source for deposit
nucleation. (a) A degenerating neurone contains an apoptotic nucleus while its cytoplasm shows features of necrosis with disintegrated
endoplasmic reticulum and large vacuoles (wild type, 7 days of survival). (b) In the necrotic cytoplasm of a degenerating neurone, damaged
mitochondria are present: a swollen one with partially disintegrated cristae (arrow) and a darkened one with a halo stained for precipitated
calcium (arrowhead). A group of greyish globules (double arrow) exhibits faintly visible remnants of cristae (see higher magnification in b’),
suggesting that these structures are disintegrated mitochondria (wild type, 7 days of survival, potassium bichromate). (c) After longer
survival (12 days, wild type), an enlarged lobulated globule, partially surrounded by astroglial (Ag) extensions containing glycogen granules,
exhibits a dark halo. A bouton (B) is in direct synaptic contact, suggesting that the globule originated from a postsynaptic dendrite.

(d) Massively swollen mitochondria with dense spots of calcium precipitation are situated in the postsynaptic part of a synapse as evidenced
by the presence of a synaptic bouton (B) and an active synaptic zone. In the neighbouring postsynaptic structure, a condensed
mitochondrium (arrow) shows calcium precipitation (wild type, 7 days of survival, potassium bichromate). (e) Various stages of
mitochondrial calcium precipitation in different neuronal compartments are imaged, e.g. in an axon (arrow), a bouton (B) and in a dendrite
(arrowhead) (Thy-PV mouse, 5 days of survival, potassium bichromate). (f) A mitochondrium with dense needle-shaped material is located
in a myelinated axon (Thy-PV mouse, 12 days of survival, potassium bichromate). (g) After 4 weeks of survival, large degenerated masses
loaded with calcium precipitates are found, which are probably derived from neuronal perikarya and contain different cellular elements as
e.g. mitochondria (arrow), they might be the ultrastructural correlate of the alizarin-stained deposits seen at the light microscopic level.



//doc.rero.ch

http

Figure 4. Surface topography of the deposits studied with a scanning electron microscope shows massive changes over weeks. (a) Deposits
appear rough and unorganized 2 weeks after IBO injection, and the surface of the bulbs is flat. (b) After 4 weeks, the deposit shows stronger
budding, and the bulbs are more demarcated. (c) After 20 weeks, the surface of the deposit appears well organized, and smooth bridges

connect sculptured bulbs. Scale bar (a—c) = 10 um.

measurement of the radii of the diffraction rings and cal-
culation of the interplanar spacing identified the crystal-
line structure of the calcified neuronal mitochondria and
the deposits as hydroxyapatite (Figure 5a). Evidence for
other crystalline structures was not found. The chemical
analysis of calcified mitochondria and deposits with
energy dispersive X-ray methods in the TEM and the SEM
revealed spectra with high peaks of calcium, phosphorus
and oxygen (Figure 5b). The peaks of uranium, lead and
osmium in the TEM originate from elements used in
preparation of the tissue, peaks of chlorine and silica
obtained originate from the embedding material, irre-
spective whether the analysed probe was calcified tissue,
soft tissue or plastic resin (Figure 5c¢). SEM spectra of cal-
cified tissue, soft tissue and regions outside of tissue
showed no peaks of silica and aluminum. Absence of
silica and aluminum rules out the existence of alumino
silicates in our probes.

Discussion

Non-vascular calcium precipitation in the brain is associ-
ated with neurodegenerative diseases, but is also observed
during normal ageing [3—7]. This microcalcification can
be considered as an alternative homeostatic step to reduce
excitotoxicity [33], whereby free cytoplasmic calcium
ions precipitate as solid, round concretions and the
hydroxyapatite formations lead to a reduction of free
calcium ions in the cell [8].

Until recently, studies on these calcification processes
have been restricted to descriptions of abnormally depos-
ited mineralization products and to cells and molecules,

which colocalize with the deposits. Now, studies on geneti-
cally altered animals have enabled us to better understand
the underlying mechanisms. In the present investigation,
we focused mainly on the influence of neurones on
parenchymal brain calcification in the mouse striatum,
knowing that different cellular and histological environ-
ments, diversities of pathologies, acute or chronic insults,
diversities in neuronal calcium homeostasis and other
factors influence the microcalcification process and
outcome. The striatum of transgenic mice expressing pan-
neuronal PV was lesioned with the excitotoxin IBO, and
the extent of parenchymal microcalcification was com-
pared with wild type mice. Furthermore, nucleation of
this calcification process and changes of surface struc-
tures over time were followed. We found that: (i) pan-
neuronal expressed PV enhances and accelerates the
excitotoxin-induced calcification process, compared with
wild type mice; these mice exhibit endogenous PV expres-
sion only in a minority of neurones in the investigated
region; (ii) the neuronal mitochondrion is a candidate
structure for deposit nucleation, and these deposits consist
of hydroxyapatite; and (iii) time-related changes of deposit
surface structure are prominent.

After IBO injection, Thy-PV mice showed a higher
density of calcium deposits in the neurone-depleted area at
all time points investigated. This indicates an impact of
transgenically expressed neuronal PV on deposit nucle-
ation. These transgenic mice also showed an accelerated
decrease of type 1 deposits (‘young’ deposits) and increased
numbers of type 3 deposits (‘mature’ deposits) from 2 to 4
weeks after IBO injection, arguing for an accelerated
growth rate and maturation velocity of the deposits
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Figure 5. Deposits consist of crystalline hydroxyapatite. (a) Selected area electron diffraction pattern in the transmission electron
microscope (TEM) exhibits a random crystal orientation in deposits with a ring pattern indicative of crystalline hydroxyapatite. (b) Energy
dispersive (EDS) X-ray analysis in the scanning electron microscopy (SEM) of calcified neuronal mitochondria and of extracellular deposits
shows high Ca and P peaks. No Si and Al were detected. (c) Peaks of silica in the EDS X-ray analysis in the TEM were not deposit-specific and
could not be reproduced in the SEM analysis. Pb, U, Os originate from staining; Cl, Si and Al from the embedding medium.

in neurones of Thy-PV mice. As biomineralization in
untreated transgenic mice was not observed and increased
Ca** deposition in neurones endogenously expressing high
levels of PV is not reported, we do not expect that the
presence of PV per se favours biomineralization. However,
the increased probability of deposit nucleation in the pres-
ence of PV can be explained by PV’s kinetic parameters of
Ca**binding and release, as well as its mobility inside a cell.

10

Under resting [Ca**]; conditions, PV is present mainly in its
Mg**-bound form and the kinetics of Ca** binding are deter-
mined by the slow Mg?** off-rate [34]. Thus, PV is too slow to
affect the rising phase of short Ca*" transients, but then
accelerates the initial decay of [Ca**];[34]. In PV knockout
mice, this leads to a slower Ca**-dependent relaxation rate
of fast-twitch muscles [35]. As relaxation rates remained
decreased in PV knockout mice even after longer duration
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of stimulation, when PV is supposed to be Ca**-saturated
[36], an accelerated Ca** removal from the cytosol to intra-
cellular Ca** sinks by PV, acting as a Ca*" shuttle, was
inferred. Further evidence for such a role comes from
studies on frog myoplasm and Purkinje neurones, where
diffusion coefficients of PV around 40 um?/s have been
measured [37,38]. Due to the freely mobile PV, local Ca**
elevations will dissipate faster and spread over more than
10-fold larger distances than in the absence of PV [38—40].
Thus, in Thy-PV mice, a larger proportion of the entered
Ca**ionsisexpected to end up in intracellular Ca** sinks like
mitochondria. This stands in contrast to preferential Ca**
extrusion via plasma membrane-associated mechanisms
[41] in neurones not expressing PV.

Expression of PV decreases mitochondrial volume in
the neurones of Thy-PV mice, as previously shown for
striatal neurones [22]. On the contrary, in fast-twitch
muscles and Purkinje cells of PV knockout mice, the loss
of PV is compensated by an increase in the fractional
volume of mitochondria [42]. These findings argue for an
inverse correlation between the cytosolic PV levels and
mitochondrial volume. Thus, in neurones of transgenic
mice, the following three mechanisms cooperate in
accumulating excessive amounts of Ca**: increased Ca**
buffering capacity, increased Ca** shuttle towards intrac-
ellular sinks like mitochondria and downregulation of
mitochondrial volume. While the first factor, increased
Ca’" buffering by PV, appears neuroprotective under con-
ditions of short-term excitotoxicity [28], in vivo and after
prolonged periods, the other two mechanisms, Ca?* shut-
tling and downregulation of mitochondrial volume, actu-
ally aggravate the effects of IBO in the transgenic mice.

In this study, we demonstrate that the first signs of
biomineralization after excitotoxic stress are observed in
otherwise morphologically intact processes of neurones
and are pronounced in mitochondria. Excitotoxicity
leads to an intracellular Ca** deregulation as the result of
enhanced Ca®* influx [19]. Mitochondrial Ca®* uptake
plays a crucial role in buffering the Ca** load induced
by intense glutamate receptor stimulation, mainly via
N-methyl-D-aspartic acid receptor activation [15]. Ca**
can precipitate in mitochondria due to an overload of the
matrix with Ca*; this, in turn, disrupts the structural and
functional integrity of the organelle [43]. Hence, mito-
chondria are sensitive intracellular targets of injury after
excessive glutamate receptor stimulation [44] and, in this
way, may act as a plausible link between massive Ca*"
influx and parenchymal brain calcification.
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As nitrosative and oxidative stress, and mitochondrial
damage also interfere with both excitotoxicity and
elevated [Ca*'];, it is tempting to hypothesize that these
pathophysiological processes may be causative elements
for neuronal microcalcification in the normally ageing
brain [17,18] and in neurodegeneration [14-16].

The enlargement of Ca*" deposits over weeks and
months has been described in detail previously [11,20].
Interestingly, the growth of the deposits appeared to be
limited in both Thy-PV mice and wild type mice to a few
pum, arguing rather for an extra- than for an intracellular
impact on the final size of deposits. Recently, it has been
suggested that diverse proteins like osteopontin, osteopro-
tegerin, matrix GLA protein and desmin might dissolve
aggregates of bioapatite [24-26,45]. The observed
changes in the surface topography of the deposits and the
upper limit of size of the precipitates indicate that biologi-
cal mechanisms promoting regression of biominerals is
not only present in peripheral tissues but also in the brain.

In conclusion, our data provide evidence that cellular
microcalcification, which may be an integrative or alter-
native mechanism of the neurone to cope with ageing and
neurodegeneration, is influenced by changes in intraneu-
ronal [Ca?*] homeostasis and impaired mitochondrial
function of the neurone. Growth rate and final size of the
calcified deposits are most probably limited by biological
regulation mechanisms.
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